re PR target/47025 (Dead stores in variadic functions not eliminated)
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_CALL:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (gimple_has_side_effects (stmt))
306 {
307 mark_stmt_necessary (stmt, true);
308 return;
309 }
310 if (!gimple_call_lhs (stmt))
311 return;
312 break;
313
314 case GIMPLE_DEBUG:
315 /* Debug temps without a value are not useful. ??? If we could
316 easily locate the debug temp bind stmt for a use thereof,
317 would could refrain from marking all debug temps here, and
318 mark them only if they're used. */
319 if (!gimple_debug_bind_p (stmt)
320 || gimple_debug_bind_has_value_p (stmt)
321 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
322 mark_stmt_necessary (stmt, false);
323 return;
324
325 case GIMPLE_GOTO:
326 gcc_assert (!simple_goto_p (stmt));
327 mark_stmt_necessary (stmt, true);
328 return;
329
330 case GIMPLE_COND:
331 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
332 /* Fall through. */
333
334 case GIMPLE_SWITCH:
335 if (! aggressive)
336 mark_stmt_necessary (stmt, true);
337 break;
338
339 default:
340 break;
341 }
342
343 /* If the statement has volatile operands, it needs to be preserved.
344 Same for statements that can alter control flow in unpredictable
345 ways. */
346 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
347 {
348 mark_stmt_necessary (stmt, true);
349 return;
350 }
351
352 if (is_hidden_global_store (stmt))
353 {
354 mark_stmt_necessary (stmt, true);
355 return;
356 }
357
358 return;
359 }
360
361
362 /* Mark the last statement of BB as necessary. */
363
364 static void
365 mark_last_stmt_necessary (basic_block bb)
366 {
367 gimple stmt = last_stmt (bb);
368
369 SET_BIT (last_stmt_necessary, bb->index);
370 SET_BIT (bb_contains_live_stmts, bb->index);
371
372 /* We actually mark the statement only if it is a control statement. */
373 if (stmt && is_ctrl_stmt (stmt))
374 mark_stmt_necessary (stmt, true);
375 }
376
377
378 /* Mark control dependent edges of BB as necessary. We have to do this only
379 once for each basic block so we set the appropriate bit after we're done.
380
381 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
382
383 static void
384 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
385 bool ignore_self)
386 {
387 bitmap_iterator bi;
388 unsigned edge_number;
389 bool skipped = false;
390
391 gcc_assert (bb != EXIT_BLOCK_PTR);
392
393 if (bb == ENTRY_BLOCK_PTR)
394 return;
395
396 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
397 {
398 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
399
400 if (ignore_self && cd_bb == bb)
401 {
402 skipped = true;
403 continue;
404 }
405
406 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
407 mark_last_stmt_necessary (cd_bb);
408 }
409
410 if (!skipped)
411 SET_BIT (visited_control_parents, bb->index);
412 }
413
414
415 /* Find obviously necessary statements. These are things like most function
416 calls, and stores to file level variables.
417
418 If EL is NULL, control statements are conservatively marked as
419 necessary. Otherwise it contains the list of edges used by control
420 dependence analysis. */
421
422 static void
423 find_obviously_necessary_stmts (struct edge_list *el)
424 {
425 basic_block bb;
426 gimple_stmt_iterator gsi;
427 edge e;
428 gimple phi, stmt;
429 int flags;
430
431 FOR_EACH_BB (bb)
432 {
433 /* PHI nodes are never inherently necessary. */
434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
435 {
436 phi = gsi_stmt (gsi);
437 gimple_set_plf (phi, STMT_NECESSARY, false);
438 }
439
440 /* Check all statements in the block. */
441 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 {
443 stmt = gsi_stmt (gsi);
444 gimple_set_plf (stmt, STMT_NECESSARY, false);
445 mark_stmt_if_obviously_necessary (stmt, el != NULL);
446 }
447 }
448
449 /* Pure and const functions are finite and thus have no infinite loops in
450 them. */
451 flags = flags_from_decl_or_type (current_function_decl);
452 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
453 return;
454
455 /* Prevent the empty possibly infinite loops from being removed. */
456 if (el)
457 {
458 loop_iterator li;
459 struct loop *loop;
460 scev_initialize ();
461 if (mark_irreducible_loops ())
462 FOR_EACH_BB (bb)
463 {
464 edge_iterator ei;
465 FOR_EACH_EDGE (e, ei, bb->succs)
466 if ((e->flags & EDGE_DFS_BACK)
467 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
468 {
469 if (dump_file)
470 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
471 e->src->index, e->dest->index);
472 mark_control_dependent_edges_necessary (e->dest, el, false);
473 }
474 }
475
476 FOR_EACH_LOOP (li, loop, 0)
477 if (!finite_loop_p (loop))
478 {
479 if (dump_file)
480 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
481 mark_control_dependent_edges_necessary (loop->latch, el, false);
482 }
483 scev_finalize ();
484 }
485 }
486
487
488 /* Return true if REF is based on an aliased base, otherwise false. */
489
490 static bool
491 ref_may_be_aliased (tree ref)
492 {
493 gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
494 while (handled_component_p (ref))
495 ref = TREE_OPERAND (ref, 0);
496 if (TREE_CODE (ref) == MEM_REF
497 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
498 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
499 return !(DECL_P (ref)
500 && !may_be_aliased (ref));
501 }
502
503 static bitmap visited = NULL;
504 static unsigned int longest_chain = 0;
505 static unsigned int total_chain = 0;
506 static unsigned int nr_walks = 0;
507 static bool chain_ovfl = false;
508
509 /* Worker for the walker that marks reaching definitions of REF,
510 which is based on a non-aliased decl, necessary. It returns
511 true whenever the defining statement of the current VDEF is
512 a kill for REF, as no dominating may-defs are necessary for REF
513 anymore. DATA points to the basic-block that contains the
514 stmt that refers to REF. */
515
516 static bool
517 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
518 {
519 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
520
521 /* All stmts we visit are necessary. */
522 mark_operand_necessary (vdef);
523
524 /* If the stmt lhs kills ref, then we can stop walking. */
525 if (gimple_has_lhs (def_stmt)
526 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
527 /* The assignment is not necessarily carried out if it can throw
528 and we can catch it in the current function where we could inspect
529 the previous value.
530 ??? We only need to care about the RHS throwing. For aggregate
531 assignments or similar calls and non-call exceptions the LHS
532 might throw as well. */
533 && !stmt_can_throw_internal (def_stmt))
534 {
535 tree base, lhs = gimple_get_lhs (def_stmt);
536 HOST_WIDE_INT size, offset, max_size;
537 ao_ref_base (ref);
538 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
539 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
540 so base == refd->base does not always hold. */
541 if (base == ref->base)
542 {
543 /* For a must-alias check we need to be able to constrain
544 the accesses properly. */
545 if (size != -1 && size == max_size
546 && ref->max_size != -1)
547 {
548 if (offset <= ref->offset
549 && offset + size >= ref->offset + ref->max_size)
550 return true;
551 }
552 /* Or they need to be exactly the same. */
553 else if (ref->ref
554 /* Make sure there is no induction variable involved
555 in the references (gcc.c-torture/execute/pr42142.c).
556 The simplest way is to check if the kill dominates
557 the use. */
558 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
559 gimple_bb (def_stmt))
560 && operand_equal_p (ref->ref, lhs, 0))
561 return true;
562 }
563 }
564
565 /* Otherwise keep walking. */
566 return false;
567 }
568
569 static void
570 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
571 {
572 unsigned int chain;
573 ao_ref refd;
574 gcc_assert (!chain_ovfl);
575 ao_ref_init (&refd, ref);
576 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
577 mark_aliased_reaching_defs_necessary_1,
578 gimple_bb (stmt), NULL);
579 if (chain > longest_chain)
580 longest_chain = chain;
581 total_chain += chain;
582 nr_walks++;
583 }
584
585 /* Worker for the walker that marks reaching definitions of REF, which
586 is not based on a non-aliased decl. For simplicity we need to end
587 up marking all may-defs necessary that are not based on a non-aliased
588 decl. The only job of this walker is to skip may-defs based on
589 a non-aliased decl. */
590
591 static bool
592 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
593 tree vdef, void *data ATTRIBUTE_UNUSED)
594 {
595 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
596
597 /* We have to skip already visited (and thus necessary) statements
598 to make the chaining work after we dropped back to simple mode. */
599 if (chain_ovfl
600 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
601 {
602 gcc_assert (gimple_nop_p (def_stmt)
603 || gimple_plf (def_stmt, STMT_NECESSARY));
604 return false;
605 }
606
607 /* We want to skip stores to non-aliased variables. */
608 if (!chain_ovfl
609 && gimple_assign_single_p (def_stmt))
610 {
611 tree lhs = gimple_assign_lhs (def_stmt);
612 if (!ref_may_be_aliased (lhs))
613 return false;
614 }
615
616 mark_operand_necessary (vdef);
617
618 return false;
619 }
620
621 static void
622 mark_all_reaching_defs_necessary (gimple stmt)
623 {
624 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
625 mark_all_reaching_defs_necessary_1, NULL, &visited);
626 }
627
628 /* Return true for PHI nodes with one or identical arguments
629 can be removed. */
630 static bool
631 degenerate_phi_p (gimple phi)
632 {
633 unsigned int i;
634 tree op = gimple_phi_arg_def (phi, 0);
635 for (i = 1; i < gimple_phi_num_args (phi); i++)
636 if (gimple_phi_arg_def (phi, i) != op)
637 return false;
638 return true;
639 }
640
641 /* Propagate necessity using the operands of necessary statements.
642 Process the uses on each statement in the worklist, and add all
643 feeding statements which contribute to the calculation of this
644 value to the worklist.
645
646 In conservative mode, EL is NULL. */
647
648 static void
649 propagate_necessity (struct edge_list *el)
650 {
651 gimple stmt;
652 bool aggressive = (el ? true : false);
653
654 if (dump_file && (dump_flags & TDF_DETAILS))
655 fprintf (dump_file, "\nProcessing worklist:\n");
656
657 while (VEC_length (gimple, worklist) > 0)
658 {
659 /* Take STMT from worklist. */
660 stmt = VEC_pop (gimple, worklist);
661
662 if (dump_file && (dump_flags & TDF_DETAILS))
663 {
664 fprintf (dump_file, "processing: ");
665 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
666 fprintf (dump_file, "\n");
667 }
668
669 if (aggressive)
670 {
671 /* Mark the last statement of the basic blocks on which the block
672 containing STMT is control dependent, but only if we haven't
673 already done so. */
674 basic_block bb = gimple_bb (stmt);
675 if (bb != ENTRY_BLOCK_PTR
676 && !TEST_BIT (visited_control_parents, bb->index))
677 mark_control_dependent_edges_necessary (bb, el, false);
678 }
679
680 if (gimple_code (stmt) == GIMPLE_PHI
681 /* We do not process virtual PHI nodes nor do we track their
682 necessity. */
683 && is_gimple_reg (gimple_phi_result (stmt)))
684 {
685 /* PHI nodes are somewhat special in that each PHI alternative has
686 data and control dependencies. All the statements feeding the
687 PHI node's arguments are always necessary. In aggressive mode,
688 we also consider the control dependent edges leading to the
689 predecessor block associated with each PHI alternative as
690 necessary. */
691 size_t k;
692
693 for (k = 0; k < gimple_phi_num_args (stmt); k++)
694 {
695 tree arg = PHI_ARG_DEF (stmt, k);
696 if (TREE_CODE (arg) == SSA_NAME)
697 mark_operand_necessary (arg);
698 }
699
700 /* For PHI operands it matters from where the control flow arrives
701 to the BB. Consider the following example:
702
703 a=exp1;
704 b=exp2;
705 if (test)
706 ;
707 else
708 ;
709 c=PHI(a,b)
710
711 We need to mark control dependence of the empty basic blocks, since they
712 contains computation of PHI operands.
713
714 Doing so is too restrictive in the case the predecestor block is in
715 the loop. Consider:
716
717 if (b)
718 {
719 int i;
720 for (i = 0; i<1000; ++i)
721 ;
722 j = 0;
723 }
724 return j;
725
726 There is PHI for J in the BB containing return statement.
727 In this case the control dependence of predecestor block (that is
728 within the empty loop) also contains the block determining number
729 of iterations of the block that would prevent removing of empty
730 loop in this case.
731
732 This scenario can be avoided by splitting critical edges.
733 To save the critical edge splitting pass we identify how the control
734 dependence would look like if the edge was split.
735
736 Consider the modified CFG created from current CFG by splitting
737 edge B->C. In the postdominance tree of modified CFG, C' is
738 always child of C. There are two cases how chlids of C' can look
739 like:
740
741 1) C' is leaf
742
743 In this case the only basic block C' is control dependent on is B.
744
745 2) C' has single child that is B
746
747 In this case control dependence of C' is same as control
748 dependence of B in original CFG except for block B itself.
749 (since C' postdominate B in modified CFG)
750
751 Now how to decide what case happens? There are two basic options:
752
753 a) C postdominate B. Then C immediately postdominate B and
754 case 2 happens iff there is no other way from B to C except
755 the edge B->C.
756
757 There is other way from B to C iff there is succesor of B that
758 is not postdominated by B. Testing this condition is somewhat
759 expensive, because we need to iterate all succesors of B.
760 We are safe to assume that this does not happen: we will mark B
761 as needed when processing the other path from B to C that is
762 conrol dependent on B and marking control dependencies of B
763 itself is harmless because they will be processed anyway after
764 processing control statement in B.
765
766 b) C does not postdominate B. Always case 1 happens since there is
767 path from C to exit that does not go through B and thus also C'. */
768
769 if (aggressive && !degenerate_phi_p (stmt))
770 {
771 for (k = 0; k < gimple_phi_num_args (stmt); k++)
772 {
773 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
774
775 if (gimple_bb (stmt)
776 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
777 {
778 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
779 mark_last_stmt_necessary (arg_bb);
780 }
781 else if (arg_bb != ENTRY_BLOCK_PTR
782 && !TEST_BIT (visited_control_parents,
783 arg_bb->index))
784 mark_control_dependent_edges_necessary (arg_bb, el, true);
785 }
786 }
787 }
788 else
789 {
790 /* Propagate through the operands. Examine all the USE, VUSE and
791 VDEF operands in this statement. Mark all the statements
792 which feed this statement's uses as necessary. */
793 ssa_op_iter iter;
794 tree use;
795
796 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
797 mark_operand_necessary (use);
798
799 use = gimple_vuse (stmt);
800 if (!use)
801 continue;
802
803 /* If we dropped to simple mode make all immediately
804 reachable definitions necessary. */
805 if (chain_ovfl)
806 {
807 mark_all_reaching_defs_necessary (stmt);
808 continue;
809 }
810
811 /* For statements that may load from memory (have a VUSE) we
812 have to mark all reaching (may-)definitions as necessary.
813 We partition this task into two cases:
814 1) explicit loads based on decls that are not aliased
815 2) implicit loads (like calls) and explicit loads not
816 based on decls that are not aliased (like indirect
817 references or loads from globals)
818 For 1) we mark all reaching may-defs as necessary, stopping
819 at dominating kills. For 2) we want to mark all dominating
820 references necessary, but non-aliased ones which we handle
821 in 1). By keeping a global visited bitmap for references
822 we walk for 2) we avoid quadratic behavior for those. */
823
824 if (is_gimple_call (stmt))
825 {
826 tree callee = gimple_call_fndecl (stmt);
827 unsigned i;
828
829 /* Calls to functions that are merely acting as barriers
830 or that only store to memory do not make any previous
831 stores necessary. */
832 if (callee != NULL_TREE
833 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
834 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
835 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
836 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
837 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
838 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
839 || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
840 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
841 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
842 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
843 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
844 continue;
845
846 /* Calls implicitly load from memory, their arguments
847 in addition may explicitly perform memory loads. */
848 mark_all_reaching_defs_necessary (stmt);
849 for (i = 0; i < gimple_call_num_args (stmt); ++i)
850 {
851 tree arg = gimple_call_arg (stmt, i);
852 if (TREE_CODE (arg) == SSA_NAME
853 || is_gimple_min_invariant (arg))
854 continue;
855 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
856 arg = TREE_OPERAND (arg, 0);
857 if (!ref_may_be_aliased (arg))
858 mark_aliased_reaching_defs_necessary (stmt, arg);
859 }
860 }
861 else if (gimple_assign_single_p (stmt))
862 {
863 tree rhs;
864 bool rhs_aliased = false;
865 /* If this is a load mark things necessary. */
866 rhs = gimple_assign_rhs1 (stmt);
867 if (TREE_CODE (rhs) != SSA_NAME
868 && !is_gimple_min_invariant (rhs))
869 {
870 if (!ref_may_be_aliased (rhs))
871 mark_aliased_reaching_defs_necessary (stmt, rhs);
872 else
873 rhs_aliased = true;
874 }
875 if (rhs_aliased)
876 mark_all_reaching_defs_necessary (stmt);
877 }
878 else if (gimple_code (stmt) == GIMPLE_RETURN)
879 {
880 tree rhs = gimple_return_retval (stmt);
881 /* A return statement may perform a load. */
882 if (rhs
883 && TREE_CODE (rhs) != SSA_NAME
884 && !is_gimple_min_invariant (rhs))
885 {
886 if (!ref_may_be_aliased (rhs))
887 mark_aliased_reaching_defs_necessary (stmt, rhs);
888 else
889 mark_all_reaching_defs_necessary (stmt);
890 }
891 }
892 else if (gimple_code (stmt) == GIMPLE_ASM)
893 {
894 unsigned i;
895 mark_all_reaching_defs_necessary (stmt);
896 /* Inputs may perform loads. */
897 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
898 {
899 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
900 if (TREE_CODE (op) != SSA_NAME
901 && !is_gimple_min_invariant (op)
902 && !ref_may_be_aliased (op))
903 mark_aliased_reaching_defs_necessary (stmt, op);
904 }
905 }
906 else
907 gcc_unreachable ();
908
909 /* If we over-used our alias oracle budget drop to simple
910 mode. The cost metric allows quadratic behavior
911 (number of uses times number of may-defs queries) up to
912 a constant maximal number of queries and after that falls back to
913 super-linear complexity. */
914 if (/* Constant but quadratic for small functions. */
915 total_chain > 128 * 128
916 /* Linear in the number of may-defs. */
917 && total_chain > 32 * longest_chain
918 /* Linear in the number of uses. */
919 && total_chain > nr_walks * 32)
920 {
921 chain_ovfl = true;
922 if (visited)
923 bitmap_clear (visited);
924 }
925 }
926 }
927 }
928
929 /* Replace all uses of result of PHI by underlying variable and mark it
930 for renaming. */
931
932 void
933 mark_virtual_phi_result_for_renaming (gimple phi)
934 {
935 bool used = false;
936 imm_use_iterator iter;
937 use_operand_p use_p;
938 gimple stmt;
939 tree result_ssa, result_var;
940
941 if (dump_file && (dump_flags & TDF_DETAILS))
942 {
943 fprintf (dump_file, "Marking result for renaming : ");
944 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
945 fprintf (dump_file, "\n");
946 }
947
948 result_ssa = gimple_phi_result (phi);
949 result_var = SSA_NAME_VAR (result_ssa);
950 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
951 {
952 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
953 SET_USE (use_p, result_var);
954 update_stmt (stmt);
955 used = true;
956 }
957 if (used)
958 mark_sym_for_renaming (result_var);
959 }
960
961 /* Remove dead PHI nodes from block BB. */
962
963 static bool
964 remove_dead_phis (basic_block bb)
965 {
966 bool something_changed = false;
967 gimple_seq phis;
968 gimple phi;
969 gimple_stmt_iterator gsi;
970 phis = phi_nodes (bb);
971
972 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
973 {
974 stats.total_phis++;
975 phi = gsi_stmt (gsi);
976
977 /* We do not track necessity of virtual PHI nodes. Instead do
978 very simple dead PHI removal here. */
979 if (!is_gimple_reg (gimple_phi_result (phi)))
980 {
981 /* Virtual PHI nodes with one or identical arguments
982 can be removed. */
983 if (degenerate_phi_p (phi))
984 {
985 tree vdef = gimple_phi_result (phi);
986 tree vuse = gimple_phi_arg_def (phi, 0);
987
988 use_operand_p use_p;
989 imm_use_iterator iter;
990 gimple use_stmt;
991 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
992 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
993 SET_USE (use_p, vuse);
994 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
995 && TREE_CODE (vuse) == SSA_NAME)
996 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
997 }
998 else
999 gimple_set_plf (phi, STMT_NECESSARY, true);
1000 }
1001
1002 if (!gimple_plf (phi, STMT_NECESSARY))
1003 {
1004 something_changed = true;
1005 if (dump_file && (dump_flags & TDF_DETAILS))
1006 {
1007 fprintf (dump_file, "Deleting : ");
1008 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1009 fprintf (dump_file, "\n");
1010 }
1011
1012 remove_phi_node (&gsi, true);
1013 stats.removed_phis++;
1014 continue;
1015 }
1016
1017 gsi_next (&gsi);
1018 }
1019 return something_changed;
1020 }
1021
1022 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1023
1024 static edge
1025 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1026 {
1027 gimple_stmt_iterator gsi;
1028 edge e2 = NULL;
1029 edge_iterator ei;
1030
1031 if (dump_file && (dump_flags & TDF_DETAILS))
1032 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1033 e->dest->index, post_dom_bb->index);
1034
1035 e2 = redirect_edge_and_branch (e, post_dom_bb);
1036 cfg_altered = true;
1037
1038 /* If edge was already around, no updating is neccesary. */
1039 if (e2 != e)
1040 return e2;
1041
1042 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1043 {
1044 /* We are sure that for every live PHI we are seeing control dependent BB.
1045 This means that we can pick any edge to duplicate PHI args from. */
1046 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1047 if (e2 != e)
1048 break;
1049 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1050 {
1051 gimple phi = gsi_stmt (gsi);
1052 tree op;
1053 source_location locus;
1054
1055 /* PHIs for virtuals have no control dependency relation on them.
1056 We are lost here and must force renaming of the symbol. */
1057 if (!is_gimple_reg (gimple_phi_result (phi)))
1058 {
1059 mark_virtual_phi_result_for_renaming (phi);
1060 remove_phi_node (&gsi, true);
1061 continue;
1062 }
1063
1064 /* Dead PHI do not imply control dependency. */
1065 if (!gimple_plf (phi, STMT_NECESSARY))
1066 {
1067 gsi_next (&gsi);
1068 continue;
1069 }
1070
1071 op = gimple_phi_arg_def (phi, e2->dest_idx);
1072 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1073 add_phi_arg (phi, op, e, locus);
1074 /* The resulting PHI if not dead can only be degenerate. */
1075 gcc_assert (degenerate_phi_p (phi));
1076 gsi_next (&gsi);
1077 }
1078 }
1079 return e;
1080 }
1081
1082 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1083 containing I so that we don't have to look it up. */
1084
1085 static void
1086 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1087 {
1088 gimple stmt = gsi_stmt (*i);
1089
1090 if (dump_file && (dump_flags & TDF_DETAILS))
1091 {
1092 fprintf (dump_file, "Deleting : ");
1093 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1094 fprintf (dump_file, "\n");
1095 }
1096
1097 stats.removed++;
1098
1099 /* If we have determined that a conditional branch statement contributes
1100 nothing to the program, then we not only remove it, but we also change
1101 the flow graph so that the current block will simply fall-thru to its
1102 immediate post-dominator. The blocks we are circumventing will be
1103 removed by cleanup_tree_cfg if this change in the flow graph makes them
1104 unreachable. */
1105 if (is_ctrl_stmt (stmt))
1106 {
1107 basic_block post_dom_bb;
1108 edge e, e2;
1109 edge_iterator ei;
1110
1111 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1112
1113 e = find_edge (bb, post_dom_bb);
1114
1115 /* If edge is already there, try to use it. This avoids need to update
1116 PHI nodes. Also watch for cases where post dominator does not exists
1117 or is exit block. These can happen for infinite loops as we create
1118 fake edges in the dominator tree. */
1119 if (e)
1120 ;
1121 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1122 e = EDGE_SUCC (bb, 0);
1123 else
1124 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1125 gcc_assert (e);
1126 e->probability = REG_BR_PROB_BASE;
1127 e->count = bb->count;
1128
1129 /* The edge is no longer associated with a conditional, so it does
1130 not have TRUE/FALSE flags. */
1131 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1132
1133 /* The lone outgoing edge from BB will be a fallthru edge. */
1134 e->flags |= EDGE_FALLTHRU;
1135
1136 /* Remove the remaining outgoing edges. */
1137 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1138 if (e != e2)
1139 {
1140 cfg_altered = true;
1141 remove_edge (e2);
1142 }
1143 else
1144 ei_next (&ei);
1145 }
1146
1147 unlink_stmt_vdef (stmt);
1148 gsi_remove (i, true);
1149 release_defs (stmt);
1150 }
1151
1152 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1153 contributes nothing to the program, and can be deleted. */
1154
1155 static bool
1156 eliminate_unnecessary_stmts (void)
1157 {
1158 bool something_changed = false;
1159 basic_block bb;
1160 gimple_stmt_iterator gsi, psi;
1161 gimple stmt;
1162 tree call;
1163 VEC (basic_block, heap) *h;
1164
1165 if (dump_file && (dump_flags & TDF_DETAILS))
1166 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1167
1168 clear_special_calls ();
1169
1170 /* Walking basic blocks and statements in reverse order avoids
1171 releasing SSA names before any other DEFs that refer to them are
1172 released. This helps avoid loss of debug information, as we get
1173 a chance to propagate all RHSs of removed SSAs into debug uses,
1174 rather than only the latest ones. E.g., consider:
1175
1176 x_3 = y_1 + z_2;
1177 a_5 = x_3 - b_4;
1178 # DEBUG a => a_5
1179
1180 If we were to release x_3 before a_5, when we reached a_5 and
1181 tried to substitute it into the debug stmt, we'd see x_3 there,
1182 but x_3's DEF, type, etc would have already been disconnected.
1183 By going backwards, the debug stmt first changes to:
1184
1185 # DEBUG a => x_3 - b_4
1186
1187 and then to:
1188
1189 # DEBUG a => y_1 + z_2 - b_4
1190
1191 as desired. */
1192 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1193 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1194
1195 while (VEC_length (basic_block, h))
1196 {
1197 bb = VEC_pop (basic_block, h);
1198
1199 /* Remove dead statements. */
1200 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1201 {
1202 stmt = gsi_stmt (gsi);
1203
1204 psi = gsi;
1205 gsi_prev (&psi);
1206
1207 stats.total++;
1208
1209 /* If GSI is not necessary then remove it. */
1210 if (!gimple_plf (stmt, STMT_NECESSARY))
1211 {
1212 if (!is_gimple_debug (stmt))
1213 something_changed = true;
1214 remove_dead_stmt (&gsi, bb);
1215 }
1216 else if (is_gimple_call (stmt))
1217 {
1218 call = gimple_call_fndecl (stmt);
1219 if (call)
1220 {
1221 tree name;
1222
1223 /* When LHS of var = call (); is dead, simplify it into
1224 call (); saving one operand. */
1225 name = gimple_call_lhs (stmt);
1226 if (name && TREE_CODE (name) == SSA_NAME
1227 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1228 {
1229 something_changed = true;
1230 if (dump_file && (dump_flags & TDF_DETAILS))
1231 {
1232 fprintf (dump_file, "Deleting LHS of call: ");
1233 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1234 fprintf (dump_file, "\n");
1235 }
1236
1237 gimple_call_set_lhs (stmt, NULL_TREE);
1238 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1239 update_stmt (stmt);
1240 release_ssa_name (name);
1241 }
1242 notice_special_calls (stmt);
1243 }
1244 }
1245 }
1246 }
1247
1248 VEC_free (basic_block, heap, h);
1249
1250 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1251 rendered some PHI nodes unreachable while they are still in use.
1252 Mark them for renaming. */
1253 if (cfg_altered)
1254 {
1255 basic_block prev_bb;
1256
1257 find_unreachable_blocks ();
1258
1259 /* Delete all unreachable basic blocks in reverse dominator order. */
1260 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1261 {
1262 prev_bb = bb->prev_bb;
1263
1264 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1265 || !(bb->flags & BB_REACHABLE))
1266 {
1267 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1268 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1269 {
1270 bool found = false;
1271 imm_use_iterator iter;
1272
1273 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1274 {
1275 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1276 continue;
1277 if (gimple_code (stmt) == GIMPLE_PHI
1278 || gimple_plf (stmt, STMT_NECESSARY))
1279 {
1280 found = true;
1281 BREAK_FROM_IMM_USE_STMT (iter);
1282 }
1283 }
1284 if (found)
1285 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1286 }
1287
1288 if (!(bb->flags & BB_REACHABLE))
1289 {
1290 /* Speed up the removal of blocks that don't
1291 dominate others. Walking backwards, this should
1292 be the common case. ??? Do we need to recompute
1293 dominators because of cfg_altered? */
1294 if (!MAY_HAVE_DEBUG_STMTS
1295 || !first_dom_son (CDI_DOMINATORS, bb))
1296 delete_basic_block (bb);
1297 else
1298 {
1299 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1300
1301 while (VEC_length (basic_block, h))
1302 {
1303 bb = VEC_pop (basic_block, h);
1304 prev_bb = bb->prev_bb;
1305 /* Rearrangements to the CFG may have failed
1306 to update the dominators tree, so that
1307 formerly-dominated blocks are now
1308 otherwise reachable. */
1309 if (!!(bb->flags & BB_REACHABLE))
1310 continue;
1311 delete_basic_block (bb);
1312 }
1313
1314 VEC_free (basic_block, heap, h);
1315 }
1316 }
1317 }
1318 }
1319 }
1320 FOR_EACH_BB (bb)
1321 {
1322 /* Remove dead PHI nodes. */
1323 something_changed |= remove_dead_phis (bb);
1324 }
1325
1326 return something_changed;
1327 }
1328
1329
1330 /* Print out removed statement statistics. */
1331
1332 static void
1333 print_stats (void)
1334 {
1335 float percg;
1336
1337 percg = ((float) stats.removed / (float) stats.total) * 100;
1338 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1339 stats.removed, stats.total, (int) percg);
1340
1341 if (stats.total_phis == 0)
1342 percg = 0;
1343 else
1344 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1345
1346 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1347 stats.removed_phis, stats.total_phis, (int) percg);
1348 }
1349
1350 /* Initialization for this pass. Set up the used data structures. */
1351
1352 static void
1353 tree_dce_init (bool aggressive)
1354 {
1355 memset ((void *) &stats, 0, sizeof (stats));
1356
1357 if (aggressive)
1358 {
1359 int i;
1360
1361 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1362 for (i = 0; i < last_basic_block; ++i)
1363 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1364
1365 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1366 sbitmap_zero (last_stmt_necessary);
1367 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1368 sbitmap_zero (bb_contains_live_stmts);
1369 }
1370
1371 processed = sbitmap_alloc (num_ssa_names + 1);
1372 sbitmap_zero (processed);
1373
1374 worklist = VEC_alloc (gimple, heap, 64);
1375 cfg_altered = false;
1376 }
1377
1378 /* Cleanup after this pass. */
1379
1380 static void
1381 tree_dce_done (bool aggressive)
1382 {
1383 if (aggressive)
1384 {
1385 int i;
1386
1387 for (i = 0; i < last_basic_block; ++i)
1388 BITMAP_FREE (control_dependence_map[i]);
1389 free (control_dependence_map);
1390
1391 sbitmap_free (visited_control_parents);
1392 sbitmap_free (last_stmt_necessary);
1393 sbitmap_free (bb_contains_live_stmts);
1394 bb_contains_live_stmts = NULL;
1395 }
1396
1397 sbitmap_free (processed);
1398
1399 VEC_free (gimple, heap, worklist);
1400 }
1401
1402 /* Main routine to eliminate dead code.
1403
1404 AGGRESSIVE controls the aggressiveness of the algorithm.
1405 In conservative mode, we ignore control dependence and simply declare
1406 all but the most trivially dead branches necessary. This mode is fast.
1407 In aggressive mode, control dependences are taken into account, which
1408 results in more dead code elimination, but at the cost of some time.
1409
1410 FIXME: Aggressive mode before PRE doesn't work currently because
1411 the dominance info is not invalidated after DCE1. This is
1412 not an issue right now because we only run aggressive DCE
1413 as the last tree SSA pass, but keep this in mind when you
1414 start experimenting with pass ordering. */
1415
1416 static unsigned int
1417 perform_tree_ssa_dce (bool aggressive)
1418 {
1419 struct edge_list *el = NULL;
1420 bool something_changed = 0;
1421
1422 calculate_dominance_info (CDI_DOMINATORS);
1423
1424 /* Preheaders are needed for SCEV to work.
1425 Simple lateches and recorded exits improve chances that loop will
1426 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1427 if (aggressive)
1428 loop_optimizer_init (LOOPS_NORMAL
1429 | LOOPS_HAVE_RECORDED_EXITS);
1430
1431 tree_dce_init (aggressive);
1432
1433 if (aggressive)
1434 {
1435 /* Compute control dependence. */
1436 timevar_push (TV_CONTROL_DEPENDENCES);
1437 calculate_dominance_info (CDI_POST_DOMINATORS);
1438 el = create_edge_list ();
1439 find_all_control_dependences (el);
1440 timevar_pop (TV_CONTROL_DEPENDENCES);
1441
1442 visited_control_parents = sbitmap_alloc (last_basic_block);
1443 sbitmap_zero (visited_control_parents);
1444
1445 mark_dfs_back_edges ();
1446 }
1447
1448 find_obviously_necessary_stmts (el);
1449
1450 if (aggressive)
1451 loop_optimizer_finalize ();
1452
1453 longest_chain = 0;
1454 total_chain = 0;
1455 nr_walks = 0;
1456 chain_ovfl = false;
1457 visited = BITMAP_ALLOC (NULL);
1458 propagate_necessity (el);
1459 BITMAP_FREE (visited);
1460
1461 something_changed |= eliminate_unnecessary_stmts ();
1462 something_changed |= cfg_altered;
1463
1464 /* We do not update postdominators, so free them unconditionally. */
1465 free_dominance_info (CDI_POST_DOMINATORS);
1466
1467 /* If we removed paths in the CFG, then we need to update
1468 dominators as well. I haven't investigated the possibility
1469 of incrementally updating dominators. */
1470 if (cfg_altered)
1471 free_dominance_info (CDI_DOMINATORS);
1472
1473 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1474 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1475
1476 /* Debugging dumps. */
1477 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1478 print_stats ();
1479
1480 tree_dce_done (aggressive);
1481
1482 free_edge_list (el);
1483
1484 if (something_changed)
1485 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1486 | TODO_remove_unused_locals);
1487 else
1488 return 0;
1489 }
1490
1491 /* Pass entry points. */
1492 static unsigned int
1493 tree_ssa_dce (void)
1494 {
1495 return perform_tree_ssa_dce (/*aggressive=*/false);
1496 }
1497
1498 static unsigned int
1499 tree_ssa_dce_loop (void)
1500 {
1501 unsigned int todo;
1502 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1503 if (todo)
1504 {
1505 free_numbers_of_iterations_estimates ();
1506 scev_reset ();
1507 }
1508 return todo;
1509 }
1510
1511 static unsigned int
1512 tree_ssa_cd_dce (void)
1513 {
1514 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1515 }
1516
1517 static bool
1518 gate_dce (void)
1519 {
1520 return flag_tree_dce != 0;
1521 }
1522
1523 struct gimple_opt_pass pass_dce =
1524 {
1525 {
1526 GIMPLE_PASS,
1527 "dce", /* name */
1528 gate_dce, /* gate */
1529 tree_ssa_dce, /* execute */
1530 NULL, /* sub */
1531 NULL, /* next */
1532 0, /* static_pass_number */
1533 TV_TREE_DCE, /* tv_id */
1534 PROP_cfg | PROP_ssa, /* properties_required */
1535 0, /* properties_provided */
1536 0, /* properties_destroyed */
1537 0, /* todo_flags_start */
1538 TODO_verify_ssa /* todo_flags_finish */
1539 }
1540 };
1541
1542 struct gimple_opt_pass pass_dce_loop =
1543 {
1544 {
1545 GIMPLE_PASS,
1546 "dceloop", /* name */
1547 gate_dce, /* gate */
1548 tree_ssa_dce_loop, /* execute */
1549 NULL, /* sub */
1550 NULL, /* next */
1551 0, /* static_pass_number */
1552 TV_TREE_DCE, /* tv_id */
1553 PROP_cfg | PROP_ssa, /* properties_required */
1554 0, /* properties_provided */
1555 0, /* properties_destroyed */
1556 0, /* todo_flags_start */
1557 TODO_verify_ssa /* todo_flags_finish */
1558 }
1559 };
1560
1561 struct gimple_opt_pass pass_cd_dce =
1562 {
1563 {
1564 GIMPLE_PASS,
1565 "cddce", /* name */
1566 gate_dce, /* gate */
1567 tree_ssa_cd_dce, /* execute */
1568 NULL, /* sub */
1569 NULL, /* next */
1570 0, /* static_pass_number */
1571 TV_TREE_CD_DCE, /* tv_id */
1572 PROP_cfg | PROP_ssa, /* properties_required */
1573 0, /* properties_provided */
1574 0, /* properties_destroyed */
1575 0, /* todo_flags_start */
1576 TODO_verify_ssa
1577 | TODO_verify_flow /* todo_flags_finish */
1578 }
1579 };