invoke.texi (-fvar-tracking-assignments): New.
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Vector indicating that BB contains statements that are live. */
91 static sbitmap bb_contains_live_stmts;
92
93 /* Before we can determine whether a control branch is dead, we need to
94 compute which blocks are control dependent on which edges.
95
96 We expect each block to be control dependent on very few edges so we
97 use a bitmap for each block recording its edges. An array holds the
98 bitmap. The Ith bit in the bitmap is set if that block is dependent
99 on the Ith edge. */
100 static bitmap *control_dependence_map;
101
102 /* Vector indicating that a basic block has already had all the edges
103 processed that it is control dependent on. */
104 static sbitmap visited_control_parents;
105
106 /* TRUE if this pass alters the CFG (by removing control statements).
107 FALSE otherwise.
108
109 If this pass alters the CFG, then it will arrange for the dominators
110 to be recomputed. */
111 static bool cfg_altered;
112
113 /* Execute code that follows the macro for each edge (given number
114 EDGE_NUMBER within the CODE) for which the block with index N is
115 control dependent. */
116 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
117 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 (EDGE_NUMBER), (BI))
119
120
121 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
122 static inline void
123 set_control_dependence_map_bit (basic_block bb, int edge_index)
124 {
125 if (bb == ENTRY_BLOCK_PTR)
126 return;
127 gcc_assert (bb != EXIT_BLOCK_PTR);
128 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
129 }
130
131 /* Clear all control dependences for block BB. */
132 static inline void
133 clear_control_dependence_bitmap (basic_block bb)
134 {
135 bitmap_clear (control_dependence_map[bb->index]);
136 }
137
138
139 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
140 This function is necessary because some blocks have negative numbers. */
141
142 static inline basic_block
143 find_pdom (basic_block block)
144 {
145 gcc_assert (block != ENTRY_BLOCK_PTR);
146
147 if (block == EXIT_BLOCK_PTR)
148 return EXIT_BLOCK_PTR;
149 else
150 {
151 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
152 if (! bb)
153 return EXIT_BLOCK_PTR;
154 return bb;
155 }
156 }
157
158
159 /* Determine all blocks' control dependences on the given edge with edge_list
160 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
161
162 static void
163 find_control_dependence (struct edge_list *el, int edge_index)
164 {
165 basic_block current_block;
166 basic_block ending_block;
167
168 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
169
170 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
171 ending_block = single_succ (ENTRY_BLOCK_PTR);
172 else
173 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
174
175 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
176 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
177 current_block = find_pdom (current_block))
178 {
179 edge e = INDEX_EDGE (el, edge_index);
180
181 /* For abnormal edges, we don't make current_block control
182 dependent because instructions that throw are always necessary
183 anyway. */
184 if (e->flags & EDGE_ABNORMAL)
185 continue;
186
187 set_control_dependence_map_bit (current_block, edge_index);
188 }
189 }
190
191
192 /* Record all blocks' control dependences on all edges in the edge
193 list EL, ala Morgan, Section 3.6. */
194
195 static void
196 find_all_control_dependences (struct edge_list *el)
197 {
198 int i;
199
200 for (i = 0; i < NUM_EDGES (el); ++i)
201 find_control_dependence (el, i);
202 }
203
204 /* If STMT is not already marked necessary, mark it, and add it to the
205 worklist if ADD_TO_WORKLIST is true. */
206 static inline void
207 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
208 {
209 gcc_assert (stmt);
210
211 if (gimple_plf (stmt, STMT_NECESSARY))
212 return;
213
214 if (dump_file && (dump_flags & TDF_DETAILS))
215 {
216 fprintf (dump_file, "Marking useful stmt: ");
217 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
218 fprintf (dump_file, "\n");
219 }
220
221 gimple_set_plf (stmt, STMT_NECESSARY, true);
222 if (add_to_worklist)
223 VEC_safe_push (gimple, heap, worklist, stmt);
224 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
225 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
226 }
227
228
229 /* Mark the statement defining operand OP as necessary. */
230
231 static inline void
232 mark_operand_necessary (tree op)
233 {
234 gimple stmt;
235 int ver;
236
237 gcc_assert (op);
238
239 ver = SSA_NAME_VERSION (op);
240 if (TEST_BIT (processed, ver))
241 {
242 stmt = SSA_NAME_DEF_STMT (op);
243 gcc_assert (gimple_nop_p (stmt)
244 || gimple_plf (stmt, STMT_NECESSARY));
245 return;
246 }
247 SET_BIT (processed, ver);
248
249 stmt = SSA_NAME_DEF_STMT (op);
250 gcc_assert (stmt);
251
252 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
253 return;
254
255 if (dump_file && (dump_flags & TDF_DETAILS))
256 {
257 fprintf (dump_file, "marking necessary through ");
258 print_generic_expr (dump_file, op, 0);
259 fprintf (dump_file, " stmt ");
260 print_gimple_stmt (dump_file, stmt, 0, 0);
261 }
262
263 gimple_set_plf (stmt, STMT_NECESSARY, true);
264 if (bb_contains_live_stmts)
265 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
266 VEC_safe_push (gimple, heap, worklist, stmt);
267 }
268
269
270 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276 static void
277 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
278 {
279 tree lhs = NULL_TREE;
280 /* With non-call exceptions, we have to assume that all statements could
281 throw. If a statement may throw, it is inherently necessary. */
282 if (flag_non_call_exceptions
283 && stmt_could_throw_p (stmt))
284 {
285 mark_stmt_necessary (stmt, true);
286 return;
287 }
288
289 /* Statements that are implicitly live. Most function calls, asm
290 and return statements are required. Labels and GIMPLE_BIND nodes
291 are kept because they are control flow, and we have no way of
292 knowing whether they can be removed. DCE can eliminate all the
293 other statements in a block, and CFG can then remove the block
294 and labels. */
295 switch (gimple_code (stmt))
296 {
297 case GIMPLE_PREDICT:
298 case GIMPLE_LABEL:
299 mark_stmt_necessary (stmt, false);
300 return;
301
302 case GIMPLE_ASM:
303 case GIMPLE_RESX:
304 case GIMPLE_RETURN:
305 mark_stmt_necessary (stmt, true);
306 return;
307
308 case GIMPLE_CALL:
309 /* Most, but not all function calls are required. Function calls that
310 produce no result and have no side effects (i.e. const pure
311 functions) are unnecessary. */
312 if (gimple_has_side_effects (stmt))
313 {
314 mark_stmt_necessary (stmt, true);
315 return;
316 }
317 if (!gimple_call_lhs (stmt))
318 return;
319 lhs = gimple_call_lhs (stmt);
320 /* Fall through */
321
322 case GIMPLE_ASSIGN:
323 if (!lhs)
324 lhs = gimple_assign_lhs (stmt);
325 /* These values are mildly magic bits of the EH runtime. We can't
326 see the entire lifetime of these values until landing pads are
327 generated. */
328 if (TREE_CODE (lhs) == EXC_PTR_EXPR
329 || TREE_CODE (lhs) == FILTER_EXPR)
330 {
331 mark_stmt_necessary (stmt, true);
332 return;
333 }
334 break;
335
336 case GIMPLE_DEBUG:
337 mark_stmt_necessary (stmt, false);
338 return;
339
340 case GIMPLE_GOTO:
341 gcc_assert (!simple_goto_p (stmt));
342 mark_stmt_necessary (stmt, true);
343 return;
344
345 case GIMPLE_COND:
346 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
347 /* Fall through. */
348
349 case GIMPLE_SWITCH:
350 if (! aggressive)
351 mark_stmt_necessary (stmt, true);
352 break;
353
354 default:
355 break;
356 }
357
358 /* If the statement has volatile operands, it needs to be preserved.
359 Same for statements that can alter control flow in unpredictable
360 ways. */
361 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
362 {
363 mark_stmt_necessary (stmt, true);
364 return;
365 }
366
367 if (is_hidden_global_store (stmt))
368 {
369 mark_stmt_necessary (stmt, true);
370 return;
371 }
372
373 return;
374 }
375
376
377 /* Make corresponding control dependent edges necessary. We only
378 have to do this once for each basic block, so we clear the bitmap
379 after we're done. */
380 static void
381 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
382 {
383 bitmap_iterator bi;
384 unsigned edge_number;
385
386 gcc_assert (bb != EXIT_BLOCK_PTR);
387
388 if (bb == ENTRY_BLOCK_PTR)
389 return;
390
391 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
392 {
393 gimple stmt;
394 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
395
396 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
397 continue;
398 SET_BIT (last_stmt_necessary, cd_bb->index);
399 SET_BIT (bb_contains_live_stmts, cd_bb->index);
400
401 stmt = last_stmt (cd_bb);
402 if (stmt && is_ctrl_stmt (stmt))
403 mark_stmt_necessary (stmt, true);
404 }
405 }
406
407
408 /* Find obviously necessary statements. These are things like most function
409 calls, and stores to file level variables.
410
411 If EL is NULL, control statements are conservatively marked as
412 necessary. Otherwise it contains the list of edges used by control
413 dependence analysis. */
414
415 static void
416 find_obviously_necessary_stmts (struct edge_list *el)
417 {
418 basic_block bb;
419 gimple_stmt_iterator gsi;
420 edge e;
421 gimple phi, stmt;
422
423 FOR_EACH_BB (bb)
424 {
425 /* PHI nodes are never inherently necessary. */
426 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
427 {
428 phi = gsi_stmt (gsi);
429 gimple_set_plf (phi, STMT_NECESSARY, false);
430 }
431
432 /* Check all statements in the block. */
433 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
434 {
435 stmt = gsi_stmt (gsi);
436 gimple_set_plf (stmt, STMT_NECESSARY, false);
437 mark_stmt_if_obviously_necessary (stmt, el != NULL);
438 }
439 }
440
441 /* Pure and const functions are finite and thus have no infinite loops in
442 them. */
443 if ((TREE_READONLY (current_function_decl)
444 || DECL_PURE_P (current_function_decl))
445 && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
446 return;
447
448 /* Prevent the empty possibly infinite loops from being removed. */
449 if (el)
450 {
451 loop_iterator li;
452 struct loop *loop;
453 scev_initialize ();
454 if (mark_irreducible_loops ())
455 FOR_EACH_BB (bb)
456 {
457 edge_iterator ei;
458 FOR_EACH_EDGE (e, ei, bb->succs)
459 if ((e->flags & EDGE_DFS_BACK)
460 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
461 {
462 if (dump_file)
463 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
464 e->src->index, e->dest->index);
465 mark_control_dependent_edges_necessary (e->dest, el);
466 }
467 }
468
469 FOR_EACH_LOOP (li, loop, 0)
470 if (!finite_loop_p (loop))
471 {
472 if (dump_file)
473 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
474 mark_control_dependent_edges_necessary (loop->latch, el);
475 }
476 scev_finalize ();
477 }
478 }
479
480
481 /* Return true if REF is based on an aliased base, otherwise false. */
482
483 static bool
484 ref_may_be_aliased (tree ref)
485 {
486 while (handled_component_p (ref))
487 ref = TREE_OPERAND (ref, 0);
488 return !(DECL_P (ref)
489 && !may_be_aliased (ref));
490 }
491
492 static bitmap visited = NULL;
493 static unsigned int longest_chain = 0;
494 static unsigned int total_chain = 0;
495 static bool chain_ovfl = false;
496
497 /* Worker for the walker that marks reaching definitions of REF,
498 which is based on a non-aliased decl, necessary. It returns
499 true whenever the defining statement of the current VDEF is
500 a kill for REF, as no dominating may-defs are necessary for REF
501 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
502
503 static bool
504 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef,
505 void *data ATTRIBUTE_UNUSED)
506 {
507 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
508
509 /* All stmts we visit are necessary. */
510 mark_operand_necessary (vdef);
511
512 /* If the stmt lhs kills ref, then we can stop walking. */
513 if (gimple_has_lhs (def_stmt)
514 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
515 {
516 tree base, lhs = gimple_get_lhs (def_stmt);
517 HOST_WIDE_INT size, offset, max_size;
518 ao_ref_base (ref);
519 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
520 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
521 so base == refd->base does not always hold. */
522 if (base == ref->base)
523 {
524 /* For a must-alias check we need to be able to constrain
525 the accesses properly. */
526 if (size != -1 && size == max_size
527 && ref->max_size != -1)
528 {
529 if (offset <= ref->offset
530 && offset + size >= ref->offset + ref->max_size)
531 return true;
532 }
533 /* Or they need to be exactly the same. */
534 else if (ref->ref
535 && operand_equal_p (ref->ref, lhs, 0))
536 return true;
537 }
538 }
539
540 /* Otherwise keep walking. */
541 return false;
542 }
543
544 static void
545 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
546 {
547 unsigned int chain;
548 ao_ref refd;
549 gcc_assert (!chain_ovfl);
550 ao_ref_init (&refd, ref);
551 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
552 mark_aliased_reaching_defs_necessary_1,
553 NULL, NULL);
554 if (chain > longest_chain)
555 longest_chain = chain;
556 total_chain += chain;
557 }
558
559 /* Worker for the walker that marks reaching definitions of REF, which
560 is not based on a non-aliased decl. For simplicity we need to end
561 up marking all may-defs necessary that are not based on a non-aliased
562 decl. The only job of this walker is to skip may-defs based on
563 a non-aliased decl. */
564
565 static bool
566 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
567 tree vdef, void *data ATTRIBUTE_UNUSED)
568 {
569 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
570
571 /* We have to skip already visited (and thus necessary) statements
572 to make the chaining work after we dropped back to simple mode. */
573 if (chain_ovfl
574 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
575 {
576 gcc_assert (gimple_nop_p (def_stmt)
577 || gimple_plf (def_stmt, STMT_NECESSARY));
578 return false;
579 }
580
581 /* We want to skip stores to non-aliased variables. */
582 if (!chain_ovfl
583 && gimple_assign_single_p (def_stmt))
584 {
585 tree lhs = gimple_assign_lhs (def_stmt);
586 if (!ref_may_be_aliased (lhs))
587 return false;
588 }
589
590 mark_operand_necessary (vdef);
591
592 return false;
593 }
594
595 static void
596 mark_all_reaching_defs_necessary (gimple stmt)
597 {
598 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
599 mark_all_reaching_defs_necessary_1, NULL, &visited);
600 }
601
602 /* Return true for PHI nodes with one or identical arguments
603 can be removed. */
604 static bool
605 degenerate_phi_p (gimple phi)
606 {
607 unsigned int i;
608 tree op = gimple_phi_arg_def (phi, 0);
609 for (i = 1; i < gimple_phi_num_args (phi); i++)
610 if (gimple_phi_arg_def (phi, i) != op)
611 return false;
612 return true;
613 }
614
615 /* Propagate necessity using the operands of necessary statements.
616 Process the uses on each statement in the worklist, and add all
617 feeding statements which contribute to the calculation of this
618 value to the worklist.
619
620 In conservative mode, EL is NULL. */
621
622 static void
623 propagate_necessity (struct edge_list *el)
624 {
625 gimple stmt;
626 bool aggressive = (el ? true : false);
627
628 if (dump_file && (dump_flags & TDF_DETAILS))
629 fprintf (dump_file, "\nProcessing worklist:\n");
630
631 while (VEC_length (gimple, worklist) > 0)
632 {
633 /* Take STMT from worklist. */
634 stmt = VEC_pop (gimple, worklist);
635
636 if (dump_file && (dump_flags & TDF_DETAILS))
637 {
638 fprintf (dump_file, "processing: ");
639 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
640 fprintf (dump_file, "\n");
641 }
642
643 if (aggressive)
644 {
645 /* Mark the last statements of the basic blocks that the block
646 containing STMT is control dependent on, but only if we haven't
647 already done so. */
648 basic_block bb = gimple_bb (stmt);
649 if (bb != ENTRY_BLOCK_PTR
650 && ! TEST_BIT (visited_control_parents, bb->index))
651 {
652 SET_BIT (visited_control_parents, bb->index);
653 mark_control_dependent_edges_necessary (bb, el);
654 }
655 }
656
657 if (gimple_code (stmt) == GIMPLE_PHI
658 /* We do not process virtual PHI nodes nor do we track their
659 necessity. */
660 && is_gimple_reg (gimple_phi_result (stmt)))
661 {
662 /* PHI nodes are somewhat special in that each PHI alternative has
663 data and control dependencies. All the statements feeding the
664 PHI node's arguments are always necessary. In aggressive mode,
665 we also consider the control dependent edges leading to the
666 predecessor block associated with each PHI alternative as
667 necessary. */
668 size_t k;
669
670 for (k = 0; k < gimple_phi_num_args (stmt); k++)
671 {
672 tree arg = PHI_ARG_DEF (stmt, k);
673 if (TREE_CODE (arg) == SSA_NAME)
674 mark_operand_necessary (arg);
675 }
676
677 if (aggressive && !degenerate_phi_p (stmt))
678 {
679 for (k = 0; k < gimple_phi_num_args (stmt); k++)
680 {
681 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
682 if (arg_bb != ENTRY_BLOCK_PTR
683 && ! TEST_BIT (visited_control_parents, arg_bb->index))
684 {
685 SET_BIT (visited_control_parents, arg_bb->index);
686 mark_control_dependent_edges_necessary (arg_bb, el);
687 }
688 }
689 }
690 }
691 else
692 {
693 /* Propagate through the operands. Examine all the USE, VUSE and
694 VDEF operands in this statement. Mark all the statements
695 which feed this statement's uses as necessary. */
696 ssa_op_iter iter;
697 tree use;
698
699 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
700 mark_operand_necessary (use);
701
702 use = gimple_vuse (stmt);
703 if (!use)
704 continue;
705
706 /* If we dropped to simple mode make all immediately
707 reachable definitions necessary. */
708 if (chain_ovfl)
709 {
710 mark_all_reaching_defs_necessary (stmt);
711 continue;
712 }
713
714 /* For statements that may load from memory (have a VUSE) we
715 have to mark all reaching (may-)definitions as necessary.
716 We partition this task into two cases:
717 1) explicit loads based on decls that are not aliased
718 2) implicit loads (like calls) and explicit loads not
719 based on decls that are not aliased (like indirect
720 references or loads from globals)
721 For 1) we mark all reaching may-defs as necessary, stopping
722 at dominating kills. For 2) we want to mark all dominating
723 references necessary, but non-aliased ones which we handle
724 in 1). By keeping a global visited bitmap for references
725 we walk for 2) we avoid quadratic behavior for those. */
726
727 if (is_gimple_call (stmt))
728 {
729 tree callee = gimple_call_fndecl (stmt);
730 unsigned i;
731
732 /* Calls to functions that are merely acting as barriers
733 or that only store to memory do not make any previous
734 stores necessary. */
735 if (callee != NULL_TREE
736 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
737 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
738 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
739 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
740 continue;
741
742 /* Calls implicitly load from memory, their arguments
743 in addition may explicitly perform memory loads. */
744 mark_all_reaching_defs_necessary (stmt);
745 for (i = 0; i < gimple_call_num_args (stmt); ++i)
746 {
747 tree arg = gimple_call_arg (stmt, i);
748 if (TREE_CODE (arg) == SSA_NAME
749 || is_gimple_min_invariant (arg))
750 continue;
751 if (!ref_may_be_aliased (arg))
752 mark_aliased_reaching_defs_necessary (stmt, arg);
753 }
754 }
755 else if (gimple_assign_single_p (stmt))
756 {
757 tree rhs;
758 bool rhs_aliased = false;
759 /* If this is a load mark things necessary. */
760 rhs = gimple_assign_rhs1 (stmt);
761 if (TREE_CODE (rhs) != SSA_NAME
762 && !is_gimple_min_invariant (rhs))
763 {
764 if (!ref_may_be_aliased (rhs))
765 mark_aliased_reaching_defs_necessary (stmt, rhs);
766 else
767 rhs_aliased = true;
768 }
769 if (rhs_aliased)
770 mark_all_reaching_defs_necessary (stmt);
771 }
772 else if (gimple_code (stmt) == GIMPLE_RETURN)
773 {
774 tree rhs = gimple_return_retval (stmt);
775 /* A return statement may perform a load. */
776 if (TREE_CODE (rhs) != SSA_NAME
777 && !is_gimple_min_invariant (rhs))
778 {
779 if (!ref_may_be_aliased (rhs))
780 mark_aliased_reaching_defs_necessary (stmt, rhs);
781 else
782 mark_all_reaching_defs_necessary (stmt);
783 }
784 }
785 else if (gimple_code (stmt) == GIMPLE_ASM)
786 {
787 unsigned i;
788 mark_all_reaching_defs_necessary (stmt);
789 /* Inputs may perform loads. */
790 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
791 {
792 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
793 if (TREE_CODE (op) != SSA_NAME
794 && !is_gimple_min_invariant (op)
795 && !ref_may_be_aliased (op))
796 mark_aliased_reaching_defs_necessary (stmt, op);
797 }
798 }
799 else
800 gcc_unreachable ();
801
802 /* If we over-used our alias oracle budget drop to simple
803 mode. The cost metric allows quadratic behavior up to
804 a constant maximal chain and after that falls back to
805 super-linear complexity. */
806 if (longest_chain > 256
807 && total_chain > 256 * longest_chain)
808 {
809 chain_ovfl = true;
810 if (visited)
811 bitmap_clear (visited);
812 }
813 }
814 }
815 }
816
817 /* Replace all uses of result of PHI by underlying variable and mark it
818 for renaming. */
819
820 static void
821 mark_virtual_phi_result_for_renaming (gimple phi)
822 {
823 bool used = false;
824 imm_use_iterator iter;
825 use_operand_p use_p;
826 gimple stmt;
827 if (dump_file && (dump_flags & TDF_DETAILS))
828 {
829 fprintf (dump_file, "Marking result for renaming : ");
830 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
831 fprintf (dump_file, "\n");
832 }
833 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (phi))
834 {
835 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
836 SET_USE (use_p, SSA_NAME_VAR (gimple_phi_result (phi)));
837 update_stmt (stmt);
838 used = true;
839 }
840 if (used)
841 mark_sym_for_renaming (SSA_NAME_VAR (PHI_RESULT (phi)));
842 }
843
844 /* Remove dead PHI nodes from block BB. */
845
846 static bool
847 remove_dead_phis (basic_block bb)
848 {
849 bool something_changed = false;
850 gimple_seq phis;
851 gimple phi;
852 gimple_stmt_iterator gsi;
853 phis = phi_nodes (bb);
854
855 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
856 {
857 stats.total_phis++;
858 phi = gsi_stmt (gsi);
859
860 /* We do not track necessity of virtual PHI nodes. Instead do
861 very simple dead PHI removal here. */
862 if (!is_gimple_reg (gimple_phi_result (phi)))
863 {
864 /* Virtual PHI nodes with one or identical arguments
865 can be removed. */
866 if (degenerate_phi_p (phi))
867 {
868 tree vdef = gimple_phi_result (phi);
869 tree vuse = gimple_phi_arg_def (phi, 0);
870
871 use_operand_p use_p;
872 imm_use_iterator iter;
873 gimple use_stmt;
874 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
875 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
876 SET_USE (use_p, vuse);
877 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
878 && TREE_CODE (vuse) == SSA_NAME)
879 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
880 }
881 else
882 gimple_set_plf (phi, STMT_NECESSARY, true);
883 }
884
885 if (!gimple_plf (phi, STMT_NECESSARY))
886 {
887 something_changed = true;
888 if (dump_file && (dump_flags & TDF_DETAILS))
889 {
890 fprintf (dump_file, "Deleting : ");
891 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
892 fprintf (dump_file, "\n");
893 }
894
895 remove_phi_node (&gsi, true);
896 stats.removed_phis++;
897 continue;
898 }
899
900 gsi_next (&gsi);
901 }
902 return something_changed;
903 }
904
905 /* Find first live post dominator of BB. */
906
907 static basic_block
908 get_live_post_dom (basic_block bb)
909 {
910 basic_block post_dom_bb;
911
912
913 /* The post dominance info has to be up-to-date. */
914 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
915
916 /* Get the immediate post dominator of bb. */
917 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
918 /* And look for first live one. */
919 while (post_dom_bb != EXIT_BLOCK_PTR
920 && !TEST_BIT (bb_contains_live_stmts, post_dom_bb->index))
921 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, post_dom_bb);
922
923 return post_dom_bb;
924 }
925
926 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
927
928 static edge
929 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
930 {
931 gimple_stmt_iterator gsi;
932 edge e2 = NULL;
933 edge_iterator ei;
934
935 if (dump_file && (dump_flags & TDF_DETAILS))
936 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
937 e->dest->index, post_dom_bb->index);
938
939 e2 = redirect_edge_and_branch (e, post_dom_bb);
940 cfg_altered = true;
941
942 /* If edge was already around, no updating is neccesary. */
943 if (e2 != e)
944 return e2;
945
946 if (phi_nodes (post_dom_bb))
947 {
948 /* We are sure that for every live PHI we are seeing control dependent BB.
949 This means that we can look up the end of control dependent path leading
950 to the PHI itself. */
951 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
952 if (e2 != e && dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->src))
953 break;
954 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
955 {
956 gimple phi = gsi_stmt (gsi);
957 tree op;
958 source_location locus;
959
960 /* Dead PHI do not imply control dependency. */
961 if (!gimple_plf (phi, STMT_NECESSARY)
962 && is_gimple_reg (gimple_phi_result (phi)))
963 {
964 gsi_next (&gsi);
965 continue;
966 }
967 if (gimple_phi_arg_def (phi, e->dest_idx))
968 {
969 gsi_next (&gsi);
970 continue;
971 }
972
973 /* We didn't find edge to update. This can happen for PHIs on virtuals
974 since there is no control dependency relation on them. We are lost
975 here and must force renaming of the symbol. */
976 if (!is_gimple_reg (gimple_phi_result (phi)))
977 {
978 mark_virtual_phi_result_for_renaming (phi);
979 remove_phi_node (&gsi, true);
980 continue;
981 }
982 if (!e2)
983 {
984 op = gimple_phi_arg_def (phi, e->dest_idx == 0 ? 1 : 0);
985 locus = gimple_phi_arg_location (phi, e->dest_idx == 0 ? 1 : 0);
986 }
987 else
988 {
989 op = gimple_phi_arg_def (phi, e2->dest_idx);
990 locus = gimple_phi_arg_location (phi, e2->dest_idx);
991 }
992 add_phi_arg (phi, op, e, locus);
993 gcc_assert (e2 || degenerate_phi_p (phi));
994 gsi_next (&gsi);
995 }
996 }
997 return e;
998 }
999
1000 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1001 containing I so that we don't have to look it up. */
1002
1003 static void
1004 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1005 {
1006 gimple stmt = gsi_stmt (*i);
1007
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 {
1010 fprintf (dump_file, "Deleting : ");
1011 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1012 fprintf (dump_file, "\n");
1013 }
1014
1015 stats.removed++;
1016
1017 /* If we have determined that a conditional branch statement contributes
1018 nothing to the program, then we not only remove it, but we also change
1019 the flow graph so that the current block will simply fall-thru to its
1020 immediate post-dominator. The blocks we are circumventing will be
1021 removed by cleanup_tree_cfg if this change in the flow graph makes them
1022 unreachable. */
1023 if (is_ctrl_stmt (stmt))
1024 {
1025 basic_block post_dom_bb;
1026 edge e, e2;
1027 edge_iterator ei;
1028
1029 post_dom_bb = get_live_post_dom (bb);
1030
1031 e = find_edge (bb, post_dom_bb);
1032
1033 /* If edge is already there, try to use it. This avoids need to update
1034 PHI nodes. Also watch for cases where post dominator does not exists
1035 or is exit block. These can happen for infinite loops as we create
1036 fake edges in the dominator tree. */
1037 if (e)
1038 ;
1039 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1040 e = EDGE_SUCC (bb, 0);
1041 else
1042 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1043 gcc_assert (e);
1044 e->probability = REG_BR_PROB_BASE;
1045 e->count = bb->count;
1046
1047 /* The edge is no longer associated with a conditional, so it does
1048 not have TRUE/FALSE flags. */
1049 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1050
1051 /* The lone outgoing edge from BB will be a fallthru edge. */
1052 e->flags |= EDGE_FALLTHRU;
1053
1054 /* Remove the remaining outgoing edges. */
1055 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1056 if (e != e2)
1057 {
1058 cfg_altered = true;
1059 remove_edge (e2);
1060 }
1061 else
1062 ei_next (&ei);
1063 }
1064
1065 unlink_stmt_vdef (stmt);
1066 gsi_remove (i, true);
1067 release_defs (stmt);
1068 }
1069
1070 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1071 contributes nothing to the program, and can be deleted. */
1072
1073 static bool
1074 eliminate_unnecessary_stmts (void)
1075 {
1076 bool something_changed = false;
1077 basic_block bb;
1078 gimple_stmt_iterator gsi;
1079 gimple stmt;
1080 tree call;
1081 VEC (basic_block, heap) *h;
1082
1083 if (dump_file && (dump_flags & TDF_DETAILS))
1084 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1085
1086 clear_special_calls ();
1087
1088 /* Walking basic blocks and statements in reverse order avoids
1089 releasing SSA names before any other DEFs that refer to them are
1090 released. This helps avoid loss of debug information, as we get
1091 a chance to propagate all RHSs of removed SSAs into debug uses,
1092 rather than only the latest ones. E.g., consider:
1093
1094 x_3 = y_1 + z_2;
1095 a_5 = x_3 - b_4;
1096 # DEBUG a => a_5
1097
1098 If we were to release x_3 before a_5, when we reached a_5 and
1099 tried to substitute it into the debug stmt, we'd see x_3 there,
1100 but x_3's DEF, type, etc would have already been disconnected.
1101 By going backwards, the debug stmt first changes to:
1102
1103 # DEBUG a => x_3 - b_4
1104
1105 and then to:
1106
1107 # DEBUG a => y_1 + z_2 - b_4
1108
1109 as desired. */
1110 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1111 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1112
1113 while (VEC_length (basic_block, h))
1114 {
1115 bb = VEC_pop (basic_block, h);
1116
1117 /* Remove dead statements. */
1118 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
1119 {
1120 stmt = gsi_stmt (gsi);
1121
1122 stats.total++;
1123
1124 /* If GSI is not necessary then remove it. */
1125 if (!gimple_plf (stmt, STMT_NECESSARY))
1126 {
1127 remove_dead_stmt (&gsi, bb);
1128 something_changed = true;
1129
1130 /* If stmt was the last stmt in the block, we want to
1131 move gsi to the stmt that became the last stmt, but
1132 gsi_prev would crash. */
1133 if (gsi_end_p (gsi))
1134 gsi = gsi_last_bb (bb);
1135 else
1136 gsi_prev (&gsi);
1137 }
1138 else if (is_gimple_call (stmt))
1139 {
1140 call = gimple_call_fndecl (stmt);
1141 if (call)
1142 {
1143 tree name;
1144
1145 /* When LHS of var = call (); is dead, simplify it into
1146 call (); saving one operand. */
1147 name = gimple_call_lhs (stmt);
1148 if (name && TREE_CODE (name) == SSA_NAME
1149 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1150 {
1151 something_changed = true;
1152 if (dump_file && (dump_flags & TDF_DETAILS))
1153 {
1154 fprintf (dump_file, "Deleting LHS of call: ");
1155 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 gimple_call_set_lhs (stmt, NULL_TREE);
1160 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1161 update_stmt (stmt);
1162 release_ssa_name (name);
1163 }
1164 notice_special_calls (stmt);
1165 }
1166 gsi_prev (&gsi);
1167 }
1168 else
1169 gsi_prev (&gsi);
1170 }
1171 }
1172
1173 VEC_free (basic_block, heap, h);
1174
1175 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1176 rendered some PHI nodes unreachable while they are still in use.
1177 Mark them for renaming. */
1178 if (cfg_altered)
1179 {
1180 basic_block prev_bb;
1181
1182 find_unreachable_blocks ();
1183
1184 /* Delete all unreachable basic blocks in reverse dominator order. */
1185 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1186 {
1187 prev_bb = bb->prev_bb;
1188
1189 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1190 || !(bb->flags & BB_REACHABLE))
1191 {
1192 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1193 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1194 {
1195 bool found = false;
1196 imm_use_iterator iter;
1197
1198 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1199 {
1200 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1201 continue;
1202 if (gimple_code (stmt) == GIMPLE_PHI
1203 || gimple_plf (stmt, STMT_NECESSARY))
1204 {
1205 found = true;
1206 BREAK_FROM_IMM_USE_STMT (iter);
1207 }
1208 }
1209 if (found)
1210 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1211 }
1212
1213 if (!(bb->flags & BB_REACHABLE))
1214 {
1215 /* Speed up the removal of blocks that don't
1216 dominate others. Walking backwards, this should
1217 be the common case. ??? Do we need to recompute
1218 dominators because of cfg_altered? */
1219 if (!MAY_HAVE_DEBUG_STMTS
1220 || !first_dom_son (CDI_DOMINATORS, bb))
1221 delete_basic_block (bb);
1222 else
1223 {
1224 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1225
1226 while (VEC_length (basic_block, h))
1227 {
1228 bb = VEC_pop (basic_block, h);
1229 prev_bb = bb->prev_bb;
1230 /* Rearrangements to the CFG may have failed
1231 to update the dominators tree, so that
1232 formerly-dominated blocks are now
1233 otherwise reachable. */
1234 if (!!(bb->flags & BB_REACHABLE))
1235 continue;
1236 delete_basic_block (bb);
1237 }
1238
1239 VEC_free (basic_block, heap, h);
1240 }
1241 }
1242 }
1243 }
1244 }
1245 FOR_EACH_BB (bb)
1246 {
1247 /* Remove dead PHI nodes. */
1248 something_changed |= remove_dead_phis (bb);
1249 }
1250
1251 return something_changed;
1252 }
1253
1254
1255 /* Print out removed statement statistics. */
1256
1257 static void
1258 print_stats (void)
1259 {
1260 float percg;
1261
1262 percg = ((float) stats.removed / (float) stats.total) * 100;
1263 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1264 stats.removed, stats.total, (int) percg);
1265
1266 if (stats.total_phis == 0)
1267 percg = 0;
1268 else
1269 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1270
1271 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1272 stats.removed_phis, stats.total_phis, (int) percg);
1273 }
1274
1275 /* Initialization for this pass. Set up the used data structures. */
1276
1277 static void
1278 tree_dce_init (bool aggressive)
1279 {
1280 memset ((void *) &stats, 0, sizeof (stats));
1281
1282 if (aggressive)
1283 {
1284 int i;
1285
1286 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1287 for (i = 0; i < last_basic_block; ++i)
1288 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1289
1290 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1291 sbitmap_zero (last_stmt_necessary);
1292 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1293 sbitmap_zero (bb_contains_live_stmts);
1294 }
1295
1296 processed = sbitmap_alloc (num_ssa_names + 1);
1297 sbitmap_zero (processed);
1298
1299 worklist = VEC_alloc (gimple, heap, 64);
1300 cfg_altered = false;
1301 }
1302
1303 /* Cleanup after this pass. */
1304
1305 static void
1306 tree_dce_done (bool aggressive)
1307 {
1308 if (aggressive)
1309 {
1310 int i;
1311
1312 for (i = 0; i < last_basic_block; ++i)
1313 BITMAP_FREE (control_dependence_map[i]);
1314 free (control_dependence_map);
1315
1316 sbitmap_free (visited_control_parents);
1317 sbitmap_free (last_stmt_necessary);
1318 sbitmap_free (bb_contains_live_stmts);
1319 bb_contains_live_stmts = NULL;
1320 }
1321
1322 sbitmap_free (processed);
1323
1324 VEC_free (gimple, heap, worklist);
1325 }
1326
1327 /* Main routine to eliminate dead code.
1328
1329 AGGRESSIVE controls the aggressiveness of the algorithm.
1330 In conservative mode, we ignore control dependence and simply declare
1331 all but the most trivially dead branches necessary. This mode is fast.
1332 In aggressive mode, control dependences are taken into account, which
1333 results in more dead code elimination, but at the cost of some time.
1334
1335 FIXME: Aggressive mode before PRE doesn't work currently because
1336 the dominance info is not invalidated after DCE1. This is
1337 not an issue right now because we only run aggressive DCE
1338 as the last tree SSA pass, but keep this in mind when you
1339 start experimenting with pass ordering. */
1340
1341 static unsigned int
1342 perform_tree_ssa_dce (bool aggressive)
1343 {
1344 struct edge_list *el = NULL;
1345 bool something_changed = 0;
1346
1347 /* Preheaders are needed for SCEV to work.
1348 Simple lateches and recorded exits improve chances that loop will
1349 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1350 if (aggressive)
1351 loop_optimizer_init (LOOPS_NORMAL
1352 | LOOPS_HAVE_RECORDED_EXITS);
1353
1354 tree_dce_init (aggressive);
1355
1356 if (aggressive)
1357 {
1358 /* Compute control dependence. */
1359 timevar_push (TV_CONTROL_DEPENDENCES);
1360 calculate_dominance_info (CDI_POST_DOMINATORS);
1361 el = create_edge_list ();
1362 find_all_control_dependences (el);
1363 timevar_pop (TV_CONTROL_DEPENDENCES);
1364
1365 visited_control_parents = sbitmap_alloc (last_basic_block);
1366 sbitmap_zero (visited_control_parents);
1367
1368 mark_dfs_back_edges ();
1369 }
1370
1371 find_obviously_necessary_stmts (el);
1372
1373 if (aggressive)
1374 loop_optimizer_finalize ();
1375
1376 longest_chain = 0;
1377 total_chain = 0;
1378 chain_ovfl = false;
1379 propagate_necessity (el);
1380 BITMAP_FREE (visited);
1381
1382 something_changed |= eliminate_unnecessary_stmts ();
1383 something_changed |= cfg_altered;
1384
1385 /* We do not update postdominators, so free them unconditionally. */
1386 free_dominance_info (CDI_POST_DOMINATORS);
1387
1388 /* If we removed paths in the CFG, then we need to update
1389 dominators as well. I haven't investigated the possibility
1390 of incrementally updating dominators. */
1391 if (cfg_altered)
1392 free_dominance_info (CDI_DOMINATORS);
1393
1394 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1395 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1396
1397 /* Debugging dumps. */
1398 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1399 print_stats ();
1400
1401 tree_dce_done (aggressive);
1402
1403 free_edge_list (el);
1404
1405 if (something_changed)
1406 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1407 | TODO_remove_unused_locals);
1408 else
1409 return 0;
1410 }
1411
1412 /* Pass entry points. */
1413 static unsigned int
1414 tree_ssa_dce (void)
1415 {
1416 return perform_tree_ssa_dce (/*aggressive=*/false);
1417 }
1418
1419 static unsigned int
1420 tree_ssa_dce_loop (void)
1421 {
1422 unsigned int todo;
1423 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1424 if (todo)
1425 {
1426 free_numbers_of_iterations_estimates ();
1427 scev_reset ();
1428 }
1429 return todo;
1430 }
1431
1432 static unsigned int
1433 tree_ssa_cd_dce (void)
1434 {
1435 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1436 }
1437
1438 static bool
1439 gate_dce (void)
1440 {
1441 return flag_tree_dce != 0;
1442 }
1443
1444 struct gimple_opt_pass pass_dce =
1445 {
1446 {
1447 GIMPLE_PASS,
1448 "dce", /* name */
1449 gate_dce, /* gate */
1450 tree_ssa_dce, /* execute */
1451 NULL, /* sub */
1452 NULL, /* next */
1453 0, /* static_pass_number */
1454 TV_TREE_DCE, /* tv_id */
1455 PROP_cfg | PROP_ssa, /* properties_required */
1456 0, /* properties_provided */
1457 0, /* properties_destroyed */
1458 0, /* todo_flags_start */
1459 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1460 }
1461 };
1462
1463 struct gimple_opt_pass pass_dce_loop =
1464 {
1465 {
1466 GIMPLE_PASS,
1467 "dceloop", /* name */
1468 gate_dce, /* gate */
1469 tree_ssa_dce_loop, /* execute */
1470 NULL, /* sub */
1471 NULL, /* next */
1472 0, /* static_pass_number */
1473 TV_TREE_DCE, /* tv_id */
1474 PROP_cfg | PROP_ssa, /* properties_required */
1475 0, /* properties_provided */
1476 0, /* properties_destroyed */
1477 0, /* todo_flags_start */
1478 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1479 }
1480 };
1481
1482 struct gimple_opt_pass pass_cd_dce =
1483 {
1484 {
1485 GIMPLE_PASS,
1486 "cddce", /* name */
1487 gate_dce, /* gate */
1488 tree_ssa_cd_dce, /* execute */
1489 NULL, /* sub */
1490 NULL, /* next */
1491 0, /* static_pass_number */
1492 TV_TREE_CD_DCE, /* tv_id */
1493 PROP_cfg | PROP_ssa, /* properties_required */
1494 0, /* properties_provided */
1495 0, /* properties_destroyed */
1496 0, /* todo_flags_start */
1497 TODO_dump_func | TODO_verify_ssa
1498 | TODO_verify_flow /* todo_flags_finish */
1499 }
1500 };