intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "cfgloop.h"
31 #include "output.h"
32 #include "function.h"
33 #include "tree-pretty-print.h"
34 #include "gimple-pretty-print.h"
35 #include "timevar.h"
36 #include "tree-dump.h"
37 #include "tree-flow.h"
38 #include "domwalk.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "params.h"
43
44 /* This file implements optimizations on the dominator tree. */
45
46 /* Representation of a "naked" right-hand-side expression, to be used
47 in recording available expressions in the expression hash table. */
48
49 enum expr_kind
50 {
51 EXPR_SINGLE,
52 EXPR_UNARY,
53 EXPR_BINARY,
54 EXPR_TERNARY,
55 EXPR_CALL
56 };
57
58 struct hashable_expr
59 {
60 tree type;
61 enum expr_kind kind;
62 union {
63 struct { tree rhs; } single;
64 struct { enum tree_code op; tree opnd; } unary;
65 struct { enum tree_code op; tree opnd0, opnd1; } binary;
66 struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
67 struct { tree fn; bool pure; size_t nargs; tree *args; } call;
68 } ops;
69 };
70
71 /* Structure for recording known values of a conditional expression
72 at the exits from its block. */
73
74 struct cond_equivalence
75 {
76 struct hashable_expr cond;
77 tree value;
78 };
79
80 /* Structure for recording edge equivalences as well as any pending
81 edge redirections during the dominator optimizer.
82
83 Computing and storing the edge equivalences instead of creating
84 them on-demand can save significant amounts of time, particularly
85 for pathological cases involving switch statements.
86
87 These structures live for a single iteration of the dominator
88 optimizer in the edge's AUX field. At the end of an iteration we
89 free each of these structures and update the AUX field to point
90 to any requested redirection target (the code for updating the
91 CFG and SSA graph for edge redirection expects redirection edge
92 targets to be in the AUX field for each edge. */
93
94 struct edge_info
95 {
96 /* If this edge creates a simple equivalence, the LHS and RHS of
97 the equivalence will be stored here. */
98 tree lhs;
99 tree rhs;
100
101 /* Traversing an edge may also indicate one or more particular conditions
102 are true or false. The number of recorded conditions can vary, but
103 can be determined by the condition's code. So we have an array
104 and its maximum index rather than use a varray. */
105 struct cond_equivalence *cond_equivalences;
106 unsigned int max_cond_equivalences;
107 };
108
109 /* Hash table with expressions made available during the renaming process.
110 When an assignment of the form X_i = EXPR is found, the statement is
111 stored in this table. If the same expression EXPR is later found on the
112 RHS of another statement, it is replaced with X_i (thus performing
113 global redundancy elimination). Similarly as we pass through conditionals
114 we record the conditional itself as having either a true or false value
115 in this table. */
116 static htab_t avail_exprs;
117
118 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
119 expressions it enters into the hash table along with a marker entry
120 (null). When we finish processing the block, we pop off entries and
121 remove the expressions from the global hash table until we hit the
122 marker. */
123 typedef struct expr_hash_elt * expr_hash_elt_t;
124 DEF_VEC_P(expr_hash_elt_t);
125 DEF_VEC_ALLOC_P(expr_hash_elt_t,heap);
126
127 static VEC(expr_hash_elt_t,heap) *avail_exprs_stack;
128
129 /* Structure for entries in the expression hash table. */
130
131 struct expr_hash_elt
132 {
133 /* The value (lhs) of this expression. */
134 tree lhs;
135
136 /* The expression (rhs) we want to record. */
137 struct hashable_expr expr;
138
139 /* The stmt pointer if this element corresponds to a statement. */
140 gimple stmt;
141
142 /* The hash value for RHS. */
143 hashval_t hash;
144
145 /* A unique stamp, typically the address of the hash
146 element itself, used in removing entries from the table. */
147 struct expr_hash_elt *stamp;
148 };
149
150 /* Stack of dest,src pairs that need to be restored during finalization.
151
152 A NULL entry is used to mark the end of pairs which need to be
153 restored during finalization of this block. */
154 static VEC(tree,heap) *const_and_copies_stack;
155
156 /* Track whether or not we have changed the control flow graph. */
157 static bool cfg_altered;
158
159 /* Bitmap of blocks that have had EH statements cleaned. We should
160 remove their dead edges eventually. */
161 static bitmap need_eh_cleanup;
162
163 /* Statistics for dominator optimizations. */
164 struct opt_stats_d
165 {
166 long num_stmts;
167 long num_exprs_considered;
168 long num_re;
169 long num_const_prop;
170 long num_copy_prop;
171 };
172
173 static struct opt_stats_d opt_stats;
174
175 /* Local functions. */
176 static void optimize_stmt (basic_block, gimple_stmt_iterator);
177 static tree lookup_avail_expr (gimple, bool);
178 static hashval_t avail_expr_hash (const void *);
179 static hashval_t real_avail_expr_hash (const void *);
180 static int avail_expr_eq (const void *, const void *);
181 static void htab_statistics (FILE *, htab_t);
182 static void record_cond (struct cond_equivalence *);
183 static void record_const_or_copy (tree, tree);
184 static void record_equality (tree, tree);
185 static void record_equivalences_from_phis (basic_block);
186 static void record_equivalences_from_incoming_edge (basic_block);
187 static void eliminate_redundant_computations (gimple_stmt_iterator *);
188 static void record_equivalences_from_stmt (gimple, int);
189 static void dom_thread_across_edge (struct dom_walk_data *, edge);
190 static void dom_opt_leave_block (struct dom_walk_data *, basic_block);
191 static void dom_opt_enter_block (struct dom_walk_data *, basic_block);
192 static void remove_local_expressions_from_table (void);
193 static void restore_vars_to_original_value (void);
194 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
195
196
197 /* Given a statement STMT, initialize the hash table element pointed to
198 by ELEMENT. */
199
200 static void
201 initialize_hash_element (gimple stmt, tree lhs,
202 struct expr_hash_elt *element)
203 {
204 enum gimple_code code = gimple_code (stmt);
205 struct hashable_expr *expr = &element->expr;
206
207 if (code == GIMPLE_ASSIGN)
208 {
209 enum tree_code subcode = gimple_assign_rhs_code (stmt);
210
211 expr->type = NULL_TREE;
212
213 switch (get_gimple_rhs_class (subcode))
214 {
215 case GIMPLE_SINGLE_RHS:
216 expr->kind = EXPR_SINGLE;
217 expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
218 break;
219 case GIMPLE_UNARY_RHS:
220 expr->kind = EXPR_UNARY;
221 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
222 expr->ops.unary.op = subcode;
223 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
224 break;
225 case GIMPLE_BINARY_RHS:
226 expr->kind = EXPR_BINARY;
227 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
228 expr->ops.binary.op = subcode;
229 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
230 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
231 break;
232 case GIMPLE_TERNARY_RHS:
233 expr->kind = EXPR_TERNARY;
234 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
235 expr->ops.ternary.op = subcode;
236 expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
237 expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
238 expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
239 break;
240 default:
241 gcc_unreachable ();
242 }
243 }
244 else if (code == GIMPLE_COND)
245 {
246 expr->type = boolean_type_node;
247 expr->kind = EXPR_BINARY;
248 expr->ops.binary.op = gimple_cond_code (stmt);
249 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
250 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
251 }
252 else if (code == GIMPLE_CALL)
253 {
254 size_t nargs = gimple_call_num_args (stmt);
255 size_t i;
256
257 gcc_assert (gimple_call_lhs (stmt));
258
259 expr->type = TREE_TYPE (gimple_call_lhs (stmt));
260 expr->kind = EXPR_CALL;
261 expr->ops.call.fn = gimple_call_fn (stmt);
262
263 if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
264 expr->ops.call.pure = true;
265 else
266 expr->ops.call.pure = false;
267
268 expr->ops.call.nargs = nargs;
269 expr->ops.call.args = (tree *) xcalloc (nargs, sizeof (tree));
270 for (i = 0; i < nargs; i++)
271 expr->ops.call.args[i] = gimple_call_arg (stmt, i);
272 }
273 else if (code == GIMPLE_SWITCH)
274 {
275 expr->type = TREE_TYPE (gimple_switch_index (stmt));
276 expr->kind = EXPR_SINGLE;
277 expr->ops.single.rhs = gimple_switch_index (stmt);
278 }
279 else if (code == GIMPLE_GOTO)
280 {
281 expr->type = TREE_TYPE (gimple_goto_dest (stmt));
282 expr->kind = EXPR_SINGLE;
283 expr->ops.single.rhs = gimple_goto_dest (stmt);
284 }
285 else
286 gcc_unreachable ();
287
288 element->lhs = lhs;
289 element->stmt = stmt;
290 element->hash = avail_expr_hash (element);
291 element->stamp = element;
292 }
293
294 /* Given a conditional expression COND as a tree, initialize
295 a hashable_expr expression EXPR. The conditional must be a
296 comparison or logical negation. A constant or a variable is
297 not permitted. */
298
299 static void
300 initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
301 {
302 expr->type = boolean_type_node;
303
304 if (COMPARISON_CLASS_P (cond))
305 {
306 expr->kind = EXPR_BINARY;
307 expr->ops.binary.op = TREE_CODE (cond);
308 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
309 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
310 }
311 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
312 {
313 expr->kind = EXPR_UNARY;
314 expr->ops.unary.op = TRUTH_NOT_EXPR;
315 expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
316 }
317 else
318 gcc_unreachable ();
319 }
320
321 /* Given a hashable_expr expression EXPR and an LHS,
322 initialize the hash table element pointed to by ELEMENT. */
323
324 static void
325 initialize_hash_element_from_expr (struct hashable_expr *expr,
326 tree lhs,
327 struct expr_hash_elt *element)
328 {
329 element->expr = *expr;
330 element->lhs = lhs;
331 element->stmt = NULL;
332 element->hash = avail_expr_hash (element);
333 element->stamp = element;
334 }
335
336 /* Compare two hashable_expr structures for equivalence.
337 They are considered equivalent when the the expressions
338 they denote must necessarily be equal. The logic is intended
339 to follow that of operand_equal_p in fold-const.c */
340
341 static bool
342 hashable_expr_equal_p (const struct hashable_expr *expr0,
343 const struct hashable_expr *expr1)
344 {
345 tree type0 = expr0->type;
346 tree type1 = expr1->type;
347
348 /* If either type is NULL, there is nothing to check. */
349 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
350 return false;
351
352 /* If both types don't have the same signedness, precision, and mode,
353 then we can't consider them equal. */
354 if (type0 != type1
355 && (TREE_CODE (type0) == ERROR_MARK
356 || TREE_CODE (type1) == ERROR_MARK
357 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
358 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
359 || TYPE_MODE (type0) != TYPE_MODE (type1)))
360 return false;
361
362 if (expr0->kind != expr1->kind)
363 return false;
364
365 switch (expr0->kind)
366 {
367 case EXPR_SINGLE:
368 return operand_equal_p (expr0->ops.single.rhs,
369 expr1->ops.single.rhs, 0);
370
371 case EXPR_UNARY:
372 if (expr0->ops.unary.op != expr1->ops.unary.op)
373 return false;
374
375 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
376 || expr0->ops.unary.op == NON_LVALUE_EXPR)
377 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
378 return false;
379
380 return operand_equal_p (expr0->ops.unary.opnd,
381 expr1->ops.unary.opnd, 0);
382
383 case EXPR_BINARY:
384 if (expr0->ops.binary.op != expr1->ops.binary.op)
385 return false;
386
387 if (operand_equal_p (expr0->ops.binary.opnd0,
388 expr1->ops.binary.opnd0, 0)
389 && operand_equal_p (expr0->ops.binary.opnd1,
390 expr1->ops.binary.opnd1, 0))
391 return true;
392
393 /* For commutative ops, allow the other order. */
394 return (commutative_tree_code (expr0->ops.binary.op)
395 && operand_equal_p (expr0->ops.binary.opnd0,
396 expr1->ops.binary.opnd1, 0)
397 && operand_equal_p (expr0->ops.binary.opnd1,
398 expr1->ops.binary.opnd0, 0));
399
400 case EXPR_TERNARY:
401 if (expr0->ops.ternary.op != expr1->ops.ternary.op
402 || !operand_equal_p (expr0->ops.ternary.opnd2,
403 expr1->ops.ternary.opnd2, 0))
404 return false;
405
406 if (operand_equal_p (expr0->ops.ternary.opnd0,
407 expr1->ops.ternary.opnd0, 0)
408 && operand_equal_p (expr0->ops.ternary.opnd1,
409 expr1->ops.ternary.opnd1, 0))
410 return true;
411
412 /* For commutative ops, allow the other order. */
413 return (commutative_ternary_tree_code (expr0->ops.ternary.op)
414 && operand_equal_p (expr0->ops.ternary.opnd0,
415 expr1->ops.ternary.opnd1, 0)
416 && operand_equal_p (expr0->ops.ternary.opnd1,
417 expr1->ops.ternary.opnd0, 0));
418
419 case EXPR_CALL:
420 {
421 size_t i;
422
423 /* If the calls are to different functions, then they
424 clearly cannot be equal. */
425 if (! operand_equal_p (expr0->ops.call.fn,
426 expr1->ops.call.fn, 0))
427 return false;
428
429 if (! expr0->ops.call.pure)
430 return false;
431
432 if (expr0->ops.call.nargs != expr1->ops.call.nargs)
433 return false;
434
435 for (i = 0; i < expr0->ops.call.nargs; i++)
436 if (! operand_equal_p (expr0->ops.call.args[i],
437 expr1->ops.call.args[i], 0))
438 return false;
439
440 return true;
441 }
442
443 default:
444 gcc_unreachable ();
445 }
446 }
447
448 /* Compute a hash value for a hashable_expr value EXPR and a
449 previously accumulated hash value VAL. If two hashable_expr
450 values compare equal with hashable_expr_equal_p, they must
451 hash to the same value, given an identical value of VAL.
452 The logic is intended to follow iterative_hash_expr in tree.c. */
453
454 static hashval_t
455 iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
456 {
457 switch (expr->kind)
458 {
459 case EXPR_SINGLE:
460 val = iterative_hash_expr (expr->ops.single.rhs, val);
461 break;
462
463 case EXPR_UNARY:
464 val = iterative_hash_object (expr->ops.unary.op, val);
465
466 /* Make sure to include signedness in the hash computation.
467 Don't hash the type, that can lead to having nodes which
468 compare equal according to operand_equal_p, but which
469 have different hash codes. */
470 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
471 || expr->ops.unary.op == NON_LVALUE_EXPR)
472 val += TYPE_UNSIGNED (expr->type);
473
474 val = iterative_hash_expr (expr->ops.unary.opnd, val);
475 break;
476
477 case EXPR_BINARY:
478 val = iterative_hash_object (expr->ops.binary.op, val);
479 if (commutative_tree_code (expr->ops.binary.op))
480 val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
481 expr->ops.binary.opnd1, val);
482 else
483 {
484 val = iterative_hash_expr (expr->ops.binary.opnd0, val);
485 val = iterative_hash_expr (expr->ops.binary.opnd1, val);
486 }
487 break;
488
489 case EXPR_TERNARY:
490 val = iterative_hash_object (expr->ops.ternary.op, val);
491 if (commutative_ternary_tree_code (expr->ops.ternary.op))
492 val = iterative_hash_exprs_commutative (expr->ops.ternary.opnd0,
493 expr->ops.ternary.opnd1, val);
494 else
495 {
496 val = iterative_hash_expr (expr->ops.ternary.opnd0, val);
497 val = iterative_hash_expr (expr->ops.ternary.opnd1, val);
498 }
499 val = iterative_hash_expr (expr->ops.ternary.opnd2, val);
500 break;
501
502 case EXPR_CALL:
503 {
504 size_t i;
505 enum tree_code code = CALL_EXPR;
506
507 val = iterative_hash_object (code, val);
508 val = iterative_hash_expr (expr->ops.call.fn, val);
509 for (i = 0; i < expr->ops.call.nargs; i++)
510 val = iterative_hash_expr (expr->ops.call.args[i], val);
511 }
512 break;
513
514 default:
515 gcc_unreachable ();
516 }
517
518 return val;
519 }
520
521 /* Print a diagnostic dump of an expression hash table entry. */
522
523 static void
524 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
525 {
526 if (element->stmt)
527 fprintf (stream, "STMT ");
528 else
529 fprintf (stream, "COND ");
530
531 if (element->lhs)
532 {
533 print_generic_expr (stream, element->lhs, 0);
534 fprintf (stream, " = ");
535 }
536
537 switch (element->expr.kind)
538 {
539 case EXPR_SINGLE:
540 print_generic_expr (stream, element->expr.ops.single.rhs, 0);
541 break;
542
543 case EXPR_UNARY:
544 fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]);
545 print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
546 break;
547
548 case EXPR_BINARY:
549 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
550 fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]);
551 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
552 break;
553
554 case EXPR_TERNARY:
555 fprintf (stream, " %s <", tree_code_name[element->expr.ops.ternary.op]);
556 print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
557 fputs (", ", stream);
558 print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
559 fputs (", ", stream);
560 print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
561 fputs (">", stream);
562 break;
563
564 case EXPR_CALL:
565 {
566 size_t i;
567 size_t nargs = element->expr.ops.call.nargs;
568
569 print_generic_expr (stream, element->expr.ops.call.fn, 0);
570 fprintf (stream, " (");
571 for (i = 0; i < nargs; i++)
572 {
573 print_generic_expr (stream, element->expr.ops.call.args[i], 0);
574 if (i + 1 < nargs)
575 fprintf (stream, ", ");
576 }
577 fprintf (stream, ")");
578 }
579 break;
580 }
581 fprintf (stream, "\n");
582
583 if (element->stmt)
584 {
585 fprintf (stream, " ");
586 print_gimple_stmt (stream, element->stmt, 0, 0);
587 }
588 }
589
590 /* Delete an expr_hash_elt and reclaim its storage. */
591
592 static void
593 free_expr_hash_elt (void *elt)
594 {
595 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
596
597 if (element->expr.kind == EXPR_CALL)
598 free (element->expr.ops.call.args);
599
600 free (element);
601 }
602
603 /* Allocate an EDGE_INFO for edge E and attach it to E.
604 Return the new EDGE_INFO structure. */
605
606 static struct edge_info *
607 allocate_edge_info (edge e)
608 {
609 struct edge_info *edge_info;
610
611 edge_info = XCNEW (struct edge_info);
612
613 e->aux = edge_info;
614 return edge_info;
615 }
616
617 /* Free all EDGE_INFO structures associated with edges in the CFG.
618 If a particular edge can be threaded, copy the redirection
619 target from the EDGE_INFO structure into the edge's AUX field
620 as required by code to update the CFG and SSA graph for
621 jump threading. */
622
623 static void
624 free_all_edge_infos (void)
625 {
626 basic_block bb;
627 edge_iterator ei;
628 edge e;
629
630 FOR_EACH_BB (bb)
631 {
632 FOR_EACH_EDGE (e, ei, bb->preds)
633 {
634 struct edge_info *edge_info = (struct edge_info *) e->aux;
635
636 if (edge_info)
637 {
638 if (edge_info->cond_equivalences)
639 free (edge_info->cond_equivalences);
640 free (edge_info);
641 e->aux = NULL;
642 }
643 }
644 }
645 }
646
647 /* Jump threading, redundancy elimination and const/copy propagation.
648
649 This pass may expose new symbols that need to be renamed into SSA. For
650 every new symbol exposed, its corresponding bit will be set in
651 VARS_TO_RENAME. */
652
653 static unsigned int
654 tree_ssa_dominator_optimize (void)
655 {
656 struct dom_walk_data walk_data;
657
658 memset (&opt_stats, 0, sizeof (opt_stats));
659
660 /* Create our hash tables. */
661 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt);
662 avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20);
663 const_and_copies_stack = VEC_alloc (tree, heap, 20);
664 need_eh_cleanup = BITMAP_ALLOC (NULL);
665
666 /* Setup callbacks for the generic dominator tree walker. */
667 walk_data.dom_direction = CDI_DOMINATORS;
668 walk_data.initialize_block_local_data = NULL;
669 walk_data.before_dom_children = dom_opt_enter_block;
670 walk_data.after_dom_children = dom_opt_leave_block;
671 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
672 When we attach more stuff we'll need to fill this out with a real
673 structure. */
674 walk_data.global_data = NULL;
675 walk_data.block_local_data_size = 0;
676
677 /* Now initialize the dominator walker. */
678 init_walk_dominator_tree (&walk_data);
679
680 calculate_dominance_info (CDI_DOMINATORS);
681 cfg_altered = false;
682
683 /* We need to know loop structures in order to avoid destroying them
684 in jump threading. Note that we still can e.g. thread through loop
685 headers to an exit edge, or through loop header to the loop body, assuming
686 that we update the loop info. */
687 loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);
688
689 /* Initialize the value-handle array. */
690 threadedge_initialize_values ();
691
692 /* We need accurate information regarding back edges in the CFG
693 for jump threading; this may include back edges that are not part of
694 a single loop. */
695 mark_dfs_back_edges ();
696
697 /* Recursively walk the dominator tree optimizing statements. */
698 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
699
700 {
701 gimple_stmt_iterator gsi;
702 basic_block bb;
703 FOR_EACH_BB (bb)
704 {for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
705 update_stmt_if_modified (gsi_stmt (gsi));
706 }
707 }
708
709 /* If we exposed any new variables, go ahead and put them into
710 SSA form now, before we handle jump threading. This simplifies
711 interactions between rewriting of _DECL nodes into SSA form
712 and rewriting SSA_NAME nodes into SSA form after block
713 duplication and CFG manipulation. */
714 update_ssa (TODO_update_ssa);
715
716 free_all_edge_infos ();
717
718 /* Thread jumps, creating duplicate blocks as needed. */
719 cfg_altered |= thread_through_all_blocks (first_pass_instance);
720
721 if (cfg_altered)
722 free_dominance_info (CDI_DOMINATORS);
723
724 /* Removal of statements may make some EH edges dead. Purge
725 such edges from the CFG as needed. */
726 if (!bitmap_empty_p (need_eh_cleanup))
727 {
728 unsigned i;
729 bitmap_iterator bi;
730
731 /* Jump threading may have created forwarder blocks from blocks
732 needing EH cleanup; the new successor of these blocks, which
733 has inherited from the original block, needs the cleanup. */
734 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
735 {
736 basic_block bb = BASIC_BLOCK (i);
737 if (single_succ_p (bb) == 1
738 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
739 {
740 bitmap_clear_bit (need_eh_cleanup, i);
741 bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index);
742 }
743 }
744
745 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
746 bitmap_zero (need_eh_cleanup);
747 }
748
749 statistics_counter_event (cfun, "Redundant expressions eliminated",
750 opt_stats.num_re);
751 statistics_counter_event (cfun, "Constants propagated",
752 opt_stats.num_const_prop);
753 statistics_counter_event (cfun, "Copies propagated",
754 opt_stats.num_copy_prop);
755
756 /* Debugging dumps. */
757 if (dump_file && (dump_flags & TDF_STATS))
758 dump_dominator_optimization_stats (dump_file);
759
760 loop_optimizer_finalize ();
761
762 /* Delete our main hashtable. */
763 htab_delete (avail_exprs);
764
765 /* And finalize the dominator walker. */
766 fini_walk_dominator_tree (&walk_data);
767
768 /* Free asserted bitmaps and stacks. */
769 BITMAP_FREE (need_eh_cleanup);
770
771 VEC_free (expr_hash_elt_t, heap, avail_exprs_stack);
772 VEC_free (tree, heap, const_and_copies_stack);
773
774 /* Free the value-handle array. */
775 threadedge_finalize_values ();
776 ssa_name_values = NULL;
777
778 return 0;
779 }
780
781 static bool
782 gate_dominator (void)
783 {
784 return flag_tree_dom != 0;
785 }
786
787 struct gimple_opt_pass pass_dominator =
788 {
789 {
790 GIMPLE_PASS,
791 "dom", /* name */
792 gate_dominator, /* gate */
793 tree_ssa_dominator_optimize, /* execute */
794 NULL, /* sub */
795 NULL, /* next */
796 0, /* static_pass_number */
797 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
798 PROP_cfg | PROP_ssa, /* properties_required */
799 0, /* properties_provided */
800 0, /* properties_destroyed */
801 0, /* todo_flags_start */
802 TODO_dump_func
803 | TODO_update_ssa
804 | TODO_cleanup_cfg
805 | TODO_verify_ssa /* todo_flags_finish */
806 }
807 };
808
809
810 /* Given a conditional statement CONDSTMT, convert the
811 condition to a canonical form. */
812
813 static void
814 canonicalize_comparison (gimple condstmt)
815 {
816 tree op0;
817 tree op1;
818 enum tree_code code;
819
820 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
821
822 op0 = gimple_cond_lhs (condstmt);
823 op1 = gimple_cond_rhs (condstmt);
824
825 code = gimple_cond_code (condstmt);
826
827 /* If it would be profitable to swap the operands, then do so to
828 canonicalize the statement, enabling better optimization.
829
830 By placing canonicalization of such expressions here we
831 transparently keep statements in canonical form, even
832 when the statement is modified. */
833 if (tree_swap_operands_p (op0, op1, false))
834 {
835 /* For relationals we need to swap the operands
836 and change the code. */
837 if (code == LT_EXPR
838 || code == GT_EXPR
839 || code == LE_EXPR
840 || code == GE_EXPR)
841 {
842 code = swap_tree_comparison (code);
843
844 gimple_cond_set_code (condstmt, code);
845 gimple_cond_set_lhs (condstmt, op1);
846 gimple_cond_set_rhs (condstmt, op0);
847
848 update_stmt (condstmt);
849 }
850 }
851 }
852
853 /* Initialize local stacks for this optimizer and record equivalences
854 upon entry to BB. Equivalences can come from the edge traversed to
855 reach BB or they may come from PHI nodes at the start of BB. */
856
857 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
858 LIMIT entries left in LOCALs. */
859
860 static void
861 remove_local_expressions_from_table (void)
862 {
863 /* Remove all the expressions made available in this block. */
864 while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0)
865 {
866 expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack);
867 void **slot;
868
869 if (victim == NULL)
870 break;
871
872 /* This must precede the actual removal from the hash table,
873 as ELEMENT and the table entry may share a call argument
874 vector which will be freed during removal. */
875 if (dump_file && (dump_flags & TDF_DETAILS))
876 {
877 fprintf (dump_file, "<<<< ");
878 print_expr_hash_elt (dump_file, victim);
879 }
880
881 slot = htab_find_slot_with_hash (avail_exprs,
882 victim, victim->hash, NO_INSERT);
883 gcc_assert (slot && *slot == (void *) victim);
884 htab_clear_slot (avail_exprs, slot);
885 }
886 }
887
888 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
889 CONST_AND_COPIES to its original state, stopping when we hit a
890 NULL marker. */
891
892 static void
893 restore_vars_to_original_value (void)
894 {
895 while (VEC_length (tree, const_and_copies_stack) > 0)
896 {
897 tree prev_value, dest;
898
899 dest = VEC_pop (tree, const_and_copies_stack);
900
901 if (dest == NULL)
902 break;
903
904 if (dump_file && (dump_flags & TDF_DETAILS))
905 {
906 fprintf (dump_file, "<<<< COPY ");
907 print_generic_expr (dump_file, dest, 0);
908 fprintf (dump_file, " = ");
909 print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
910 fprintf (dump_file, "\n");
911 }
912
913 prev_value = VEC_pop (tree, const_and_copies_stack);
914 set_ssa_name_value (dest, prev_value);
915 }
916 }
917
918 /* A trivial wrapper so that we can present the generic jump
919 threading code with a simple API for simplifying statements. */
920 static tree
921 simplify_stmt_for_jump_threading (gimple stmt,
922 gimple within_stmt ATTRIBUTE_UNUSED)
923 {
924 return lookup_avail_expr (stmt, false);
925 }
926
927 /* Wrapper for common code to attempt to thread an edge. For example,
928 it handles lazily building the dummy condition and the bookkeeping
929 when jump threading is successful. */
930
931 static void
932 dom_thread_across_edge (struct dom_walk_data *walk_data, edge e)
933 {
934 if (! walk_data->global_data)
935 {
936 gimple dummy_cond =
937 gimple_build_cond (NE_EXPR,
938 integer_zero_node, integer_zero_node,
939 NULL, NULL);
940 walk_data->global_data = dummy_cond;
941 }
942
943 thread_across_edge ((gimple) walk_data->global_data, e, false,
944 &const_and_copies_stack,
945 simplify_stmt_for_jump_threading);
946 }
947
948 /* PHI nodes can create equivalences too.
949
950 Ignoring any alternatives which are the same as the result, if
951 all the alternatives are equal, then the PHI node creates an
952 equivalence. */
953
954 static void
955 record_equivalences_from_phis (basic_block bb)
956 {
957 gimple_stmt_iterator gsi;
958
959 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
960 {
961 gimple phi = gsi_stmt (gsi);
962
963 tree lhs = gimple_phi_result (phi);
964 tree rhs = NULL;
965 size_t i;
966
967 for (i = 0; i < gimple_phi_num_args (phi); i++)
968 {
969 tree t = gimple_phi_arg_def (phi, i);
970
971 /* Ignore alternatives which are the same as our LHS. Since
972 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
973 can simply compare pointers. */
974 if (lhs == t)
975 continue;
976
977 /* If we have not processed an alternative yet, then set
978 RHS to this alternative. */
979 if (rhs == NULL)
980 rhs = t;
981 /* If we have processed an alternative (stored in RHS), then
982 see if it is equal to this one. If it isn't, then stop
983 the search. */
984 else if (! operand_equal_for_phi_arg_p (rhs, t))
985 break;
986 }
987
988 /* If we had no interesting alternatives, then all the RHS alternatives
989 must have been the same as LHS. */
990 if (!rhs)
991 rhs = lhs;
992
993 /* If we managed to iterate through each PHI alternative without
994 breaking out of the loop, then we have a PHI which may create
995 a useful equivalence. We do not need to record unwind data for
996 this, since this is a true assignment and not an equivalence
997 inferred from a comparison. All uses of this ssa name are dominated
998 by this assignment, so unwinding just costs time and space. */
999 if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
1000 set_ssa_name_value (lhs, rhs);
1001 }
1002 }
1003
1004 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1005 return that edge. Otherwise return NULL. */
1006 static edge
1007 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1008 {
1009 edge retval = NULL;
1010 edge e;
1011 edge_iterator ei;
1012
1013 FOR_EACH_EDGE (e, ei, bb->preds)
1014 {
1015 /* A loop back edge can be identified by the destination of
1016 the edge dominating the source of the edge. */
1017 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1018 continue;
1019
1020 /* If we have already seen a non-loop edge, then we must have
1021 multiple incoming non-loop edges and thus we return NULL. */
1022 if (retval)
1023 return NULL;
1024
1025 /* This is the first non-loop incoming edge we have found. Record
1026 it. */
1027 retval = e;
1028 }
1029
1030 return retval;
1031 }
1032
1033 /* Record any equivalences created by the incoming edge to BB. If BB
1034 has more than one incoming edge, then no equivalence is created. */
1035
1036 static void
1037 record_equivalences_from_incoming_edge (basic_block bb)
1038 {
1039 edge e;
1040 basic_block parent;
1041 struct edge_info *edge_info;
1042
1043 /* If our parent block ended with a control statement, then we may be
1044 able to record some equivalences based on which outgoing edge from
1045 the parent was followed. */
1046 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1047
1048 e = single_incoming_edge_ignoring_loop_edges (bb);
1049
1050 /* If we had a single incoming edge from our parent block, then enter
1051 any data associated with the edge into our tables. */
1052 if (e && e->src == parent)
1053 {
1054 unsigned int i;
1055
1056 edge_info = (struct edge_info *) e->aux;
1057
1058 if (edge_info)
1059 {
1060 tree lhs = edge_info->lhs;
1061 tree rhs = edge_info->rhs;
1062 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
1063
1064 if (lhs)
1065 record_equality (lhs, rhs);
1066
1067 if (cond_equivalences)
1068 for (i = 0; i < edge_info->max_cond_equivalences; i++)
1069 record_cond (&cond_equivalences[i]);
1070 }
1071 }
1072 }
1073
1074 /* Dump SSA statistics on FILE. */
1075
1076 void
1077 dump_dominator_optimization_stats (FILE *file)
1078 {
1079 fprintf (file, "Total number of statements: %6ld\n\n",
1080 opt_stats.num_stmts);
1081 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1082 opt_stats.num_exprs_considered);
1083
1084 fprintf (file, "\nHash table statistics:\n");
1085
1086 fprintf (file, " avail_exprs: ");
1087 htab_statistics (file, avail_exprs);
1088 }
1089
1090
1091 /* Dump SSA statistics on stderr. */
1092
1093 DEBUG_FUNCTION void
1094 debug_dominator_optimization_stats (void)
1095 {
1096 dump_dominator_optimization_stats (stderr);
1097 }
1098
1099
1100 /* Dump statistics for the hash table HTAB. */
1101
1102 static void
1103 htab_statistics (FILE *file, htab_t htab)
1104 {
1105 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1106 (long) htab_size (htab),
1107 (long) htab_elements (htab),
1108 htab_collisions (htab));
1109 }
1110
1111
1112 /* Enter condition equivalence into the expression hash table.
1113 This indicates that a conditional expression has a known
1114 boolean value. */
1115
1116 static void
1117 record_cond (struct cond_equivalence *p)
1118 {
1119 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
1120 void **slot;
1121
1122 initialize_hash_element_from_expr (&p->cond, p->value, element);
1123
1124 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1125 element->hash, INSERT);
1126 if (*slot == NULL)
1127 {
1128 *slot = (void *) element;
1129
1130 if (dump_file && (dump_flags & TDF_DETAILS))
1131 {
1132 fprintf (dump_file, "1>>> ");
1133 print_expr_hash_elt (dump_file, element);
1134 }
1135
1136 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element);
1137 }
1138 else
1139 free (element);
1140 }
1141
1142 /* Build a cond_equivalence record indicating that the comparison
1143 CODE holds between operands OP0 and OP1. */
1144
1145 static void
1146 build_and_record_new_cond (enum tree_code code,
1147 tree op0, tree op1,
1148 struct cond_equivalence *p)
1149 {
1150 struct hashable_expr *cond = &p->cond;
1151
1152 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
1153
1154 cond->type = boolean_type_node;
1155 cond->kind = EXPR_BINARY;
1156 cond->ops.binary.op = code;
1157 cond->ops.binary.opnd0 = op0;
1158 cond->ops.binary.opnd1 = op1;
1159
1160 p->value = boolean_true_node;
1161 }
1162
1163 /* Record that COND is true and INVERTED is false into the edge information
1164 structure. Also record that any conditions dominated by COND are true
1165 as well.
1166
1167 For example, if a < b is true, then a <= b must also be true. */
1168
1169 static void
1170 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1171 {
1172 tree op0, op1;
1173
1174 if (!COMPARISON_CLASS_P (cond))
1175 return;
1176
1177 op0 = TREE_OPERAND (cond, 0);
1178 op1 = TREE_OPERAND (cond, 1);
1179
1180 switch (TREE_CODE (cond))
1181 {
1182 case LT_EXPR:
1183 case GT_EXPR:
1184 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1185 {
1186 edge_info->max_cond_equivalences = 6;
1187 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 6);
1188 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1189 &edge_info->cond_equivalences[4]);
1190 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1191 &edge_info->cond_equivalences[5]);
1192 }
1193 else
1194 {
1195 edge_info->max_cond_equivalences = 4;
1196 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
1197 }
1198
1199 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1200 ? LE_EXPR : GE_EXPR),
1201 op0, op1, &edge_info->cond_equivalences[2]);
1202 build_and_record_new_cond (NE_EXPR, op0, op1,
1203 &edge_info->cond_equivalences[3]);
1204 break;
1205
1206 case GE_EXPR:
1207 case LE_EXPR:
1208 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1209 {
1210 edge_info->max_cond_equivalences = 3;
1211 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 3);
1212 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1213 &edge_info->cond_equivalences[2]);
1214 }
1215 else
1216 {
1217 edge_info->max_cond_equivalences = 2;
1218 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
1219 }
1220 break;
1221
1222 case EQ_EXPR:
1223 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1224 {
1225 edge_info->max_cond_equivalences = 5;
1226 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 5);
1227 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1228 &edge_info->cond_equivalences[4]);
1229 }
1230 else
1231 {
1232 edge_info->max_cond_equivalences = 4;
1233 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
1234 }
1235 build_and_record_new_cond (LE_EXPR, op0, op1,
1236 &edge_info->cond_equivalences[2]);
1237 build_and_record_new_cond (GE_EXPR, op0, op1,
1238 &edge_info->cond_equivalences[3]);
1239 break;
1240
1241 case UNORDERED_EXPR:
1242 edge_info->max_cond_equivalences = 8;
1243 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 8);
1244 build_and_record_new_cond (NE_EXPR, op0, op1,
1245 &edge_info->cond_equivalences[2]);
1246 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1247 &edge_info->cond_equivalences[3]);
1248 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1249 &edge_info->cond_equivalences[4]);
1250 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1251 &edge_info->cond_equivalences[5]);
1252 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1253 &edge_info->cond_equivalences[6]);
1254 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1255 &edge_info->cond_equivalences[7]);
1256 break;
1257
1258 case UNLT_EXPR:
1259 case UNGT_EXPR:
1260 edge_info->max_cond_equivalences = 4;
1261 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
1262 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1263 ? UNLE_EXPR : UNGE_EXPR),
1264 op0, op1, &edge_info->cond_equivalences[2]);
1265 build_and_record_new_cond (NE_EXPR, op0, op1,
1266 &edge_info->cond_equivalences[3]);
1267 break;
1268
1269 case UNEQ_EXPR:
1270 edge_info->max_cond_equivalences = 4;
1271 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
1272 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1273 &edge_info->cond_equivalences[2]);
1274 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1275 &edge_info->cond_equivalences[3]);
1276 break;
1277
1278 case LTGT_EXPR:
1279 edge_info->max_cond_equivalences = 4;
1280 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
1281 build_and_record_new_cond (NE_EXPR, op0, op1,
1282 &edge_info->cond_equivalences[2]);
1283 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1284 &edge_info->cond_equivalences[3]);
1285 break;
1286
1287 default:
1288 edge_info->max_cond_equivalences = 2;
1289 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
1290 break;
1291 }
1292
1293 /* Now store the original true and false conditions into the first
1294 two slots. */
1295 initialize_expr_from_cond (cond, &edge_info->cond_equivalences[0].cond);
1296 edge_info->cond_equivalences[0].value = boolean_true_node;
1297
1298 /* It is possible for INVERTED to be the negation of a comparison,
1299 and not a valid RHS or GIMPLE_COND condition. This happens because
1300 invert_truthvalue may return such an expression when asked to invert
1301 a floating-point comparison. These comparisons are not assumed to
1302 obey the trichotomy law. */
1303 initialize_expr_from_cond (inverted, &edge_info->cond_equivalences[1].cond);
1304 edge_info->cond_equivalences[1].value = boolean_false_node;
1305 }
1306
1307 /* A helper function for record_const_or_copy and record_equality.
1308 Do the work of recording the value and undo info. */
1309
1310 static void
1311 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1312 {
1313 set_ssa_name_value (x, y);
1314
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1316 {
1317 fprintf (dump_file, "0>>> COPY ");
1318 print_generic_expr (dump_file, x, 0);
1319 fprintf (dump_file, " = ");
1320 print_generic_expr (dump_file, y, 0);
1321 fprintf (dump_file, "\n");
1322 }
1323
1324 VEC_reserve (tree, heap, const_and_copies_stack, 2);
1325 VEC_quick_push (tree, const_and_copies_stack, prev_x);
1326 VEC_quick_push (tree, const_and_copies_stack, x);
1327 }
1328
1329 /* Return the loop depth of the basic block of the defining statement of X.
1330 This number should not be treated as absolutely correct because the loop
1331 information may not be completely up-to-date when dom runs. However, it
1332 will be relatively correct, and as more passes are taught to keep loop info
1333 up to date, the result will become more and more accurate. */
1334
1335 int
1336 loop_depth_of_name (tree x)
1337 {
1338 gimple defstmt;
1339 basic_block defbb;
1340
1341 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1342 if (TREE_CODE (x) != SSA_NAME)
1343 return 0;
1344
1345 /* Otherwise return the loop depth of the defining statement's bb.
1346 Note that there may not actually be a bb for this statement, if the
1347 ssa_name is live on entry. */
1348 defstmt = SSA_NAME_DEF_STMT (x);
1349 defbb = gimple_bb (defstmt);
1350 if (!defbb)
1351 return 0;
1352
1353 return defbb->loop_depth;
1354 }
1355
1356 /* Record that X is equal to Y in const_and_copies. Record undo
1357 information in the block-local vector. */
1358
1359 static void
1360 record_const_or_copy (tree x, tree y)
1361 {
1362 tree prev_x = SSA_NAME_VALUE (x);
1363
1364 gcc_assert (TREE_CODE (x) == SSA_NAME);
1365
1366 if (TREE_CODE (y) == SSA_NAME)
1367 {
1368 tree tmp = SSA_NAME_VALUE (y);
1369 if (tmp)
1370 y = tmp;
1371 }
1372
1373 record_const_or_copy_1 (x, y, prev_x);
1374 }
1375
1376 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1377 This constrains the cases in which we may treat this as assignment. */
1378
1379 static void
1380 record_equality (tree x, tree y)
1381 {
1382 tree prev_x = NULL, prev_y = NULL;
1383
1384 if (TREE_CODE (x) == SSA_NAME)
1385 prev_x = SSA_NAME_VALUE (x);
1386 if (TREE_CODE (y) == SSA_NAME)
1387 prev_y = SSA_NAME_VALUE (y);
1388
1389 /* If one of the previous values is invariant, or invariant in more loops
1390 (by depth), then use that.
1391 Otherwise it doesn't matter which value we choose, just so
1392 long as we canonicalize on one value. */
1393 if (is_gimple_min_invariant (y))
1394 ;
1395 else if (is_gimple_min_invariant (x)
1396 || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1397 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1398 else if (prev_x && is_gimple_min_invariant (prev_x))
1399 x = y, y = prev_x, prev_x = prev_y;
1400 else if (prev_y)
1401 y = prev_y;
1402
1403 /* After the swapping, we must have one SSA_NAME. */
1404 if (TREE_CODE (x) != SSA_NAME)
1405 return;
1406
1407 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1408 variable compared against zero. If we're honoring signed zeros,
1409 then we cannot record this value unless we know that the value is
1410 nonzero. */
1411 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1412 && (TREE_CODE (y) != REAL_CST
1413 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1414 return;
1415
1416 record_const_or_copy_1 (x, y, prev_x);
1417 }
1418
1419 /* Returns true when STMT is a simple iv increment. It detects the
1420 following situation:
1421
1422 i_1 = phi (..., i_2)
1423 i_2 = i_1 +/- ... */
1424
1425 static bool
1426 simple_iv_increment_p (gimple stmt)
1427 {
1428 tree lhs, preinc;
1429 gimple phi;
1430 size_t i;
1431
1432 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1433 return false;
1434
1435 lhs = gimple_assign_lhs (stmt);
1436 if (TREE_CODE (lhs) != SSA_NAME)
1437 return false;
1438
1439 if (gimple_assign_rhs_code (stmt) != PLUS_EXPR
1440 && gimple_assign_rhs_code (stmt) != MINUS_EXPR)
1441 return false;
1442
1443 preinc = gimple_assign_rhs1 (stmt);
1444
1445 if (TREE_CODE (preinc) != SSA_NAME)
1446 return false;
1447
1448 phi = SSA_NAME_DEF_STMT (preinc);
1449 if (gimple_code (phi) != GIMPLE_PHI)
1450 return false;
1451
1452 for (i = 0; i < gimple_phi_num_args (phi); i++)
1453 if (gimple_phi_arg_def (phi, i) == lhs)
1454 return true;
1455
1456 return false;
1457 }
1458
1459 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1460 known value for that SSA_NAME (or NULL if no value is known).
1461
1462 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1463 successors of BB. */
1464
1465 static void
1466 cprop_into_successor_phis (basic_block bb)
1467 {
1468 edge e;
1469 edge_iterator ei;
1470
1471 FOR_EACH_EDGE (e, ei, bb->succs)
1472 {
1473 int indx;
1474 gimple_stmt_iterator gsi;
1475
1476 /* If this is an abnormal edge, then we do not want to copy propagate
1477 into the PHI alternative associated with this edge. */
1478 if (e->flags & EDGE_ABNORMAL)
1479 continue;
1480
1481 gsi = gsi_start_phis (e->dest);
1482 if (gsi_end_p (gsi))
1483 continue;
1484
1485 indx = e->dest_idx;
1486 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1487 {
1488 tree new_val;
1489 use_operand_p orig_p;
1490 tree orig_val;
1491 gimple phi = gsi_stmt (gsi);
1492
1493 /* The alternative may be associated with a constant, so verify
1494 it is an SSA_NAME before doing anything with it. */
1495 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1496 orig_val = get_use_from_ptr (orig_p);
1497 if (TREE_CODE (orig_val) != SSA_NAME)
1498 continue;
1499
1500 /* If we have *ORIG_P in our constant/copy table, then replace
1501 ORIG_P with its value in our constant/copy table. */
1502 new_val = SSA_NAME_VALUE (orig_val);
1503 if (new_val
1504 && new_val != orig_val
1505 && (TREE_CODE (new_val) == SSA_NAME
1506 || is_gimple_min_invariant (new_val))
1507 && may_propagate_copy (orig_val, new_val))
1508 propagate_value (orig_p, new_val);
1509 }
1510 }
1511 }
1512
1513 /* We have finished optimizing BB, record any information implied by
1514 taking a specific outgoing edge from BB. */
1515
1516 static void
1517 record_edge_info (basic_block bb)
1518 {
1519 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1520 struct edge_info *edge_info;
1521
1522 if (! gsi_end_p (gsi))
1523 {
1524 gimple stmt = gsi_stmt (gsi);
1525 location_t loc = gimple_location (stmt);
1526
1527 if (gimple_code (stmt) == GIMPLE_SWITCH)
1528 {
1529 tree index = gimple_switch_index (stmt);
1530
1531 if (TREE_CODE (index) == SSA_NAME)
1532 {
1533 int i;
1534 int n_labels = gimple_switch_num_labels (stmt);
1535 tree *info = XCNEWVEC (tree, last_basic_block);
1536 edge e;
1537 edge_iterator ei;
1538
1539 for (i = 0; i < n_labels; i++)
1540 {
1541 tree label = gimple_switch_label (stmt, i);
1542 basic_block target_bb = label_to_block (CASE_LABEL (label));
1543 if (CASE_HIGH (label)
1544 || !CASE_LOW (label)
1545 || info[target_bb->index])
1546 info[target_bb->index] = error_mark_node;
1547 else
1548 info[target_bb->index] = label;
1549 }
1550
1551 FOR_EACH_EDGE (e, ei, bb->succs)
1552 {
1553 basic_block target_bb = e->dest;
1554 tree label = info[target_bb->index];
1555
1556 if (label != NULL && label != error_mark_node)
1557 {
1558 tree x = fold_convert_loc (loc, TREE_TYPE (index),
1559 CASE_LOW (label));
1560 edge_info = allocate_edge_info (e);
1561 edge_info->lhs = index;
1562 edge_info->rhs = x;
1563 }
1564 }
1565 free (info);
1566 }
1567 }
1568
1569 /* A COND_EXPR may create equivalences too. */
1570 if (gimple_code (stmt) == GIMPLE_COND)
1571 {
1572 edge true_edge;
1573 edge false_edge;
1574
1575 tree op0 = gimple_cond_lhs (stmt);
1576 tree op1 = gimple_cond_rhs (stmt);
1577 enum tree_code code = gimple_cond_code (stmt);
1578
1579 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1580
1581 /* Special case comparing booleans against a constant as we
1582 know the value of OP0 on both arms of the branch. i.e., we
1583 can record an equivalence for OP0 rather than COND. */
1584 if ((code == EQ_EXPR || code == NE_EXPR)
1585 && TREE_CODE (op0) == SSA_NAME
1586 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
1587 && is_gimple_min_invariant (op1))
1588 {
1589 if (code == EQ_EXPR)
1590 {
1591 edge_info = allocate_edge_info (true_edge);
1592 edge_info->lhs = op0;
1593 edge_info->rhs = (integer_zerop (op1)
1594 ? boolean_false_node
1595 : boolean_true_node);
1596
1597 edge_info = allocate_edge_info (false_edge);
1598 edge_info->lhs = op0;
1599 edge_info->rhs = (integer_zerop (op1)
1600 ? boolean_true_node
1601 : boolean_false_node);
1602 }
1603 else
1604 {
1605 edge_info = allocate_edge_info (true_edge);
1606 edge_info->lhs = op0;
1607 edge_info->rhs = (integer_zerop (op1)
1608 ? boolean_true_node
1609 : boolean_false_node);
1610
1611 edge_info = allocate_edge_info (false_edge);
1612 edge_info->lhs = op0;
1613 edge_info->rhs = (integer_zerop (op1)
1614 ? boolean_false_node
1615 : boolean_true_node);
1616 }
1617 }
1618 else if (is_gimple_min_invariant (op0)
1619 && (TREE_CODE (op1) == SSA_NAME
1620 || is_gimple_min_invariant (op1)))
1621 {
1622 tree cond = build2 (code, boolean_type_node, op0, op1);
1623 tree inverted = invert_truthvalue_loc (loc, cond);
1624 struct edge_info *edge_info;
1625
1626 edge_info = allocate_edge_info (true_edge);
1627 record_conditions (edge_info, cond, inverted);
1628
1629 if (code == EQ_EXPR)
1630 {
1631 edge_info->lhs = op1;
1632 edge_info->rhs = op0;
1633 }
1634
1635 edge_info = allocate_edge_info (false_edge);
1636 record_conditions (edge_info, inverted, cond);
1637
1638 if (code == NE_EXPR)
1639 {
1640 edge_info->lhs = op1;
1641 edge_info->rhs = op0;
1642 }
1643 }
1644
1645 else if (TREE_CODE (op0) == SSA_NAME
1646 && (is_gimple_min_invariant (op1)
1647 || TREE_CODE (op1) == SSA_NAME))
1648 {
1649 tree cond = build2 (code, boolean_type_node, op0, op1);
1650 tree inverted = invert_truthvalue_loc (loc, cond);
1651 struct edge_info *edge_info;
1652
1653 edge_info = allocate_edge_info (true_edge);
1654 record_conditions (edge_info, cond, inverted);
1655
1656 if (code == EQ_EXPR)
1657 {
1658 edge_info->lhs = op0;
1659 edge_info->rhs = op1;
1660 }
1661
1662 edge_info = allocate_edge_info (false_edge);
1663 record_conditions (edge_info, inverted, cond);
1664
1665 if (TREE_CODE (cond) == NE_EXPR)
1666 {
1667 edge_info->lhs = op0;
1668 edge_info->rhs = op1;
1669 }
1670 }
1671 }
1672
1673 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1674 }
1675 }
1676
1677 static void
1678 dom_opt_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1679 basic_block bb)
1680 {
1681 gimple_stmt_iterator gsi;
1682
1683 if (dump_file && (dump_flags & TDF_DETAILS))
1684 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1685
1686 /* Push a marker on the stacks of local information so that we know how
1687 far to unwind when we finalize this block. */
1688 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
1689 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1690
1691 record_equivalences_from_incoming_edge (bb);
1692
1693 /* PHI nodes can create equivalences too. */
1694 record_equivalences_from_phis (bb);
1695
1696 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1697 optimize_stmt (bb, gsi);
1698
1699 /* Now prepare to process dominated blocks. */
1700 record_edge_info (bb);
1701 cprop_into_successor_phis (bb);
1702 }
1703
1704 /* We have finished processing the dominator children of BB, perform
1705 any finalization actions in preparation for leaving this node in
1706 the dominator tree. */
1707
1708 static void
1709 dom_opt_leave_block (struct dom_walk_data *walk_data, basic_block bb)
1710 {
1711 gimple last;
1712
1713 /* If we have an outgoing edge to a block with multiple incoming and
1714 outgoing edges, then we may be able to thread the edge, i.e., we
1715 may be able to statically determine which of the outgoing edges
1716 will be traversed when the incoming edge from BB is traversed. */
1717 if (single_succ_p (bb)
1718 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1719 && potentially_threadable_block (single_succ (bb)))
1720 {
1721 dom_thread_across_edge (walk_data, single_succ_edge (bb));
1722 }
1723 else if ((last = last_stmt (bb))
1724 && gimple_code (last) == GIMPLE_COND
1725 && EDGE_COUNT (bb->succs) == 2
1726 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1727 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1728 {
1729 edge true_edge, false_edge;
1730
1731 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1732
1733 /* Only try to thread the edge if it reaches a target block with
1734 more than one predecessor and more than one successor. */
1735 if (potentially_threadable_block (true_edge->dest))
1736 {
1737 struct edge_info *edge_info;
1738 unsigned int i;
1739
1740 /* Push a marker onto the available expression stack so that we
1741 unwind any expressions related to the TRUE arm before processing
1742 the false arm below. */
1743 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
1744 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1745
1746 edge_info = (struct edge_info *) true_edge->aux;
1747
1748 /* If we have info associated with this edge, record it into
1749 our equivalence tables. */
1750 if (edge_info)
1751 {
1752 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
1753 tree lhs = edge_info->lhs;
1754 tree rhs = edge_info->rhs;
1755
1756 /* If we have a simple NAME = VALUE equivalence, record it. */
1757 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1758 record_const_or_copy (lhs, rhs);
1759
1760 /* If we have 0 = COND or 1 = COND equivalences, record them
1761 into our expression hash tables. */
1762 if (cond_equivalences)
1763 for (i = 0; i < edge_info->max_cond_equivalences; i++)
1764 record_cond (&cond_equivalences[i]);
1765 }
1766
1767 dom_thread_across_edge (walk_data, true_edge);
1768
1769 /* And restore the various tables to their state before
1770 we threaded this edge. */
1771 remove_local_expressions_from_table ();
1772 }
1773
1774 /* Similarly for the ELSE arm. */
1775 if (potentially_threadable_block (false_edge->dest))
1776 {
1777 struct edge_info *edge_info;
1778 unsigned int i;
1779
1780 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1781 edge_info = (struct edge_info *) false_edge->aux;
1782
1783 /* If we have info associated with this edge, record it into
1784 our equivalence tables. */
1785 if (edge_info)
1786 {
1787 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
1788 tree lhs = edge_info->lhs;
1789 tree rhs = edge_info->rhs;
1790
1791 /* If we have a simple NAME = VALUE equivalence, record it. */
1792 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1793 record_const_or_copy (lhs, rhs);
1794
1795 /* If we have 0 = COND or 1 = COND equivalences, record them
1796 into our expression hash tables. */
1797 if (cond_equivalences)
1798 for (i = 0; i < edge_info->max_cond_equivalences; i++)
1799 record_cond (&cond_equivalences[i]);
1800 }
1801
1802 /* Now thread the edge. */
1803 dom_thread_across_edge (walk_data, false_edge);
1804
1805 /* No need to remove local expressions from our tables
1806 or restore vars to their original value as that will
1807 be done immediately below. */
1808 }
1809 }
1810
1811 remove_local_expressions_from_table ();
1812 restore_vars_to_original_value ();
1813 }
1814
1815 /* Search for redundant computations in STMT. If any are found, then
1816 replace them with the variable holding the result of the computation.
1817
1818 If safe, record this expression into the available expression hash
1819 table. */
1820
1821 static void
1822 eliminate_redundant_computations (gimple_stmt_iterator* gsi)
1823 {
1824 tree expr_type;
1825 tree cached_lhs;
1826 bool insert = true;
1827 bool assigns_var_p = false;
1828
1829 gimple stmt = gsi_stmt (*gsi);
1830
1831 tree def = gimple_get_lhs (stmt);
1832
1833 /* Certain expressions on the RHS can be optimized away, but can not
1834 themselves be entered into the hash tables. */
1835 if (! def
1836 || TREE_CODE (def) != SSA_NAME
1837 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1838 || gimple_vdef (stmt)
1839 /* Do not record equivalences for increments of ivs. This would create
1840 overlapping live ranges for a very questionable gain. */
1841 || simple_iv_increment_p (stmt))
1842 insert = false;
1843
1844 /* Check if the expression has been computed before. */
1845 cached_lhs = lookup_avail_expr (stmt, insert);
1846
1847 opt_stats.num_exprs_considered++;
1848
1849 /* Get the type of the expression we are trying to optimize. */
1850 if (is_gimple_assign (stmt))
1851 {
1852 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1853 assigns_var_p = true;
1854 }
1855 else if (gimple_code (stmt) == GIMPLE_COND)
1856 expr_type = boolean_type_node;
1857 else if (is_gimple_call (stmt))
1858 {
1859 gcc_assert (gimple_call_lhs (stmt));
1860 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1861 assigns_var_p = true;
1862 }
1863 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1864 expr_type = TREE_TYPE (gimple_switch_index (stmt));
1865 else
1866 gcc_unreachable ();
1867
1868 if (!cached_lhs)
1869 return;
1870
1871 /* It is safe to ignore types here since we have already done
1872 type checking in the hashing and equality routines. In fact
1873 type checking here merely gets in the way of constant
1874 propagation. Also, make sure that it is safe to propagate
1875 CACHED_LHS into the expression in STMT. */
1876 if ((TREE_CODE (cached_lhs) != SSA_NAME
1877 && (assigns_var_p
1878 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1879 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1880 {
1881 #if defined ENABLE_CHECKING
1882 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
1883 || is_gimple_min_invariant (cached_lhs));
1884 #endif
1885
1886 if (dump_file && (dump_flags & TDF_DETAILS))
1887 {
1888 fprintf (dump_file, " Replaced redundant expr '");
1889 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1890 fprintf (dump_file, "' with '");
1891 print_generic_expr (dump_file, cached_lhs, dump_flags);
1892 fprintf (dump_file, "'\n");
1893 }
1894
1895 opt_stats.num_re++;
1896
1897 if (assigns_var_p
1898 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1899 cached_lhs = fold_convert (expr_type, cached_lhs);
1900
1901 propagate_tree_value_into_stmt (gsi, cached_lhs);
1902
1903 /* Since it is always necessary to mark the result as modified,
1904 perhaps we should move this into propagate_tree_value_into_stmt
1905 itself. */
1906 gimple_set_modified (gsi_stmt (*gsi), true);
1907 }
1908 }
1909
1910 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1911 the available expressions table or the const_and_copies table.
1912 Detect and record those equivalences. */
1913 /* We handle only very simple copy equivalences here. The heavy
1914 lifing is done by eliminate_redundant_computations. */
1915
1916 static void
1917 record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
1918 {
1919 tree lhs;
1920 enum tree_code lhs_code;
1921
1922 gcc_assert (is_gimple_assign (stmt));
1923
1924 lhs = gimple_assign_lhs (stmt);
1925 lhs_code = TREE_CODE (lhs);
1926
1927 if (lhs_code == SSA_NAME
1928 && gimple_assign_single_p (stmt))
1929 {
1930 tree rhs = gimple_assign_rhs1 (stmt);
1931
1932 /* If the RHS of the assignment is a constant or another variable that
1933 may be propagated, register it in the CONST_AND_COPIES table. We
1934 do not need to record unwind data for this, since this is a true
1935 assignment and not an equivalence inferred from a comparison. All
1936 uses of this ssa name are dominated by this assignment, so unwinding
1937 just costs time and space. */
1938 if (may_optimize_p
1939 && (TREE_CODE (rhs) == SSA_NAME
1940 || is_gimple_min_invariant (rhs)))
1941 {
1942 if (dump_file && (dump_flags & TDF_DETAILS))
1943 {
1944 fprintf (dump_file, "==== ASGN ");
1945 print_generic_expr (dump_file, lhs, 0);
1946 fprintf (dump_file, " = ");
1947 print_generic_expr (dump_file, rhs, 0);
1948 fprintf (dump_file, "\n");
1949 }
1950
1951 set_ssa_name_value (lhs, rhs);
1952 }
1953 }
1954
1955 /* A memory store, even an aliased store, creates a useful
1956 equivalence. By exchanging the LHS and RHS, creating suitable
1957 vops and recording the result in the available expression table,
1958 we may be able to expose more redundant loads. */
1959 if (!gimple_has_volatile_ops (stmt)
1960 && gimple_references_memory_p (stmt)
1961 && gimple_assign_single_p (stmt)
1962 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1963 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1964 && !is_gimple_reg (lhs))
1965 {
1966 tree rhs = gimple_assign_rhs1 (stmt);
1967 gimple new_stmt;
1968
1969 /* Build a new statement with the RHS and LHS exchanged. */
1970 if (TREE_CODE (rhs) == SSA_NAME)
1971 {
1972 /* NOTE tuples. The call to gimple_build_assign below replaced
1973 a call to build_gimple_modify_stmt, which did not set the
1974 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1975 may cause an SSA validation failure, as the LHS may be a
1976 default-initialized name and should have no definition. I'm
1977 a bit dubious of this, as the artificial statement that we
1978 generate here may in fact be ill-formed, but it is simply
1979 used as an internal device in this pass, and never becomes
1980 part of the CFG. */
1981 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
1982 new_stmt = gimple_build_assign (rhs, lhs);
1983 SSA_NAME_DEF_STMT (rhs) = defstmt;
1984 }
1985 else
1986 new_stmt = gimple_build_assign (rhs, lhs);
1987
1988 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1989
1990 /* Finally enter the statement into the available expression
1991 table. */
1992 lookup_avail_expr (new_stmt, true);
1993 }
1994 }
1995
1996 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1997 CONST_AND_COPIES. */
1998
1999 static void
2000 cprop_operand (gimple stmt, use_operand_p op_p)
2001 {
2002 tree val;
2003 tree op = USE_FROM_PTR (op_p);
2004
2005 /* If the operand has a known constant value or it is known to be a
2006 copy of some other variable, use the value or copy stored in
2007 CONST_AND_COPIES. */
2008 val = SSA_NAME_VALUE (op);
2009 if (val && val != op)
2010 {
2011 /* Do not change the base variable in the virtual operand
2012 tables. That would make it impossible to reconstruct
2013 the renamed virtual operand if we later modify this
2014 statement. Also only allow the new value to be an SSA_NAME
2015 for propagation into virtual operands. */
2016 if (!is_gimple_reg (op)
2017 && (TREE_CODE (val) != SSA_NAME
2018 || is_gimple_reg (val)
2019 || get_virtual_var (val) != get_virtual_var (op)))
2020 return;
2021
2022 /* Do not replace hard register operands in asm statements. */
2023 if (gimple_code (stmt) == GIMPLE_ASM
2024 && !may_propagate_copy_into_asm (op))
2025 return;
2026
2027 /* Certain operands are not allowed to be copy propagated due
2028 to their interaction with exception handling and some GCC
2029 extensions. */
2030 if (!may_propagate_copy (op, val))
2031 return;
2032
2033 /* Do not propagate addresses that point to volatiles into memory
2034 stmts without volatile operands. */
2035 if (POINTER_TYPE_P (TREE_TYPE (val))
2036 && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
2037 && gimple_has_mem_ops (stmt)
2038 && !gimple_has_volatile_ops (stmt))
2039 return;
2040
2041 /* Do not propagate copies if the propagated value is at a deeper loop
2042 depth than the propagatee. Otherwise, this may move loop variant
2043 variables outside of their loops and prevent coalescing
2044 opportunities. If the value was loop invariant, it will be hoisted
2045 by LICM and exposed for copy propagation. */
2046 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2047 return;
2048
2049 /* Do not propagate copies into simple IV increment statements.
2050 See PR23821 for how this can disturb IV analysis. */
2051 if (TREE_CODE (val) != INTEGER_CST
2052 && simple_iv_increment_p (stmt))
2053 return;
2054
2055 /* Dump details. */
2056 if (dump_file && (dump_flags & TDF_DETAILS))
2057 {
2058 fprintf (dump_file, " Replaced '");
2059 print_generic_expr (dump_file, op, dump_flags);
2060 fprintf (dump_file, "' with %s '",
2061 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2062 print_generic_expr (dump_file, val, dump_flags);
2063 fprintf (dump_file, "'\n");
2064 }
2065
2066 if (TREE_CODE (val) != SSA_NAME)
2067 opt_stats.num_const_prop++;
2068 else
2069 opt_stats.num_copy_prop++;
2070
2071 propagate_value (op_p, val);
2072
2073 /* And note that we modified this statement. This is now
2074 safe, even if we changed virtual operands since we will
2075 rescan the statement and rewrite its operands again. */
2076 gimple_set_modified (stmt, true);
2077 }
2078 }
2079
2080 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2081 known value for that SSA_NAME (or NULL if no value is known).
2082
2083 Propagate values from CONST_AND_COPIES into the uses, vuses and
2084 vdef_ops of STMT. */
2085
2086 static void
2087 cprop_into_stmt (gimple stmt)
2088 {
2089 use_operand_p op_p;
2090 ssa_op_iter iter;
2091
2092 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2093 {
2094 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2095 cprop_operand (stmt, op_p);
2096 }
2097 }
2098
2099 /* Optimize the statement pointed to by iterator SI.
2100
2101 We try to perform some simplistic global redundancy elimination and
2102 constant propagation:
2103
2104 1- To detect global redundancy, we keep track of expressions that have
2105 been computed in this block and its dominators. If we find that the
2106 same expression is computed more than once, we eliminate repeated
2107 computations by using the target of the first one.
2108
2109 2- Constant values and copy assignments. This is used to do very
2110 simplistic constant and copy propagation. When a constant or copy
2111 assignment is found, we map the value on the RHS of the assignment to
2112 the variable in the LHS in the CONST_AND_COPIES table. */
2113
2114 static void
2115 optimize_stmt (basic_block bb, gimple_stmt_iterator si)
2116 {
2117 gimple stmt, old_stmt;
2118 bool may_optimize_p;
2119 bool modified_p = false;
2120
2121 old_stmt = stmt = gsi_stmt (si);
2122
2123 if (gimple_code (stmt) == GIMPLE_COND)
2124 canonicalize_comparison (stmt);
2125
2126 update_stmt_if_modified (stmt);
2127 opt_stats.num_stmts++;
2128
2129 if (dump_file && (dump_flags & TDF_DETAILS))
2130 {
2131 fprintf (dump_file, "Optimizing statement ");
2132 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2133 }
2134
2135 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2136 cprop_into_stmt (stmt);
2137
2138 /* If the statement has been modified with constant replacements,
2139 fold its RHS before checking for redundant computations. */
2140 if (gimple_modified_p (stmt))
2141 {
2142 tree rhs = NULL;
2143
2144 /* Try to fold the statement making sure that STMT is kept
2145 up to date. */
2146 if (fold_stmt (&si))
2147 {
2148 stmt = gsi_stmt (si);
2149 gimple_set_modified (stmt, true);
2150
2151 if (dump_file && (dump_flags & TDF_DETAILS))
2152 {
2153 fprintf (dump_file, " Folded to: ");
2154 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2155 }
2156 }
2157
2158 /* We only need to consider cases that can yield a gimple operand. */
2159 if (gimple_assign_single_p (stmt))
2160 rhs = gimple_assign_rhs1 (stmt);
2161 else if (gimple_code (stmt) == GIMPLE_GOTO)
2162 rhs = gimple_goto_dest (stmt);
2163 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2164 /* This should never be an ADDR_EXPR. */
2165 rhs = gimple_switch_index (stmt);
2166
2167 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2168 recompute_tree_invariant_for_addr_expr (rhs);
2169
2170 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2171 even if fold_stmt updated the stmt already and thus cleared
2172 gimple_modified_p flag on it. */
2173 modified_p = true;
2174 }
2175
2176 /* Check for redundant computations. Do this optimization only
2177 for assignments that have no volatile ops and conditionals. */
2178 may_optimize_p = (!gimple_has_volatile_ops (stmt)
2179 && ((is_gimple_assign (stmt)
2180 && !gimple_rhs_has_side_effects (stmt))
2181 || (is_gimple_call (stmt)
2182 && gimple_call_lhs (stmt) != NULL_TREE
2183 && !gimple_rhs_has_side_effects (stmt))
2184 || gimple_code (stmt) == GIMPLE_COND
2185 || gimple_code (stmt) == GIMPLE_SWITCH));
2186
2187 if (may_optimize_p)
2188 {
2189 if (gimple_code (stmt) == GIMPLE_CALL)
2190 {
2191 /* Resolve __builtin_constant_p. If it hasn't been
2192 folded to integer_one_node by now, it's fairly
2193 certain that the value simply isn't constant. */
2194 tree callee = gimple_call_fndecl (stmt);
2195 if (callee
2196 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2197 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2198 {
2199 propagate_tree_value_into_stmt (&si, integer_zero_node);
2200 stmt = gsi_stmt (si);
2201 }
2202 }
2203
2204 update_stmt_if_modified (stmt);
2205 eliminate_redundant_computations (&si);
2206 stmt = gsi_stmt (si);
2207 }
2208
2209 /* Record any additional equivalences created by this statement. */
2210 if (is_gimple_assign (stmt))
2211 record_equivalences_from_stmt (stmt, may_optimize_p);
2212
2213 /* If STMT is a COND_EXPR and it was modified, then we may know
2214 where it goes. If that is the case, then mark the CFG as altered.
2215
2216 This will cause us to later call remove_unreachable_blocks and
2217 cleanup_tree_cfg when it is safe to do so. It is not safe to
2218 clean things up here since removal of edges and such can trigger
2219 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2220 the manager.
2221
2222 That's all fine and good, except that once SSA_NAMEs are released
2223 to the manager, we must not call create_ssa_name until all references
2224 to released SSA_NAMEs have been eliminated.
2225
2226 All references to the deleted SSA_NAMEs can not be eliminated until
2227 we remove unreachable blocks.
2228
2229 We can not remove unreachable blocks until after we have completed
2230 any queued jump threading.
2231
2232 We can not complete any queued jump threads until we have taken
2233 appropriate variables out of SSA form. Taking variables out of
2234 SSA form can call create_ssa_name and thus we lose.
2235
2236 Ultimately I suspect we're going to need to change the interface
2237 into the SSA_NAME manager. */
2238 if (gimple_modified_p (stmt) || modified_p)
2239 {
2240 tree val = NULL;
2241
2242 update_stmt_if_modified (stmt);
2243
2244 if (gimple_code (stmt) == GIMPLE_COND)
2245 val = fold_binary_loc (gimple_location (stmt),
2246 gimple_cond_code (stmt), boolean_type_node,
2247 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
2248 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2249 val = gimple_switch_index (stmt);
2250
2251 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2252 cfg_altered = true;
2253
2254 /* If we simplified a statement in such a way as to be shown that it
2255 cannot trap, update the eh information and the cfg to match. */
2256 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2257 {
2258 bitmap_set_bit (need_eh_cleanup, bb->index);
2259 if (dump_file && (dump_flags & TDF_DETAILS))
2260 fprintf (dump_file, " Flagged to clear EH edges.\n");
2261 }
2262 }
2263 }
2264
2265 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2266 If found, return its LHS. Otherwise insert STMT in the table and
2267 return NULL_TREE.
2268
2269 Also, when an expression is first inserted in the table, it is also
2270 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2271 we finish processing this block and its children. */
2272
2273 static tree
2274 lookup_avail_expr (gimple stmt, bool insert)
2275 {
2276 void **slot;
2277 tree lhs;
2278 tree temp;
2279 struct expr_hash_elt element;
2280
2281 /* Get LHS of assignment or call, else NULL_TREE. */
2282 lhs = gimple_get_lhs (stmt);
2283
2284 initialize_hash_element (stmt, lhs, &element);
2285
2286 if (dump_file && (dump_flags & TDF_DETAILS))
2287 {
2288 fprintf (dump_file, "LKUP ");
2289 print_expr_hash_elt (dump_file, &element);
2290 }
2291
2292 /* Don't bother remembering constant assignments and copy operations.
2293 Constants and copy operations are handled by the constant/copy propagator
2294 in optimize_stmt. */
2295 if (element.expr.kind == EXPR_SINGLE
2296 && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
2297 || is_gimple_min_invariant (element.expr.ops.single.rhs)))
2298 return NULL_TREE;
2299
2300 /* Finally try to find the expression in the main expression hash table. */
2301 slot = htab_find_slot_with_hash (avail_exprs, &element, element.hash,
2302 (insert ? INSERT : NO_INSERT));
2303 if (slot == NULL)
2304 return NULL_TREE;
2305
2306 if (*slot == NULL)
2307 {
2308 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2309 *element2 = element;
2310 element2->stamp = element2;
2311 *slot = (void *) element2;
2312
2313 if (dump_file && (dump_flags & TDF_DETAILS))
2314 {
2315 fprintf (dump_file, "2>>> ");
2316 print_expr_hash_elt (dump_file, element2);
2317 }
2318
2319 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element2);
2320 return NULL_TREE;
2321 }
2322
2323 /* Extract the LHS of the assignment so that it can be used as the current
2324 definition of another variable. */
2325 lhs = ((struct expr_hash_elt *)*slot)->lhs;
2326
2327 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2328 use the value from the const_and_copies table. */
2329 if (TREE_CODE (lhs) == SSA_NAME)
2330 {
2331 temp = SSA_NAME_VALUE (lhs);
2332 if (temp)
2333 lhs = temp;
2334 }
2335
2336 if (dump_file && (dump_flags & TDF_DETAILS))
2337 {
2338 fprintf (dump_file, "FIND: ");
2339 print_generic_expr (dump_file, lhs, 0);
2340 fprintf (dump_file, "\n");
2341 }
2342
2343 return lhs;
2344 }
2345
2346 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2347 for expressions using the code of the expression and the SSA numbers of
2348 its operands. */
2349
2350 static hashval_t
2351 avail_expr_hash (const void *p)
2352 {
2353 gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
2354 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
2355 tree vuse;
2356 hashval_t val = 0;
2357
2358 val = iterative_hash_hashable_expr (expr, val);
2359
2360 /* If the hash table entry is not associated with a statement, then we
2361 can just hash the expression and not worry about virtual operands
2362 and such. */
2363 if (!stmt)
2364 return val;
2365
2366 /* Add the SSA version numbers of the vuse operand. This is important
2367 because compound variables like arrays are not renamed in the
2368 operands. Rather, the rename is done on the virtual variable
2369 representing all the elements of the array. */
2370 if ((vuse = gimple_vuse (stmt)))
2371 val = iterative_hash_expr (vuse, val);
2372
2373 return val;
2374 }
2375
2376 static hashval_t
2377 real_avail_expr_hash (const void *p)
2378 {
2379 return ((const struct expr_hash_elt *)p)->hash;
2380 }
2381
2382 static int
2383 avail_expr_eq (const void *p1, const void *p2)
2384 {
2385 gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt;
2386 const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr;
2387 const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp;
2388 gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt;
2389 const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr;
2390 const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp;
2391
2392 /* This case should apply only when removing entries from the table. */
2393 if (stamp1 == stamp2)
2394 return true;
2395
2396 /* FIXME tuples:
2397 We add stmts to a hash table and them modify them. To detect the case
2398 that we modify a stmt and then search for it, we assume that the hash
2399 is always modified by that change.
2400 We have to fully check why this doesn't happen on trunk or rewrite
2401 this in a more reliable (and easier to understand) way. */
2402 if (((const struct expr_hash_elt *)p1)->hash
2403 != ((const struct expr_hash_elt *)p2)->hash)
2404 return false;
2405
2406 /* In case of a collision, both RHS have to be identical and have the
2407 same VUSE operands. */
2408 if (hashable_expr_equal_p (expr1, expr2)
2409 && types_compatible_p (expr1->type, expr2->type))
2410 {
2411 /* Note that STMT1 and/or STMT2 may be NULL. */
2412 return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
2413 == (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
2414 }
2415
2416 return false;
2417 }
2418
2419 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2420 up degenerate PHIs created by or exposed by jump threading. */
2421
2422 /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
2423 NULL. */
2424
2425 tree
2426 degenerate_phi_result (gimple phi)
2427 {
2428 tree lhs = gimple_phi_result (phi);
2429 tree val = NULL;
2430 size_t i;
2431
2432 /* Ignoring arguments which are the same as LHS, if all the remaining
2433 arguments are the same, then the PHI is a degenerate and has the
2434 value of that common argument. */
2435 for (i = 0; i < gimple_phi_num_args (phi); i++)
2436 {
2437 tree arg = gimple_phi_arg_def (phi, i);
2438
2439 if (arg == lhs)
2440 continue;
2441 else if (!arg)
2442 break;
2443 else if (!val)
2444 val = arg;
2445 else if (arg == val)
2446 continue;
2447 /* We bring in some of operand_equal_p not only to speed things
2448 up, but also to avoid crashing when dereferencing the type of
2449 a released SSA name. */
2450 else if (TREE_CODE (val) != TREE_CODE (arg)
2451 || TREE_CODE (val) == SSA_NAME
2452 || !operand_equal_p (arg, val, 0))
2453 break;
2454 }
2455 return (i == gimple_phi_num_args (phi) ? val : NULL);
2456 }
2457
2458 /* Given a statement STMT, which is either a PHI node or an assignment,
2459 remove it from the IL. */
2460
2461 static void
2462 remove_stmt_or_phi (gimple stmt)
2463 {
2464 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2465
2466 if (gimple_code (stmt) == GIMPLE_PHI)
2467 remove_phi_node (&gsi, true);
2468 else
2469 {
2470 gsi_remove (&gsi, true);
2471 release_defs (stmt);
2472 }
2473 }
2474
2475 /* Given a statement STMT, which is either a PHI node or an assignment,
2476 return the "rhs" of the node, in the case of a non-degenerate
2477 phi, NULL is returned. */
2478
2479 static tree
2480 get_rhs_or_phi_arg (gimple stmt)
2481 {
2482 if (gimple_code (stmt) == GIMPLE_PHI)
2483 return degenerate_phi_result (stmt);
2484 else if (gimple_assign_single_p (stmt))
2485 return gimple_assign_rhs1 (stmt);
2486 else
2487 gcc_unreachable ();
2488 }
2489
2490
2491 /* Given a statement STMT, which is either a PHI node or an assignment,
2492 return the "lhs" of the node. */
2493
2494 static tree
2495 get_lhs_or_phi_result (gimple stmt)
2496 {
2497 if (gimple_code (stmt) == GIMPLE_PHI)
2498 return gimple_phi_result (stmt);
2499 else if (is_gimple_assign (stmt))
2500 return gimple_assign_lhs (stmt);
2501 else
2502 gcc_unreachable ();
2503 }
2504
2505 /* Propagate RHS into all uses of LHS (when possible).
2506
2507 RHS and LHS are derived from STMT, which is passed in solely so
2508 that we can remove it if propagation is successful.
2509
2510 When propagating into a PHI node or into a statement which turns
2511 into a trivial copy or constant initialization, set the
2512 appropriate bit in INTERESTING_NAMEs so that we will visit those
2513 nodes as well in an effort to pick up secondary optimization
2514 opportunities. */
2515
2516 static void
2517 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
2518 {
2519 /* First verify that propagation is valid and isn't going to move a
2520 loop variant variable outside its loop. */
2521 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2522 && (TREE_CODE (rhs) != SSA_NAME
2523 || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
2524 && may_propagate_copy (lhs, rhs)
2525 && loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
2526 {
2527 use_operand_p use_p;
2528 imm_use_iterator iter;
2529 gimple use_stmt;
2530 bool all = true;
2531
2532 /* Dump details. */
2533 if (dump_file && (dump_flags & TDF_DETAILS))
2534 {
2535 fprintf (dump_file, " Replacing '");
2536 print_generic_expr (dump_file, lhs, dump_flags);
2537 fprintf (dump_file, "' with %s '",
2538 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
2539 print_generic_expr (dump_file, rhs, dump_flags);
2540 fprintf (dump_file, "'\n");
2541 }
2542
2543 /* Walk over every use of LHS and try to replace the use with RHS.
2544 At this point the only reason why such a propagation would not
2545 be successful would be if the use occurs in an ASM_EXPR. */
2546 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2547 {
2548 /* Leave debug stmts alone. If we succeed in propagating
2549 all non-debug uses, we'll drop the DEF, and propagation
2550 into debug stmts will occur then. */
2551 if (gimple_debug_bind_p (use_stmt))
2552 continue;
2553
2554 /* It's not always safe to propagate into an ASM_EXPR. */
2555 if (gimple_code (use_stmt) == GIMPLE_ASM
2556 && ! may_propagate_copy_into_asm (lhs))
2557 {
2558 all = false;
2559 continue;
2560 }
2561
2562 /* Dump details. */
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2564 {
2565 fprintf (dump_file, " Original statement:");
2566 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2567 }
2568
2569 /* Propagate the RHS into this use of the LHS. */
2570 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2571 propagate_value (use_p, rhs);
2572
2573 /* Special cases to avoid useless calls into the folding
2574 routines, operand scanning, etc.
2575
2576 First, propagation into a PHI may cause the PHI to become
2577 a degenerate, so mark the PHI as interesting. No other
2578 actions are necessary.
2579
2580 Second, if we're propagating a virtual operand and the
2581 propagation does not change the underlying _DECL node for
2582 the virtual operand, then no further actions are necessary. */
2583 if (gimple_code (use_stmt) == GIMPLE_PHI
2584 || (! is_gimple_reg (lhs)
2585 && TREE_CODE (rhs) == SSA_NAME
2586 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs)))
2587 {
2588 /* Dump details. */
2589 if (dump_file && (dump_flags & TDF_DETAILS))
2590 {
2591 fprintf (dump_file, " Updated statement:");
2592 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2593 }
2594
2595 /* Propagation into a PHI may expose new degenerate PHIs,
2596 so mark the result of the PHI as interesting. */
2597 if (gimple_code (use_stmt) == GIMPLE_PHI)
2598 {
2599 tree result = get_lhs_or_phi_result (use_stmt);
2600 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2601 }
2602
2603 continue;
2604 }
2605
2606 /* From this point onward we are propagating into a
2607 real statement. Folding may (or may not) be possible,
2608 we may expose new operands, expose dead EH edges,
2609 etc. */
2610 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2611 cannot fold a call that simplifies to a constant,
2612 because the GIMPLE_CALL must be replaced by a
2613 GIMPLE_ASSIGN, and there is no way to effect such a
2614 transformation in-place. We might want to consider
2615 using the more general fold_stmt here. */
2616 fold_stmt_inplace (use_stmt);
2617
2618 /* Sometimes propagation can expose new operands to the
2619 renamer. */
2620 update_stmt (use_stmt);
2621
2622 /* Dump details. */
2623 if (dump_file && (dump_flags & TDF_DETAILS))
2624 {
2625 fprintf (dump_file, " Updated statement:");
2626 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2627 }
2628
2629 /* If we replaced a variable index with a constant, then
2630 we would need to update the invariant flag for ADDR_EXPRs. */
2631 if (gimple_assign_single_p (use_stmt)
2632 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
2633 recompute_tree_invariant_for_addr_expr
2634 (gimple_assign_rhs1 (use_stmt));
2635
2636 /* If we cleaned up EH information from the statement,
2637 mark its containing block as needing EH cleanups. */
2638 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
2639 {
2640 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
2641 if (dump_file && (dump_flags & TDF_DETAILS))
2642 fprintf (dump_file, " Flagged to clear EH edges.\n");
2643 }
2644
2645 /* Propagation may expose new trivial copy/constant propagation
2646 opportunities. */
2647 if (gimple_assign_single_p (use_stmt)
2648 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
2649 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
2650 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
2651 {
2652 tree result = get_lhs_or_phi_result (use_stmt);
2653 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2654 }
2655
2656 /* Propagation into these nodes may make certain edges in
2657 the CFG unexecutable. We want to identify them as PHI nodes
2658 at the destination of those unexecutable edges may become
2659 degenerates. */
2660 else if (gimple_code (use_stmt) == GIMPLE_COND
2661 || gimple_code (use_stmt) == GIMPLE_SWITCH
2662 || gimple_code (use_stmt) == GIMPLE_GOTO)
2663 {
2664 tree val;
2665
2666 if (gimple_code (use_stmt) == GIMPLE_COND)
2667 val = fold_binary_loc (gimple_location (use_stmt),
2668 gimple_cond_code (use_stmt),
2669 boolean_type_node,
2670 gimple_cond_lhs (use_stmt),
2671 gimple_cond_rhs (use_stmt));
2672 else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
2673 val = gimple_switch_index (use_stmt);
2674 else
2675 val = gimple_goto_dest (use_stmt);
2676
2677 if (val && is_gimple_min_invariant (val))
2678 {
2679 basic_block bb = gimple_bb (use_stmt);
2680 edge te = find_taken_edge (bb, val);
2681 edge_iterator ei;
2682 edge e;
2683 gimple_stmt_iterator gsi, psi;
2684
2685 /* Remove all outgoing edges except TE. */
2686 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
2687 {
2688 if (e != te)
2689 {
2690 /* Mark all the PHI nodes at the destination of
2691 the unexecutable edge as interesting. */
2692 for (psi = gsi_start_phis (e->dest);
2693 !gsi_end_p (psi);
2694 gsi_next (&psi))
2695 {
2696 gimple phi = gsi_stmt (psi);
2697
2698 tree result = gimple_phi_result (phi);
2699 int version = SSA_NAME_VERSION (result);
2700
2701 bitmap_set_bit (interesting_names, version);
2702 }
2703
2704 te->probability += e->probability;
2705
2706 te->count += e->count;
2707 remove_edge (e);
2708 cfg_altered = true;
2709 }
2710 else
2711 ei_next (&ei);
2712 }
2713
2714 gsi = gsi_last_bb (gimple_bb (use_stmt));
2715 gsi_remove (&gsi, true);
2716
2717 /* And fixup the flags on the single remaining edge. */
2718 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
2719 te->flags &= ~EDGE_ABNORMAL;
2720 te->flags |= EDGE_FALLTHRU;
2721 if (te->probability > REG_BR_PROB_BASE)
2722 te->probability = REG_BR_PROB_BASE;
2723 }
2724 }
2725 }
2726
2727 /* Ensure there is nothing else to do. */
2728 gcc_assert (!all || has_zero_uses (lhs));
2729
2730 /* If we were able to propagate away all uses of LHS, then
2731 we can remove STMT. */
2732 if (all)
2733 remove_stmt_or_phi (stmt);
2734 }
2735 }
2736
2737 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2738 a statement that is a trivial copy or constant initialization.
2739
2740 Attempt to eliminate T by propagating its RHS into all uses of
2741 its LHS. This may in turn set new bits in INTERESTING_NAMES
2742 for nodes we want to revisit later.
2743
2744 All exit paths should clear INTERESTING_NAMES for the result
2745 of STMT. */
2746
2747 static void
2748 eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
2749 {
2750 tree lhs = get_lhs_or_phi_result (stmt);
2751 tree rhs;
2752 int version = SSA_NAME_VERSION (lhs);
2753
2754 /* If the LHS of this statement or PHI has no uses, then we can
2755 just eliminate it. This can occur if, for example, the PHI
2756 was created by block duplication due to threading and its only
2757 use was in the conditional at the end of the block which was
2758 deleted. */
2759 if (has_zero_uses (lhs))
2760 {
2761 bitmap_clear_bit (interesting_names, version);
2762 remove_stmt_or_phi (stmt);
2763 return;
2764 }
2765
2766 /* Get the RHS of the assignment or PHI node if the PHI is a
2767 degenerate. */
2768 rhs = get_rhs_or_phi_arg (stmt);
2769 if (!rhs)
2770 {
2771 bitmap_clear_bit (interesting_names, version);
2772 return;
2773 }
2774
2775 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
2776
2777 /* Note that STMT may well have been deleted by now, so do
2778 not access it, instead use the saved version # to clear
2779 T's entry in the worklist. */
2780 bitmap_clear_bit (interesting_names, version);
2781 }
2782
2783 /* The first phase in degenerate PHI elimination.
2784
2785 Eliminate the degenerate PHIs in BB, then recurse on the
2786 dominator children of BB. */
2787
2788 static void
2789 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
2790 {
2791 gimple_stmt_iterator gsi;
2792 basic_block son;
2793
2794 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2795 {
2796 gimple phi = gsi_stmt (gsi);
2797
2798 eliminate_const_or_copy (phi, interesting_names);
2799 }
2800
2801 /* Recurse into the dominator children of BB. */
2802 for (son = first_dom_son (CDI_DOMINATORS, bb);
2803 son;
2804 son = next_dom_son (CDI_DOMINATORS, son))
2805 eliminate_degenerate_phis_1 (son, interesting_names);
2806 }
2807
2808
2809 /* A very simple pass to eliminate degenerate PHI nodes from the
2810 IL. This is meant to be fast enough to be able to be run several
2811 times in the optimization pipeline.
2812
2813 Certain optimizations, particularly those which duplicate blocks
2814 or remove edges from the CFG can create or expose PHIs which are
2815 trivial copies or constant initializations.
2816
2817 While we could pick up these optimizations in DOM or with the
2818 combination of copy-prop and CCP, those solutions are far too
2819 heavy-weight for our needs.
2820
2821 This implementation has two phases so that we can efficiently
2822 eliminate the first order degenerate PHIs and second order
2823 degenerate PHIs.
2824
2825 The first phase performs a dominator walk to identify and eliminate
2826 the vast majority of the degenerate PHIs. When a degenerate PHI
2827 is identified and eliminated any affected statements or PHIs
2828 are put on a worklist.
2829
2830 The second phase eliminates degenerate PHIs and trivial copies
2831 or constant initializations using the worklist. This is how we
2832 pick up the secondary optimization opportunities with minimal
2833 cost. */
2834
2835 static unsigned int
2836 eliminate_degenerate_phis (void)
2837 {
2838 bitmap interesting_names;
2839 bitmap interesting_names1;
2840
2841 /* Bitmap of blocks which need EH information updated. We can not
2842 update it on-the-fly as doing so invalidates the dominator tree. */
2843 need_eh_cleanup = BITMAP_ALLOC (NULL);
2844
2845 /* INTERESTING_NAMES is effectively our worklist, indexed by
2846 SSA_NAME_VERSION.
2847
2848 A set bit indicates that the statement or PHI node which
2849 defines the SSA_NAME should be (re)examined to determine if
2850 it has become a degenerate PHI or trivial const/copy propagation
2851 opportunity.
2852
2853 Experiments have show we generally get better compilation
2854 time behavior with bitmaps rather than sbitmaps. */
2855 interesting_names = BITMAP_ALLOC (NULL);
2856 interesting_names1 = BITMAP_ALLOC (NULL);
2857
2858 calculate_dominance_info (CDI_DOMINATORS);
2859 cfg_altered = false;
2860
2861 /* First phase. Eliminate degenerate PHIs via a dominator
2862 walk of the CFG.
2863
2864 Experiments have indicated that we generally get better
2865 compile-time behavior by visiting blocks in the first
2866 phase in dominator order. Presumably this is because walking
2867 in dominator order leaves fewer PHIs for later examination
2868 by the worklist phase. */
2869 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names);
2870
2871 /* Second phase. Eliminate second order degenerate PHIs as well
2872 as trivial copies or constant initializations identified by
2873 the first phase or this phase. Basically we keep iterating
2874 until our set of INTERESTING_NAMEs is empty. */
2875 while (!bitmap_empty_p (interesting_names))
2876 {
2877 unsigned int i;
2878 bitmap_iterator bi;
2879
2880 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
2881 changed during the loop. Copy it to another bitmap and
2882 use that. */
2883 bitmap_copy (interesting_names1, interesting_names);
2884
2885 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
2886 {
2887 tree name = ssa_name (i);
2888
2889 /* Ignore SSA_NAMEs that have been released because
2890 their defining statement was deleted (unreachable). */
2891 if (name)
2892 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
2893 interesting_names);
2894 }
2895 }
2896
2897 if (cfg_altered)
2898 free_dominance_info (CDI_DOMINATORS);
2899
2900 /* Propagation of const and copies may make some EH edges dead. Purge
2901 such edges from the CFG as needed. */
2902 if (!bitmap_empty_p (need_eh_cleanup))
2903 {
2904 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
2905 BITMAP_FREE (need_eh_cleanup);
2906 }
2907
2908 BITMAP_FREE (interesting_names);
2909 BITMAP_FREE (interesting_names1);
2910 return 0;
2911 }
2912
2913 struct gimple_opt_pass pass_phi_only_cprop =
2914 {
2915 {
2916 GIMPLE_PASS,
2917 "phicprop", /* name */
2918 gate_dominator, /* gate */
2919 eliminate_degenerate_phis, /* execute */
2920 NULL, /* sub */
2921 NULL, /* next */
2922 0, /* static_pass_number */
2923 TV_TREE_PHI_CPROP, /* tv_id */
2924 PROP_cfg | PROP_ssa, /* properties_required */
2925 0, /* properties_provided */
2926 0, /* properties_destroyed */
2927 0, /* todo_flags_start */
2928 TODO_cleanup_cfg
2929 | TODO_dump_func
2930 | TODO_ggc_collect
2931 | TODO_verify_ssa
2932 | TODO_verify_stmts
2933 | TODO_update_ssa /* todo_flags_finish */
2934 }
2935 };