tree-ssa-forwprop.c (forward_propagate_into_cond): Avoid typo potentially leading...
[gcc.git] / gcc / tree-ssa-dce.c
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50
51 #include "tree.h"
52 #include "tree-pretty-print.h"
53 #include "gimple-pretty-print.h"
54 #include "basic-block.h"
55 #include "tree-flow.h"
56 #include "gimple.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "flags.h"
61 #include "cfgloop.h"
62 #include "tree-scalar-evolution.h"
63
64 static struct stmt_stats
65 {
66 int total;
67 int total_phis;
68 int removed;
69 int removed_phis;
70 } stats;
71
72 #define STMT_NECESSARY GF_PLF_1
73
74 static VEC(gimple,heap) *worklist;
75
76 /* Vector indicating an SSA name has already been processed and marked
77 as necessary. */
78 static sbitmap processed;
79
80 /* Vector indicating that the last statement of a basic block has already
81 been marked as necessary. */
82 static sbitmap last_stmt_necessary;
83
84 /* Vector indicating that BB contains statements that are live. */
85 static sbitmap bb_contains_live_stmts;
86
87 /* Before we can determine whether a control branch is dead, we need to
88 compute which blocks are control dependent on which edges.
89
90 We expect each block to be control dependent on very few edges so we
91 use a bitmap for each block recording its edges. An array holds the
92 bitmap. The Ith bit in the bitmap is set if that block is dependent
93 on the Ith edge. */
94 static bitmap *control_dependence_map;
95
96 /* Vector indicating that a basic block has already had all the edges
97 processed that it is control dependent on. */
98 static sbitmap visited_control_parents;
99
100 /* TRUE if this pass alters the CFG (by removing control statements).
101 FALSE otherwise.
102
103 If this pass alters the CFG, then it will arrange for the dominators
104 to be recomputed. */
105 static bool cfg_altered;
106
107 /* Execute code that follows the macro for each edge (given number
108 EDGE_NUMBER within the CODE) for which the block with index N is
109 control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
111 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
112 (EDGE_NUMBER), (BI))
113
114
115 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
116 static inline void
117 set_control_dependence_map_bit (basic_block bb, int edge_index)
118 {
119 if (bb == ENTRY_BLOCK_PTR)
120 return;
121 gcc_assert (bb != EXIT_BLOCK_PTR);
122 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
123 }
124
125 /* Clear all control dependences for block BB. */
126 static inline void
127 clear_control_dependence_bitmap (basic_block bb)
128 {
129 bitmap_clear (control_dependence_map[bb->index]);
130 }
131
132
133 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
134 This function is necessary because some blocks have negative numbers. */
135
136 static inline basic_block
137 find_pdom (basic_block block)
138 {
139 gcc_assert (block != ENTRY_BLOCK_PTR);
140
141 if (block == EXIT_BLOCK_PTR)
142 return EXIT_BLOCK_PTR;
143 else
144 {
145 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
146 if (! bb)
147 return EXIT_BLOCK_PTR;
148 return bb;
149 }
150 }
151
152
153 /* Determine all blocks' control dependences on the given edge with edge_list
154 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
155
156 static void
157 find_control_dependence (struct edge_list *el, int edge_index)
158 {
159 basic_block current_block;
160 basic_block ending_block;
161
162 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
163
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
165 ending_block = single_succ (ENTRY_BLOCK_PTR);
166 else
167 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
168
169 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
170 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
171 current_block = find_pdom (current_block))
172 {
173 edge e = INDEX_EDGE (el, edge_index);
174
175 /* For abnormal edges, we don't make current_block control
176 dependent because instructions that throw are always necessary
177 anyway. */
178 if (e->flags & EDGE_ABNORMAL)
179 continue;
180
181 set_control_dependence_map_bit (current_block, edge_index);
182 }
183 }
184
185
186 /* Record all blocks' control dependences on all edges in the edge
187 list EL, ala Morgan, Section 3.6. */
188
189 static void
190 find_all_control_dependences (struct edge_list *el)
191 {
192 int i;
193
194 for (i = 0; i < NUM_EDGES (el); ++i)
195 find_control_dependence (el, i);
196 }
197
198 /* If STMT is not already marked necessary, mark it, and add it to the
199 worklist if ADD_TO_WORKLIST is true. */
200
201 static inline void
202 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
203 {
204 gcc_assert (stmt);
205
206 if (gimple_plf (stmt, STMT_NECESSARY))
207 return;
208
209 if (dump_file && (dump_flags & TDF_DETAILS))
210 {
211 fprintf (dump_file, "Marking useful stmt: ");
212 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
213 fprintf (dump_file, "\n");
214 }
215
216 gimple_set_plf (stmt, STMT_NECESSARY, true);
217 if (add_to_worklist)
218 VEC_safe_push (gimple, heap, worklist, stmt);
219 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
220 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 {
237 stmt = SSA_NAME_DEF_STMT (op);
238 gcc_assert (gimple_nop_p (stmt)
239 || gimple_plf (stmt, STMT_NECESSARY));
240 return;
241 }
242 SET_BIT (processed, ver);
243
244 stmt = SSA_NAME_DEF_STMT (op);
245 gcc_assert (stmt);
246
247 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
248 return;
249
250 if (dump_file && (dump_flags & TDF_DETAILS))
251 {
252 fprintf (dump_file, "marking necessary through ");
253 print_generic_expr (dump_file, op, 0);
254 fprintf (dump_file, " stmt ");
255 print_gimple_stmt (dump_file, stmt, 0, 0);
256 }
257
258 gimple_set_plf (stmt, STMT_NECESSARY, true);
259 if (bb_contains_live_stmts)
260 SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
261 VEC_safe_push (gimple, heap, worklist, stmt);
262 }
263
264
265 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
266 it can make other statements necessary.
267
268 If AGGRESSIVE is false, control statements are conservatively marked as
269 necessary. */
270
271 static void
272 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
273 {
274 /* With non-call exceptions, we have to assume that all statements could
275 throw. If a statement may throw, it is inherently necessary. */
276 if (cfun->can_throw_non_call_exceptions && stmt_could_throw_p (stmt))
277 {
278 mark_stmt_necessary (stmt, true);
279 return;
280 }
281
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
287 and labels. */
288 switch (gimple_code (stmt))
289 {
290 case GIMPLE_PREDICT:
291 case GIMPLE_LABEL:
292 mark_stmt_necessary (stmt, false);
293 return;
294
295 case GIMPLE_ASM:
296 case GIMPLE_RESX:
297 case GIMPLE_RETURN:
298 mark_stmt_necessary (stmt, true);
299 return;
300
301 case GIMPLE_CALL:
302 /* Most, but not all function calls are required. Function calls that
303 produce no result and have no side effects (i.e. const pure
304 functions) are unnecessary. */
305 if (gimple_has_side_effects (stmt))
306 {
307 mark_stmt_necessary (stmt, true);
308 return;
309 }
310 if (!gimple_call_lhs (stmt))
311 return;
312 break;
313
314 case GIMPLE_DEBUG:
315 /* Debug temps without a value are not useful. ??? If we could
316 easily locate the debug temp bind stmt for a use thereof,
317 would could refrain from marking all debug temps here, and
318 mark them only if they're used. */
319 if (gimple_debug_bind_has_value_p (stmt)
320 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
321 mark_stmt_necessary (stmt, false);
322 return;
323
324 case GIMPLE_GOTO:
325 gcc_assert (!simple_goto_p (stmt));
326 mark_stmt_necessary (stmt, true);
327 return;
328
329 case GIMPLE_COND:
330 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
331 /* Fall through. */
332
333 case GIMPLE_SWITCH:
334 if (! aggressive)
335 mark_stmt_necessary (stmt, true);
336 break;
337
338 default:
339 break;
340 }
341
342 /* If the statement has volatile operands, it needs to be preserved.
343 Same for statements that can alter control flow in unpredictable
344 ways. */
345 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
346 {
347 mark_stmt_necessary (stmt, true);
348 return;
349 }
350
351 if (is_hidden_global_store (stmt))
352 {
353 mark_stmt_necessary (stmt, true);
354 return;
355 }
356
357 return;
358 }
359
360
361 /* Mark the last statement of BB as necessary. */
362
363 static void
364 mark_last_stmt_necessary (basic_block bb)
365 {
366 gimple stmt = last_stmt (bb);
367
368 SET_BIT (last_stmt_necessary, bb->index);
369 SET_BIT (bb_contains_live_stmts, bb->index);
370
371 /* We actually mark the statement only if it is a control statement. */
372 if (stmt && is_ctrl_stmt (stmt))
373 mark_stmt_necessary (stmt, true);
374 }
375
376
377 /* Mark control dependent edges of BB as necessary. We have to do this only
378 once for each basic block so we set the appropriate bit after we're done.
379
380 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
381
382 static void
383 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
384 bool ignore_self)
385 {
386 bitmap_iterator bi;
387 unsigned edge_number;
388 bool skipped = false;
389
390 gcc_assert (bb != EXIT_BLOCK_PTR);
391
392 if (bb == ENTRY_BLOCK_PTR)
393 return;
394
395 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
396 {
397 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
398
399 if (ignore_self && cd_bb == bb)
400 {
401 skipped = true;
402 continue;
403 }
404
405 if (!TEST_BIT (last_stmt_necessary, cd_bb->index))
406 mark_last_stmt_necessary (cd_bb);
407 }
408
409 if (!skipped)
410 SET_BIT (visited_control_parents, bb->index);
411 }
412
413
414 /* Find obviously necessary statements. These are things like most function
415 calls, and stores to file level variables.
416
417 If EL is NULL, control statements are conservatively marked as
418 necessary. Otherwise it contains the list of edges used by control
419 dependence analysis. */
420
421 static void
422 find_obviously_necessary_stmts (struct edge_list *el)
423 {
424 basic_block bb;
425 gimple_stmt_iterator gsi;
426 edge e;
427 gimple phi, stmt;
428 int flags;
429
430 FOR_EACH_BB (bb)
431 {
432 /* PHI nodes are never inherently necessary. */
433 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
434 {
435 phi = gsi_stmt (gsi);
436 gimple_set_plf (phi, STMT_NECESSARY, false);
437 }
438
439 /* Check all statements in the block. */
440 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
441 {
442 stmt = gsi_stmt (gsi);
443 gimple_set_plf (stmt, STMT_NECESSARY, false);
444 mark_stmt_if_obviously_necessary (stmt, el != NULL);
445 }
446 }
447
448 /* Pure and const functions are finite and thus have no infinite loops in
449 them. */
450 flags = flags_from_decl_or_type (current_function_decl);
451 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
452 return;
453
454 /* Prevent the empty possibly infinite loops from being removed. */
455 if (el)
456 {
457 loop_iterator li;
458 struct loop *loop;
459 scev_initialize ();
460 if (mark_irreducible_loops ())
461 FOR_EACH_BB (bb)
462 {
463 edge_iterator ei;
464 FOR_EACH_EDGE (e, ei, bb->succs)
465 if ((e->flags & EDGE_DFS_BACK)
466 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
467 {
468 if (dump_file)
469 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
470 e->src->index, e->dest->index);
471 mark_control_dependent_edges_necessary (e->dest, el, false);
472 }
473 }
474
475 FOR_EACH_LOOP (li, loop, 0)
476 if (!finite_loop_p (loop))
477 {
478 if (dump_file)
479 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
480 mark_control_dependent_edges_necessary (loop->latch, el, false);
481 }
482 scev_finalize ();
483 }
484 }
485
486
487 /* Return true if REF is based on an aliased base, otherwise false. */
488
489 static bool
490 ref_may_be_aliased (tree ref)
491 {
492 while (handled_component_p (ref))
493 ref = TREE_OPERAND (ref, 0);
494 if (TREE_CODE (ref) == MEM_REF
495 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
496 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
497 return !(DECL_P (ref)
498 && !may_be_aliased (ref));
499 }
500
501 static bitmap visited = NULL;
502 static unsigned int longest_chain = 0;
503 static unsigned int total_chain = 0;
504 static unsigned int nr_walks = 0;
505 static bool chain_ovfl = false;
506
507 /* Worker for the walker that marks reaching definitions of REF,
508 which is based on a non-aliased decl, necessary. It returns
509 true whenever the defining statement of the current VDEF is
510 a kill for REF, as no dominating may-defs are necessary for REF
511 anymore. DATA points to the basic-block that contains the
512 stmt that refers to REF. */
513
514 static bool
515 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
516 {
517 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
518
519 /* All stmts we visit are necessary. */
520 mark_operand_necessary (vdef);
521
522 /* If the stmt lhs kills ref, then we can stop walking. */
523 if (gimple_has_lhs (def_stmt)
524 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
525 {
526 tree base, lhs = gimple_get_lhs (def_stmt);
527 HOST_WIDE_INT size, offset, max_size;
528 ao_ref_base (ref);
529 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
530 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
531 so base == refd->base does not always hold. */
532 if (base == ref->base)
533 {
534 /* For a must-alias check we need to be able to constrain
535 the accesses properly. */
536 if (size != -1 && size == max_size
537 && ref->max_size != -1)
538 {
539 if (offset <= ref->offset
540 && offset + size >= ref->offset + ref->max_size)
541 return true;
542 }
543 /* Or they need to be exactly the same. */
544 else if (ref->ref
545 /* Make sure there is no induction variable involved
546 in the references (gcc.c-torture/execute/pr42142.c).
547 The simplest way is to check if the kill dominates
548 the use. */
549 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
550 gimple_bb (def_stmt))
551 && operand_equal_p (ref->ref, lhs, 0))
552 return true;
553 }
554 }
555
556 /* Otherwise keep walking. */
557 return false;
558 }
559
560 static void
561 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
562 {
563 unsigned int chain;
564 ao_ref refd;
565 gcc_assert (!chain_ovfl);
566 ao_ref_init (&refd, ref);
567 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
568 mark_aliased_reaching_defs_necessary_1,
569 gimple_bb (stmt), NULL);
570 if (chain > longest_chain)
571 longest_chain = chain;
572 total_chain += chain;
573 nr_walks++;
574 }
575
576 /* Worker for the walker that marks reaching definitions of REF, which
577 is not based on a non-aliased decl. For simplicity we need to end
578 up marking all may-defs necessary that are not based on a non-aliased
579 decl. The only job of this walker is to skip may-defs based on
580 a non-aliased decl. */
581
582 static bool
583 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
584 tree vdef, void *data ATTRIBUTE_UNUSED)
585 {
586 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
587
588 /* We have to skip already visited (and thus necessary) statements
589 to make the chaining work after we dropped back to simple mode. */
590 if (chain_ovfl
591 && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
592 {
593 gcc_assert (gimple_nop_p (def_stmt)
594 || gimple_plf (def_stmt, STMT_NECESSARY));
595 return false;
596 }
597
598 /* We want to skip stores to non-aliased variables. */
599 if (!chain_ovfl
600 && gimple_assign_single_p (def_stmt))
601 {
602 tree lhs = gimple_assign_lhs (def_stmt);
603 if (!ref_may_be_aliased (lhs))
604 return false;
605 }
606
607 mark_operand_necessary (vdef);
608
609 return false;
610 }
611
612 static void
613 mark_all_reaching_defs_necessary (gimple stmt)
614 {
615 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
616 mark_all_reaching_defs_necessary_1, NULL, &visited);
617 }
618
619 /* Return true for PHI nodes with one or identical arguments
620 can be removed. */
621 static bool
622 degenerate_phi_p (gimple phi)
623 {
624 unsigned int i;
625 tree op = gimple_phi_arg_def (phi, 0);
626 for (i = 1; i < gimple_phi_num_args (phi); i++)
627 if (gimple_phi_arg_def (phi, i) != op)
628 return false;
629 return true;
630 }
631
632 /* Propagate necessity using the operands of necessary statements.
633 Process the uses on each statement in the worklist, and add all
634 feeding statements which contribute to the calculation of this
635 value to the worklist.
636
637 In conservative mode, EL is NULL. */
638
639 static void
640 propagate_necessity (struct edge_list *el)
641 {
642 gimple stmt;
643 bool aggressive = (el ? true : false);
644
645 if (dump_file && (dump_flags & TDF_DETAILS))
646 fprintf (dump_file, "\nProcessing worklist:\n");
647
648 while (VEC_length (gimple, worklist) > 0)
649 {
650 /* Take STMT from worklist. */
651 stmt = VEC_pop (gimple, worklist);
652
653 if (dump_file && (dump_flags & TDF_DETAILS))
654 {
655 fprintf (dump_file, "processing: ");
656 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
657 fprintf (dump_file, "\n");
658 }
659
660 if (aggressive)
661 {
662 /* Mark the last statement of the basic blocks on which the block
663 containing STMT is control dependent, but only if we haven't
664 already done so. */
665 basic_block bb = gimple_bb (stmt);
666 if (bb != ENTRY_BLOCK_PTR
667 && !TEST_BIT (visited_control_parents, bb->index))
668 mark_control_dependent_edges_necessary (bb, el, false);
669 }
670
671 if (gimple_code (stmt) == GIMPLE_PHI
672 /* We do not process virtual PHI nodes nor do we track their
673 necessity. */
674 && is_gimple_reg (gimple_phi_result (stmt)))
675 {
676 /* PHI nodes are somewhat special in that each PHI alternative has
677 data and control dependencies. All the statements feeding the
678 PHI node's arguments are always necessary. In aggressive mode,
679 we also consider the control dependent edges leading to the
680 predecessor block associated with each PHI alternative as
681 necessary. */
682 size_t k;
683
684 for (k = 0; k < gimple_phi_num_args (stmt); k++)
685 {
686 tree arg = PHI_ARG_DEF (stmt, k);
687 if (TREE_CODE (arg) == SSA_NAME)
688 mark_operand_necessary (arg);
689 }
690
691 /* For PHI operands it matters from where the control flow arrives
692 to the BB. Consider the following example:
693
694 a=exp1;
695 b=exp2;
696 if (test)
697 ;
698 else
699 ;
700 c=PHI(a,b)
701
702 We need to mark control dependence of the empty basic blocks, since they
703 contains computation of PHI operands.
704
705 Doing so is too restrictive in the case the predecestor block is in
706 the loop. Consider:
707
708 if (b)
709 {
710 int i;
711 for (i = 0; i<1000; ++i)
712 ;
713 j = 0;
714 }
715 return j;
716
717 There is PHI for J in the BB containing return statement.
718 In this case the control dependence of predecestor block (that is
719 within the empty loop) also contains the block determining number
720 of iterations of the block that would prevent removing of empty
721 loop in this case.
722
723 This scenario can be avoided by splitting critical edges.
724 To save the critical edge splitting pass we identify how the control
725 dependence would look like if the edge was split.
726
727 Consider the modified CFG created from current CFG by splitting
728 edge B->C. In the postdominance tree of modified CFG, C' is
729 always child of C. There are two cases how chlids of C' can look
730 like:
731
732 1) C' is leaf
733
734 In this case the only basic block C' is control dependent on is B.
735
736 2) C' has single child that is B
737
738 In this case control dependence of C' is same as control
739 dependence of B in original CFG except for block B itself.
740 (since C' postdominate B in modified CFG)
741
742 Now how to decide what case happens? There are two basic options:
743
744 a) C postdominate B. Then C immediately postdominate B and
745 case 2 happens iff there is no other way from B to C except
746 the edge B->C.
747
748 There is other way from B to C iff there is succesor of B that
749 is not postdominated by B. Testing this condition is somewhat
750 expensive, because we need to iterate all succesors of B.
751 We are safe to assume that this does not happen: we will mark B
752 as needed when processing the other path from B to C that is
753 conrol dependent on B and marking control dependencies of B
754 itself is harmless because they will be processed anyway after
755 processing control statement in B.
756
757 b) C does not postdominate B. Always case 1 happens since there is
758 path from C to exit that does not go through B and thus also C'. */
759
760 if (aggressive && !degenerate_phi_p (stmt))
761 {
762 for (k = 0; k < gimple_phi_num_args (stmt); k++)
763 {
764 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
765
766 if (gimple_bb (stmt)
767 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
768 {
769 if (!TEST_BIT (last_stmt_necessary, arg_bb->index))
770 mark_last_stmt_necessary (arg_bb);
771 }
772 else if (arg_bb != ENTRY_BLOCK_PTR
773 && !TEST_BIT (visited_control_parents,
774 arg_bb->index))
775 mark_control_dependent_edges_necessary (arg_bb, el, true);
776 }
777 }
778 }
779 else
780 {
781 /* Propagate through the operands. Examine all the USE, VUSE and
782 VDEF operands in this statement. Mark all the statements
783 which feed this statement's uses as necessary. */
784 ssa_op_iter iter;
785 tree use;
786
787 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
788 mark_operand_necessary (use);
789
790 use = gimple_vuse (stmt);
791 if (!use)
792 continue;
793
794 /* If we dropped to simple mode make all immediately
795 reachable definitions necessary. */
796 if (chain_ovfl)
797 {
798 mark_all_reaching_defs_necessary (stmt);
799 continue;
800 }
801
802 /* For statements that may load from memory (have a VUSE) we
803 have to mark all reaching (may-)definitions as necessary.
804 We partition this task into two cases:
805 1) explicit loads based on decls that are not aliased
806 2) implicit loads (like calls) and explicit loads not
807 based on decls that are not aliased (like indirect
808 references or loads from globals)
809 For 1) we mark all reaching may-defs as necessary, stopping
810 at dominating kills. For 2) we want to mark all dominating
811 references necessary, but non-aliased ones which we handle
812 in 1). By keeping a global visited bitmap for references
813 we walk for 2) we avoid quadratic behavior for those. */
814
815 if (is_gimple_call (stmt))
816 {
817 tree callee = gimple_call_fndecl (stmt);
818 unsigned i;
819
820 /* Calls to functions that are merely acting as barriers
821 or that only store to memory do not make any previous
822 stores necessary. */
823 if (callee != NULL_TREE
824 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
825 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
826 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
827 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
828 continue;
829
830 /* Calls implicitly load from memory, their arguments
831 in addition may explicitly perform memory loads. */
832 mark_all_reaching_defs_necessary (stmt);
833 for (i = 0; i < gimple_call_num_args (stmt); ++i)
834 {
835 tree arg = gimple_call_arg (stmt, i);
836 if (TREE_CODE (arg) == SSA_NAME
837 || is_gimple_min_invariant (arg))
838 continue;
839 if (!ref_may_be_aliased (arg))
840 mark_aliased_reaching_defs_necessary (stmt, arg);
841 }
842 }
843 else if (gimple_assign_single_p (stmt))
844 {
845 tree rhs;
846 bool rhs_aliased = false;
847 /* If this is a load mark things necessary. */
848 rhs = gimple_assign_rhs1 (stmt);
849 if (TREE_CODE (rhs) != SSA_NAME
850 && !is_gimple_min_invariant (rhs))
851 {
852 if (!ref_may_be_aliased (rhs))
853 mark_aliased_reaching_defs_necessary (stmt, rhs);
854 else
855 rhs_aliased = true;
856 }
857 if (rhs_aliased)
858 mark_all_reaching_defs_necessary (stmt);
859 }
860 else if (gimple_code (stmt) == GIMPLE_RETURN)
861 {
862 tree rhs = gimple_return_retval (stmt);
863 /* A return statement may perform a load. */
864 if (rhs
865 && TREE_CODE (rhs) != SSA_NAME
866 && !is_gimple_min_invariant (rhs))
867 {
868 if (!ref_may_be_aliased (rhs))
869 mark_aliased_reaching_defs_necessary (stmt, rhs);
870 else
871 mark_all_reaching_defs_necessary (stmt);
872 }
873 }
874 else if (gimple_code (stmt) == GIMPLE_ASM)
875 {
876 unsigned i;
877 mark_all_reaching_defs_necessary (stmt);
878 /* Inputs may perform loads. */
879 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
880 {
881 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
882 if (TREE_CODE (op) != SSA_NAME
883 && !is_gimple_min_invariant (op)
884 && !ref_may_be_aliased (op))
885 mark_aliased_reaching_defs_necessary (stmt, op);
886 }
887 }
888 else
889 gcc_unreachable ();
890
891 /* If we over-used our alias oracle budget drop to simple
892 mode. The cost metric allows quadratic behavior
893 (number of uses times number of may-defs queries) up to
894 a constant maximal number of queries and after that falls back to
895 super-linear complexity. */
896 if (/* Constant but quadratic for small functions. */
897 total_chain > 128 * 128
898 /* Linear in the number of may-defs. */
899 && total_chain > 32 * longest_chain
900 /* Linear in the number of uses. */
901 && total_chain > nr_walks * 32)
902 {
903 chain_ovfl = true;
904 if (visited)
905 bitmap_clear (visited);
906 }
907 }
908 }
909 }
910
911 /* Replace all uses of result of PHI by underlying variable and mark it
912 for renaming. */
913
914 void
915 mark_virtual_phi_result_for_renaming (gimple phi)
916 {
917 bool used = false;
918 imm_use_iterator iter;
919 use_operand_p use_p;
920 gimple stmt;
921 tree result_ssa, result_var;
922
923 if (dump_file && (dump_flags & TDF_DETAILS))
924 {
925 fprintf (dump_file, "Marking result for renaming : ");
926 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
927 fprintf (dump_file, "\n");
928 }
929
930 result_ssa = gimple_phi_result (phi);
931 result_var = SSA_NAME_VAR (result_ssa);
932 FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
933 {
934 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
935 SET_USE (use_p, result_var);
936 update_stmt (stmt);
937 used = true;
938 }
939 if (used)
940 mark_sym_for_renaming (result_var);
941 }
942
943 /* Remove dead PHI nodes from block BB. */
944
945 static bool
946 remove_dead_phis (basic_block bb)
947 {
948 bool something_changed = false;
949 gimple_seq phis;
950 gimple phi;
951 gimple_stmt_iterator gsi;
952 phis = phi_nodes (bb);
953
954 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
955 {
956 stats.total_phis++;
957 phi = gsi_stmt (gsi);
958
959 /* We do not track necessity of virtual PHI nodes. Instead do
960 very simple dead PHI removal here. */
961 if (!is_gimple_reg (gimple_phi_result (phi)))
962 {
963 /* Virtual PHI nodes with one or identical arguments
964 can be removed. */
965 if (degenerate_phi_p (phi))
966 {
967 tree vdef = gimple_phi_result (phi);
968 tree vuse = gimple_phi_arg_def (phi, 0);
969
970 use_operand_p use_p;
971 imm_use_iterator iter;
972 gimple use_stmt;
973 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
974 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
975 SET_USE (use_p, vuse);
976 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
977 && TREE_CODE (vuse) == SSA_NAME)
978 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
979 }
980 else
981 gimple_set_plf (phi, STMT_NECESSARY, true);
982 }
983
984 if (!gimple_plf (phi, STMT_NECESSARY))
985 {
986 something_changed = true;
987 if (dump_file && (dump_flags & TDF_DETAILS))
988 {
989 fprintf (dump_file, "Deleting : ");
990 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
991 fprintf (dump_file, "\n");
992 }
993
994 remove_phi_node (&gsi, true);
995 stats.removed_phis++;
996 continue;
997 }
998
999 gsi_next (&gsi);
1000 }
1001 return something_changed;
1002 }
1003
1004 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1005
1006 static edge
1007 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1008 {
1009 gimple_stmt_iterator gsi;
1010 edge e2 = NULL;
1011 edge_iterator ei;
1012
1013 if (dump_file && (dump_flags & TDF_DETAILS))
1014 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1015 e->dest->index, post_dom_bb->index);
1016
1017 e2 = redirect_edge_and_branch (e, post_dom_bb);
1018 cfg_altered = true;
1019
1020 /* If edge was already around, no updating is neccesary. */
1021 if (e2 != e)
1022 return e2;
1023
1024 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1025 {
1026 /* We are sure that for every live PHI we are seeing control dependent BB.
1027 This means that we can pick any edge to duplicate PHI args from. */
1028 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1029 if (e2 != e)
1030 break;
1031 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1032 {
1033 gimple phi = gsi_stmt (gsi);
1034 tree op;
1035 source_location locus;
1036
1037 /* PHIs for virtuals have no control dependency relation on them.
1038 We are lost here and must force renaming of the symbol. */
1039 if (!is_gimple_reg (gimple_phi_result (phi)))
1040 {
1041 mark_virtual_phi_result_for_renaming (phi);
1042 remove_phi_node (&gsi, true);
1043 continue;
1044 }
1045
1046 /* Dead PHI do not imply control dependency. */
1047 if (!gimple_plf (phi, STMT_NECESSARY))
1048 {
1049 gsi_next (&gsi);
1050 continue;
1051 }
1052
1053 op = gimple_phi_arg_def (phi, e2->dest_idx);
1054 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1055 add_phi_arg (phi, op, e, locus);
1056 /* The resulting PHI if not dead can only be degenerate. */
1057 gcc_assert (degenerate_phi_p (phi));
1058 gsi_next (&gsi);
1059 }
1060 }
1061 return e;
1062 }
1063
1064 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1065 containing I so that we don't have to look it up. */
1066
1067 static void
1068 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1069 {
1070 gimple stmt = gsi_stmt (*i);
1071
1072 if (dump_file && (dump_flags & TDF_DETAILS))
1073 {
1074 fprintf (dump_file, "Deleting : ");
1075 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1076 fprintf (dump_file, "\n");
1077 }
1078
1079 stats.removed++;
1080
1081 /* If we have determined that a conditional branch statement contributes
1082 nothing to the program, then we not only remove it, but we also change
1083 the flow graph so that the current block will simply fall-thru to its
1084 immediate post-dominator. The blocks we are circumventing will be
1085 removed by cleanup_tree_cfg if this change in the flow graph makes them
1086 unreachable. */
1087 if (is_ctrl_stmt (stmt))
1088 {
1089 basic_block post_dom_bb;
1090 edge e, e2;
1091 edge_iterator ei;
1092
1093 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1094
1095 e = find_edge (bb, post_dom_bb);
1096
1097 /* If edge is already there, try to use it. This avoids need to update
1098 PHI nodes. Also watch for cases where post dominator does not exists
1099 or is exit block. These can happen for infinite loops as we create
1100 fake edges in the dominator tree. */
1101 if (e)
1102 ;
1103 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1104 e = EDGE_SUCC (bb, 0);
1105 else
1106 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1107 gcc_assert (e);
1108 e->probability = REG_BR_PROB_BASE;
1109 e->count = bb->count;
1110
1111 /* The edge is no longer associated with a conditional, so it does
1112 not have TRUE/FALSE flags. */
1113 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1114
1115 /* The lone outgoing edge from BB will be a fallthru edge. */
1116 e->flags |= EDGE_FALLTHRU;
1117
1118 /* Remove the remaining outgoing edges. */
1119 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1120 if (e != e2)
1121 {
1122 cfg_altered = true;
1123 remove_edge (e2);
1124 }
1125 else
1126 ei_next (&ei);
1127 }
1128
1129 unlink_stmt_vdef (stmt);
1130 gsi_remove (i, true);
1131 release_defs (stmt);
1132 }
1133
1134 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1135 contributes nothing to the program, and can be deleted. */
1136
1137 static bool
1138 eliminate_unnecessary_stmts (void)
1139 {
1140 bool something_changed = false;
1141 basic_block bb;
1142 gimple_stmt_iterator gsi, psi;
1143 gimple stmt;
1144 tree call;
1145 VEC (basic_block, heap) *h;
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1149
1150 clear_special_calls ();
1151
1152 /* Walking basic blocks and statements in reverse order avoids
1153 releasing SSA names before any other DEFs that refer to them are
1154 released. This helps avoid loss of debug information, as we get
1155 a chance to propagate all RHSs of removed SSAs into debug uses,
1156 rather than only the latest ones. E.g., consider:
1157
1158 x_3 = y_1 + z_2;
1159 a_5 = x_3 - b_4;
1160 # DEBUG a => a_5
1161
1162 If we were to release x_3 before a_5, when we reached a_5 and
1163 tried to substitute it into the debug stmt, we'd see x_3 there,
1164 but x_3's DEF, type, etc would have already been disconnected.
1165 By going backwards, the debug stmt first changes to:
1166
1167 # DEBUG a => x_3 - b_4
1168
1169 and then to:
1170
1171 # DEBUG a => y_1 + z_2 - b_4
1172
1173 as desired. */
1174 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1175 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1176
1177 while (VEC_length (basic_block, h))
1178 {
1179 bb = VEC_pop (basic_block, h);
1180
1181 /* Remove dead statements. */
1182 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1183 {
1184 stmt = gsi_stmt (gsi);
1185
1186 psi = gsi;
1187 gsi_prev (&psi);
1188
1189 stats.total++;
1190
1191 /* If GSI is not necessary then remove it. */
1192 if (!gimple_plf (stmt, STMT_NECESSARY))
1193 {
1194 if (!is_gimple_debug (stmt))
1195 something_changed = true;
1196 remove_dead_stmt (&gsi, bb);
1197 }
1198 else if (is_gimple_call (stmt))
1199 {
1200 call = gimple_call_fndecl (stmt);
1201 if (call)
1202 {
1203 tree name;
1204
1205 /* When LHS of var = call (); is dead, simplify it into
1206 call (); saving one operand. */
1207 name = gimple_call_lhs (stmt);
1208 if (name && TREE_CODE (name) == SSA_NAME
1209 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
1210 {
1211 something_changed = true;
1212 if (dump_file && (dump_flags & TDF_DETAILS))
1213 {
1214 fprintf (dump_file, "Deleting LHS of call: ");
1215 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1216 fprintf (dump_file, "\n");
1217 }
1218
1219 gimple_call_set_lhs (stmt, NULL_TREE);
1220 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1221 update_stmt (stmt);
1222 release_ssa_name (name);
1223 }
1224 notice_special_calls (stmt);
1225 }
1226 }
1227 }
1228 }
1229
1230 VEC_free (basic_block, heap, h);
1231
1232 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1233 rendered some PHI nodes unreachable while they are still in use.
1234 Mark them for renaming. */
1235 if (cfg_altered)
1236 {
1237 basic_block prev_bb;
1238
1239 find_unreachable_blocks ();
1240
1241 /* Delete all unreachable basic blocks in reverse dominator order. */
1242 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1243 {
1244 prev_bb = bb->prev_bb;
1245
1246 if (!TEST_BIT (bb_contains_live_stmts, bb->index)
1247 || !(bb->flags & BB_REACHABLE))
1248 {
1249 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1250 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1251 {
1252 bool found = false;
1253 imm_use_iterator iter;
1254
1255 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1256 {
1257 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1258 continue;
1259 if (gimple_code (stmt) == GIMPLE_PHI
1260 || gimple_plf (stmt, STMT_NECESSARY))
1261 {
1262 found = true;
1263 BREAK_FROM_IMM_USE_STMT (iter);
1264 }
1265 }
1266 if (found)
1267 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1268 }
1269
1270 if (!(bb->flags & BB_REACHABLE))
1271 {
1272 /* Speed up the removal of blocks that don't
1273 dominate others. Walking backwards, this should
1274 be the common case. ??? Do we need to recompute
1275 dominators because of cfg_altered? */
1276 if (!MAY_HAVE_DEBUG_STMTS
1277 || !first_dom_son (CDI_DOMINATORS, bb))
1278 delete_basic_block (bb);
1279 else
1280 {
1281 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1282
1283 while (VEC_length (basic_block, h))
1284 {
1285 bb = VEC_pop (basic_block, h);
1286 prev_bb = bb->prev_bb;
1287 /* Rearrangements to the CFG may have failed
1288 to update the dominators tree, so that
1289 formerly-dominated blocks are now
1290 otherwise reachable. */
1291 if (!!(bb->flags & BB_REACHABLE))
1292 continue;
1293 delete_basic_block (bb);
1294 }
1295
1296 VEC_free (basic_block, heap, h);
1297 }
1298 }
1299 }
1300 }
1301 }
1302 FOR_EACH_BB (bb)
1303 {
1304 /* Remove dead PHI nodes. */
1305 something_changed |= remove_dead_phis (bb);
1306 }
1307
1308 return something_changed;
1309 }
1310
1311
1312 /* Print out removed statement statistics. */
1313
1314 static void
1315 print_stats (void)
1316 {
1317 float percg;
1318
1319 percg = ((float) stats.removed / (float) stats.total) * 100;
1320 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1321 stats.removed, stats.total, (int) percg);
1322
1323 if (stats.total_phis == 0)
1324 percg = 0;
1325 else
1326 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1327
1328 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1329 stats.removed_phis, stats.total_phis, (int) percg);
1330 }
1331
1332 /* Initialization for this pass. Set up the used data structures. */
1333
1334 static void
1335 tree_dce_init (bool aggressive)
1336 {
1337 memset ((void *) &stats, 0, sizeof (stats));
1338
1339 if (aggressive)
1340 {
1341 int i;
1342
1343 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1344 for (i = 0; i < last_basic_block; ++i)
1345 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1346
1347 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1348 sbitmap_zero (last_stmt_necessary);
1349 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1350 sbitmap_zero (bb_contains_live_stmts);
1351 }
1352
1353 processed = sbitmap_alloc (num_ssa_names + 1);
1354 sbitmap_zero (processed);
1355
1356 worklist = VEC_alloc (gimple, heap, 64);
1357 cfg_altered = false;
1358 }
1359
1360 /* Cleanup after this pass. */
1361
1362 static void
1363 tree_dce_done (bool aggressive)
1364 {
1365 if (aggressive)
1366 {
1367 int i;
1368
1369 for (i = 0; i < last_basic_block; ++i)
1370 BITMAP_FREE (control_dependence_map[i]);
1371 free (control_dependence_map);
1372
1373 sbitmap_free (visited_control_parents);
1374 sbitmap_free (last_stmt_necessary);
1375 sbitmap_free (bb_contains_live_stmts);
1376 bb_contains_live_stmts = NULL;
1377 }
1378
1379 sbitmap_free (processed);
1380
1381 VEC_free (gimple, heap, worklist);
1382 }
1383
1384 /* Main routine to eliminate dead code.
1385
1386 AGGRESSIVE controls the aggressiveness of the algorithm.
1387 In conservative mode, we ignore control dependence and simply declare
1388 all but the most trivially dead branches necessary. This mode is fast.
1389 In aggressive mode, control dependences are taken into account, which
1390 results in more dead code elimination, but at the cost of some time.
1391
1392 FIXME: Aggressive mode before PRE doesn't work currently because
1393 the dominance info is not invalidated after DCE1. This is
1394 not an issue right now because we only run aggressive DCE
1395 as the last tree SSA pass, but keep this in mind when you
1396 start experimenting with pass ordering. */
1397
1398 static unsigned int
1399 perform_tree_ssa_dce (bool aggressive)
1400 {
1401 struct edge_list *el = NULL;
1402 bool something_changed = 0;
1403
1404 calculate_dominance_info (CDI_DOMINATORS);
1405
1406 /* Preheaders are needed for SCEV to work.
1407 Simple lateches and recorded exits improve chances that loop will
1408 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1409 if (aggressive)
1410 loop_optimizer_init (LOOPS_NORMAL
1411 | LOOPS_HAVE_RECORDED_EXITS);
1412
1413 tree_dce_init (aggressive);
1414
1415 if (aggressive)
1416 {
1417 /* Compute control dependence. */
1418 timevar_push (TV_CONTROL_DEPENDENCES);
1419 calculate_dominance_info (CDI_POST_DOMINATORS);
1420 el = create_edge_list ();
1421 find_all_control_dependences (el);
1422 timevar_pop (TV_CONTROL_DEPENDENCES);
1423
1424 visited_control_parents = sbitmap_alloc (last_basic_block);
1425 sbitmap_zero (visited_control_parents);
1426
1427 mark_dfs_back_edges ();
1428 }
1429
1430 find_obviously_necessary_stmts (el);
1431
1432 if (aggressive)
1433 loop_optimizer_finalize ();
1434
1435 longest_chain = 0;
1436 total_chain = 0;
1437 nr_walks = 0;
1438 chain_ovfl = false;
1439 visited = BITMAP_ALLOC (NULL);
1440 propagate_necessity (el);
1441 BITMAP_FREE (visited);
1442
1443 something_changed |= eliminate_unnecessary_stmts ();
1444 something_changed |= cfg_altered;
1445
1446 /* We do not update postdominators, so free them unconditionally. */
1447 free_dominance_info (CDI_POST_DOMINATORS);
1448
1449 /* If we removed paths in the CFG, then we need to update
1450 dominators as well. I haven't investigated the possibility
1451 of incrementally updating dominators. */
1452 if (cfg_altered)
1453 free_dominance_info (CDI_DOMINATORS);
1454
1455 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1456 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1457
1458 /* Debugging dumps. */
1459 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1460 print_stats ();
1461
1462 tree_dce_done (aggressive);
1463
1464 free_edge_list (el);
1465
1466 if (something_changed)
1467 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
1468 | TODO_remove_unused_locals);
1469 else
1470 return 0;
1471 }
1472
1473 /* Pass entry points. */
1474 static unsigned int
1475 tree_ssa_dce (void)
1476 {
1477 return perform_tree_ssa_dce (/*aggressive=*/false);
1478 }
1479
1480 static unsigned int
1481 tree_ssa_dce_loop (void)
1482 {
1483 unsigned int todo;
1484 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1485 if (todo)
1486 {
1487 free_numbers_of_iterations_estimates ();
1488 scev_reset ();
1489 }
1490 return todo;
1491 }
1492
1493 static unsigned int
1494 tree_ssa_cd_dce (void)
1495 {
1496 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1497 }
1498
1499 static bool
1500 gate_dce (void)
1501 {
1502 return flag_tree_dce != 0;
1503 }
1504
1505 struct gimple_opt_pass pass_dce =
1506 {
1507 {
1508 GIMPLE_PASS,
1509 "dce", /* name */
1510 gate_dce, /* gate */
1511 tree_ssa_dce, /* execute */
1512 NULL, /* sub */
1513 NULL, /* next */
1514 0, /* static_pass_number */
1515 TV_TREE_DCE, /* tv_id */
1516 PROP_cfg | PROP_ssa, /* properties_required */
1517 0, /* properties_provided */
1518 0, /* properties_destroyed */
1519 0, /* todo_flags_start */
1520 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1521 }
1522 };
1523
1524 struct gimple_opt_pass pass_dce_loop =
1525 {
1526 {
1527 GIMPLE_PASS,
1528 "dceloop", /* name */
1529 gate_dce, /* gate */
1530 tree_ssa_dce_loop, /* execute */
1531 NULL, /* sub */
1532 NULL, /* next */
1533 0, /* static_pass_number */
1534 TV_TREE_DCE, /* tv_id */
1535 PROP_cfg | PROP_ssa, /* properties_required */
1536 0, /* properties_provided */
1537 0, /* properties_destroyed */
1538 0, /* todo_flags_start */
1539 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1540 }
1541 };
1542
1543 struct gimple_opt_pass pass_cd_dce =
1544 {
1545 {
1546 GIMPLE_PASS,
1547 "cddce", /* name */
1548 gate_dce, /* gate */
1549 tree_ssa_cd_dce, /* execute */
1550 NULL, /* sub */
1551 NULL, /* next */
1552 0, /* static_pass_number */
1553 TV_TREE_CD_DCE, /* tv_id */
1554 PROP_cfg | PROP_ssa, /* properties_required */
1555 0, /* properties_provided */
1556 0, /* properties_destroyed */
1557 0, /* todo_flags_start */
1558 TODO_dump_func | TODO_verify_ssa
1559 | TODO_verify_flow /* todo_flags_finish */
1560 }
1561 };