re PR tree-optimization/41490 (tree-ssa-sink does not really work)
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 tree lhs = NULL_TREE;
275
276 /* With non-call exceptions, we have to assume that all statements could
277 throw. If a statement may throw, it is inherently necessary. */
278 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
279 {
280 mark_stmt_necessary (stmt, true);
281 return;
282 }
283
284 /* Statements that are implicitly live. Most function calls, asm
285 and return statements are required. Labels and GIMPLE_BIND nodes
286 are kept because they are control flow, and we have no way of
287 knowing whether they can be removed. DCE can eliminate all the
288 other statements in a block, and CFG can then remove the block
289 and labels. */
290 switch (gimple_code (stmt))
291 {
292 case GIMPLE_PREDICT:
293 case GIMPLE_LABEL:
294 mark_stmt_necessary (stmt, false);
295 return;
296
297 case GIMPLE_ASM:
298 case GIMPLE_RESX:
299 case GIMPLE_RETURN:
300 mark_stmt_necessary (stmt, true);
301 return;
302
303 case GIMPLE_CALL:
304 /* Most, but not all function calls are required. Function calls that
305 produce no result and have no side effects (i.e. const pure
306 functions) are unnecessary. */
307 if (gimple_has_side_effects (stmt))
308 {
309 mark_stmt_necessary (stmt, true);
310 return;
311 }
312 if (!gimple_call_lhs (stmt))
313 return;
314 lhs = gimple_call_lhs (stmt);
315 /* Fall through */
316
317 case GIMPLE_ASSIGN:
318 if (!lhs)
319 lhs = gimple_assign_lhs (stmt);
320 break;
321
322 case GIMPLE_DEBUG:
323 /* Debug temps without a value are not useful. ??? If we could
324 easily locate the debug temp bind stmt for a use thereof,
325 would could refrain from marking all debug temps here, and
326 mark them only if they're used. */
327 if (gimple_debug_bind_has_value_p (stmt)
328 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
329 mark_stmt_necessary (stmt, false);
330 return;
331
332 case GIMPLE_GOTO:
333 gcc_assert (!simple_goto_p (stmt));
334 mark_stmt_necessary (stmt, true);
335 return;
336
337 case GIMPLE_COND:
338 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
339 /* Fall through. */
340
341 case GIMPLE_SWITCH:
342 if (! aggressive)
343 mark_stmt_necessary (stmt, true);
344 break;
345
346 default:
347 break;
348 }
349
350 /* If the statement has volatile operands, it needs to be preserved.
351 Same for statements that can alter control flow in unpredictable
352 ways. */
353 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
354 {
355 mark_stmt_necessary (stmt, true);
356 return;
357 }
358
359 if (is_hidden_global_store (stmt))
360 {
361 mark_stmt_necessary (stmt, true);
362 return;
363 }
364
365 return;
366 }
367
368
369 /* Mark the last statement of BB as necessary. */
370
371 static void
372 mark_last_stmt_necessary (basic_block bb)
373 {
374 gimple stmt = last_stmt (bb);
375
376 SET_BIT (last_stmt_necessary, bb->index);
377 SET_BIT (bb_contains_live_stmts, bb->index);
378
379 /* We actually mark the statement only if it is a control statement. */
380 if (stmt && is_ctrl_stmt (stmt))
381 mark_stmt_necessary (stmt, true);
382 }
383
384
385 /* Mark control dependent edges of BB as necessary. We have to do this only
386 once for each basic block so we set the appropriate bit after we're done.
387
388 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
389
390 static void
391 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
392 bool ignore_self)
393 {
394 bitmap_iterator bi;
395 unsigned edge_number;
396 bool skipped = false;
397
398 gcc_assert (bb != EXIT_BLOCK_PTR);
399
400 if (bb == ENTRY_BLOCK_PTR)
401 return;
402
403 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
404 {
405 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
406
407 if (ignore_self && cd_bb == bb)
408 {
409 skipped = true;
410 continue;
411 }
412
413 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
414 mark_last_stmt_necessary (cd_bb);
415 }
416
417 if (!skipped)
418 SET_BIT (visited_control_parents, bb->index);
419 }
420
421
422 /* Find obviously necessary statements. These are things like most function
423 calls, and stores to file level variables.
424
425 If EL is NULL, control statements are conservatively marked as
426 necessary. Otherwise it contains the list of edges used by control
427 dependence analysis. */
428
429 static void
430 find_obviously_necessary_stmts (struct edge_list *el)
431 {
432 basic_block bb;
433 gimple_stmt_iterator gsi;
434 edge e;
435 gimple phi, stmt;
436 int flags;
437
438 FOR_EACH_BB (bb)
439 {
440 /* PHI nodes are never inherently necessary. */
441 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
442 {
443 phi = gsi_stmt (gsi);
444 gimple_set_plf (phi, STMT_NECESSARY, false);
445 }
446
447 /* Check all statements in the block. */
448 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
449 {
450 stmt = gsi_stmt (gsi);
451 gimple_set_plf (stmt, STMT_NECESSARY, false);
452 mark_stmt_if_obviously_necessary (stmt, el != NULL);
453 }
454 }
455
456 /* Pure and const functions are finite and thus have no infinite loops in
457 them. */
458 flags = flags_from_decl_or_type (current_function_decl);
459 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
460 return;
461
462 /* Prevent the empty possibly infinite loops from being removed. */
463 if (el)
464 {
465 loop_iterator li;
466 struct loop *loop;
467 scev_initialize ();
468 if (mark_irreducible_loops ())
469 FOR_EACH_BB (bb)
470 {
471 edge_iterator ei;
472 FOR_EACH_EDGE (e, ei, bb->succs)
473 if ((e->flags & EDGE_DFS_BACK)
474 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
475 {
476 if (dump_file)
477 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
478 e->src->index, e->dest->index);
479 mark_control_dependent_edges_necessary (e->dest, el, false);
480 }
481 }
482
483 FOR_EACH_LOOP (li, loop, 0)
484 if (!finite_loop_p (loop))
485 {
486 if (dump_file)
487 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
488 mark_control_dependent_edges_necessary (loop->latch, el, false);
489 }
490 scev_finalize ();
491 }
492 }
493
494
495 /* Return true if REF is based on an aliased base, otherwise false. */
496
497 static bool
498 ref_may_be_aliased (tree ref)
499 {
500 while (handled_component_p (ref))
501 ref = TREE_OPERAND (ref, 0);
502 if (TREE_CODE (ref) == MEM_REF
503 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
504 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
505 return !(DECL_P (ref)
506 && !may_be_aliased (ref));
507 }
508
509 static bitmap visited = NULL;
510 static unsigned int longest_chain = 0;
511 static unsigned int total_chain = 0;
512 static unsigned int nr_walks = 0;
513 static bool chain_ovfl = false;
514
515 /* Worker for the walker that marks reaching definitions of REF,
516 which is based on a non-aliased decl, necessary. It returns
517 true whenever the defining statement of the current VDEF is
518 a kill for REF, as no dominating may-defs are necessary for REF
519 anymore. DATA points to the basic-block that contains the
520 stmt that refers to REF. */
521
522 static bool
523 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
524 {
525 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
526
527 /* All stmts we visit are necessary. */
528 mark_operand_necessary (vdef);
529
530 /* If the stmt lhs kills ref, then we can stop walking. */
531 if (gimple_has_lhs (def_stmt)
532 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
533 {
534 tree base, lhs = gimple_get_lhs (def_stmt);
535 HOST_WIDE_INT size, offset, max_size;
536 ao_ref_base (ref);
537 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
538 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
539 so base == refd->base does not always hold. */
540 if (base == ref->base)
541 {
542 /* For a must-alias check we need to be able to constrain
543 the accesses properly. */
544 if (size != -1 && size == max_size
545 && ref->max_size != -1)
546 {
547 if (offset <= ref->offset
548 && offset + size >= ref->offset + ref->max_size)
549 return true;
550 }
551 /* Or they need to be exactly the same. */
552 else if (ref->ref
553 /* Make sure there is no induction variable involved
554 in the references (gcc.c-torture/execute/pr42142.c).
555 The simplest way is to check if the kill dominates
556 the use. */
557 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
558 gimple_bb (def_stmt))
559 && operand_equal_p (ref->ref, lhs, 0))
560 return true;
561 }
562 }
563
564 /* Otherwise keep walking. */
565 return false;
566 }
567
568 static void
569 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
570 {
571 unsigned int chain;
572 ao_ref refd;
573 gcc_assert (!chain_ovfl);
574 ao_ref_init (&refd, ref);
575 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
576 mark_aliased_reaching_defs_necessary_1,
577 gimple_bb (stmt), NULL);
578 if (chain > longest_chain)
579 longest_chain = chain;
580 total_chain += chain;
581 nr_walks++;
582 }
583
584 /* Worker for the walker that marks reaching definitions of REF, which
585 is not based on a non-aliased decl. For simplicity we need to end
586 up marking all may-defs necessary that are not based on a non-aliased
587 decl. The only job of this walker is to skip may-defs based on
588 a non-aliased decl. */
589
590 static bool
591 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
592 tree vdef, void *data ATTRIBUTE_UNUSED)
593 {
594 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
595
596 /* We have to skip already visited (and thus necessary) statements
597 to make the chaining work after we dropped back to simple mode. */
598 if (chain_ovfl
599 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
600 {
601 gcc_assert (gimple_nop_p (def_stmt)
602 || gimple_plf (def_stmt, STMT_NECESSARY));
603 return false;
604 }
605
606 /* We want to skip stores to non-aliased variables. */
607 if (!chain_ovfl
608 && gimple_assign_single_p (def_stmt))
609 {
610 tree lhs = gimple_assign_lhs (def_stmt);
611 if (!ref_may_be_aliased (lhs))
612 return false;
613 }
614
615 mark_operand_necessary (vdef);
616
617 return false;
618 }
619
620 static void
621 mark_all_reaching_defs_necessary (gimple stmt)
622 {
623 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
624 mark_all_reaching_defs_necessary_1, NULL, &visited);
625 }
626
627 /* Return true for PHI nodes with one or identical arguments
628 can be removed. */
629 static bool
630 degenerate_phi_p (gimple phi)
631 {
632 unsigned int i;
633 tree op = gimple_phi_arg_def (phi, 0);
634 for (i = 1; i < gimple_phi_num_args (phi); i++)
635 if (gimple_phi_arg_def (phi, i) != op)
636 return false;
637 return true;
638 }
639
640 /* Propagate necessity using the operands of necessary statements.
641 Process the uses on each statement in the worklist, and add all
642 feeding statements which contribute to the calculation of this
643 value to the worklist.
644
645 In conservative mode, EL is NULL. */
646
647 static void
648 propagate_necessity (struct edge_list *el)
649 {
650 gimple stmt;
651 bool aggressive = (el ? true : false);
652
653 if (dump_file && (dump_flags & TDF_DETAILS))
654 fprintf (dump_file, "\nProcessing worklist:\n");
655
656 while (VEC_length (gimple, worklist) > 0)
657 {
658 /* Take STMT from worklist. */
659 stmt = VEC_pop (gimple, worklist);
660
661 if (dump_file && (dump_flags & TDF_DETAILS))
662 {
663 fprintf (dump_file, "processing: ");
664 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
665 fprintf (dump_file, "\n");
666 }
667
668 if (aggressive)
669 {
670 /* Mark the last statement of the basic blocks on which the block
671 containing STMT is control dependent, but only if we haven't
672 already done so. */
673 basic_block bb = gimple_bb (stmt);
674 if (bb != ENTRY_BLOCK_PTR
675 && !TEST_BIT (visited_control_parents, bb->index))
676 mark_control_dependent_edges_necessary (bb, el, false);
677 }
678
679 if (gimple_code (stmt) == GIMPLE_PHI
680 /* We do not process virtual PHI nodes nor do we track their
681 necessity. */
682 && is_gimple_reg (gimple_phi_result (stmt)))
683 {
684 /* PHI nodes are somewhat special in that each PHI alternative has
685 data and control dependencies. All the statements feeding the
686 PHI node's arguments are always necessary. In aggressive mode,
687 we also consider the control dependent edges leading to the
688 predecessor block associated with each PHI alternative as
689 necessary. */
690 size_t k;
691
692 for (k = 0; k < gimple_phi_num_args (stmt); k++)
693 {
694 tree arg = PHI_ARG_DEF (stmt, k);
695 if (TREE_CODE (arg) == SSA_NAME)
696 mark_operand_necessary (arg);
697 }
698
699 /* For PHI operands it matters from where the control flow arrives
700 to the BB. Consider the following example:
701
702 a=exp1;
703 b=exp2;
704 if (test)
705 ;
706 else
707 ;
708 c=PHI(a,b)
709
710 We need to mark control dependence of the empty basic blocks, since they
711 contains computation of PHI operands.
712
713 Doing so is too restrictive in the case the predecestor block is in
714 the loop. Consider:
715
716 if (b)
717 {
718 int i;
719 for (i = 0; i<1000; ++i)
720 ;
721 j = 0;
722 }
723 return j;
724
725 There is PHI for J in the BB containing return statement.
726 In this case the control dependence of predecestor block (that is
727 within the empty loop) also contains the block determining number
728 of iterations of the block that would prevent removing of empty
729 loop in this case.
730
731 This scenario can be avoided by splitting critical edges.
732 To save the critical edge splitting pass we identify how the control
733 dependence would look like if the edge was split.
734
735 Consider the modified CFG created from current CFG by splitting
736 edge B->C. In the postdominance tree of modified CFG, C' is
737 always child of C. There are two cases how chlids of C' can look
738 like:
739
740 1) C' is leaf
741
742 In this case the only basic block C' is control dependent on is B.
743
744 2) C' has single child that is B
745
746 In this case control dependence of C' is same as control
747 dependence of B in original CFG except for block B itself.
748 (since C' postdominate B in modified CFG)
749
750 Now how to decide what case happens? There are two basic options:
751
752 a) C postdominate B. Then C immediately postdominate B and
753 case 2 happens iff there is no other way from B to C except
754 the edge B->C.
755
756 There is other way from B to C iff there is succesor of B that
757 is not postdominated by B. Testing this condition is somewhat
758 expensive, because we need to iterate all succesors of B.
759 We are safe to assume that this does not happen: we will mark B
760 as needed when processing the other path from B to C that is
761 conrol dependent on B and marking control dependencies of B
762 itself is harmless because they will be processed anyway after
763 processing control statement in B.
764
765 b) C does not postdominate B. Always case 1 happens since there is
766 path from C to exit that does not go through B and thus also C'. */
767
768 if (aggressive && !degenerate_phi_p (stmt))
769 {
770 for (k = 0; k < gimple_phi_num_args (stmt); k++)
771 {
772 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
773
774 if (gimple_bb (stmt)
775 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
776 {
777 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
778 mark_last_stmt_necessary (arg_bb);
779 }
780 else if (arg_bb != ENTRY_BLOCK_PTR
781 && !TEST_BIT (visited_control_parents,
782 arg_bb->index))
783 mark_control_dependent_edges_necessary (arg_bb, el, true);
784 }
785 }
786 }
787 else
788 {
789 /* Propagate through the operands. Examine all the USE, VUSE and
790 VDEF operands in this statement. Mark all the statements
791 which feed this statement's uses as necessary. */
792 ssa_op_iter iter;
793 tree use;
794
795 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
796 mark_operand_necessary (use);
797
798 use = gimple_vuse (stmt);
799 if (!use)
800 continue;
801
802 /* If we dropped to simple mode make all immediately
803 reachable definitions necessary. */
804 if (chain_ovfl)
805 {
806 mark_all_reaching_defs_necessary (stmt);
807 continue;
808 }
809
810 /* For statements that may load from memory (have a VUSE) we
811 have to mark all reaching (may-)definitions as necessary.
812 We partition this task into two cases:
813 1) explicit loads based on decls that are not aliased
814 2) implicit loads (like calls) and explicit loads not
815 based on decls that are not aliased (like indirect
816 references or loads from globals)
817 For 1) we mark all reaching may-defs as necessary, stopping
818 at dominating kills. For 2) we want to mark all dominating
819 references necessary, but non-aliased ones which we handle
820 in 1). By keeping a global visited bitmap for references
821 we walk for 2) we avoid quadratic behavior for those. */
822
823 if (is_gimple_call (stmt))
824 {
825 tree callee = gimple_call_fndecl (stmt);
826 unsigned i;
827
828 /* Calls to functions that are merely acting as barriers
829 or that only store to memory do not make any previous
830 stores necessary. */
831 if (callee != NULL_TREE
832 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
833 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
834 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
835 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
836 continue;
837
838 /* Calls implicitly load from memory, their arguments
839 in addition may explicitly perform memory loads. */
840 mark_all_reaching_defs_necessary (stmt);
841 for (i = 0; i < gimple_call_num_args (stmt); ++i)
842 {
843 tree arg = gimple_call_arg (stmt, i);
844 if (TREE_CODE (arg) == SSA_NAME
845 || is_gimple_min_invariant (arg))
846 continue;
847 if (!ref_may_be_aliased (arg))
848 mark_aliased_reaching_defs_necessary (stmt, arg);
849 }
850 }
851 else if (gimple_assign_single_p (stmt))
852 {
853 tree rhs;
854 bool rhs_aliased = false;
855 /* If this is a load mark things necessary. */
856 rhs = gimple_assign_rhs1 (stmt);
857 if (TREE_CODE (rhs) != SSA_NAME
858 && !is_gimple_min_invariant (rhs))
859 {
860 if (!ref_may_be_aliased (rhs))
861 mark_aliased_reaching_defs_necessary (stmt, rhs);
862 else
863 rhs_aliased = true;
864 }
865 if (rhs_aliased)
866 mark_all_reaching_defs_necessary (stmt);
867 }
868 else if (gimple_code (stmt) == GIMPLE_RETURN)
869 {
870 tree rhs = gimple_return_retval (stmt);
871 /* A return statement may perform a load. */
872 if (rhs
873 && TREE_CODE (rhs) != SSA_NAME
874 && !is_gimple_min_invariant (rhs))
875 {
876 if (!ref_may_be_aliased (rhs))
877 mark_aliased_reaching_defs_necessary (stmt, rhs);
878 else
879 mark_all_reaching_defs_necessary (stmt);
880 }
881 }
882 else if (gimple_code (stmt) == GIMPLE_ASM)
883 {
884 unsigned i;
885 mark_all_reaching_defs_necessary (stmt);
886 /* Inputs may perform loads. */
887 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
888 {
889 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
890 if (TREE_CODE (op) != SSA_NAME
891 && !is_gimple_min_invariant (op)
892 && !ref_may_be_aliased (op))
893 mark_aliased_reaching_defs_necessary (stmt, op);
894 }
895 }
896 else
897 gcc_unreachable ();
898
899 /* If we over-used our alias oracle budget drop to simple
900 mode. The cost metric allows quadratic behavior
901 (number of uses times number of may-defs queries) up to
902 a constant maximal number of queries and after that falls back to
903 super-linear complexity. */
904 if (/* Constant but quadratic for small functions. */
905 total_chain > 128 * 128
906 /* Linear in the number of may-defs. */
907 && total_chain > 32 * longest_chain
908 /* Linear in the number of uses. */
909 && total_chain > nr_walks * 32)
910 {
911 chain_ovfl = true;
912 if (visited)
913 bitmap_clear (visited);
914 }
915 }
916 }
917 }
918
919 /* Replace all uses of result of PHI by underlying variable and mark it
920 for renaming. */
921
922 void
923 mark_virtual_phi_result_for_renaming (gimple phi)
924 {
925 bool used = false;
926 imm_use_iterator iter;
927 use_operand_p use_p;
928 gimple stmt;
929 tree result_ssa, result_var;
930
931 if (dump_file && (dump_flags & TDF_DETAILS))
932 {
933 fprintf (dump_file, "Marking result for renaming : ");
934 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
935 fprintf (dump_file, "\n");
936 }
937
938 result_ssa = gimple_phi_result (phi);
939 result_var = SSA_NAME_VAR (result_ssa);
940 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
941 {
942 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
943 SET_USE (use_p, result_var);
944 update_stmt (stmt);
945 used = true;
946 }
947 if (used)
948 mark_sym_for_renaming (result_var);
949 }
950
951 /* Remove dead PHI nodes from block BB. */
952
953 static bool
954 remove_dead_phis (basic_block bb)
955 {
956 bool something_changed = false;
957 gimple_seq phis;
958 gimple phi;
959 gimple_stmt_iterator gsi;
960 phis = phi_nodes (bb);
961
962 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
963 {
964 stats.total_phis++;
965 phi = gsi_stmt (gsi);
966
967 /* We do not track necessity of virtual PHI nodes. Instead do
968 very simple dead PHI removal here. */
969 if (!is_gimple_reg (gimple_phi_result (phi)))
970 {
971 /* Virtual PHI nodes with one or identical arguments
972 can be removed. */
973 if (degenerate_phi_p (phi))
974 {
975 tree vdef = gimple_phi_result (phi);
976 tree vuse = gimple_phi_arg_def (phi, 0);
977
978 use_operand_p use_p;
979 imm_use_iterator iter;
980 gimple use_stmt;
981 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
982 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
983 SET_USE (use_p, vuse);
984 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
985 && TREE_CODE (vuse) == SSA_NAME)
986 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
987 }
988 else
989 gimple_set_plf (phi, STMT_NECESSARY, true);
990 }
991
992 if (!gimple_plf (phi, STMT_NECESSARY))
993 {
994 something_changed = true;
995 if (dump_file && (dump_flags & TDF_DETAILS))
996 {
997 fprintf (dump_file, "Deleting : ");
998 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
999 fprintf (dump_file, "\n");
1000 }
1001
1002 remove_phi_node (&gsi, true);
1003 stats.removed_phis++;
1004 continue;
1005 }
1006
1007 gsi_next (&gsi);
1008 }
1009 return something_changed;
1010 }
1011
1012 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1013
1014 static edge
1015 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1016 {
1017 gimple_stmt_iterator gsi;
1018 edge e2 = NULL;
1019 edge_iterator ei;
1020
1021 if (dump_file && (dump_flags & TDF_DETAILS))
1022 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1023 e->dest->index, post_dom_bb->index);
1024
1025 e2 = redirect_edge_and_branch (e, post_dom_bb);
1026 cfg_altered = true;
1027
1028 /* If edge was already around, no updating is neccesary. */
1029 if (e2 != e)
1030 return e2;
1031
1032 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1033 {
1034 /* We are sure that for every live PHI we are seeing control dependent BB.
1035 This means that we can pick any edge to duplicate PHI args from. */
1036 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1037 if (e2 != e)
1038 break;
1039 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1040 {
1041 gimple phi = gsi_stmt (gsi);
1042 tree op;
1043 source_location locus;
1044
1045 /* PHIs for virtuals have no control dependency relation on them.
1046 We are lost here and must force renaming of the symbol. */
1047 if (!is_gimple_reg (gimple_phi_result (phi)))
1048 {
1049 mark_virtual_phi_result_for_renaming (phi);
1050 remove_phi_node (&gsi, true);
1051 continue;
1052 }
1053
1054 /* Dead PHI do not imply control dependency. */
1055 if (!gimple_plf (phi, STMT_NECESSARY))
1056 {
1057 gsi_next (&gsi);
1058 continue;
1059 }
1060
1061 op = gimple_phi_arg_def (phi, e2->dest_idx);
1062 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1063 add_phi_arg (phi, op, e, locus);
1064 /* The resulting PHI if not dead can only be degenerate. */
1065 gcc_assert (degenerate_phi_p (phi));
1066 gsi_next (&gsi);
1067 }
1068 }
1069 return e;
1070 }
1071
1072 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1073 containing I so that we don't have to look it up. */
1074
1075 static void
1076 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1077 {
1078 gimple stmt = gsi_stmt (*i);
1079
1080 if (dump_file && (dump_flags & TDF_DETAILS))
1081 {
1082 fprintf (dump_file, "Deleting : ");
1083 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1084 fprintf (dump_file, "\n");
1085 }
1086
1087 stats.removed++;
1088
1089 /* If we have determined that a conditional branch statement contributes
1090 nothing to the program, then we not only remove it, but we also change
1091 the flow graph so that the current block will simply fall-thru to its
1092 immediate post-dominator. The blocks we are circumventing will be
1093 removed by cleanup_tree_cfg if this change in the flow graph makes them
1094 unreachable. */
1095 if (is_ctrl_stmt (stmt))
1096 {
1097 basic_block post_dom_bb;
1098 edge e, e2;
1099 edge_iterator ei;
1100
1101 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1102
1103 e = find_edge (bb, post_dom_bb);
1104
1105 /* If edge is already there, try to use it. This avoids need to update
1106 PHI nodes. Also watch for cases where post dominator does not exists
1107 or is exit block. These can happen for infinite loops as we create
1108 fake edges in the dominator tree. */
1109 if (e)
1110 ;
1111 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1112 e = EDGE_SUCC (bb, 0);
1113 else
1114 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1115 gcc_assert (e);
1116 e->probability = REG_BR_PROB_BASE;
1117 e->count = bb->count;
1118
1119 /* The edge is no longer associated with a conditional, so it does
1120 not have TRUE/FALSE flags. */
1121 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1122
1123 /* The lone outgoing edge from BB will be a fallthru edge. */
1124 e->flags |= EDGE_FALLTHRU;
1125
1126 /* Remove the remaining outgoing edges. */
1127 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1128 if (e != e2)
1129 {
1130 cfg_altered = true;
1131 remove_edge (e2);
1132 }
1133 else
1134 ei_next (&ei);
1135 }
1136
1137 unlink_stmt_vdef (stmt);
1138 gsi_remove (i, true);
1139 release_defs (stmt);
1140 }
1141
1142 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1143 contributes nothing to the program, and can be deleted. */
1144
1145 static bool
1146 eliminate_unnecessary_stmts (void)
1147 {
1148 bool something_changed = false;
1149 basic_block bb;
1150 gimple_stmt_iterator gsi, psi;
1151 gimple stmt;
1152 tree call;
1153 VEC (basic_block, heap) *h;
1154
1155 if (dump_file && (dump_flags & TDF_DETAILS))
1156 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1157
1158 clear_special_calls ();
1159
1160 /* Walking basic blocks and statements in reverse order avoids
1161 releasing SSA names before any other DEFs that refer to them are
1162 released. This helps avoid loss of debug information, as we get
1163 a chance to propagate all RHSs of removed SSAs into debug uses,
1164 rather than only the latest ones. E.g., consider:
1165
1166 x_3 = y_1 + z_2;
1167 a_5 = x_3 - b_4;
1168 # DEBUG a => a_5
1169
1170 If we were to release x_3 before a_5, when we reached a_5 and
1171 tried to substitute it into the debug stmt, we'd see x_3 there,
1172 but x_3's DEF, type, etc would have already been disconnected.
1173 By going backwards, the debug stmt first changes to:
1174
1175 # DEBUG a => x_3 - b_4
1176
1177 and then to:
1178
1179 # DEBUG a => y_1 + z_2 - b_4
1180
1181 as desired. */
1182 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1183 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1184
1185 while (VEC_length (basic_block, h))
1186 {
1187 bb = VEC_pop (basic_block, h);
1188
1189 /* Remove dead statements. */
1190 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1191 {
1192 stmt = gsi_stmt (gsi);
1193
1194 psi = gsi;
1195 gsi_prev (&psi);
1196
1197 stats.total++;
1198
1199 /* If GSI is not necessary then remove it. */
1200 if (!gimple_plf (stmt, STMT_NECESSARY))
1201 {
1202 if (!is_gimple_debug (stmt))
1203 something_changed = true;
1204 remove_dead_stmt (&gsi, bb);
1205 }
1206 else if (is_gimple_call (stmt))
1207 {
1208 call = gimple_call_fndecl (stmt);
1209 if (call)
1210 {
1211 tree name;
1212
1213 /* When LHS of var = call (); is dead, simplify it into
1214 call (); saving one operand. */
1215 name = gimple_call_lhs (stmt);
1216 if (name && TREE_CODE (name) == SSA_NAME
1217 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1218 {
1219 something_changed = true;
1220 if (dump_file && (dump_flags & TDF_DETAILS))
1221 {
1222 fprintf (dump_file, "Deleting LHS of call: ");
1223 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1224 fprintf (dump_file, "\n");
1225 }
1226
1227 gimple_call_set_lhs (stmt, NULL_TREE);
1228 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1229 update_stmt (stmt);
1230 release_ssa_name (name);
1231 }
1232 notice_special_calls (stmt);
1233 }
1234 }
1235 }
1236 }
1237
1238 VEC_free (basic_block, heap, h);
1239
1240 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1241 rendered some PHI nodes unreachable while they are still in use.
1242 Mark them for renaming. */
1243 if (cfg_altered)
1244 {
1245 basic_block prev_bb;
1246
1247 find_unreachable_blocks ();
1248
1249 /* Delete all unreachable basic blocks in reverse dominator order. */
1250 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1251 {
1252 prev_bb = bb->prev_bb;
1253
1254 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1255 || !(bb->flags & BB_REACHABLE))
1256 {
1257 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1258 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1259 {
1260 bool found = false;
1261 imm_use_iterator iter;
1262
1263 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1264 {
1265 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1266 continue;
1267 if (gimple_code (stmt) == GIMPLE_PHI
1268 || gimple_plf (stmt, STMT_NECESSARY))
1269 {
1270 found = true;
1271 BREAK_FROM_IMM_USE_STMT (iter);
1272 }
1273 }
1274 if (found)
1275 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1276 }
1277
1278 if (!(bb->flags & BB_REACHABLE))
1279 {
1280 /* Speed up the removal of blocks that don't
1281 dominate others. Walking backwards, this should
1282 be the common case. ??? Do we need to recompute
1283 dominators because of cfg_altered? */
1284 if (!MAY_HAVE_DEBUG_STMTS
1285 || !first_dom_son (CDI_DOMINATORS, bb))
1286 delete_basic_block (bb);
1287 else
1288 {
1289 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1290
1291 while (VEC_length (basic_block, h))
1292 {
1293 bb = VEC_pop (basic_block, h);
1294 prev_bb = bb->prev_bb;
1295 /* Rearrangements to the CFG may have failed
1296 to update the dominators tree, so that
1297 formerly-dominated blocks are now
1298 otherwise reachable. */
1299 if (!!(bb->flags & BB_REACHABLE))
1300 continue;
1301 delete_basic_block (bb);
1302 }
1303
1304 VEC_free (basic_block, heap, h);
1305 }
1306 }
1307 }
1308 }
1309 }
1310 FOR_EACH_BB (bb)
1311 {
1312 /* Remove dead PHI nodes. */
1313 something_changed |= remove_dead_phis (bb);
1314 }
1315
1316 return something_changed;
1317 }
1318
1319
1320 /* Print out removed statement statistics. */
1321
1322 static void
1323 print_stats (void)
1324 {
1325 float percg;
1326
1327 percg = ((float) stats.removed / (float) stats.total) * 100;
1328 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1329 stats.removed, stats.total, (int) percg);
1330
1331 if (stats.total_phis == 0)
1332 percg = 0;
1333 else
1334 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1335
1336 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1337 stats.removed_phis, stats.total_phis, (int) percg);
1338 }
1339
1340 /* Initialization for this pass. Set up the used data structures. */
1341
1342 static void
1343 tree_dce_init (bool aggressive)
1344 {
1345 memset ((void *) &stats, 0, sizeof (stats));
1346
1347 if (aggressive)
1348 {
1349 int i;
1350
1351 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1352 for (i = 0; i < last_basic_block; ++i)
1353 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1354
1355 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1356 sbitmap_zero (last_stmt_necessary);
1357 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1358 sbitmap_zero (bb_contains_live_stmts);
1359 }
1360
1361 processed = sbitmap_alloc (num_ssa_names + 1);
1362 sbitmap_zero (processed);
1363
1364 worklist = VEC_alloc (gimple, heap, 64);
1365 cfg_altered = false;
1366 }
1367
1368 /* Cleanup after this pass. */
1369
1370 static void
1371 tree_dce_done (bool aggressive)
1372 {
1373 if (aggressive)
1374 {
1375 int i;
1376
1377 for (i = 0; i < last_basic_block; ++i)
1378 BITMAP_FREE (control_dependence_map[i]);
1379 free (control_dependence_map);
1380
1381 sbitmap_free (visited_control_parents);
1382 sbitmap_free (last_stmt_necessary);
1383 sbitmap_free (bb_contains_live_stmts);
1384 bb_contains_live_stmts = NULL;
1385 }
1386
1387 sbitmap_free (processed);
1388
1389 VEC_free (gimple, heap, worklist);
1390 }
1391
1392 /* Main routine to eliminate dead code.
1393
1394 AGGRESSIVE controls the aggressiveness of the algorithm.
1395 In conservative mode, we ignore control dependence and simply declare
1396 all but the most trivially dead branches necessary. This mode is fast.
1397 In aggressive mode, control dependences are taken into account, which
1398 results in more dead code elimination, but at the cost of some time.
1399
1400 FIXME: Aggressive mode before PRE doesn't work currently because
1401 the dominance info is not invalidated after DCE1. This is
1402 not an issue right now because we only run aggressive DCE
1403 as the last tree SSA pass, but keep this in mind when you
1404 start experimenting with pass ordering. */
1405
1406 static unsigned int
1407 perform_tree_ssa_dce (bool aggressive)
1408 {
1409 struct edge_list *el = NULL;
1410 bool something_changed = 0;
1411
1412 calculate_dominance_info (CDI_DOMINATORS);
1413
1414 /* Preheaders are needed for SCEV to work.
1415 Simple lateches and recorded exits improve chances that loop will
1416 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1417 if (aggressive)
1418 loop_optimizer_init (LOOPS_NORMAL
1419 | LOOPS_HAVE_RECORDED_EXITS);
1420
1421 tree_dce_init (aggressive);
1422
1423 if (aggressive)
1424 {
1425 /* Compute control dependence. */
1426 timevar_push (TV_CONTROL_DEPENDENCES);
1427 calculate_dominance_info (CDI_POST_DOMINATORS);
1428 el = create_edge_list ();
1429 find_all_control_dependences (el);
1430 timevar_pop (TV_CONTROL_DEPENDENCES);
1431
1432 visited_control_parents = sbitmap_alloc (last_basic_block);
1433 sbitmap_zero (visited_control_parents);
1434
1435 mark_dfs_back_edges ();
1436 }
1437
1438 find_obviously_necessary_stmts (el);
1439
1440 if (aggressive)
1441 loop_optimizer_finalize ();
1442
1443 longest_chain = 0;
1444 total_chain = 0;
1445 nr_walks = 0;
1446 chain_ovfl = false;
1447 visited = BITMAP_ALLOC (NULL);
1448 propagate_necessity (el);
1449 BITMAP_FREE (visited);
1450
1451 something_changed |= eliminate_unnecessary_stmts ();
1452 something_changed |= cfg_altered;
1453
1454 /* We do not update postdominators, so free them unconditionally. */
1455 free_dominance_info (CDI_POST_DOMINATORS);
1456
1457 /* If we removed paths in the CFG, then we need to update
1458 dominators as well. I haven't investigated the possibility
1459 of incrementally updating dominators. */
1460 if (cfg_altered)
1461 free_dominance_info (CDI_DOMINATORS);
1462
1463 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1464 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1465
1466 /* Debugging dumps. */
1467 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1468 print_stats ();
1469
1470 tree_dce_done (aggressive);
1471
1472 free_edge_list (el);
1473
1474 if (something_changed)
1475 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1476 | TODO_remove_unused_locals);
1477 else
1478 return 0;
1479 }
1480
1481 /* Pass entry points. */
1482 static unsigned int
1483 tree_ssa_dce (void)
1484 {
1485 return perform_tree_ssa_dce (/*aggressive=*/false);
1486 }
1487
1488 static unsigned int
1489 tree_ssa_dce_loop (void)
1490 {
1491 unsigned int todo;
1492 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1493 if (todo)
1494 {
1495 free_numbers_of_iterations_estimates ();
1496 scev_reset ();
1497 }
1498 return todo;
1499 }
1500
1501 static unsigned int
1502 tree_ssa_cd_dce (void)
1503 {
1504 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1505 }
1506
1507 static bool
1508 gate_dce (void)
1509 {
1510 return flag_tree_dce != 0;
1511 }
1512
1513 struct gimple_opt_pass pass_dce =
1514 {
1515 {
1516 GIMPLE_PASS,
1517 "dce", /* name */
1518 gate_dce, /* gate */
1519 tree_ssa_dce, /* execute */
1520 NULL, /* sub */
1521 NULL, /* next */
1522 0, /* static_pass_number */
1523 TV_TREE_DCE, /* tv_id */
1524 PROP_cfg | PROP_ssa, /* properties_required */
1525 0, /* properties_provided */
1526 0, /* properties_destroyed */
1527 0, /* todo_flags_start */
1528 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1529 }
1530 };
1531
1532 struct gimple_opt_pass pass_dce_loop =
1533 {
1534 {
1535 GIMPLE_PASS,
1536 "dceloop", /* name */
1537 gate_dce, /* gate */
1538 tree_ssa_dce_loop, /* execute */
1539 NULL, /* sub */
1540 NULL, /* next */
1541 0, /* static_pass_number */
1542 TV_TREE_DCE, /* tv_id */
1543 PROP_cfg | PROP_ssa, /* properties_required */
1544 0, /* properties_provided */
1545 0, /* properties_destroyed */
1546 0, /* todo_flags_start */
1547 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1548 }
1549 };
1550
1551 struct gimple_opt_pass pass_cd_dce =
1552 {
1553 {
1554 GIMPLE_PASS,
1555 "cddce", /* name */
1556 gate_dce, /* gate */
1557 tree_ssa_cd_dce, /* execute */
1558 NULL, /* sub */
1559 NULL, /* next */
1560 0, /* static_pass_number */
1561 TV_TREE_CD_DCE, /* tv_id */
1562 PROP_cfg | PROP_ssa, /* properties_required */
1563 0, /* properties_provided */
1564 0, /* properties_destroyed */
1565 0, /* todo_flags_start */
1566 TODO_dump_func | TODO_verify_ssa
1567 | TODO_verify_flow /* todo_flags_finish */
1568 }
1569 };