re PR tree-optimization/19831 (Missing DSE/malloc/free optimization)
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_CALL:
302 {
303 tree callee = gimple_call_fndecl (stmt);
304 if (callee != NULL_TREE
305 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
306 switch (DECL_FUNCTION_CODE (callee))
307 {
308 case BUILT_IN_MALLOC:
309 case BUILT_IN_CALLOC:
310 case BUILT_IN_ALLOCA:
311 return;
312 }
313 /* Most, but not all function calls are required. Function calls that
314 produce no result and have no side effects (i.e. const pure
315 functions) are unnecessary. */
316 if (gimple_has_side_effects (stmt))
317 {
318 mark_stmt_necessary (stmt, true);
319 return;
320 }
321 if (!gimple_call_lhs (stmt))
322 return;
323 break;
324 }
325
326 case GIMPLE_DEBUG:
327 /* Debug temps without a value are not useful. ??? If we could
328 easily locate the debug temp bind stmt for a use thereof,
329 would could refrain from marking all debug temps here, and
330 mark them only if they're used. */
331 if (!gimple_debug_bind_p (stmt)
332 || gimple_debug_bind_has_value_p (stmt)
333 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
334 mark_stmt_necessary (stmt, false);
335 return;
336
337 case GIMPLE_GOTO:
338 gcc_assert (!simple_goto_p (stmt));
339 mark_stmt_necessary (stmt, true);
340 return;
341
342 case GIMPLE_COND:
343 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
344 /* Fall through. */
345
346 case GIMPLE_SWITCH:
347 if (! aggressive)
348 mark_stmt_necessary (stmt, true);
349 break;
350
351 default:
352 break;
353 }
354
355 /* If the statement has volatile operands, it needs to be preserved.
356 Same for statements that can alter control flow in unpredictable
357 ways. */
358 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
359 {
360 mark_stmt_necessary (stmt, true);
361 return;
362 }
363
364 if (is_hidden_global_store (stmt))
365 {
366 mark_stmt_necessary (stmt, true);
367 return;
368 }
369
370 return;
371 }
372
373
374 /* Mark the last statement of BB as necessary. */
375
376 static void
377 mark_last_stmt_necessary (basic_block bb)
378 {
379 gimple stmt = last_stmt (bb);
380
381 SET_BIT (last_stmt_necessary, bb->index);
382 SET_BIT (bb_contains_live_stmts, bb->index);
383
384 /* We actually mark the statement only if it is a control statement. */
385 if (stmt && is_ctrl_stmt (stmt))
386 mark_stmt_necessary (stmt, true);
387 }
388
389
390 /* Mark control dependent edges of BB as necessary. We have to do this only
391 once for each basic block so we set the appropriate bit after we're done.
392
393 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
394
395 static void
396 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
397 bool ignore_self)
398 {
399 bitmap_iterator bi;
400 unsigned edge_number;
401 bool skipped = false;
402
403 gcc_assert (bb != EXIT_BLOCK_PTR);
404
405 if (bb == ENTRY_BLOCK_PTR)
406 return;
407
408 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
409 {
410 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
411
412 if (ignore_self && cd_bb == bb)
413 {
414 skipped = true;
415 continue;
416 }
417
418 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
419 mark_last_stmt_necessary (cd_bb);
420 }
421
422 if (!skipped)
423 SET_BIT (visited_control_parents, bb->index);
424 }
425
426
427 /* Find obviously necessary statements. These are things like most function
428 calls, and stores to file level variables.
429
430 If EL is NULL, control statements are conservatively marked as
431 necessary. Otherwise it contains the list of edges used by control
432 dependence analysis. */
433
434 static void
435 find_obviously_necessary_stmts (struct edge_list *el)
436 {
437 basic_block bb;
438 gimple_stmt_iterator gsi;
439 edge e;
440 gimple phi, stmt;
441 int flags;
442
443 FOR_EACH_BB (bb)
444 {
445 /* PHI nodes are never inherently necessary. */
446 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
447 {
448 phi = gsi_stmt (gsi);
449 gimple_set_plf (phi, STMT_NECESSARY, false);
450 }
451
452 /* Check all statements in the block. */
453 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
454 {
455 stmt = gsi_stmt (gsi);
456 gimple_set_plf (stmt, STMT_NECESSARY, false);
457 mark_stmt_if_obviously_necessary (stmt, el != NULL);
458 }
459 }
460
461 /* Pure and const functions are finite and thus have no infinite loops in
462 them. */
463 flags = flags_from_decl_or_type (current_function_decl);
464 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
465 return;
466
467 /* Prevent the empty possibly infinite loops from being removed. */
468 if (el)
469 {
470 loop_iterator li;
471 struct loop *loop;
472 scev_initialize ();
473 if (mark_irreducible_loops ())
474 FOR_EACH_BB (bb)
475 {
476 edge_iterator ei;
477 FOR_EACH_EDGE (e, ei, bb->succs)
478 if ((e->flags & EDGE_DFS_BACK)
479 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
480 {
481 if (dump_file)
482 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
483 e->src->index, e->dest->index);
484 mark_control_dependent_edges_necessary (e->dest, el, false);
485 }
486 }
487
488 FOR_EACH_LOOP (li, loop, 0)
489 if (!finite_loop_p (loop))
490 {
491 if (dump_file)
492 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
493 mark_control_dependent_edges_necessary (loop->latch, el, false);
494 }
495 scev_finalize ();
496 }
497 }
498
499
500 /* Return true if REF is based on an aliased base, otherwise false. */
501
502 static bool
503 ref_may_be_aliased (tree ref)
504 {
505 gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
506 while (handled_component_p (ref))
507 ref = TREE_OPERAND (ref, 0);
508 if (TREE_CODE (ref) == MEM_REF
509 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
510 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
511 return !(DECL_P (ref)
512 && !may_be_aliased (ref));
513 }
514
515 static bitmap visited = NULL;
516 static unsigned int longest_chain = 0;
517 static unsigned int total_chain = 0;
518 static unsigned int nr_walks = 0;
519 static bool chain_ovfl = false;
520
521 /* Worker for the walker that marks reaching definitions of REF,
522 which is based on a non-aliased decl, necessary. It returns
523 true whenever the defining statement of the current VDEF is
524 a kill for REF, as no dominating may-defs are necessary for REF
525 anymore. DATA points to the basic-block that contains the
526 stmt that refers to REF. */
527
528 static bool
529 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
530 {
531 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
532
533 /* All stmts we visit are necessary. */
534 mark_operand_necessary (vdef);
535
536 /* If the stmt lhs kills ref, then we can stop walking. */
537 if (gimple_has_lhs (def_stmt)
538 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
539 /* The assignment is not necessarily carried out if it can throw
540 and we can catch it in the current function where we could inspect
541 the previous value.
542 ??? We only need to care about the RHS throwing. For aggregate
543 assignments or similar calls and non-call exceptions the LHS
544 might throw as well. */
545 && !stmt_can_throw_internal (def_stmt))
546 {
547 tree base, lhs = gimple_get_lhs (def_stmt);
548 HOST_WIDE_INT size, offset, max_size;
549 ao_ref_base (ref);
550 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
551 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
552 so base == refd->base does not always hold. */
553 if (base == ref->base)
554 {
555 /* For a must-alias check we need to be able to constrain
556 the accesses properly. */
557 if (size != -1 && size == max_size
558 && ref->max_size != -1)
559 {
560 if (offset <= ref->offset
561 && offset + size >= ref->offset + ref->max_size)
562 return true;
563 }
564 /* Or they need to be exactly the same. */
565 else if (ref->ref
566 /* Make sure there is no induction variable involved
567 in the references (gcc.c-torture/execute/pr42142.c).
568 The simplest way is to check if the kill dominates
569 the use. */
570 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
571 gimple_bb (def_stmt))
572 && operand_equal_p (ref->ref, lhs, 0))
573 return true;
574 }
575 }
576
577 /* Otherwise keep walking. */
578 return false;
579 }
580
581 static void
582 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
583 {
584 unsigned int chain;
585 ao_ref refd;
586 gcc_assert (!chain_ovfl);
587 ao_ref_init (&refd, ref);
588 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
589 mark_aliased_reaching_defs_necessary_1,
590 gimple_bb (stmt), NULL);
591 if (chain > longest_chain)
592 longest_chain = chain;
593 total_chain += chain;
594 nr_walks++;
595 }
596
597 /* Worker for the walker that marks reaching definitions of REF, which
598 is not based on a non-aliased decl. For simplicity we need to end
599 up marking all may-defs necessary that are not based on a non-aliased
600 decl. The only job of this walker is to skip may-defs based on
601 a non-aliased decl. */
602
603 static bool
604 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
605 tree vdef, void *data ATTRIBUTE_UNUSED)
606 {
607 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
608
609 /* We have to skip already visited (and thus necessary) statements
610 to make the chaining work after we dropped back to simple mode. */
611 if (chain_ovfl
612 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
613 {
614 gcc_assert (gimple_nop_p (def_stmt)
615 || gimple_plf (def_stmt, STMT_NECESSARY));
616 return false;
617 }
618
619 /* We want to skip stores to non-aliased variables. */
620 if (!chain_ovfl
621 && gimple_assign_single_p (def_stmt))
622 {
623 tree lhs = gimple_assign_lhs (def_stmt);
624 if (!ref_may_be_aliased (lhs))
625 return false;
626 }
627
628 mark_operand_necessary (vdef);
629
630 return false;
631 }
632
633 static void
634 mark_all_reaching_defs_necessary (gimple stmt)
635 {
636 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
637 mark_all_reaching_defs_necessary_1, NULL, &visited);
638 }
639
640 /* Return true for PHI nodes with one or identical arguments
641 can be removed. */
642 static bool
643 degenerate_phi_p (gimple phi)
644 {
645 unsigned int i;
646 tree op = gimple_phi_arg_def (phi, 0);
647 for (i = 1; i < gimple_phi_num_args (phi); i++)
648 if (gimple_phi_arg_def (phi, i) != op)
649 return false;
650 return true;
651 }
652
653 /* Propagate necessity using the operands of necessary statements.
654 Process the uses on each statement in the worklist, and add all
655 feeding statements which contribute to the calculation of this
656 value to the worklist.
657
658 In conservative mode, EL is NULL. */
659
660 static void
661 propagate_necessity (struct edge_list *el)
662 {
663 gimple stmt;
664 bool aggressive = (el ? true : false);
665
666 if (dump_file && (dump_flags & TDF_DETAILS))
667 fprintf (dump_file, "\nProcessing worklist:\n");
668
669 while (VEC_length (gimple, worklist) > 0)
670 {
671 /* Take STMT from worklist. */
672 stmt = VEC_pop (gimple, worklist);
673
674 if (dump_file && (dump_flags & TDF_DETAILS))
675 {
676 fprintf (dump_file, "processing: ");
677 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
678 fprintf (dump_file, "\n");
679 }
680
681 if (aggressive)
682 {
683 /* Mark the last statement of the basic blocks on which the block
684 containing STMT is control dependent, but only if we haven't
685 already done so. */
686 basic_block bb = gimple_bb (stmt);
687 if (bb != ENTRY_BLOCK_PTR
688 && !TEST_BIT (visited_control_parents, bb->index))
689 mark_control_dependent_edges_necessary (bb, el, false);
690 }
691
692 if (gimple_code (stmt) == GIMPLE_PHI
693 /* We do not process virtual PHI nodes nor do we track their
694 necessity. */
695 && is_gimple_reg (gimple_phi_result (stmt)))
696 {
697 /* PHI nodes are somewhat special in that each PHI alternative has
698 data and control dependencies. All the statements feeding the
699 PHI node's arguments are always necessary. In aggressive mode,
700 we also consider the control dependent edges leading to the
701 predecessor block associated with each PHI alternative as
702 necessary. */
703 size_t k;
704
705 for (k = 0; k < gimple_phi_num_args (stmt); k++)
706 {
707 tree arg = PHI_ARG_DEF (stmt, k);
708 if (TREE_CODE (arg) == SSA_NAME)
709 mark_operand_necessary (arg);
710 }
711
712 /* For PHI operands it matters from where the control flow arrives
713 to the BB. Consider the following example:
714
715 a=exp1;
716 b=exp2;
717 if (test)
718 ;
719 else
720 ;
721 c=PHI(a,b)
722
723 We need to mark control dependence of the empty basic blocks, since they
724 contains computation of PHI operands.
725
726 Doing so is too restrictive in the case the predecestor block is in
727 the loop. Consider:
728
729 if (b)
730 {
731 int i;
732 for (i = 0; i<1000; ++i)
733 ;
734 j = 0;
735 }
736 return j;
737
738 There is PHI for J in the BB containing return statement.
739 In this case the control dependence of predecestor block (that is
740 within the empty loop) also contains the block determining number
741 of iterations of the block that would prevent removing of empty
742 loop in this case.
743
744 This scenario can be avoided by splitting critical edges.
745 To save the critical edge splitting pass we identify how the control
746 dependence would look like if the edge was split.
747
748 Consider the modified CFG created from current CFG by splitting
749 edge B->C. In the postdominance tree of modified CFG, C' is
750 always child of C. There are two cases how chlids of C' can look
751 like:
752
753 1) C' is leaf
754
755 In this case the only basic block C' is control dependent on is B.
756
757 2) C' has single child that is B
758
759 In this case control dependence of C' is same as control
760 dependence of B in original CFG except for block B itself.
761 (since C' postdominate B in modified CFG)
762
763 Now how to decide what case happens? There are two basic options:
764
765 a) C postdominate B. Then C immediately postdominate B and
766 case 2 happens iff there is no other way from B to C except
767 the edge B->C.
768
769 There is other way from B to C iff there is succesor of B that
770 is not postdominated by B. Testing this condition is somewhat
771 expensive, because we need to iterate all succesors of B.
772 We are safe to assume that this does not happen: we will mark B
773 as needed when processing the other path from B to C that is
774 conrol dependent on B and marking control dependencies of B
775 itself is harmless because they will be processed anyway after
776 processing control statement in B.
777
778 b) C does not postdominate B. Always case 1 happens since there is
779 path from C to exit that does not go through B and thus also C'. */
780
781 if (aggressive && !degenerate_phi_p (stmt))
782 {
783 for (k = 0; k < gimple_phi_num_args (stmt); k++)
784 {
785 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
786
787 if (gimple_bb (stmt)
788 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
789 {
790 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
791 mark_last_stmt_necessary (arg_bb);
792 }
793 else if (arg_bb != ENTRY_BLOCK_PTR
794 && !TEST_BIT (visited_control_parents,
795 arg_bb->index))
796 mark_control_dependent_edges_necessary (arg_bb, el, true);
797 }
798 }
799 }
800 else
801 {
802 /* Propagate through the operands. Examine all the USE, VUSE and
803 VDEF operands in this statement. Mark all the statements
804 which feed this statement's uses as necessary. */
805 ssa_op_iter iter;
806 tree use;
807
808 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
809 mark_operand_necessary (use);
810
811 use = gimple_vuse (stmt);
812 if (!use)
813 continue;
814
815 /* If we dropped to simple mode make all immediately
816 reachable definitions necessary. */
817 if (chain_ovfl)
818 {
819 mark_all_reaching_defs_necessary (stmt);
820 continue;
821 }
822
823 /* For statements that may load from memory (have a VUSE) we
824 have to mark all reaching (may-)definitions as necessary.
825 We partition this task into two cases:
826 1) explicit loads based on decls that are not aliased
827 2) implicit loads (like calls) and explicit loads not
828 based on decls that are not aliased (like indirect
829 references or loads from globals)
830 For 1) we mark all reaching may-defs as necessary, stopping
831 at dominating kills. For 2) we want to mark all dominating
832 references necessary, but non-aliased ones which we handle
833 in 1). By keeping a global visited bitmap for references
834 we walk for 2) we avoid quadratic behavior for those. */
835
836 if (is_gimple_call (stmt))
837 {
838 tree callee = gimple_call_fndecl (stmt);
839 unsigned i;
840
841 /* Calls to functions that are merely acting as barriers
842 or that only store to memory do not make any previous
843 stores necessary. */
844 if (callee != NULL_TREE
845 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
846 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
847 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
848 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
849 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
850 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
851 || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
852 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
853 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
854 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
855 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
856 continue;
857
858 /* Calls implicitly load from memory, their arguments
859 in addition may explicitly perform memory loads. */
860 mark_all_reaching_defs_necessary (stmt);
861 for (i = 0; i < gimple_call_num_args (stmt); ++i)
862 {
863 tree arg = gimple_call_arg (stmt, i);
864 if (TREE_CODE (arg) == SSA_NAME
865 || is_gimple_min_invariant (arg))
866 continue;
867 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
868 arg = TREE_OPERAND (arg, 0);
869 if (!ref_may_be_aliased (arg))
870 mark_aliased_reaching_defs_necessary (stmt, arg);
871 }
872 }
873 else if (gimple_assign_single_p (stmt))
874 {
875 tree rhs;
876 bool rhs_aliased = false;
877 /* If this is a load mark things necessary. */
878 rhs = gimple_assign_rhs1 (stmt);
879 if (TREE_CODE (rhs) != SSA_NAME
880 && !is_gimple_min_invariant (rhs))
881 {
882 if (!ref_may_be_aliased (rhs))
883 mark_aliased_reaching_defs_necessary (stmt, rhs);
884 else
885 rhs_aliased = true;
886 }
887 if (rhs_aliased)
888 mark_all_reaching_defs_necessary (stmt);
889 }
890 else if (gimple_code (stmt) == GIMPLE_RETURN)
891 {
892 tree rhs = gimple_return_retval (stmt);
893 /* A return statement may perform a load. */
894 if (rhs
895 && TREE_CODE (rhs) != SSA_NAME
896 && !is_gimple_min_invariant (rhs))
897 {
898 if (!ref_may_be_aliased (rhs))
899 mark_aliased_reaching_defs_necessary (stmt, rhs);
900 else
901 mark_all_reaching_defs_necessary (stmt);
902 }
903 }
904 else if (gimple_code (stmt) == GIMPLE_ASM)
905 {
906 unsigned i;
907 mark_all_reaching_defs_necessary (stmt);
908 /* Inputs may perform loads. */
909 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
910 {
911 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
912 if (TREE_CODE (op) != SSA_NAME
913 && !is_gimple_min_invariant (op)
914 && !ref_may_be_aliased (op))
915 mark_aliased_reaching_defs_necessary (stmt, op);
916 }
917 }
918 else
919 gcc_unreachable ();
920
921 /* If we over-used our alias oracle budget drop to simple
922 mode. The cost metric allows quadratic behavior
923 (number of uses times number of may-defs queries) up to
924 a constant maximal number of queries and after that falls back to
925 super-linear complexity. */
926 if (/* Constant but quadratic for small functions. */
927 total_chain > 128 * 128
928 /* Linear in the number of may-defs. */
929 && total_chain > 32 * longest_chain
930 /* Linear in the number of uses. */
931 && total_chain > nr_walks * 32)
932 {
933 chain_ovfl = true;
934 if (visited)
935 bitmap_clear (visited);
936 }
937 }
938 }
939 }
940
941 /* Replace all uses of result of PHI by underlying variable and mark it
942 for renaming. */
943
944 void
945 mark_virtual_phi_result_for_renaming (gimple phi)
946 {
947 bool used = false;
948 imm_use_iterator iter;
949 use_operand_p use_p;
950 gimple stmt;
951 tree result_ssa, result_var;
952
953 if (dump_file && (dump_flags & TDF_DETAILS))
954 {
955 fprintf (dump_file, "Marking result for renaming : ");
956 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
957 fprintf (dump_file, "\n");
958 }
959
960 result_ssa = gimple_phi_result (phi);
961 result_var = SSA_NAME_VAR (result_ssa);
962 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
963 {
964 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
965 SET_USE (use_p, result_var);
966 update_stmt (stmt);
967 used = true;
968 }
969 if (used)
970 mark_sym_for_renaming (result_var);
971 }
972
973 /* Remove dead PHI nodes from block BB. */
974
975 static bool
976 remove_dead_phis (basic_block bb)
977 {
978 bool something_changed = false;
979 gimple_seq phis;
980 gimple phi;
981 gimple_stmt_iterator gsi;
982 phis = phi_nodes (bb);
983
984 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
985 {
986 stats.total_phis++;
987 phi = gsi_stmt (gsi);
988
989 /* We do not track necessity of virtual PHI nodes. Instead do
990 very simple dead PHI removal here. */
991 if (!is_gimple_reg (gimple_phi_result (phi)))
992 {
993 /* Virtual PHI nodes with one or identical arguments
994 can be removed. */
995 if (degenerate_phi_p (phi))
996 {
997 tree vdef = gimple_phi_result (phi);
998 tree vuse = gimple_phi_arg_def (phi, 0);
999
1000 use_operand_p use_p;
1001 imm_use_iterator iter;
1002 gimple use_stmt;
1003 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1004 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1005 SET_USE (use_p, vuse);
1006 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
1007 && TREE_CODE (vuse) == SSA_NAME)
1008 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
1009 }
1010 else
1011 gimple_set_plf (phi, STMT_NECESSARY, true);
1012 }
1013
1014 if (!gimple_plf (phi, STMT_NECESSARY))
1015 {
1016 something_changed = true;
1017 if (dump_file && (dump_flags & TDF_DETAILS))
1018 {
1019 fprintf (dump_file, "Deleting : ");
1020 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1021 fprintf (dump_file, "\n");
1022 }
1023
1024 remove_phi_node (&gsi, true);
1025 stats.removed_phis++;
1026 continue;
1027 }
1028
1029 gsi_next (&gsi);
1030 }
1031 return something_changed;
1032 }
1033
1034 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1035
1036 static edge
1037 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1038 {
1039 gimple_stmt_iterator gsi;
1040 edge e2 = NULL;
1041 edge_iterator ei;
1042
1043 if (dump_file && (dump_flags & TDF_DETAILS))
1044 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1045 e->dest->index, post_dom_bb->index);
1046
1047 e2 = redirect_edge_and_branch (e, post_dom_bb);
1048 cfg_altered = true;
1049
1050 /* If edge was already around, no updating is neccesary. */
1051 if (e2 != e)
1052 return e2;
1053
1054 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1055 {
1056 /* We are sure that for every live PHI we are seeing control dependent BB.
1057 This means that we can pick any edge to duplicate PHI args from. */
1058 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1059 if (e2 != e)
1060 break;
1061 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1062 {
1063 gimple phi = gsi_stmt (gsi);
1064 tree op;
1065 source_location locus;
1066
1067 /* PHIs for virtuals have no control dependency relation on them.
1068 We are lost here and must force renaming of the symbol. */
1069 if (!is_gimple_reg (gimple_phi_result (phi)))
1070 {
1071 mark_virtual_phi_result_for_renaming (phi);
1072 remove_phi_node (&gsi, true);
1073 continue;
1074 }
1075
1076 /* Dead PHI do not imply control dependency. */
1077 if (!gimple_plf (phi, STMT_NECESSARY))
1078 {
1079 gsi_next (&gsi);
1080 continue;
1081 }
1082
1083 op = gimple_phi_arg_def (phi, e2->dest_idx);
1084 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1085 add_phi_arg (phi, op, e, locus);
1086 /* The resulting PHI if not dead can only be degenerate. */
1087 gcc_assert (degenerate_phi_p (phi));
1088 gsi_next (&gsi);
1089 }
1090 }
1091 return e;
1092 }
1093
1094 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1095 containing I so that we don't have to look it up. */
1096
1097 static void
1098 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1099 {
1100 gimple stmt = gsi_stmt (*i);
1101
1102 if (dump_file && (dump_flags & TDF_DETAILS))
1103 {
1104 fprintf (dump_file, "Deleting : ");
1105 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1106 fprintf (dump_file, "\n");
1107 }
1108
1109 stats.removed++;
1110
1111 /* If we have determined that a conditional branch statement contributes
1112 nothing to the program, then we not only remove it, but we also change
1113 the flow graph so that the current block will simply fall-thru to its
1114 immediate post-dominator. The blocks we are circumventing will be
1115 removed by cleanup_tree_cfg if this change in the flow graph makes them
1116 unreachable. */
1117 if (is_ctrl_stmt (stmt))
1118 {
1119 basic_block post_dom_bb;
1120 edge e, e2;
1121 edge_iterator ei;
1122
1123 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1124
1125 e = find_edge (bb, post_dom_bb);
1126
1127 /* If edge is already there, try to use it. This avoids need to update
1128 PHI nodes. Also watch for cases where post dominator does not exists
1129 or is exit block. These can happen for infinite loops as we create
1130 fake edges in the dominator tree. */
1131 if (e)
1132 ;
1133 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1134 e = EDGE_SUCC (bb, 0);
1135 else
1136 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1137 gcc_assert (e);
1138 e->probability = REG_BR_PROB_BASE;
1139 e->count = bb->count;
1140
1141 /* The edge is no longer associated with a conditional, so it does
1142 not have TRUE/FALSE flags. */
1143 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1144
1145 /* The lone outgoing edge from BB will be a fallthru edge. */
1146 e->flags |= EDGE_FALLTHRU;
1147
1148 /* Remove the remaining outgoing edges. */
1149 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1150 if (e != e2)
1151 {
1152 cfg_altered = true;
1153 remove_edge (e2);
1154 }
1155 else
1156 ei_next (&ei);
1157 }
1158
1159 unlink_stmt_vdef (stmt);
1160 gsi_remove (i, true);
1161 release_defs (stmt);
1162 }
1163
1164 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1165 contributes nothing to the program, and can be deleted. */
1166
1167 static bool
1168 eliminate_unnecessary_stmts (void)
1169 {
1170 bool something_changed = false;
1171 basic_block bb;
1172 gimple_stmt_iterator gsi, psi;
1173 gimple stmt;
1174 tree call;
1175 VEC (basic_block, heap) *h;
1176
1177 if (dump_file && (dump_flags & TDF_DETAILS))
1178 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1179
1180 clear_special_calls ();
1181
1182 /* Walking basic blocks and statements in reverse order avoids
1183 releasing SSA names before any other DEFs that refer to them are
1184 released. This helps avoid loss of debug information, as we get
1185 a chance to propagate all RHSs of removed SSAs into debug uses,
1186 rather than only the latest ones. E.g., consider:
1187
1188 x_3 = y_1 + z_2;
1189 a_5 = x_3 - b_4;
1190 # DEBUG a => a_5
1191
1192 If we were to release x_3 before a_5, when we reached a_5 and
1193 tried to substitute it into the debug stmt, we'd see x_3 there,
1194 but x_3's DEF, type, etc would have already been disconnected.
1195 By going backwards, the debug stmt first changes to:
1196
1197 # DEBUG a => x_3 - b_4
1198
1199 and then to:
1200
1201 # DEBUG a => y_1 + z_2 - b_4
1202
1203 as desired. */
1204 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1205 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1206
1207 while (VEC_length (basic_block, h))
1208 {
1209 bb = VEC_pop (basic_block, h);
1210
1211 /* Remove dead statements. */
1212 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1213 {
1214 stmt = gsi_stmt (gsi);
1215
1216 psi = gsi;
1217 gsi_prev (&psi);
1218
1219 stats.total++;
1220
1221 /* If GSI is not necessary then remove it. */
1222 if (!gimple_plf (stmt, STMT_NECESSARY))
1223 {
1224 if (!is_gimple_debug (stmt))
1225 something_changed = true;
1226 remove_dead_stmt (&gsi, bb);
1227 }
1228 else if (is_gimple_call (stmt))
1229 {
1230 call = gimple_call_fndecl (stmt);
1231 if (call)
1232 {
1233 tree name;
1234
1235 /* When LHS of var = call (); is dead, simplify it into
1236 call (); saving one operand. */
1237 name = gimple_call_lhs (stmt);
1238 if (name && TREE_CODE (name) == SSA_NAME
1239 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1240 {
1241 something_changed = true;
1242 if (dump_file && (dump_flags & TDF_DETAILS))
1243 {
1244 fprintf (dump_file, "Deleting LHS of call: ");
1245 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1246 fprintf (dump_file, "\n");
1247 }
1248
1249 gimple_call_set_lhs (stmt, NULL_TREE);
1250 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1251 update_stmt (stmt);
1252 release_ssa_name (name);
1253 }
1254 notice_special_calls (stmt);
1255 }
1256 }
1257 }
1258 }
1259
1260 VEC_free (basic_block, heap, h);
1261
1262 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1263 rendered some PHI nodes unreachable while they are still in use.
1264 Mark them for renaming. */
1265 if (cfg_altered)
1266 {
1267 basic_block prev_bb;
1268
1269 find_unreachable_blocks ();
1270
1271 /* Delete all unreachable basic blocks in reverse dominator order. */
1272 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1273 {
1274 prev_bb = bb->prev_bb;
1275
1276 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1277 || !(bb->flags & BB_REACHABLE))
1278 {
1279 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1280 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1281 {
1282 bool found = false;
1283 imm_use_iterator iter;
1284
1285 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1286 {
1287 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1288 continue;
1289 if (gimple_code (stmt) == GIMPLE_PHI
1290 || gimple_plf (stmt, STMT_NECESSARY))
1291 {
1292 found = true;
1293 BREAK_FROM_IMM_USE_STMT (iter);
1294 }
1295 }
1296 if (found)
1297 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1298 }
1299
1300 if (!(bb->flags & BB_REACHABLE))
1301 {
1302 /* Speed up the removal of blocks that don't
1303 dominate others. Walking backwards, this should
1304 be the common case. ??? Do we need to recompute
1305 dominators because of cfg_altered? */
1306 if (!MAY_HAVE_DEBUG_STMTS
1307 || !first_dom_son (CDI_DOMINATORS, bb))
1308 delete_basic_block (bb);
1309 else
1310 {
1311 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1312
1313 while (VEC_length (basic_block, h))
1314 {
1315 bb = VEC_pop (basic_block, h);
1316 prev_bb = bb->prev_bb;
1317 /* Rearrangements to the CFG may have failed
1318 to update the dominators tree, so that
1319 formerly-dominated blocks are now
1320 otherwise reachable. */
1321 if (!!(bb->flags & BB_REACHABLE))
1322 continue;
1323 delete_basic_block (bb);
1324 }
1325
1326 VEC_free (basic_block, heap, h);
1327 }
1328 }
1329 }
1330 }
1331 }
1332 FOR_EACH_BB (bb)
1333 {
1334 /* Remove dead PHI nodes. */
1335 something_changed |= remove_dead_phis (bb);
1336 }
1337
1338 return something_changed;
1339 }
1340
1341
1342 /* Print out removed statement statistics. */
1343
1344 static void
1345 print_stats (void)
1346 {
1347 float percg;
1348
1349 percg = ((float) stats.removed / (float) stats.total) * 100;
1350 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1351 stats.removed, stats.total, (int) percg);
1352
1353 if (stats.total_phis == 0)
1354 percg = 0;
1355 else
1356 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1357
1358 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1359 stats.removed_phis, stats.total_phis, (int) percg);
1360 }
1361
1362 /* Initialization for this pass. Set up the used data structures. */
1363
1364 static void
1365 tree_dce_init (bool aggressive)
1366 {
1367 memset ((void *) &stats, 0, sizeof (stats));
1368
1369 if (aggressive)
1370 {
1371 int i;
1372
1373 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1374 for (i = 0; i < last_basic_block; ++i)
1375 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1376
1377 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1378 sbitmap_zero (last_stmt_necessary);
1379 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1380 sbitmap_zero (bb_contains_live_stmts);
1381 }
1382
1383 processed = sbitmap_alloc (num_ssa_names + 1);
1384 sbitmap_zero (processed);
1385
1386 worklist = VEC_alloc (gimple, heap, 64);
1387 cfg_altered = false;
1388 }
1389
1390 /* Cleanup after this pass. */
1391
1392 static void
1393 tree_dce_done (bool aggressive)
1394 {
1395 if (aggressive)
1396 {
1397 int i;
1398
1399 for (i = 0; i < last_basic_block; ++i)
1400 BITMAP_FREE (control_dependence_map[i]);
1401 free (control_dependence_map);
1402
1403 sbitmap_free (visited_control_parents);
1404 sbitmap_free (last_stmt_necessary);
1405 sbitmap_free (bb_contains_live_stmts);
1406 bb_contains_live_stmts = NULL;
1407 }
1408
1409 sbitmap_free (processed);
1410
1411 VEC_free (gimple, heap, worklist);
1412 }
1413
1414 /* Main routine to eliminate dead code.
1415
1416 AGGRESSIVE controls the aggressiveness of the algorithm.
1417 In conservative mode, we ignore control dependence and simply declare
1418 all but the most trivially dead branches necessary. This mode is fast.
1419 In aggressive mode, control dependences are taken into account, which
1420 results in more dead code elimination, but at the cost of some time.
1421
1422 FIXME: Aggressive mode before PRE doesn't work currently because
1423 the dominance info is not invalidated after DCE1. This is
1424 not an issue right now because we only run aggressive DCE
1425 as the last tree SSA pass, but keep this in mind when you
1426 start experimenting with pass ordering. */
1427
1428 static unsigned int
1429 perform_tree_ssa_dce (bool aggressive)
1430 {
1431 struct edge_list *el = NULL;
1432 bool something_changed = 0;
1433
1434 calculate_dominance_info (CDI_DOMINATORS);
1435
1436 /* Preheaders are needed for SCEV to work.
1437 Simple lateches and recorded exits improve chances that loop will
1438 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1439 if (aggressive)
1440 loop_optimizer_init (LOOPS_NORMAL
1441 | LOOPS_HAVE_RECORDED_EXITS);
1442
1443 tree_dce_init (aggressive);
1444
1445 if (aggressive)
1446 {
1447 /* Compute control dependence. */
1448 timevar_push (TV_CONTROL_DEPENDENCES);
1449 calculate_dominance_info (CDI_POST_DOMINATORS);
1450 el = create_edge_list ();
1451 find_all_control_dependences (el);
1452 timevar_pop (TV_CONTROL_DEPENDENCES);
1453
1454 visited_control_parents = sbitmap_alloc (last_basic_block);
1455 sbitmap_zero (visited_control_parents);
1456
1457 mark_dfs_back_edges ();
1458 }
1459
1460 find_obviously_necessary_stmts (el);
1461
1462 if (aggressive)
1463 loop_optimizer_finalize ();
1464
1465 longest_chain = 0;
1466 total_chain = 0;
1467 nr_walks = 0;
1468 chain_ovfl = false;
1469 visited = BITMAP_ALLOC (NULL);
1470 propagate_necessity (el);
1471 BITMAP_FREE (visited);
1472
1473 something_changed |= eliminate_unnecessary_stmts ();
1474 something_changed |= cfg_altered;
1475
1476 /* We do not update postdominators, so free them unconditionally. */
1477 free_dominance_info (CDI_POST_DOMINATORS);
1478
1479 /* If we removed paths in the CFG, then we need to update
1480 dominators as well. I haven't investigated the possibility
1481 of incrementally updating dominators. */
1482 if (cfg_altered)
1483 free_dominance_info (CDI_DOMINATORS);
1484
1485 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1486 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1487
1488 /* Debugging dumps. */
1489 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1490 print_stats ();
1491
1492 tree_dce_done (aggressive);
1493
1494 free_edge_list (el);
1495
1496 if (something_changed)
1497 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1498 | TODO_remove_unused_locals);
1499 else
1500 return 0;
1501 }
1502
1503 /* Pass entry points. */
1504 static unsigned int
1505 tree_ssa_dce (void)
1506 {
1507 return perform_tree_ssa_dce (/*aggressive=*/false);
1508 }
1509
1510 static unsigned int
1511 tree_ssa_dce_loop (void)
1512 {
1513 unsigned int todo;
1514 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1515 if (todo)
1516 {
1517 free_numbers_of_iterations_estimates ();
1518 scev_reset ();
1519 }
1520 return todo;
1521 }
1522
1523 static unsigned int
1524 tree_ssa_cd_dce (void)
1525 {
1526 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1527 }
1528
1529 static bool
1530 gate_dce (void)
1531 {
1532 return flag_tree_dce != 0;
1533 }
1534
1535 struct gimple_opt_pass pass_dce =
1536 {
1537 {
1538 GIMPLE_PASS,
1539 "dce", /* name */
1540 gate_dce, /* gate */
1541 tree_ssa_dce, /* execute */
1542 NULL, /* sub */
1543 NULL, /* next */
1544 0, /* static_pass_number */
1545 TV_TREE_DCE, /* tv_id */
1546 PROP_cfg | PROP_ssa, /* properties_required */
1547 0, /* properties_provided */
1548 0, /* properties_destroyed */
1549 0, /* todo_flags_start */
1550 TODO_verify_ssa /* todo_flags_finish */
1551 }
1552 };
1553
1554 struct gimple_opt_pass pass_dce_loop =
1555 {
1556 {
1557 GIMPLE_PASS,
1558 "dceloop", /* name */
1559 gate_dce, /* gate */
1560 tree_ssa_dce_loop, /* execute */
1561 NULL, /* sub */
1562 NULL, /* next */
1563 0, /* static_pass_number */
1564 TV_TREE_DCE, /* tv_id */
1565 PROP_cfg | PROP_ssa, /* properties_required */
1566 0, /* properties_provided */
1567 0, /* properties_destroyed */
1568 0, /* todo_flags_start */
1569 TODO_verify_ssa /* todo_flags_finish */
1570 }
1571 };
1572
1573 struct gimple_opt_pass pass_cd_dce =
1574 {
1575 {
1576 GIMPLE_PASS,
1577 "cddce", /* name */
1578 gate_dce, /* gate */
1579 tree_ssa_cd_dce, /* execute */
1580 NULL, /* sub */
1581 NULL, /* next */
1582 0, /* static_pass_number */
1583 TV_TREE_CD_DCE, /* tv_id */
1584 PROP_cfg | PROP_ssa, /* properties_required */
1585 0, /* properties_provided */
1586 0, /* properties_destroyed */
1587 0, /* todo_flags_start */
1588 TODO_verify_ssa
1589 | TODO_verify_flow /* todo_flags_finish */
1590 }
1591 };