re PR tree-optimization/19038 (tree-ssa causing loops to have more than one BB)
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "errors.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "domwalk.h"
41 #include "real.h"
42 #include "tree-pass.h"
43 #include "tree-ssa-propagate.h"
44 #include "langhooks.h"
45
46 /* This file implements optimizations on the dominator tree. */
47
48
49 /* Structure for recording edge equivalences as well as any pending
50 edge redirections during the dominator optimizer.
51
52 Computing and storing the edge equivalences instead of creating
53 them on-demand can save significant amounts of time, particularly
54 for pathological cases involving switch statements.
55
56 These structures live for a single iteration of the dominator
57 optimizer in the edge's AUX field. At the end of an iteration we
58 free each of these structures and update the AUX field to point
59 to any requested redirection target (the code for updating the
60 CFG and SSA graph for edge redirection expects redirection edge
61 targets to be in the AUX field for each edge. */
62
63 struct edge_info
64 {
65 /* If this edge creates a simple equivalence, the LHS and RHS of
66 the equivalence will be stored here. */
67 tree lhs;
68 tree rhs;
69
70 /* Traversing an edge may also indicate one or more particular conditions
71 are true or false. The number of recorded conditions can vary, but
72 can be determined by the condition's code. So we have an array
73 and its maximum index rather than use a varray. */
74 tree *cond_equivalences;
75 unsigned int max_cond_equivalences;
76
77 /* If we can thread this edge this field records the new target. */
78 edge redirection_target;
79 };
80
81
82 /* Hash table with expressions made available during the renaming process.
83 When an assignment of the form X_i = EXPR is found, the statement is
84 stored in this table. If the same expression EXPR is later found on the
85 RHS of another statement, it is replaced with X_i (thus performing
86 global redundancy elimination). Similarly as we pass through conditionals
87 we record the conditional itself as having either a true or false value
88 in this table. */
89 static htab_t avail_exprs;
90
91 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
92 expressions it enters into the hash table along with a marker entry
93 (null). When we finish processing the block, we pop off entries and
94 remove the expressions from the global hash table until we hit the
95 marker. */
96 static VEC(tree_on_heap) *avail_exprs_stack;
97
98 /* Stack of trees used to restore the global currdefs to its original
99 state after completing optimization of a block and its dominator children.
100
101 An SSA_NAME indicates that the current definition of the underlying
102 variable should be set to the given SSA_NAME.
103
104 A _DECL node indicates that the underlying variable has no current
105 definition.
106
107 A NULL node is used to mark the last node associated with the
108 current block. */
109 static VEC(tree_on_heap) *block_defs_stack;
110
111 /* Stack of statements we need to rescan during finalization for newly
112 exposed variables.
113
114 Statement rescanning must occur after the current block's available
115 expressions are removed from AVAIL_EXPRS. Else we may change the
116 hash code for an expression and be unable to find/remove it from
117 AVAIL_EXPRS. */
118 static VEC(tree_on_heap) *stmts_to_rescan;
119
120 /* Structure for entries in the expression hash table.
121
122 This requires more memory for the hash table entries, but allows us
123 to avoid creating silly tree nodes and annotations for conditionals,
124 eliminates 2 global hash tables and two block local varrays.
125
126 It also allows us to reduce the number of hash table lookups we
127 have to perform in lookup_avail_expr and finally it allows us to
128 significantly reduce the number of calls into the hashing routine
129 itself. */
130
131 struct expr_hash_elt
132 {
133 /* The value (lhs) of this expression. */
134 tree lhs;
135
136 /* The expression (rhs) we want to record. */
137 tree rhs;
138
139 /* The annotation if this element corresponds to a statement. */
140 stmt_ann_t ann;
141
142 /* The hash value for RHS/ann. */
143 hashval_t hash;
144 };
145
146 /* Stack of dest,src pairs that need to be restored during finalization.
147
148 A NULL entry is used to mark the end of pairs which need to be
149 restored during finalization of this block. */
150 static VEC(tree_on_heap) *const_and_copies_stack;
151
152 /* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
153 know their exact value. */
154 static bitmap nonzero_vars;
155
156 /* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
157 when the current block is finalized.
158
159 A NULL entry is used to mark the end of names needing their
160 entry in NONZERO_VARS cleared during finalization of this block. */
161 static VEC(tree_on_heap) *nonzero_vars_stack;
162
163 /* Track whether or not we have changed the control flow graph. */
164 static bool cfg_altered;
165
166 /* Bitmap of blocks that have had EH statements cleaned. We should
167 remove their dead edges eventually. */
168 static bitmap need_eh_cleanup;
169
170 /* Statistics for dominator optimizations. */
171 struct opt_stats_d
172 {
173 long num_stmts;
174 long num_exprs_considered;
175 long num_re;
176 };
177
178 static struct opt_stats_d opt_stats;
179
180 /* Value range propagation record. Each time we encounter a conditional
181 of the form SSA_NAME COND CONST we create a new vrp_element to record
182 how the condition affects the possible values SSA_NAME may have.
183
184 Each record contains the condition tested (COND), and the the range of
185 values the variable may legitimately have if COND is true. Note the
186 range of values may be a smaller range than COND specifies if we have
187 recorded other ranges for this variable. Each record also contains the
188 block in which the range was recorded for invalidation purposes.
189
190 Note that the current known range is computed lazily. This allows us
191 to avoid the overhead of computing ranges which are never queried.
192
193 When we encounter a conditional, we look for records which constrain
194 the SSA_NAME used in the condition. In some cases those records allow
195 us to determine the condition's result at compile time. In other cases
196 they may allow us to simplify the condition.
197
198 We also use value ranges to do things like transform signed div/mod
199 operations into unsigned div/mod or to simplify ABS_EXPRs.
200
201 Simple experiments have shown these optimizations to not be all that
202 useful on switch statements (much to my surprise). So switch statement
203 optimizations are not performed.
204
205 Note carefully we do not propagate information through each statement
206 in the block. i.e., if we know variable X has a value defined of
207 [0, 25] and we encounter Y = X + 1, we do not track a value range
208 for Y (which would be [1, 26] if we cared). Similarly we do not
209 constrain values as we encounter narrowing typecasts, etc. */
210
211 struct vrp_element
212 {
213 /* The highest and lowest values the variable in COND may contain when
214 COND is true. Note this may not necessarily be the same values
215 tested by COND if the same variable was used in earlier conditionals.
216
217 Note this is computed lazily and thus can be NULL indicating that
218 the values have not been computed yet. */
219 tree low;
220 tree high;
221
222 /* The actual conditional we recorded. This is needed since we compute
223 ranges lazily. */
224 tree cond;
225
226 /* The basic block where this record was created. We use this to determine
227 when to remove records. */
228 basic_block bb;
229 };
230
231 /* A hash table holding value range records (VRP_ELEMENTs) for a given
232 SSA_NAME. We used to use a varray indexed by SSA_NAME_VERSION, but
233 that gets awful wasteful, particularly since the density objects
234 with useful information is very low. */
235 static htab_t vrp_data;
236
237 /* An entry in the VRP_DATA hash table. We record the variable and a
238 varray of VRP_ELEMENT records associated with that variable. */
239 struct vrp_hash_elt
240 {
241 tree var;
242 varray_type records;
243 };
244
245 /* Array of variables which have their values constrained by operations
246 in this basic block. We use this during finalization to know
247 which variables need their VRP data updated. */
248
249 /* Stack of SSA_NAMEs which had their values constrainted by operations
250 in this basic block. During finalization of this block we use this
251 list to determine which variables need their VRP data updated.
252
253 A NULL entry marks the end of the SSA_NAMEs associated with this block. */
254 static VEC(tree_on_heap) *vrp_variables_stack;
255
256 struct eq_expr_value
257 {
258 tree src;
259 tree dst;
260 };
261
262 /* Local functions. */
263 static void optimize_stmt (struct dom_walk_data *,
264 basic_block bb,
265 block_stmt_iterator);
266 static tree lookup_avail_expr (tree, bool);
267 static hashval_t vrp_hash (const void *);
268 static int vrp_eq (const void *, const void *);
269 static hashval_t avail_expr_hash (const void *);
270 static hashval_t real_avail_expr_hash (const void *);
271 static int avail_expr_eq (const void *, const void *);
272 static void htab_statistics (FILE *, htab_t);
273 static void record_cond (tree, tree);
274 static void record_const_or_copy (tree, tree);
275 static void record_equality (tree, tree);
276 static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
277 static tree simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *,
278 tree, int);
279 static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
280 static tree simplify_switch_and_lookup_avail_expr (tree, int);
281 static tree find_equivalent_equality_comparison (tree);
282 static void record_range (tree, basic_block);
283 static bool extract_range_from_cond (tree, tree *, tree *, int *);
284 static void record_equivalences_from_phis (basic_block);
285 static void record_equivalences_from_incoming_edge (basic_block);
286 static bool eliminate_redundant_computations (struct dom_walk_data *,
287 tree, stmt_ann_t);
288 static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
289 static void thread_across_edge (struct dom_walk_data *, edge);
290 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
291 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
292 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
293 static void remove_local_expressions_from_table (void);
294 static void restore_vars_to_original_value (void);
295 static void restore_currdefs_to_original_value (void);
296 static void register_definitions_for_stmt (tree);
297 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
298 static void restore_nonzero_vars_to_original_value (void);
299 static inline bool unsafe_associative_fp_binop (tree);
300
301 /* Local version of fold that doesn't introduce cruft. */
302
303 static tree
304 local_fold (tree t)
305 {
306 t = fold (t);
307
308 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
309 may have been added by fold, and "useless" type conversions that might
310 now be apparent due to propagation. */
311 STRIP_USELESS_TYPE_CONVERSION (t);
312
313 return t;
314 }
315
316 /* Allocate an EDGE_INFO for edge E and attach it to E.
317 Return the new EDGE_INFO structure. */
318
319 static struct edge_info *
320 allocate_edge_info (edge e)
321 {
322 struct edge_info *edge_info;
323
324 edge_info = xcalloc (1, sizeof (struct edge_info));
325
326 e->aux = edge_info;
327 return edge_info;
328 }
329
330 /* Free all EDGE_INFO structures associated with edges in the CFG.
331 If a particular edge can be threaded, copy the redirection
332 target from the EDGE_INFO structure into the edge's AUX field
333 as required by code to update the CFG and SSA graph for
334 jump threading. */
335
336 static void
337 free_all_edge_infos (void)
338 {
339 basic_block bb;
340 edge_iterator ei;
341 edge e;
342
343 FOR_EACH_BB (bb)
344 {
345 FOR_EACH_EDGE (e, ei, bb->preds)
346 {
347 struct edge_info *edge_info = e->aux;
348
349 if (edge_info)
350 {
351 e->aux = edge_info->redirection_target;
352 if (edge_info->cond_equivalences)
353 free (edge_info->cond_equivalences);
354 free (edge_info);
355 }
356 }
357 }
358 }
359
360 /* Jump threading, redundancy elimination and const/copy propagation.
361
362 This pass may expose new symbols that need to be renamed into SSA. For
363 every new symbol exposed, its corresponding bit will be set in
364 VARS_TO_RENAME. */
365
366 static void
367 tree_ssa_dominator_optimize (void)
368 {
369 struct dom_walk_data walk_data;
370 unsigned int i;
371
372 memset (&opt_stats, 0, sizeof (opt_stats));
373
374 for (i = 0; i < num_referenced_vars; i++)
375 var_ann (referenced_var (i))->current_def = NULL;
376
377 /* Create our hash tables. */
378 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
379 vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq, free);
380 avail_exprs_stack = VEC_alloc (tree_on_heap, 20);
381 block_defs_stack = VEC_alloc (tree_on_heap, 20);
382 const_and_copies_stack = VEC_alloc (tree_on_heap, 20);
383 nonzero_vars_stack = VEC_alloc (tree_on_heap, 20);
384 vrp_variables_stack = VEC_alloc (tree_on_heap, 20);
385 stmts_to_rescan = VEC_alloc (tree_on_heap, 20);
386 nonzero_vars = BITMAP_XMALLOC ();
387 need_eh_cleanup = BITMAP_XMALLOC ();
388
389 /* Setup callbacks for the generic dominator tree walker. */
390 walk_data.walk_stmts_backward = false;
391 walk_data.dom_direction = CDI_DOMINATORS;
392 walk_data.initialize_block_local_data = NULL;
393 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
394 walk_data.before_dom_children_walk_stmts = optimize_stmt;
395 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
396 walk_data.after_dom_children_before_stmts = NULL;
397 walk_data.after_dom_children_walk_stmts = NULL;
398 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
399 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
400 When we attach more stuff we'll need to fill this out with a real
401 structure. */
402 walk_data.global_data = NULL;
403 walk_data.block_local_data_size = 0;
404
405 /* Now initialize the dominator walker. */
406 init_walk_dominator_tree (&walk_data);
407
408 calculate_dominance_info (CDI_DOMINATORS);
409
410 /* If we prove certain blocks are unreachable, then we want to
411 repeat the dominator optimization process as PHI nodes may
412 have turned into copies which allows better propagation of
413 values. So we repeat until we do not identify any new unreachable
414 blocks. */
415 do
416 {
417 /* Optimize the dominator tree. */
418 cfg_altered = false;
419
420 /* Recursively walk the dominator tree optimizing statements. */
421 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
422
423 /* If we exposed any new variables, go ahead and put them into
424 SSA form now, before we handle jump threading. This simplifies
425 interactions between rewriting of _DECL nodes into SSA form
426 and rewriting SSA_NAME nodes into SSA form after block
427 duplication and CFG manipulation. */
428 if (!bitmap_empty_p (vars_to_rename))
429 {
430 rewrite_into_ssa (false);
431 bitmap_clear (vars_to_rename);
432 }
433
434 free_all_edge_infos ();
435
436 /* Thread jumps, creating duplicate blocks as needed. */
437 cfg_altered = thread_through_all_blocks ();
438
439 /* Removal of statements may make some EH edges dead. Purge
440 such edges from the CFG as needed. */
441 if (!bitmap_empty_p (need_eh_cleanup))
442 {
443 cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
444 bitmap_zero (need_eh_cleanup);
445 }
446
447 free_dominance_info (CDI_DOMINATORS);
448 cfg_altered = cleanup_tree_cfg ();
449 calculate_dominance_info (CDI_DOMINATORS);
450
451 rewrite_ssa_into_ssa ();
452
453 /* Reinitialize the various tables. */
454 bitmap_clear (nonzero_vars);
455 htab_empty (avail_exprs);
456 htab_empty (vrp_data);
457
458 for (i = 0; i < num_referenced_vars; i++)
459 var_ann (referenced_var (i))->current_def = NULL;
460
461 /* Finally, remove everything except invariants in SSA_NAME_VALUE.
462
463 This must be done before we iterate as we might have a
464 reference to an SSA_NAME which was removed by the call to
465 rewrite_ssa_into_ssa.
466
467 Long term we will be able to let everything in SSA_NAME_VALUE
468 persist. However, for now, we know this is the safe thing to do. */
469 for (i = 0; i < num_ssa_names; i++)
470 {
471 tree name = ssa_name (i);
472 tree value;
473
474 if (!name)
475 continue;
476
477 value = SSA_NAME_VALUE (name);
478 if (value && !is_gimple_min_invariant (value))
479 SSA_NAME_VALUE (name) = NULL;
480 }
481 }
482 while (cfg_altered);
483
484 /* Debugging dumps. */
485 if (dump_file && (dump_flags & TDF_STATS))
486 dump_dominator_optimization_stats (dump_file);
487
488 /* We emptied the hash table earlier, now delete it completely. */
489 htab_delete (avail_exprs);
490 htab_delete (vrp_data);
491
492 /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
493 CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
494 of the do-while loop above. */
495
496 /* And finalize the dominator walker. */
497 fini_walk_dominator_tree (&walk_data);
498
499 /* Free nonzero_vars. */
500 BITMAP_XFREE (nonzero_vars);
501 BITMAP_XFREE (need_eh_cleanup);
502
503 VEC_free (tree_on_heap, block_defs_stack);
504 VEC_free (tree_on_heap, avail_exprs_stack);
505 VEC_free (tree_on_heap, const_and_copies_stack);
506 VEC_free (tree_on_heap, nonzero_vars_stack);
507 VEC_free (tree_on_heap, vrp_variables_stack);
508 VEC_free (tree_on_heap, stmts_to_rescan);
509 }
510
511 static bool
512 gate_dominator (void)
513 {
514 return flag_tree_dom != 0;
515 }
516
517 struct tree_opt_pass pass_dominator =
518 {
519 "dom", /* name */
520 gate_dominator, /* gate */
521 tree_ssa_dominator_optimize, /* execute */
522 NULL, /* sub */
523 NULL, /* next */
524 0, /* static_pass_number */
525 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
526 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
527 0, /* properties_provided */
528 0, /* properties_destroyed */
529 0, /* todo_flags_start */
530 TODO_dump_func | TODO_rename_vars
531 | TODO_verify_ssa, /* todo_flags_finish */
532 0 /* letter */
533 };
534
535
536 /* We are exiting BB, see if the target block begins with a conditional
537 jump which has a known value when reached via BB. */
538
539 static void
540 thread_across_edge (struct dom_walk_data *walk_data, edge e)
541 {
542 block_stmt_iterator bsi;
543 tree stmt = NULL;
544 tree phi;
545
546 /* Each PHI creates a temporary equivalence, record them. */
547 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
548 {
549 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
550 tree dst = PHI_RESULT (phi);
551
552 /* If the desired argument is not the same as this PHI's result
553 and it is set by a PHI in this block, then we can not thread
554 through this block. */
555 if (src != dst
556 && TREE_CODE (src) == SSA_NAME
557 && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
558 && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
559 return;
560
561 record_const_or_copy (dst, src);
562 register_new_def (dst, &block_defs_stack);
563 }
564
565 for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
566 {
567 tree lhs, cached_lhs;
568
569 stmt = bsi_stmt (bsi);
570
571 /* Ignore empty statements and labels. */
572 if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
573 continue;
574
575 /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
576 value, then stop our search here. Ideally when we stop a
577 search we stop on a COND_EXPR or SWITCH_EXPR. */
578 if (TREE_CODE (stmt) != MODIFY_EXPR
579 || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
580 break;
581
582 /* At this point we have a statement which assigns an RHS to an
583 SSA_VAR on the LHS. We want to prove that the RHS is already
584 available and that its value is held in the current definition
585 of the LHS -- meaning that this assignment is a NOP when
586 reached via edge E. */
587 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
588 cached_lhs = TREE_OPERAND (stmt, 1);
589 else
590 cached_lhs = lookup_avail_expr (stmt, false);
591
592 lhs = TREE_OPERAND (stmt, 0);
593
594 /* This can happen if we thread around to the start of a loop. */
595 if (lhs == cached_lhs)
596 break;
597
598 /* If we did not find RHS in the hash table, then try again after
599 temporarily const/copy propagating the operands. */
600 if (!cached_lhs)
601 {
602 /* Copy the operands. */
603 stmt_ann_t ann = stmt_ann (stmt);
604 use_optype uses = USE_OPS (ann);
605 vuse_optype vuses = VUSE_OPS (ann);
606 tree *uses_copy = xcalloc (NUM_USES (uses), sizeof (tree));
607 tree *vuses_copy = xcalloc (NUM_VUSES (vuses), sizeof (tree));
608 unsigned int i;
609
610 /* Make a copy of the uses into USES_COPY, then cprop into
611 the use operands. */
612 for (i = 0; i < NUM_USES (uses); i++)
613 {
614 tree tmp = NULL;
615
616 uses_copy[i] = USE_OP (uses, i);
617 if (TREE_CODE (USE_OP (uses, i)) == SSA_NAME)
618 tmp = SSA_NAME_VALUE (USE_OP (uses, i));
619 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
620 SET_USE_OP (uses, i, tmp);
621 }
622
623 /* Similarly for virtual uses. */
624 for (i = 0; i < NUM_VUSES (vuses); i++)
625 {
626 tree tmp = NULL;
627
628 vuses_copy[i] = VUSE_OP (vuses, i);
629 if (TREE_CODE (VUSE_OP (vuses, i)) == SSA_NAME)
630 tmp = SSA_NAME_VALUE (VUSE_OP (vuses, i));
631 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
632 SET_VUSE_OP (vuses, i, tmp);
633 }
634
635 /* Try to lookup the new expression. */
636 cached_lhs = lookup_avail_expr (stmt, false);
637
638 /* Restore the statement's original uses/defs. */
639 for (i = 0; i < NUM_USES (uses); i++)
640 SET_USE_OP (uses, i, uses_copy[i]);
641
642 for (i = 0; i < NUM_VUSES (vuses); i++)
643 SET_VUSE_OP (vuses, i, vuses_copy[i]);
644
645 free (uses_copy);
646 free (vuses_copy);
647
648 /* If we still did not find the expression in the hash table,
649 then we can not ignore this statement. */
650 if (! cached_lhs)
651 break;
652 }
653
654 /* If the expression in the hash table was not assigned to an
655 SSA_NAME, then we can not ignore this statement. */
656 if (TREE_CODE (cached_lhs) != SSA_NAME)
657 break;
658
659 /* If we have different underlying variables, then we can not
660 ignore this statement. */
661 if (SSA_NAME_VAR (cached_lhs) != SSA_NAME_VAR (lhs))
662 break;
663
664 /* If CACHED_LHS does not represent the current value of the underlying
665 variable in CACHED_LHS/LHS, then we can not ignore this statement. */
666 if (var_ann (SSA_NAME_VAR (lhs))->current_def != cached_lhs)
667 break;
668
669 /* If we got here, then we can ignore this statement and continue
670 walking through the statements in the block looking for a threadable
671 COND_EXPR.
672
673 We want to record an equivalence lhs = cache_lhs so that if
674 the result of this statement is used later we can copy propagate
675 suitably. */
676 record_const_or_copy (lhs, cached_lhs);
677 register_new_def (lhs, &block_defs_stack);
678 }
679
680 /* If we stopped at a COND_EXPR or SWITCH_EXPR, then see if we know which
681 arm will be taken. */
682 if (stmt
683 && (TREE_CODE (stmt) == COND_EXPR
684 || TREE_CODE (stmt) == SWITCH_EXPR))
685 {
686 tree cond, cached_lhs;
687
688 /* Now temporarily cprop the operands and try to find the resulting
689 expression in the hash tables. */
690 if (TREE_CODE (stmt) == COND_EXPR)
691 cond = COND_EXPR_COND (stmt);
692 else
693 cond = SWITCH_COND (stmt);
694
695 if (COMPARISON_CLASS_P (cond))
696 {
697 tree dummy_cond, op0, op1;
698 enum tree_code cond_code;
699
700 op0 = TREE_OPERAND (cond, 0);
701 op1 = TREE_OPERAND (cond, 1);
702 cond_code = TREE_CODE (cond);
703
704 /* Get the current value of both operands. */
705 if (TREE_CODE (op0) == SSA_NAME)
706 {
707 tree tmp = SSA_NAME_VALUE (op0);
708 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
709 op0 = tmp;
710 }
711
712 if (TREE_CODE (op1) == SSA_NAME)
713 {
714 tree tmp = SSA_NAME_VALUE (op1);
715 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
716 op1 = tmp;
717 }
718
719 /* Stuff the operator and operands into our dummy conditional
720 expression, creating the dummy conditional if necessary. */
721 dummy_cond = walk_data->global_data;
722 if (! dummy_cond)
723 {
724 dummy_cond = build (cond_code, boolean_type_node, op0, op1);
725 dummy_cond = build (COND_EXPR, void_type_node,
726 dummy_cond, NULL, NULL);
727 walk_data->global_data = dummy_cond;
728 }
729 else
730 {
731 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
732 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
733 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
734 }
735
736 /* If the conditional folds to an invariant, then we are done,
737 otherwise look it up in the hash tables. */
738 cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
739 if (! is_gimple_min_invariant (cached_lhs))
740 {
741 cached_lhs = lookup_avail_expr (dummy_cond, false);
742 if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
743 cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
744 NULL,
745 false);
746 }
747 }
748 /* We can have conditionals which just test the state of a
749 variable rather than use a relational operator. These are
750 simpler to handle. */
751 else if (TREE_CODE (cond) == SSA_NAME)
752 {
753 cached_lhs = cond;
754 cached_lhs = SSA_NAME_VALUE (cached_lhs);
755 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
756 cached_lhs = 0;
757 }
758 else
759 cached_lhs = lookup_avail_expr (stmt, false);
760
761 if (cached_lhs)
762 {
763 edge taken_edge = find_taken_edge (e->dest, cached_lhs);
764 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
765
766 if (dest == e->dest)
767 return;
768
769 /* If we have a known destination for the conditional, then
770 we can perform this optimization, which saves at least one
771 conditional jump each time it applies since we get to
772 bypass the conditional at our original destination. */
773 if (dest)
774 {
775 struct edge_info *edge_info;
776
777 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
778 e->count, taken_edge);
779 if (e->aux)
780 edge_info = e->aux;
781 else
782 edge_info = allocate_edge_info (e);
783 edge_info->redirection_target = taken_edge;
784 bb_ann (e->dest)->incoming_edge_threaded = true;
785 }
786 }
787 }
788 }
789
790
791 /* Initialize local stacks for this optimizer and record equivalences
792 upon entry to BB. Equivalences can come from the edge traversed to
793 reach BB or they may come from PHI nodes at the start of BB. */
794
795 static void
796 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
797 basic_block bb)
798 {
799 if (dump_file && (dump_flags & TDF_DETAILS))
800 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
801
802 /* Push a marker on the stacks of local information so that we know how
803 far to unwind when we finalize this block. */
804 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
805 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
806 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
807 VEC_safe_push (tree_on_heap, nonzero_vars_stack, NULL_TREE);
808 VEC_safe_push (tree_on_heap, vrp_variables_stack, NULL_TREE);
809
810 record_equivalences_from_incoming_edge (bb);
811
812 /* PHI nodes can create equivalences too. */
813 record_equivalences_from_phis (bb);
814 }
815
816 /* Given an expression EXPR (a relational expression or a statement),
817 initialize the hash table element pointed by by ELEMENT. */
818
819 static void
820 initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
821 {
822 /* Hash table elements may be based on conditional expressions or statements.
823
824 For the former case, we have no annotation and we want to hash the
825 conditional expression. In the latter case we have an annotation and
826 we want to record the expression the statement evaluates. */
827 if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
828 {
829 element->ann = NULL;
830 element->rhs = expr;
831 }
832 else if (TREE_CODE (expr) == COND_EXPR)
833 {
834 element->ann = stmt_ann (expr);
835 element->rhs = COND_EXPR_COND (expr);
836 }
837 else if (TREE_CODE (expr) == SWITCH_EXPR)
838 {
839 element->ann = stmt_ann (expr);
840 element->rhs = SWITCH_COND (expr);
841 }
842 else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
843 {
844 element->ann = stmt_ann (expr);
845 element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
846 }
847 else
848 {
849 element->ann = stmt_ann (expr);
850 element->rhs = TREE_OPERAND (expr, 1);
851 }
852
853 element->lhs = lhs;
854 element->hash = avail_expr_hash (element);
855 }
856
857 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
858 LIMIT entries left in LOCALs. */
859
860 static void
861 remove_local_expressions_from_table (void)
862 {
863 /* Remove all the expressions made available in this block. */
864 while (VEC_length (tree_on_heap, avail_exprs_stack) > 0)
865 {
866 struct expr_hash_elt element;
867 tree expr = VEC_pop (tree_on_heap, avail_exprs_stack);
868
869 if (expr == NULL_TREE)
870 break;
871
872 initialize_hash_element (expr, NULL, &element);
873 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
874 }
875 }
876
877 /* Use the SSA_NAMES in LOCALS to restore TABLE to its original
878 state, stopping when there are LIMIT entries left in LOCALs. */
879
880 static void
881 restore_nonzero_vars_to_original_value (void)
882 {
883 while (VEC_length (tree_on_heap, nonzero_vars_stack) > 0)
884 {
885 tree name = VEC_pop (tree_on_heap, nonzero_vars_stack);
886
887 if (name == NULL)
888 break;
889
890 bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
891 }
892 }
893
894 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
895 CONST_AND_COPIES to its original state, stopping when we hit a
896 NULL marker. */
897
898 static void
899 restore_vars_to_original_value (void)
900 {
901 while (VEC_length (tree_on_heap, const_and_copies_stack) > 0)
902 {
903 tree prev_value, dest;
904
905 dest = VEC_pop (tree_on_heap, const_and_copies_stack);
906
907 if (dest == NULL)
908 break;
909
910 prev_value = VEC_pop (tree_on_heap, const_and_copies_stack);
911 SSA_NAME_VALUE (dest) = prev_value;
912 }
913 }
914
915 /* Similar to restore_vars_to_original_value, except that it restores
916 CURRDEFS to its original value. */
917 static void
918 restore_currdefs_to_original_value (void)
919 {
920 /* Restore CURRDEFS to its original state. */
921 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
922 {
923 tree tmp = VEC_pop (tree_on_heap, block_defs_stack);
924 tree saved_def, var;
925
926 if (tmp == NULL_TREE)
927 break;
928
929 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
930 definition of its underlying variable. If we recorded anything
931 else, it must have been an _DECL node and its current reaching
932 definition must have been NULL. */
933 if (TREE_CODE (tmp) == SSA_NAME)
934 {
935 saved_def = tmp;
936 var = SSA_NAME_VAR (saved_def);
937 }
938 else
939 {
940 saved_def = NULL;
941 var = tmp;
942 }
943
944 var_ann (var)->current_def = saved_def;
945 }
946 }
947
948 /* We have finished processing the dominator children of BB, perform
949 any finalization actions in preparation for leaving this node in
950 the dominator tree. */
951
952 static void
953 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
954 {
955 tree last;
956
957 /* If we are at a leaf node in the dominator tree, see if we can thread
958 the edge from BB through its successor.
959
960 Do this before we remove entries from our equivalence tables. */
961 if (EDGE_COUNT (bb->succs) == 1
962 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
963 && (get_immediate_dominator (CDI_DOMINATORS, EDGE_SUCC (bb, 0)->dest) != bb
964 || phi_nodes (EDGE_SUCC (bb, 0)->dest)))
965
966 {
967 thread_across_edge (walk_data, EDGE_SUCC (bb, 0));
968 }
969 else if ((last = last_stmt (bb))
970 && TREE_CODE (last) == COND_EXPR
971 && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
972 || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
973 && EDGE_COUNT (bb->succs) == 2
974 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
975 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
976 {
977 edge true_edge, false_edge;
978
979 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
980
981 /* If the THEN arm is the end of a dominator tree or has PHI nodes,
982 then try to thread through its edge. */
983 if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
984 || phi_nodes (true_edge->dest))
985 {
986 struct edge_info *edge_info;
987 unsigned int i;
988
989 /* Push a marker onto the available expression stack so that we
990 unwind any expressions related to the TRUE arm before processing
991 the false arm below. */
992 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
993 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
994 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
995
996 edge_info = true_edge->aux;
997
998 /* If we have info associated with this edge, record it into
999 our equivalency tables. */
1000 if (edge_info)
1001 {
1002 tree *cond_equivalences = edge_info->cond_equivalences;
1003 tree lhs = edge_info->lhs;
1004 tree rhs = edge_info->rhs;
1005
1006 /* If we have a simple NAME = VALUE equivalency record it.
1007 Until the jump threading selection code improves, only
1008 do this if both the name and value are SSA_NAMEs with
1009 the same underlying variable to avoid missing threading
1010 opportunities. */
1011 if (lhs
1012 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME
1013 && TREE_CODE (edge_info->rhs) == SSA_NAME
1014 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs))
1015 record_const_or_copy (lhs, rhs);
1016
1017 /* If we have 0 = COND or 1 = COND equivalences, record them
1018 into our expression hash tables. */
1019 if (cond_equivalences)
1020 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1021 {
1022 tree expr = cond_equivalences[i];
1023 tree value = cond_equivalences[i + 1];
1024
1025 record_cond (expr, value);
1026 }
1027 }
1028
1029 /* Now thread the edge. */
1030 thread_across_edge (walk_data, true_edge);
1031
1032 /* And restore the various tables to their state before
1033 we threaded this edge. */
1034 remove_local_expressions_from_table ();
1035 restore_vars_to_original_value ();
1036 restore_currdefs_to_original_value ();
1037 }
1038
1039 /* Similarly for the ELSE arm. */
1040 if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
1041 || phi_nodes (false_edge->dest))
1042 {
1043 struct edge_info *edge_info;
1044 unsigned int i;
1045
1046 edge_info = false_edge->aux;
1047
1048 /* If we have info associated with this edge, record it into
1049 our equivalency tables. */
1050 if (edge_info)
1051 {
1052 tree *cond_equivalences = edge_info->cond_equivalences;
1053 tree lhs = edge_info->lhs;
1054 tree rhs = edge_info->rhs;
1055
1056 /* If we have a simple NAME = VALUE equivalency record it.
1057 Until the jump threading selection code improves, only
1058 do this if both the name and value are SSA_NAMEs with
1059 the same underlying variable to avoid missing threading
1060 opportunities. */
1061 if (lhs
1062 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1063 record_const_or_copy (lhs, rhs);
1064
1065 /* If we have 0 = COND or 1 = COND equivalences, record them
1066 into our expression hash tables. */
1067 if (cond_equivalences)
1068 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1069 {
1070 tree expr = cond_equivalences[i];
1071 tree value = cond_equivalences[i + 1];
1072
1073 record_cond (expr, value);
1074 }
1075 }
1076
1077 thread_across_edge (walk_data, false_edge);
1078
1079 /* No need to remove local expressions from our tables
1080 or restore vars to their original value as that will
1081 be done immediately below. */
1082 }
1083 }
1084
1085 remove_local_expressions_from_table ();
1086 restore_nonzero_vars_to_original_value ();
1087 restore_vars_to_original_value ();
1088 restore_currdefs_to_original_value ();
1089
1090 /* Remove VRP records associated with this basic block. They are no
1091 longer valid.
1092
1093 To be efficient, we note which variables have had their values
1094 constrained in this block. So walk over each variable in the
1095 VRP_VARIABLEs array. */
1096 while (VEC_length (tree_on_heap, vrp_variables_stack) > 0)
1097 {
1098 tree var = VEC_pop (tree_on_heap, vrp_variables_stack);
1099 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1100 void **slot;
1101
1102 /* Each variable has a stack of value range records. We want to
1103 invalidate those associated with our basic block. So we walk
1104 the array backwards popping off records associated with our
1105 block. Once we hit a record not associated with our block
1106 we are done. */
1107 varray_type var_vrp_records;
1108
1109 if (var == NULL)
1110 break;
1111
1112 vrp_hash_elt.var = var;
1113 vrp_hash_elt.records = NULL;
1114
1115 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
1116
1117 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
1118 var_vrp_records = vrp_hash_elt_p->records;
1119
1120 while (VARRAY_ACTIVE_SIZE (var_vrp_records) > 0)
1121 {
1122 struct vrp_element *element
1123 = (struct vrp_element *)VARRAY_TOP_GENERIC_PTR (var_vrp_records);
1124
1125 if (element->bb != bb)
1126 break;
1127
1128 VARRAY_POP (var_vrp_records);
1129 }
1130 }
1131
1132 /* If we queued any statements to rescan in this block, then
1133 go ahead and rescan them now. */
1134 while (VEC_length (tree_on_heap, stmts_to_rescan) > 0)
1135 {
1136 tree stmt = VEC_last (tree_on_heap, stmts_to_rescan);
1137 basic_block stmt_bb = bb_for_stmt (stmt);
1138
1139 if (stmt_bb != bb)
1140 break;
1141
1142 VEC_pop (tree_on_heap, stmts_to_rescan);
1143 mark_new_vars_to_rename (stmt, vars_to_rename);
1144 }
1145 }
1146
1147 /* PHI nodes can create equivalences too.
1148
1149 Ignoring any alternatives which are the same as the result, if
1150 all the alternatives are equal, then the PHI node creates an
1151 equivalence.
1152
1153 Additionally, if all the PHI alternatives are known to have a nonzero
1154 value, then the result of this PHI is known to have a nonzero value,
1155 even if we do not know its exact value. */
1156
1157 static void
1158 record_equivalences_from_phis (basic_block bb)
1159 {
1160 tree phi;
1161
1162 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1163 {
1164 tree lhs = PHI_RESULT (phi);
1165 tree rhs = NULL;
1166 int i;
1167
1168 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1169 {
1170 tree t = PHI_ARG_DEF (phi, i);
1171
1172 /* Ignore alternatives which are the same as our LHS. Since
1173 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1174 can simply compare pointers. */
1175 if (lhs == t)
1176 continue;
1177
1178 /* If we have not processed an alternative yet, then set
1179 RHS to this alternative. */
1180 if (rhs == NULL)
1181 rhs = t;
1182 /* If we have processed an alternative (stored in RHS), then
1183 see if it is equal to this one. If it isn't, then stop
1184 the search. */
1185 else if (! operand_equal_for_phi_arg_p (rhs, t))
1186 break;
1187 }
1188
1189 /* If we had no interesting alternatives, then all the RHS alternatives
1190 must have been the same as LHS. */
1191 if (!rhs)
1192 rhs = lhs;
1193
1194 /* If we managed to iterate through each PHI alternative without
1195 breaking out of the loop, then we have a PHI which may create
1196 a useful equivalence. We do not need to record unwind data for
1197 this, since this is a true assignment and not an equivalence
1198 inferred from a comparison. All uses of this ssa name are dominated
1199 by this assignment, so unwinding just costs time and space. */
1200 if (i == PHI_NUM_ARGS (phi)
1201 && may_propagate_copy (lhs, rhs))
1202 SSA_NAME_VALUE (lhs) = rhs;
1203
1204 /* Now see if we know anything about the nonzero property for the
1205 result of this PHI. */
1206 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1207 {
1208 if (!PHI_ARG_NONZERO (phi, i))
1209 break;
1210 }
1211
1212 if (i == PHI_NUM_ARGS (phi))
1213 bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
1214
1215 register_new_def (lhs, &block_defs_stack);
1216 }
1217 }
1218
1219 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1220 return that edge. Otherwise return NULL. */
1221 static edge
1222 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1223 {
1224 edge retval = NULL;
1225 edge e;
1226 edge_iterator ei;
1227
1228 FOR_EACH_EDGE (e, ei, bb->preds)
1229 {
1230 /* A loop back edge can be identified by the destination of
1231 the edge dominating the source of the edge. */
1232 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1233 continue;
1234
1235 /* If we have already seen a non-loop edge, then we must have
1236 multiple incoming non-loop edges and thus we return NULL. */
1237 if (retval)
1238 return NULL;
1239
1240 /* This is the first non-loop incoming edge we have found. Record
1241 it. */
1242 retval = e;
1243 }
1244
1245 return retval;
1246 }
1247
1248 /* Record any equivalences created by the incoming edge to BB. If BB
1249 has more than one incoming edge, then no equivalence is created. */
1250
1251 static void
1252 record_equivalences_from_incoming_edge (basic_block bb)
1253 {
1254 edge e;
1255 basic_block parent;
1256 struct edge_info *edge_info;
1257
1258 /* If our parent block ended with a control statment, then we may be
1259 able to record some equivalences based on which outgoing edge from
1260 the parent was followed. */
1261 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1262
1263 e = single_incoming_edge_ignoring_loop_edges (bb);
1264
1265 /* If we had a single incoming edge from our parent block, then enter
1266 any data associated with the edge into our tables. */
1267 if (e && e->src == parent)
1268 {
1269 unsigned int i;
1270
1271 edge_info = e->aux;
1272
1273 if (edge_info)
1274 {
1275 tree lhs = edge_info->lhs;
1276 tree rhs = edge_info->rhs;
1277 tree *cond_equivalences = edge_info->cond_equivalences;
1278
1279 if (lhs)
1280 record_equality (lhs, rhs);
1281
1282 if (cond_equivalences)
1283 {
1284 bool recorded_range = false;
1285 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1286 {
1287 tree expr = cond_equivalences[i];
1288 tree value = cond_equivalences[i + 1];
1289
1290 record_cond (expr, value);
1291
1292 /* For the first true equivalence, record range
1293 information. We only do this for the first
1294 true equivalence as it should dominate any
1295 later true equivalences. */
1296 if (! recorded_range
1297 && COMPARISON_CLASS_P (expr)
1298 && value == boolean_true_node
1299 && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
1300 {
1301 record_range (expr, bb);
1302 recorded_range = true;
1303 }
1304 }
1305 }
1306 }
1307 }
1308 }
1309
1310 /* Dump SSA statistics on FILE. */
1311
1312 void
1313 dump_dominator_optimization_stats (FILE *file)
1314 {
1315 long n_exprs;
1316
1317 fprintf (file, "Total number of statements: %6ld\n\n",
1318 opt_stats.num_stmts);
1319 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1320 opt_stats.num_exprs_considered);
1321
1322 n_exprs = opt_stats.num_exprs_considered;
1323 if (n_exprs == 0)
1324 n_exprs = 1;
1325
1326 fprintf (file, " Redundant expressions eliminated: %6ld (%.0f%%)\n",
1327 opt_stats.num_re, PERCENT (opt_stats.num_re,
1328 n_exprs));
1329
1330 fprintf (file, "\nHash table statistics:\n");
1331
1332 fprintf (file, " avail_exprs: ");
1333 htab_statistics (file, avail_exprs);
1334 }
1335
1336
1337 /* Dump SSA statistics on stderr. */
1338
1339 void
1340 debug_dominator_optimization_stats (void)
1341 {
1342 dump_dominator_optimization_stats (stderr);
1343 }
1344
1345
1346 /* Dump statistics for the hash table HTAB. */
1347
1348 static void
1349 htab_statistics (FILE *file, htab_t htab)
1350 {
1351 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1352 (long) htab_size (htab),
1353 (long) htab_elements (htab),
1354 htab_collisions (htab));
1355 }
1356
1357 /* Record the fact that VAR has a nonzero value, though we may not know
1358 its exact value. Note that if VAR is already known to have a nonzero
1359 value, then we do nothing. */
1360
1361 static void
1362 record_var_is_nonzero (tree var)
1363 {
1364 int indx = SSA_NAME_VERSION (var);
1365
1366 if (bitmap_bit_p (nonzero_vars, indx))
1367 return;
1368
1369 /* Mark it in the global table. */
1370 bitmap_set_bit (nonzero_vars, indx);
1371
1372 /* Record this SSA_NAME so that we can reset the global table
1373 when we leave this block. */
1374 VEC_safe_push (tree_on_heap, nonzero_vars_stack, var);
1375 }
1376
1377 /* Enter a statement into the true/false expression hash table indicating
1378 that the condition COND has the value VALUE. */
1379
1380 static void
1381 record_cond (tree cond, tree value)
1382 {
1383 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
1384 void **slot;
1385
1386 initialize_hash_element (cond, value, element);
1387
1388 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1389 element->hash, true);
1390 if (*slot == NULL)
1391 {
1392 *slot = (void *) element;
1393 VEC_safe_push (tree_on_heap, avail_exprs_stack, cond);
1394 }
1395 else
1396 free (element);
1397 }
1398
1399 /* Build a new conditional using NEW_CODE, OP0 and OP1 and store
1400 the new conditional into *p, then store a boolean_true_node
1401 into the the *(p + 1). */
1402
1403 static void
1404 build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
1405 {
1406 *p = build2 (new_code, boolean_type_node, op0, op1);
1407 p++;
1408 *p = boolean_true_node;
1409 }
1410
1411 /* Record that COND is true and INVERTED is false into the edge information
1412 structure. Also record that any conditions dominated by COND are true
1413 as well.
1414
1415 For example, if a < b is true, then a <= b must also be true. */
1416
1417 static void
1418 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1419 {
1420 tree op0, op1;
1421
1422 if (!COMPARISON_CLASS_P (cond))
1423 return;
1424
1425 op0 = TREE_OPERAND (cond, 0);
1426 op1 = TREE_OPERAND (cond, 1);
1427
1428 switch (TREE_CODE (cond))
1429 {
1430 case LT_EXPR:
1431 case GT_EXPR:
1432 edge_info->max_cond_equivalences = 12;
1433 edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
1434 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1435 ? LE_EXPR : GE_EXPR),
1436 op0, op1, &edge_info->cond_equivalences[4]);
1437 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1438 &edge_info->cond_equivalences[6]);
1439 build_and_record_new_cond (NE_EXPR, op0, op1,
1440 &edge_info->cond_equivalences[8]);
1441 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1442 &edge_info->cond_equivalences[10]);
1443 break;
1444
1445 case GE_EXPR:
1446 case LE_EXPR:
1447 edge_info->max_cond_equivalences = 6;
1448 edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
1449 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1450 &edge_info->cond_equivalences[4]);
1451 break;
1452
1453 case EQ_EXPR:
1454 edge_info->max_cond_equivalences = 10;
1455 edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
1456 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1457 &edge_info->cond_equivalences[4]);
1458 build_and_record_new_cond (LE_EXPR, op0, op1,
1459 &edge_info->cond_equivalences[6]);
1460 build_and_record_new_cond (GE_EXPR, op0, op1,
1461 &edge_info->cond_equivalences[8]);
1462 break;
1463
1464 case UNORDERED_EXPR:
1465 edge_info->max_cond_equivalences = 16;
1466 edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
1467 build_and_record_new_cond (NE_EXPR, op0, op1,
1468 &edge_info->cond_equivalences[4]);
1469 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1470 &edge_info->cond_equivalences[6]);
1471 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1472 &edge_info->cond_equivalences[8]);
1473 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1474 &edge_info->cond_equivalences[10]);
1475 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1476 &edge_info->cond_equivalences[12]);
1477 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1478 &edge_info->cond_equivalences[14]);
1479 break;
1480
1481 case UNLT_EXPR:
1482 case UNGT_EXPR:
1483 edge_info->max_cond_equivalences = 8;
1484 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1485 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1486 ? UNLE_EXPR : UNGE_EXPR),
1487 op0, op1, &edge_info->cond_equivalences[4]);
1488 build_and_record_new_cond (NE_EXPR, op0, op1,
1489 &edge_info->cond_equivalences[6]);
1490 break;
1491
1492 case UNEQ_EXPR:
1493 edge_info->max_cond_equivalences = 8;
1494 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1495 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1496 &edge_info->cond_equivalences[4]);
1497 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1498 &edge_info->cond_equivalences[6]);
1499 break;
1500
1501 case LTGT_EXPR:
1502 edge_info->max_cond_equivalences = 8;
1503 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1504 build_and_record_new_cond (NE_EXPR, op0, op1,
1505 &edge_info->cond_equivalences[4]);
1506 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1507 &edge_info->cond_equivalences[6]);
1508 break;
1509
1510 default:
1511 edge_info->max_cond_equivalences = 4;
1512 edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
1513 break;
1514 }
1515
1516 /* Now store the original true and false conditions into the first
1517 two slots. */
1518 edge_info->cond_equivalences[0] = cond;
1519 edge_info->cond_equivalences[1] = boolean_true_node;
1520 edge_info->cond_equivalences[2] = inverted;
1521 edge_info->cond_equivalences[3] = boolean_false_node;
1522 }
1523
1524 /* A helper function for record_const_or_copy and record_equality.
1525 Do the work of recording the value and undo info. */
1526
1527 static void
1528 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1529 {
1530 SSA_NAME_VALUE (x) = y;
1531
1532 VEC_safe_push (tree_on_heap, const_and_copies_stack, prev_x);
1533 VEC_safe_push (tree_on_heap, const_and_copies_stack, x);
1534 }
1535
1536
1537 /* Return the loop depth of the basic block of the defining statement of X.
1538 This number should not be treated as absolutely correct because the loop
1539 information may not be completely up-to-date when dom runs. However, it
1540 will be relatively correct, and as more passes are taught to keep loop info
1541 up to date, the result will become more and more accurate. */
1542
1543 static int
1544 loop_depth_of_name (tree x)
1545 {
1546 tree defstmt;
1547 basic_block defbb;
1548
1549 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1550 if (TREE_CODE (x) != SSA_NAME)
1551 return 0;
1552
1553 /* Otherwise return the loop depth of the defining statement's bb.
1554 Note that there may not actually be a bb for this statement, if the
1555 ssa_name is live on entry. */
1556 defstmt = SSA_NAME_DEF_STMT (x);
1557 defbb = bb_for_stmt (defstmt);
1558 if (!defbb)
1559 return 0;
1560
1561 return defbb->loop_depth;
1562 }
1563
1564
1565 /* Record that X is equal to Y in const_and_copies. Record undo
1566 information in the block-local vector. */
1567
1568 static void
1569 record_const_or_copy (tree x, tree y)
1570 {
1571 tree prev_x = SSA_NAME_VALUE (x);
1572
1573 if (TREE_CODE (y) == SSA_NAME)
1574 {
1575 tree tmp = SSA_NAME_VALUE (y);
1576 if (tmp)
1577 y = tmp;
1578 }
1579
1580 record_const_or_copy_1 (x, y, prev_x);
1581 }
1582
1583 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1584 This constrains the cases in which we may treat this as assignment. */
1585
1586 static void
1587 record_equality (tree x, tree y)
1588 {
1589 tree prev_x = NULL, prev_y = NULL;
1590
1591 if (TREE_CODE (x) == SSA_NAME)
1592 prev_x = SSA_NAME_VALUE (x);
1593 if (TREE_CODE (y) == SSA_NAME)
1594 prev_y = SSA_NAME_VALUE (y);
1595
1596 /* If one of the previous values is invariant, or invariant in more loops
1597 (by depth), then use that.
1598 Otherwise it doesn't matter which value we choose, just so
1599 long as we canonicalize on one value. */
1600 if (TREE_INVARIANT (y))
1601 ;
1602 else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1603 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1604 else if (prev_x && TREE_INVARIANT (prev_x))
1605 x = y, y = prev_x, prev_x = prev_y;
1606 else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
1607 y = prev_y;
1608
1609 /* After the swapping, we must have one SSA_NAME. */
1610 if (TREE_CODE (x) != SSA_NAME)
1611 return;
1612
1613 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1614 variable compared against zero. If we're honoring signed zeros,
1615 then we cannot record this value unless we know that the value is
1616 nonzero. */
1617 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1618 && (TREE_CODE (y) != REAL_CST
1619 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1620 return;
1621
1622 record_const_or_copy_1 (x, y, prev_x);
1623 }
1624
1625 /* Return true, if it is ok to do folding of an associative expression.
1626 EXP is the tree for the associative expression. */
1627
1628 static inline bool
1629 unsafe_associative_fp_binop (tree exp)
1630 {
1631 enum tree_code code = TREE_CODE (exp);
1632 return !(!flag_unsafe_math_optimizations
1633 && (code == MULT_EXPR || code == PLUS_EXPR
1634 || code == MINUS_EXPR)
1635 && FLOAT_TYPE_P (TREE_TYPE (exp)));
1636 }
1637
1638 /* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
1639 hash tables. Try to simplify the RHS using whatever equivalences
1640 we may have recorded.
1641
1642 If we are able to simplify the RHS, then lookup the simplified form in
1643 the hash table and return the result. Otherwise return NULL. */
1644
1645 static tree
1646 simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *walk_data,
1647 tree stmt, int insert)
1648 {
1649 tree rhs = TREE_OPERAND (stmt, 1);
1650 enum tree_code rhs_code = TREE_CODE (rhs);
1651 tree result = NULL;
1652
1653 /* If we have lhs = ~x, look and see if we earlier had x = ~y.
1654 In which case we can change this statement to be lhs = y.
1655 Which can then be copy propagated.
1656
1657 Similarly for negation. */
1658 if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
1659 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1660 {
1661 /* Get the definition statement for our RHS. */
1662 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1663
1664 /* See if the RHS_DEF_STMT has the same form as our statement. */
1665 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
1666 && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
1667 {
1668 tree rhs_def_operand;
1669
1670 rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);
1671
1672 /* Verify that RHS_DEF_OPERAND is a suitable SSA variable. */
1673 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1674 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1675 result = update_rhs_and_lookup_avail_expr (stmt,
1676 rhs_def_operand,
1677 insert);
1678 }
1679 }
1680
1681 /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
1682 If OP is associative, create and fold (y OP C2) OP C1 which
1683 should result in (y OP C3), use that as the RHS for the
1684 assignment. Add minus to this, as we handle it specially below. */
1685 if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
1686 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
1687 && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
1688 {
1689 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1690
1691 /* See if the RHS_DEF_STMT has the same form as our statement. */
1692 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
1693 {
1694 tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
1695 enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);
1696
1697 if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
1698 || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
1699 || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
1700 {
1701 tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
1702 tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);
1703
1704 if (TREE_CODE (def_stmt_op0) == SSA_NAME
1705 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
1706 && is_gimple_min_invariant (def_stmt_op1))
1707 {
1708 tree outer_const = TREE_OPERAND (rhs, 1);
1709 tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
1710 tree t;
1711
1712 /* If we care about correct floating point results, then
1713 don't fold x + c1 - c2. Note that we need to take both
1714 the codes and the signs to figure this out. */
1715 if (FLOAT_TYPE_P (type)
1716 && !flag_unsafe_math_optimizations
1717 && (rhs_def_code == PLUS_EXPR
1718 || rhs_def_code == MINUS_EXPR))
1719 {
1720 bool neg = false;
1721
1722 neg ^= (rhs_code == MINUS_EXPR);
1723 neg ^= (rhs_def_code == MINUS_EXPR);
1724 neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
1725 neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));
1726
1727 if (neg)
1728 goto dont_fold_assoc;
1729 }
1730
1731 /* Ho hum. So fold will only operate on the outermost
1732 thingy that we give it, so we have to build the new
1733 expression in two pieces. This requires that we handle
1734 combinations of plus and minus. */
1735 if (rhs_def_code != rhs_code)
1736 {
1737 if (rhs_def_code == MINUS_EXPR)
1738 t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
1739 else
1740 t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
1741 rhs_code = PLUS_EXPR;
1742 }
1743 else if (rhs_def_code == MINUS_EXPR)
1744 t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
1745 else
1746 t = build (rhs_def_code, type, def_stmt_op1, outer_const);
1747 t = local_fold (t);
1748 t = build (rhs_code, type, def_stmt_op0, t);
1749 t = local_fold (t);
1750
1751 /* If the result is a suitable looking gimple expression,
1752 then use it instead of the original for STMT. */
1753 if (TREE_CODE (t) == SSA_NAME
1754 || (UNARY_CLASS_P (t)
1755 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1756 || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
1757 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
1758 && is_gimple_val (TREE_OPERAND (t, 1))))
1759 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1760 }
1761 }
1762 }
1763 dont_fold_assoc:;
1764 }
1765
1766 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
1767 and BIT_AND_EXPR respectively if the first operand is greater
1768 than zero and the second operand is an exact power of two. */
1769 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
1770 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
1771 && integer_pow2p (TREE_OPERAND (rhs, 1)))
1772 {
1773 tree val;
1774 tree op = TREE_OPERAND (rhs, 0);
1775
1776 if (TYPE_UNSIGNED (TREE_TYPE (op)))
1777 {
1778 val = integer_one_node;
1779 }
1780 else
1781 {
1782 tree dummy_cond = walk_data->global_data;
1783
1784 if (! dummy_cond)
1785 {
1786 dummy_cond = build (GT_EXPR, boolean_type_node,
1787 op, integer_zero_node);
1788 dummy_cond = build (COND_EXPR, void_type_node,
1789 dummy_cond, NULL, NULL);
1790 walk_data->global_data = dummy_cond;
1791 }
1792 else
1793 {
1794 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GT_EXPR);
1795 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1796 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1797 = integer_zero_node;
1798 }
1799 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1800 }
1801
1802 if (val && integer_onep (val))
1803 {
1804 tree t;
1805 tree op0 = TREE_OPERAND (rhs, 0);
1806 tree op1 = TREE_OPERAND (rhs, 1);
1807
1808 if (rhs_code == TRUNC_DIV_EXPR)
1809 t = build (RSHIFT_EXPR, TREE_TYPE (op0), op0,
1810 build_int_cst (NULL_TREE, tree_log2 (op1)));
1811 else
1812 t = build (BIT_AND_EXPR, TREE_TYPE (op0), op0,
1813 local_fold (build (MINUS_EXPR, TREE_TYPE (op1),
1814 op1, integer_one_node)));
1815
1816 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1817 }
1818 }
1819
1820 /* Transform ABS (X) into X or -X as appropriate. */
1821 if (rhs_code == ABS_EXPR
1822 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
1823 {
1824 tree val;
1825 tree op = TREE_OPERAND (rhs, 0);
1826 tree type = TREE_TYPE (op);
1827
1828 if (TYPE_UNSIGNED (type))
1829 {
1830 val = integer_zero_node;
1831 }
1832 else
1833 {
1834 tree dummy_cond = walk_data->global_data;
1835
1836 if (! dummy_cond)
1837 {
1838 dummy_cond = build (LE_EXPR, boolean_type_node,
1839 op, integer_zero_node);
1840 dummy_cond = build (COND_EXPR, void_type_node,
1841 dummy_cond, NULL, NULL);
1842 walk_data->global_data = dummy_cond;
1843 }
1844 else
1845 {
1846 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), LE_EXPR);
1847 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1848 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1849 = build_int_cst (type, 0);
1850 }
1851 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1852
1853 if (!val)
1854 {
1855 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GE_EXPR);
1856 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1857 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1858 = build_int_cst (type, 0);
1859
1860 val = simplify_cond_and_lookup_avail_expr (dummy_cond,
1861 NULL, false);
1862
1863 if (val)
1864 {
1865 if (integer_zerop (val))
1866 val = integer_one_node;
1867 else if (integer_onep (val))
1868 val = integer_zero_node;
1869 }
1870 }
1871 }
1872
1873 if (val
1874 && (integer_onep (val) || integer_zerop (val)))
1875 {
1876 tree t;
1877
1878 if (integer_onep (val))
1879 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
1880 else
1881 t = op;
1882
1883 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1884 }
1885 }
1886
1887 /* Optimize *"foo" into 'f'. This is done here rather than
1888 in fold to avoid problems with stuff like &*"foo". */
1889 if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
1890 {
1891 tree t = fold_read_from_constant_string (rhs);
1892
1893 if (t)
1894 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1895 }
1896
1897 return result;
1898 }
1899
1900 /* COND is a condition of the form:
1901
1902 x == const or x != const
1903
1904 Look back to x's defining statement and see if x is defined as
1905
1906 x = (type) y;
1907
1908 If const is unchanged if we convert it to type, then we can build
1909 the equivalent expression:
1910
1911
1912 y == const or y != const
1913
1914 Which may allow further optimizations.
1915
1916 Return the equivalent comparison or NULL if no such equivalent comparison
1917 was found. */
1918
1919 static tree
1920 find_equivalent_equality_comparison (tree cond)
1921 {
1922 tree op0 = TREE_OPERAND (cond, 0);
1923 tree op1 = TREE_OPERAND (cond, 1);
1924 tree def_stmt = SSA_NAME_DEF_STMT (op0);
1925
1926 /* OP0 might have been a parameter, so first make sure it
1927 was defined by a MODIFY_EXPR. */
1928 if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
1929 {
1930 tree def_rhs = TREE_OPERAND (def_stmt, 1);
1931
1932 /* Now make sure the RHS of the MODIFY_EXPR is a typecast. */
1933 if ((TREE_CODE (def_rhs) == NOP_EXPR
1934 || TREE_CODE (def_rhs) == CONVERT_EXPR)
1935 && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
1936 {
1937 tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
1938 tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
1939 tree new;
1940
1941 if (TYPE_PRECISION (def_rhs_inner_type)
1942 > TYPE_PRECISION (TREE_TYPE (def_rhs)))
1943 return NULL;
1944
1945 /* What we want to prove is that if we convert OP1 to
1946 the type of the object inside the NOP_EXPR that the
1947 result is still equivalent to SRC.
1948
1949 If that is true, the build and return new equivalent
1950 condition which uses the source of the typecast and the
1951 new constant (which has only changed its type). */
1952 new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
1953 new = local_fold (new);
1954 if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
1955 return build (TREE_CODE (cond), TREE_TYPE (cond),
1956 def_rhs_inner, new);
1957 }
1958 }
1959 return NULL;
1960 }
1961
1962 /* STMT is a COND_EXPR for which we could not trivially determine its
1963 result. This routine attempts to find equivalent forms of the
1964 condition which we may be able to optimize better. It also
1965 uses simple value range propagation to optimize conditionals. */
1966
1967 static tree
1968 simplify_cond_and_lookup_avail_expr (tree stmt,
1969 stmt_ann_t ann,
1970 int insert)
1971 {
1972 tree cond = COND_EXPR_COND (stmt);
1973
1974 if (COMPARISON_CLASS_P (cond))
1975 {
1976 tree op0 = TREE_OPERAND (cond, 0);
1977 tree op1 = TREE_OPERAND (cond, 1);
1978
1979 if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
1980 {
1981 int limit;
1982 tree low, high, cond_low, cond_high;
1983 int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
1984 varray_type vrp_records;
1985 struct vrp_element *element;
1986 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1987 void **slot;
1988
1989 /* First see if we have test of an SSA_NAME against a constant
1990 where the SSA_NAME is defined by an earlier typecast which
1991 is irrelevant when performing tests against the given
1992 constant. */
1993 if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1994 {
1995 tree new_cond = find_equivalent_equality_comparison (cond);
1996
1997 if (new_cond)
1998 {
1999 /* Update the statement to use the new equivalent
2000 condition. */
2001 COND_EXPR_COND (stmt) = new_cond;
2002
2003 /* If this is not a real stmt, ann will be NULL and we
2004 avoid processing the operands. */
2005 if (ann)
2006 modify_stmt (stmt);
2007
2008 /* Lookup the condition and return its known value if it
2009 exists. */
2010 new_cond = lookup_avail_expr (stmt, insert);
2011 if (new_cond)
2012 return new_cond;
2013
2014 /* The operands have changed, so update op0 and op1. */
2015 op0 = TREE_OPERAND (cond, 0);
2016 op1 = TREE_OPERAND (cond, 1);
2017 }
2018 }
2019
2020 /* Consult the value range records for this variable (if they exist)
2021 to see if we can eliminate or simplify this conditional.
2022
2023 Note two tests are necessary to determine no records exist.
2024 First we have to see if the virtual array exists, if it
2025 exists, then we have to check its active size.
2026
2027 Also note the vast majority of conditionals are not testing
2028 a variable which has had its range constrained by an earlier
2029 conditional. So this filter avoids a lot of unnecessary work. */
2030 vrp_hash_elt.var = op0;
2031 vrp_hash_elt.records = NULL;
2032 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
2033 if (slot == NULL)
2034 return NULL;
2035
2036 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
2037 vrp_records = vrp_hash_elt_p->records;
2038 if (vrp_records == NULL)
2039 return NULL;
2040
2041 limit = VARRAY_ACTIVE_SIZE (vrp_records);
2042
2043 /* If we have no value range records for this variable, or we are
2044 unable to extract a range for this condition, then there is
2045 nothing to do. */
2046 if (limit == 0
2047 || ! extract_range_from_cond (cond, &cond_high,
2048 &cond_low, &cond_inverted))
2049 return NULL;
2050
2051 /* We really want to avoid unnecessary computations of range
2052 info. So all ranges are computed lazily; this avoids a
2053 lot of unnecessary work. i.e., we record the conditional,
2054 but do not process how it constrains the variable's
2055 potential values until we know that processing the condition
2056 could be helpful.
2057
2058 However, we do not want to have to walk a potentially long
2059 list of ranges, nor do we want to compute a variable's
2060 range more than once for a given path.
2061
2062 Luckily, each time we encounter a conditional that can not
2063 be otherwise optimized we will end up here and we will
2064 compute the necessary range information for the variable
2065 used in this condition.
2066
2067 Thus you can conclude that there will never be more than one
2068 conditional associated with a variable which has not been
2069 processed. So we never need to merge more than one new
2070 conditional into the current range.
2071
2072 These properties also help us avoid unnecessary work. */
2073 element
2074 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records, limit - 1);
2075
2076 if (element->high && element->low)
2077 {
2078 /* The last element has been processed, so there is no range
2079 merging to do, we can simply use the high/low values
2080 recorded in the last element. */
2081 low = element->low;
2082 high = element->high;
2083 }
2084 else
2085 {
2086 tree tmp_high, tmp_low;
2087 int dummy;
2088
2089 /* The last element has not been processed. Process it now.
2090 record_range should ensure for cond inverted is not set.
2091 This call can only fail if cond is x < min or x > max,
2092 which fold should have optimized into false.
2093 If that doesn't happen, just pretend all values are
2094 in the range. */
2095 if (! extract_range_from_cond (element->cond, &tmp_high,
2096 &tmp_low, &dummy))
2097 gcc_unreachable ();
2098 else
2099 gcc_assert (dummy == 0);
2100
2101 /* If this is the only element, then no merging is necessary,
2102 the high/low values from extract_range_from_cond are all
2103 we need. */
2104 if (limit == 1)
2105 {
2106 low = tmp_low;
2107 high = tmp_high;
2108 }
2109 else
2110 {
2111 /* Get the high/low value from the previous element. */
2112 struct vrp_element *prev
2113 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records,
2114 limit - 2);
2115 low = prev->low;
2116 high = prev->high;
2117
2118 /* Merge in this element's range with the range from the
2119 previous element.
2120
2121 The low value for the merged range is the maximum of
2122 the previous low value and the low value of this record.
2123
2124 Similarly the high value for the merged range is the
2125 minimum of the previous high value and the high value of
2126 this record. */
2127 low = (tree_int_cst_compare (low, tmp_low) == 1
2128 ? low : tmp_low);
2129 high = (tree_int_cst_compare (high, tmp_high) == -1
2130 ? high : tmp_high);
2131 }
2132
2133 /* And record the computed range. */
2134 element->low = low;
2135 element->high = high;
2136
2137 }
2138
2139 /* After we have constrained this variable's potential values,
2140 we try to determine the result of the given conditional.
2141
2142 To simplify later tests, first determine if the current
2143 low value is the same low value as the conditional.
2144 Similarly for the current high value and the high value
2145 for the conditional. */
2146 lowequal = tree_int_cst_equal (low, cond_low);
2147 highequal = tree_int_cst_equal (high, cond_high);
2148
2149 if (lowequal && highequal)
2150 return (cond_inverted ? boolean_false_node : boolean_true_node);
2151
2152 /* To simplify the overlap/subset tests below we may want
2153 to swap the two ranges so that the larger of the two
2154 ranges occurs "first". */
2155 swapped = 0;
2156 if (tree_int_cst_compare (low, cond_low) == 1
2157 || (lowequal
2158 && tree_int_cst_compare (cond_high, high) == 1))
2159 {
2160 tree temp;
2161
2162 swapped = 1;
2163 temp = low;
2164 low = cond_low;
2165 cond_low = temp;
2166 temp = high;
2167 high = cond_high;
2168 cond_high = temp;
2169 }
2170
2171 /* Now determine if there is no overlap in the ranges
2172 or if the second range is a subset of the first range. */
2173 no_overlap = tree_int_cst_lt (high, cond_low);
2174 subset = tree_int_cst_compare (cond_high, high) != 1;
2175
2176 /* If there was no overlap in the ranges, then this conditional
2177 always has a false value (unless we had to invert this
2178 conditional, in which case it always has a true value). */
2179 if (no_overlap)
2180 return (cond_inverted ? boolean_true_node : boolean_false_node);
2181
2182 /* If the current range is a subset of the condition's range,
2183 then this conditional always has a true value (unless we
2184 had to invert this conditional, in which case it always
2185 has a true value). */
2186 if (subset && swapped)
2187 return (cond_inverted ? boolean_false_node : boolean_true_node);
2188
2189 /* We were unable to determine the result of the conditional.
2190 However, we may be able to simplify the conditional. First
2191 merge the ranges in the same manner as range merging above. */
2192 low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
2193 high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
2194
2195 /* If the range has converged to a single point, then turn this
2196 into an equality comparison. */
2197 if (TREE_CODE (cond) != EQ_EXPR
2198 && TREE_CODE (cond) != NE_EXPR
2199 && tree_int_cst_equal (low, high))
2200 {
2201 TREE_SET_CODE (cond, EQ_EXPR);
2202 TREE_OPERAND (cond, 1) = high;
2203 }
2204 }
2205 }
2206 return 0;
2207 }
2208
2209 /* STMT is a SWITCH_EXPR for which we could not trivially determine its
2210 result. This routine attempts to find equivalent forms of the
2211 condition which we may be able to optimize better. */
2212
2213 static tree
2214 simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
2215 {
2216 tree cond = SWITCH_COND (stmt);
2217 tree def, to, ti;
2218
2219 /* The optimization that we really care about is removing unnecessary
2220 casts. That will let us do much better in propagating the inferred
2221 constant at the switch target. */
2222 if (TREE_CODE (cond) == SSA_NAME)
2223 {
2224 def = SSA_NAME_DEF_STMT (cond);
2225 if (TREE_CODE (def) == MODIFY_EXPR)
2226 {
2227 def = TREE_OPERAND (def, 1);
2228 if (TREE_CODE (def) == NOP_EXPR)
2229 {
2230 int need_precision;
2231 bool fail;
2232
2233 def = TREE_OPERAND (def, 0);
2234
2235 #ifdef ENABLE_CHECKING
2236 /* ??? Why was Jeff testing this? We are gimple... */
2237 gcc_assert (is_gimple_val (def));
2238 #endif
2239
2240 to = TREE_TYPE (cond);
2241 ti = TREE_TYPE (def);
2242
2243 /* If we have an extension that preserves value, then we
2244 can copy the source value into the switch. */
2245
2246 need_precision = TYPE_PRECISION (ti);
2247 fail = false;
2248 if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
2249 fail = true;
2250 else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
2251 need_precision += 1;
2252 if (TYPE_PRECISION (to) < need_precision)
2253 fail = true;
2254
2255 if (!fail)
2256 {
2257 SWITCH_COND (stmt) = def;
2258 modify_stmt (stmt);
2259
2260 return lookup_avail_expr (stmt, insert);
2261 }
2262 }
2263 }
2264 }
2265
2266 return 0;
2267 }
2268
2269
2270 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2271 known value for that SSA_NAME (or NULL if no value is known).
2272
2273 NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
2274 even if we don't know their precise value.
2275
2276 Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
2277 nodes of the successors of BB. */
2278
2279 static void
2280 cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
2281 {
2282 edge e;
2283 edge_iterator ei;
2284
2285 /* This can get rather expensive if the implementation is naive in
2286 how it finds the phi alternative associated with a particular edge. */
2287 FOR_EACH_EDGE (e, ei, bb->succs)
2288 {
2289 tree phi;
2290 int indx;
2291
2292 /* If this is an abnormal edge, then we do not want to copy propagate
2293 into the PHI alternative associated with this edge. */
2294 if (e->flags & EDGE_ABNORMAL)
2295 continue;
2296
2297 phi = phi_nodes (e->dest);
2298 if (! phi)
2299 continue;
2300
2301 indx = e->dest_idx;
2302 for ( ; phi; phi = PHI_CHAIN (phi))
2303 {
2304 tree new;
2305 use_operand_p orig_p;
2306 tree orig;
2307
2308 /* The alternative may be associated with a constant, so verify
2309 it is an SSA_NAME before doing anything with it. */
2310 orig_p = PHI_ARG_DEF_PTR (phi, indx);
2311 orig = USE_FROM_PTR (orig_p);
2312 if (TREE_CODE (orig) != SSA_NAME)
2313 continue;
2314
2315 /* If the alternative is known to have a nonzero value, record
2316 that fact in the PHI node itself for future use. */
2317 if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
2318 PHI_ARG_NONZERO (phi, indx) = true;
2319
2320 /* If we have *ORIG_P in our constant/copy table, then replace
2321 ORIG_P with its value in our constant/copy table. */
2322 new = SSA_NAME_VALUE (orig);
2323 if (new
2324 && (TREE_CODE (new) == SSA_NAME
2325 || is_gimple_min_invariant (new))
2326 && may_propagate_copy (orig, new))
2327 {
2328 propagate_value (orig_p, new);
2329 }
2330 }
2331 }
2332 }
2333
2334 /* We have finished optimizing BB, record any information implied by
2335 taking a specific outgoing edge from BB. */
2336
2337 static void
2338 record_edge_info (basic_block bb)
2339 {
2340 block_stmt_iterator bsi = bsi_last (bb);
2341 struct edge_info *edge_info;
2342
2343 if (! bsi_end_p (bsi))
2344 {
2345 tree stmt = bsi_stmt (bsi);
2346
2347 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
2348 {
2349 tree cond = SWITCH_COND (stmt);
2350
2351 if (TREE_CODE (cond) == SSA_NAME)
2352 {
2353 tree labels = SWITCH_LABELS (stmt);
2354 int i, n_labels = TREE_VEC_LENGTH (labels);
2355 tree *info = xcalloc (n_basic_blocks, sizeof (tree));
2356 edge e;
2357 edge_iterator ei;
2358
2359 for (i = 0; i < n_labels; i++)
2360 {
2361 tree label = TREE_VEC_ELT (labels, i);
2362 basic_block target_bb = label_to_block (CASE_LABEL (label));
2363
2364 if (CASE_HIGH (label)
2365 || !CASE_LOW (label)
2366 || info[target_bb->index])
2367 info[target_bb->index] = error_mark_node;
2368 else
2369 info[target_bb->index] = label;
2370 }
2371
2372 FOR_EACH_EDGE (e, ei, bb->succs)
2373 {
2374 basic_block target_bb = e->dest;
2375 tree node = info[target_bb->index];
2376
2377 if (node != NULL && node != error_mark_node)
2378 {
2379 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
2380 edge_info = allocate_edge_info (e);
2381 edge_info->lhs = cond;
2382 edge_info->rhs = x;
2383 }
2384 }
2385 free (info);
2386 }
2387 }
2388
2389 /* A COND_EXPR may create equivalences too. */
2390 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2391 {
2392 tree cond = COND_EXPR_COND (stmt);
2393 edge true_edge;
2394 edge false_edge;
2395
2396 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2397
2398 /* If the conditional is a single variable 'X', record 'X = 1'
2399 for the true edge and 'X = 0' on the false edge. */
2400 if (SSA_VAR_P (cond))
2401 {
2402 struct edge_info *edge_info;
2403
2404 edge_info = allocate_edge_info (true_edge);
2405 edge_info->lhs = cond;
2406 edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));
2407
2408 edge_info = allocate_edge_info (false_edge);
2409 edge_info->lhs = cond;
2410 edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
2411 }
2412 /* Equality tests may create one or two equivalences. */
2413 else if (COMPARISON_CLASS_P (cond))
2414 {
2415 tree op0 = TREE_OPERAND (cond, 0);
2416 tree op1 = TREE_OPERAND (cond, 1);
2417
2418 /* Special case comparing booleans against a constant as we
2419 know the value of OP0 on both arms of the branch. i.e., we
2420 can record an equivalence for OP0 rather than COND. */
2421 if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2422 && TREE_CODE (op0) == SSA_NAME
2423 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
2424 && is_gimple_min_invariant (op1))
2425 {
2426 if (TREE_CODE (cond) == EQ_EXPR)
2427 {
2428 edge_info = allocate_edge_info (true_edge);
2429 edge_info->lhs = op0;
2430 edge_info->rhs = (integer_zerop (op1)
2431 ? boolean_false_node
2432 : boolean_true_node);
2433
2434 edge_info = allocate_edge_info (false_edge);
2435 edge_info->lhs = op0;
2436 edge_info->rhs = (integer_zerop (op1)
2437 ? boolean_true_node
2438 : boolean_false_node);
2439 }
2440 else
2441 {
2442 edge_info = allocate_edge_info (true_edge);
2443 edge_info->lhs = op0;
2444 edge_info->rhs = (integer_zerop (op1)
2445 ? boolean_true_node
2446 : boolean_false_node);
2447
2448 edge_info = allocate_edge_info (false_edge);
2449 edge_info->lhs = op0;
2450 edge_info->rhs = (integer_zerop (op1)
2451 ? boolean_false_node
2452 : boolean_true_node);
2453 }
2454 }
2455
2456 else if (is_gimple_min_invariant (op0)
2457 && (TREE_CODE (op1) == SSA_NAME
2458 || is_gimple_min_invariant (op1)))
2459 {
2460 tree inverted = invert_truthvalue (cond);
2461 struct edge_info *edge_info;
2462
2463 edge_info = allocate_edge_info (true_edge);
2464 record_conditions (edge_info, cond, inverted);
2465
2466 if (TREE_CODE (cond) == EQ_EXPR)
2467 {
2468 edge_info->lhs = op1;
2469 edge_info->rhs = op0;
2470 }
2471
2472 edge_info = allocate_edge_info (false_edge);
2473 record_conditions (edge_info, inverted, cond);
2474
2475 if (TREE_CODE (cond) == NE_EXPR)
2476 {
2477 edge_info->lhs = op1;
2478 edge_info->rhs = op0;
2479 }
2480 }
2481
2482 else if (TREE_CODE (op0) == SSA_NAME
2483 && (is_gimple_min_invariant (op1)
2484 || TREE_CODE (op1) == SSA_NAME))
2485 {
2486 tree inverted = invert_truthvalue (cond);
2487 struct edge_info *edge_info;
2488
2489 edge_info = allocate_edge_info (true_edge);
2490 record_conditions (edge_info, cond, inverted);
2491
2492 if (TREE_CODE (cond) == EQ_EXPR)
2493 {
2494 edge_info->lhs = op0;
2495 edge_info->rhs = op1;
2496 }
2497
2498 edge_info = allocate_edge_info (false_edge);
2499 record_conditions (edge_info, inverted, cond);
2500
2501 if (TREE_CODE (cond) == NE_EXPR)
2502 {
2503 edge_info->lhs = op0;
2504 edge_info->rhs = op1;
2505 }
2506 }
2507 }
2508
2509 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
2510 }
2511 }
2512 }
2513
2514 /* Propagate information from BB to its outgoing edges.
2515
2516 This can include equivalency information implied by control statements
2517 at the end of BB and const/copy propagation into PHIs in BB's
2518 successor blocks. */
2519
2520 static void
2521 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2522 basic_block bb)
2523 {
2524
2525 record_edge_info (bb);
2526 cprop_into_successor_phis (bb, nonzero_vars);
2527 }
2528
2529 /* Search for redundant computations in STMT. If any are found, then
2530 replace them with the variable holding the result of the computation.
2531
2532 If safe, record this expression into the available expression hash
2533 table. */
2534
2535 static bool
2536 eliminate_redundant_computations (struct dom_walk_data *walk_data,
2537 tree stmt, stmt_ann_t ann)
2538 {
2539 v_may_def_optype v_may_defs = V_MAY_DEF_OPS (ann);
2540 tree *expr_p, def = NULL_TREE;
2541 bool insert = true;
2542 tree cached_lhs;
2543 bool retval = false;
2544
2545 if (TREE_CODE (stmt) == MODIFY_EXPR)
2546 def = TREE_OPERAND (stmt, 0);
2547
2548 /* Certain expressions on the RHS can be optimized away, but can not
2549 themselves be entered into the hash tables. */
2550 if (ann->makes_aliased_stores
2551 || ! def
2552 || TREE_CODE (def) != SSA_NAME
2553 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2554 || NUM_V_MAY_DEFS (v_may_defs) != 0)
2555 insert = false;
2556
2557 /* Check if the expression has been computed before. */
2558 cached_lhs = lookup_avail_expr (stmt, insert);
2559
2560 /* If this is an assignment and the RHS was not in the hash table,
2561 then try to simplify the RHS and lookup the new RHS in the
2562 hash table. */
2563 if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
2564 cached_lhs = simplify_rhs_and_lookup_avail_expr (walk_data, stmt, insert);
2565 /* Similarly if this is a COND_EXPR and we did not find its
2566 expression in the hash table, simplify the condition and
2567 try again. */
2568 else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
2569 cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
2570 /* Similarly for a SWITCH_EXPR. */
2571 else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
2572 cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);
2573
2574 opt_stats.num_exprs_considered++;
2575
2576 /* Get a pointer to the expression we are trying to optimize. */
2577 if (TREE_CODE (stmt) == COND_EXPR)
2578 expr_p = &COND_EXPR_COND (stmt);
2579 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2580 expr_p = &SWITCH_COND (stmt);
2581 else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
2582 expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
2583 else
2584 expr_p = &TREE_OPERAND (stmt, 1);
2585
2586 /* It is safe to ignore types here since we have already done
2587 type checking in the hashing and equality routines. In fact
2588 type checking here merely gets in the way of constant
2589 propagation. Also, make sure that it is safe to propagate
2590 CACHED_LHS into *EXPR_P. */
2591 if (cached_lhs
2592 && (TREE_CODE (cached_lhs) != SSA_NAME
2593 || may_propagate_copy (*expr_p, cached_lhs)))
2594 {
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2596 {
2597 fprintf (dump_file, " Replaced redundant expr '");
2598 print_generic_expr (dump_file, *expr_p, dump_flags);
2599 fprintf (dump_file, "' with '");
2600 print_generic_expr (dump_file, cached_lhs, dump_flags);
2601 fprintf (dump_file, "'\n");
2602 }
2603
2604 opt_stats.num_re++;
2605
2606 #if defined ENABLE_CHECKING
2607 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
2608 || is_gimple_min_invariant (cached_lhs));
2609 #endif
2610
2611 if (TREE_CODE (cached_lhs) == ADDR_EXPR
2612 || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
2613 && is_gimple_min_invariant (cached_lhs)))
2614 retval = true;
2615
2616 propagate_tree_value (expr_p, cached_lhs);
2617 modify_stmt (stmt);
2618 }
2619 return retval;
2620 }
2621
2622 /* STMT, a MODIFY_EXPR, may create certain equivalences, in either
2623 the available expressions table or the const_and_copies table.
2624 Detect and record those equivalences. */
2625
2626 static void
2627 record_equivalences_from_stmt (tree stmt,
2628 int may_optimize_p,
2629 stmt_ann_t ann)
2630 {
2631 tree lhs = TREE_OPERAND (stmt, 0);
2632 enum tree_code lhs_code = TREE_CODE (lhs);
2633 int i;
2634
2635 if (lhs_code == SSA_NAME)
2636 {
2637 tree rhs = TREE_OPERAND (stmt, 1);
2638
2639 /* Strip away any useless type conversions. */
2640 STRIP_USELESS_TYPE_CONVERSION (rhs);
2641
2642 /* If the RHS of the assignment is a constant or another variable that
2643 may be propagated, register it in the CONST_AND_COPIES table. We
2644 do not need to record unwind data for this, since this is a true
2645 assignment and not an equivalence inferred from a comparison. All
2646 uses of this ssa name are dominated by this assignment, so unwinding
2647 just costs time and space. */
2648 if (may_optimize_p
2649 && (TREE_CODE (rhs) == SSA_NAME
2650 || is_gimple_min_invariant (rhs)))
2651 SSA_NAME_VALUE (lhs) = rhs;
2652
2653 /* alloca never returns zero and the address of a non-weak symbol
2654 is never zero. NOP_EXPRs and CONVERT_EXPRs can be completely
2655 stripped as they do not affect this equivalence. */
2656 while (TREE_CODE (rhs) == NOP_EXPR
2657 || TREE_CODE (rhs) == CONVERT_EXPR)
2658 rhs = TREE_OPERAND (rhs, 0);
2659
2660 if (alloca_call_p (rhs)
2661 || (TREE_CODE (rhs) == ADDR_EXPR
2662 && DECL_P (TREE_OPERAND (rhs, 0))
2663 && ! DECL_WEAK (TREE_OPERAND (rhs, 0))))
2664 record_var_is_nonzero (lhs);
2665
2666 /* IOR of any value with a nonzero value will result in a nonzero
2667 value. Even if we do not know the exact result recording that
2668 the result is nonzero is worth the effort. */
2669 if (TREE_CODE (rhs) == BIT_IOR_EXPR
2670 && integer_nonzerop (TREE_OPERAND (rhs, 1)))
2671 record_var_is_nonzero (lhs);
2672 }
2673
2674 /* Look at both sides for pointer dereferences. If we find one, then
2675 the pointer must be nonnull and we can enter that equivalence into
2676 the hash tables. */
2677 if (flag_delete_null_pointer_checks)
2678 for (i = 0; i < 2; i++)
2679 {
2680 tree t = TREE_OPERAND (stmt, i);
2681
2682 /* Strip away any COMPONENT_REFs. */
2683 while (TREE_CODE (t) == COMPONENT_REF)
2684 t = TREE_OPERAND (t, 0);
2685
2686 /* Now see if this is a pointer dereference. */
2687 if (INDIRECT_REF_P (t))
2688 {
2689 tree op = TREE_OPERAND (t, 0);
2690
2691 /* If the pointer is a SSA variable, then enter new
2692 equivalences into the hash table. */
2693 while (TREE_CODE (op) == SSA_NAME)
2694 {
2695 tree def = SSA_NAME_DEF_STMT (op);
2696
2697 record_var_is_nonzero (op);
2698
2699 /* And walk up the USE-DEF chains noting other SSA_NAMEs
2700 which are known to have a nonzero value. */
2701 if (def
2702 && TREE_CODE (def) == MODIFY_EXPR
2703 && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
2704 op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
2705 else
2706 break;
2707 }
2708 }
2709 }
2710
2711 /* A memory store, even an aliased store, creates a useful
2712 equivalence. By exchanging the LHS and RHS, creating suitable
2713 vops and recording the result in the available expression table,
2714 we may be able to expose more redundant loads. */
2715 if (!ann->has_volatile_ops
2716 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
2717 || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
2718 && !is_gimple_reg (lhs))
2719 {
2720 tree rhs = TREE_OPERAND (stmt, 1);
2721 tree new;
2722
2723 /* FIXME: If the LHS of the assignment is a bitfield and the RHS
2724 is a constant, we need to adjust the constant to fit into the
2725 type of the LHS. If the LHS is a bitfield and the RHS is not
2726 a constant, then we can not record any equivalences for this
2727 statement since we would need to represent the widening or
2728 narrowing of RHS. This fixes gcc.c-torture/execute/921016-1.c
2729 and should not be necessary if GCC represented bitfields
2730 properly. */
2731 if (lhs_code == COMPONENT_REF
2732 && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
2733 {
2734 if (TREE_CONSTANT (rhs))
2735 rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
2736 else
2737 rhs = NULL;
2738
2739 /* If the value overflowed, then we can not use this equivalence. */
2740 if (rhs && ! is_gimple_min_invariant (rhs))
2741 rhs = NULL;
2742 }
2743
2744 if (rhs)
2745 {
2746 /* Build a new statement with the RHS and LHS exchanged. */
2747 new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);
2748
2749 create_ssa_artficial_load_stmt (&(ann->operands), new);
2750
2751 /* Finally enter the statement into the available expression
2752 table. */
2753 lookup_avail_expr (new, true);
2754 }
2755 }
2756 }
2757
2758 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2759 CONST_AND_COPIES. */
2760
2761 static bool
2762 cprop_operand (tree stmt, use_operand_p op_p)
2763 {
2764 bool may_have_exposed_new_symbols = false;
2765 tree val;
2766 tree op = USE_FROM_PTR (op_p);
2767
2768 /* If the operand has a known constant value or it is known to be a
2769 copy of some other variable, use the value or copy stored in
2770 CONST_AND_COPIES. */
2771 val = SSA_NAME_VALUE (op);
2772 if (val && TREE_CODE (val) != VALUE_HANDLE)
2773 {
2774 tree op_type, val_type;
2775
2776 /* Do not change the base variable in the virtual operand
2777 tables. That would make it impossible to reconstruct
2778 the renamed virtual operand if we later modify this
2779 statement. Also only allow the new value to be an SSA_NAME
2780 for propagation into virtual operands. */
2781 if (!is_gimple_reg (op)
2782 && (get_virtual_var (val) != get_virtual_var (op)
2783 || TREE_CODE (val) != SSA_NAME))
2784 return false;
2785
2786 /* Do not replace hard register operands in asm statements. */
2787 if (TREE_CODE (stmt) == ASM_EXPR
2788 && !may_propagate_copy_into_asm (op))
2789 return false;
2790
2791 /* Get the toplevel type of each operand. */
2792 op_type = TREE_TYPE (op);
2793 val_type = TREE_TYPE (val);
2794
2795 /* While both types are pointers, get the type of the object
2796 pointed to. */
2797 while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
2798 {
2799 op_type = TREE_TYPE (op_type);
2800 val_type = TREE_TYPE (val_type);
2801 }
2802
2803 /* Make sure underlying types match before propagating a constant by
2804 converting the constant to the proper type. Note that convert may
2805 return a non-gimple expression, in which case we ignore this
2806 propagation opportunity. */
2807 if (TREE_CODE (val) != SSA_NAME)
2808 {
2809 if (!lang_hooks.types_compatible_p (op_type, val_type))
2810 {
2811 val = fold_convert (TREE_TYPE (op), val);
2812 if (!is_gimple_min_invariant (val))
2813 return false;
2814 }
2815 }
2816
2817 /* Certain operands are not allowed to be copy propagated due
2818 to their interaction with exception handling and some GCC
2819 extensions. */
2820 else if (!may_propagate_copy (op, val))
2821 return false;
2822
2823 /* Do not propagate copies if the propagated value is at a deeper loop
2824 depth than the propagatee. Otherwise, this may move loop variant
2825 variables outside of their loops and prevent coalescing
2826 opportunities. If the value was loop invariant, it will be hoisted
2827 by LICM and exposed for copy propagation. */
2828 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2829 return false;
2830
2831 /* Dump details. */
2832 if (dump_file && (dump_flags & TDF_DETAILS))
2833 {
2834 fprintf (dump_file, " Replaced '");
2835 print_generic_expr (dump_file, op, dump_flags);
2836 fprintf (dump_file, "' with %s '",
2837 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2838 print_generic_expr (dump_file, val, dump_flags);
2839 fprintf (dump_file, "'\n");
2840 }
2841
2842 /* If VAL is an ADDR_EXPR or a constant of pointer type, note
2843 that we may have exposed a new symbol for SSA renaming. */
2844 if (TREE_CODE (val) == ADDR_EXPR
2845 || (POINTER_TYPE_P (TREE_TYPE (op))
2846 && is_gimple_min_invariant (val)))
2847 may_have_exposed_new_symbols = true;
2848
2849 propagate_value (op_p, val);
2850
2851 /* And note that we modified this statement. This is now
2852 safe, even if we changed virtual operands since we will
2853 rescan the statement and rewrite its operands again. */
2854 modify_stmt (stmt);
2855 }
2856 return may_have_exposed_new_symbols;
2857 }
2858
2859 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2860 known value for that SSA_NAME (or NULL if no value is known).
2861
2862 Propagate values from CONST_AND_COPIES into the uses, vuses and
2863 v_may_def_ops of STMT. */
2864
2865 static bool
2866 cprop_into_stmt (tree stmt)
2867 {
2868 bool may_have_exposed_new_symbols = false;
2869 use_operand_p op_p;
2870 ssa_op_iter iter;
2871 tree rhs;
2872
2873 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2874 {
2875 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2876 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
2877 }
2878
2879 if (may_have_exposed_new_symbols)
2880 {
2881 rhs = get_rhs (stmt);
2882 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2883 recompute_tree_invarant_for_addr_expr (rhs);
2884 }
2885
2886 return may_have_exposed_new_symbols;
2887 }
2888
2889
2890 /* Optimize the statement pointed by iterator SI.
2891
2892 We try to perform some simplistic global redundancy elimination and
2893 constant propagation:
2894
2895 1- To detect global redundancy, we keep track of expressions that have
2896 been computed in this block and its dominators. If we find that the
2897 same expression is computed more than once, we eliminate repeated
2898 computations by using the target of the first one.
2899
2900 2- Constant values and copy assignments. This is used to do very
2901 simplistic constant and copy propagation. When a constant or copy
2902 assignment is found, we map the value on the RHS of the assignment to
2903 the variable in the LHS in the CONST_AND_COPIES table. */
2904
2905 static void
2906 optimize_stmt (struct dom_walk_data *walk_data, basic_block bb,
2907 block_stmt_iterator si)
2908 {
2909 stmt_ann_t ann;
2910 tree stmt;
2911 bool may_optimize_p;
2912 bool may_have_exposed_new_symbols = false;
2913
2914 stmt = bsi_stmt (si);
2915
2916 get_stmt_operands (stmt);
2917 ann = stmt_ann (stmt);
2918 opt_stats.num_stmts++;
2919 may_have_exposed_new_symbols = false;
2920
2921 if (dump_file && (dump_flags & TDF_DETAILS))
2922 {
2923 fprintf (dump_file, "Optimizing statement ");
2924 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2925 }
2926
2927 /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs. */
2928 may_have_exposed_new_symbols = cprop_into_stmt (stmt);
2929
2930 /* If the statement has been modified with constant replacements,
2931 fold its RHS before checking for redundant computations. */
2932 if (ann->modified)
2933 {
2934 /* Try to fold the statement making sure that STMT is kept
2935 up to date. */
2936 if (fold_stmt (bsi_stmt_ptr (si)))
2937 {
2938 stmt = bsi_stmt (si);
2939 ann = stmt_ann (stmt);
2940
2941 if (dump_file && (dump_flags & TDF_DETAILS))
2942 {
2943 fprintf (dump_file, " Folded to: ");
2944 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2945 }
2946 }
2947
2948 /* Constant/copy propagation above may change the set of
2949 virtual operands associated with this statement. Folding
2950 may remove the need for some virtual operands.
2951
2952 Indicate we will need to rescan and rewrite the statement. */
2953 may_have_exposed_new_symbols = true;
2954 }
2955
2956 /* Check for redundant computations. Do this optimization only
2957 for assignments that have no volatile ops and conditionals. */
2958 may_optimize_p = (!ann->has_volatile_ops
2959 && ((TREE_CODE (stmt) == RETURN_EXPR
2960 && TREE_OPERAND (stmt, 0)
2961 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
2962 && ! (TREE_SIDE_EFFECTS
2963 (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
2964 || (TREE_CODE (stmt) == MODIFY_EXPR
2965 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
2966 || TREE_CODE (stmt) == COND_EXPR
2967 || TREE_CODE (stmt) == SWITCH_EXPR));
2968
2969 if (may_optimize_p)
2970 may_have_exposed_new_symbols
2971 |= eliminate_redundant_computations (walk_data, stmt, ann);
2972
2973 /* Record any additional equivalences created by this statement. */
2974 if (TREE_CODE (stmt) == MODIFY_EXPR)
2975 record_equivalences_from_stmt (stmt,
2976 may_optimize_p,
2977 ann);
2978
2979 register_definitions_for_stmt (stmt);
2980
2981 /* If STMT is a COND_EXPR and it was modified, then we may know
2982 where it goes. If that is the case, then mark the CFG as altered.
2983
2984 This will cause us to later call remove_unreachable_blocks and
2985 cleanup_tree_cfg when it is safe to do so. It is not safe to
2986 clean things up here since removal of edges and such can trigger
2987 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2988 the manager.
2989
2990 That's all fine and good, except that once SSA_NAMEs are released
2991 to the manager, we must not call create_ssa_name until all references
2992 to released SSA_NAMEs have been eliminated.
2993
2994 All references to the deleted SSA_NAMEs can not be eliminated until
2995 we remove unreachable blocks.
2996
2997 We can not remove unreachable blocks until after we have completed
2998 any queued jump threading.
2999
3000 We can not complete any queued jump threads until we have taken
3001 appropriate variables out of SSA form. Taking variables out of
3002 SSA form can call create_ssa_name and thus we lose.
3003
3004 Ultimately I suspect we're going to need to change the interface
3005 into the SSA_NAME manager. */
3006
3007 if (ann->modified)
3008 {
3009 tree val = NULL;
3010
3011 if (TREE_CODE (stmt) == COND_EXPR)
3012 val = COND_EXPR_COND (stmt);
3013 else if (TREE_CODE (stmt) == SWITCH_EXPR)
3014 val = SWITCH_COND (stmt);
3015
3016 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
3017 cfg_altered = true;
3018
3019 /* If we simplified a statement in such a way as to be shown that it
3020 cannot trap, update the eh information and the cfg to match. */
3021 if (maybe_clean_eh_stmt (stmt))
3022 {
3023 bitmap_set_bit (need_eh_cleanup, bb->index);
3024 if (dump_file && (dump_flags & TDF_DETAILS))
3025 fprintf (dump_file, " Flagged to clear EH edges.\n");
3026 }
3027 }
3028
3029 if (may_have_exposed_new_symbols)
3030 VEC_safe_push (tree_on_heap, stmts_to_rescan, bsi_stmt (si));
3031 }
3032
3033 /* Replace the RHS of STMT with NEW_RHS. If RHS can be found in the
3034 available expression hashtable, then return the LHS from the hash
3035 table.
3036
3037 If INSERT is true, then we also update the available expression
3038 hash table to account for the changes made to STMT. */
3039
3040 static tree
3041 update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
3042 {
3043 tree cached_lhs = NULL;
3044
3045 /* Remove the old entry from the hash table. */
3046 if (insert)
3047 {
3048 struct expr_hash_elt element;
3049
3050 initialize_hash_element (stmt, NULL, &element);
3051 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
3052 }
3053
3054 /* Now update the RHS of the assignment. */
3055 TREE_OPERAND (stmt, 1) = new_rhs;
3056
3057 /* Now lookup the updated statement in the hash table. */
3058 cached_lhs = lookup_avail_expr (stmt, insert);
3059
3060 /* We have now called lookup_avail_expr twice with two different
3061 versions of this same statement, once in optimize_stmt, once here.
3062
3063 We know the call in optimize_stmt did not find an existing entry
3064 in the hash table, so a new entry was created. At the same time
3065 this statement was pushed onto the AVAIL_EXPRS_STACK vector.
3066
3067 If this call failed to find an existing entry on the hash table,
3068 then the new version of this statement was entered into the
3069 hash table. And this statement was pushed onto BLOCK_AVAIL_EXPR
3070 for the second time. So there are two copies on BLOCK_AVAIL_EXPRs
3071
3072 If this call succeeded, we still have one copy of this statement
3073 on the BLOCK_AVAIL_EXPRs vector.
3074
3075 For both cases, we need to pop the most recent entry off the
3076 BLOCK_AVAIL_EXPRs vector. For the case where we never found this
3077 statement in the hash tables, that will leave precisely one
3078 copy of this statement on BLOCK_AVAIL_EXPRs. For the case where
3079 we found a copy of this statement in the second hash table lookup
3080 we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs. */
3081 if (insert)
3082 VEC_pop (tree_on_heap, avail_exprs_stack);
3083
3084 /* And make sure we record the fact that we modified this
3085 statement. */
3086 modify_stmt (stmt);
3087
3088 return cached_lhs;
3089 }
3090
3091 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. If
3092 found, return its LHS. Otherwise insert STMT in the table and return
3093 NULL_TREE.
3094
3095 Also, when an expression is first inserted in the AVAIL_EXPRS table, it
3096 is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
3097 can be removed when we finish processing this block and its children.
3098
3099 NOTE: This function assumes that STMT is a MODIFY_EXPR node that
3100 contains no CALL_EXPR on its RHS and makes no volatile nor
3101 aliased references. */
3102
3103 static tree
3104 lookup_avail_expr (tree stmt, bool insert)
3105 {
3106 void **slot;
3107 tree lhs;
3108 tree temp;
3109 struct expr_hash_elt *element = xcalloc (sizeof (struct expr_hash_elt), 1);
3110
3111 lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;
3112
3113 initialize_hash_element (stmt, lhs, element);
3114
3115 /* Don't bother remembering constant assignments and copy operations.
3116 Constants and copy operations are handled by the constant/copy propagator
3117 in optimize_stmt. */
3118 if (TREE_CODE (element->rhs) == SSA_NAME
3119 || is_gimple_min_invariant (element->rhs))
3120 {
3121 free (element);
3122 return NULL_TREE;
3123 }
3124
3125 /* If this is an equality test against zero, see if we have recorded a
3126 nonzero value for the variable in question. */
3127 if ((TREE_CODE (element->rhs) == EQ_EXPR
3128 || TREE_CODE (element->rhs) == NE_EXPR)
3129 && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
3130 && integer_zerop (TREE_OPERAND (element->rhs, 1)))
3131 {
3132 int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));
3133
3134 if (bitmap_bit_p (nonzero_vars, indx))
3135 {
3136 tree t = element->rhs;
3137 free (element);
3138
3139 if (TREE_CODE (t) == EQ_EXPR)
3140 return boolean_false_node;
3141 else
3142 return boolean_true_node;
3143 }
3144 }
3145
3146 /* Finally try to find the expression in the main expression hash table. */
3147 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
3148 (insert ? INSERT : NO_INSERT));
3149 if (slot == NULL)
3150 {
3151 free (element);
3152 return NULL_TREE;
3153 }
3154
3155 if (*slot == NULL)
3156 {
3157 *slot = (void *) element;
3158 VEC_safe_push (tree_on_heap, avail_exprs_stack,
3159 stmt ? stmt : element->rhs);
3160 return NULL_TREE;
3161 }
3162
3163 /* Extract the LHS of the assignment so that it can be used as the current
3164 definition of another variable. */
3165 lhs = ((struct expr_hash_elt *)*slot)->lhs;
3166
3167 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
3168 use the value from the const_and_copies table. */
3169 if (TREE_CODE (lhs) == SSA_NAME)
3170 {
3171 temp = SSA_NAME_VALUE (lhs);
3172 if (temp && TREE_CODE (temp) != VALUE_HANDLE)
3173 lhs = temp;
3174 }
3175
3176 free (element);
3177 return lhs;
3178 }
3179
3180 /* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
3181 range of values that result in the conditional having a true value.
3182
3183 Return true if we are successful in extracting a range from COND and
3184 false if we are unsuccessful. */
3185
3186 static bool
3187 extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
3188 {
3189 tree op1 = TREE_OPERAND (cond, 1);
3190 tree high, low, type;
3191 int inverted;
3192
3193 /* Experiments have shown that it's rarely, if ever useful to
3194 record ranges for enumerations. Presumably this is due to
3195 the fact that they're rarely used directly. They are typically
3196 cast into an integer type and used that way. */
3197 if (TREE_CODE (TREE_TYPE (op1)) != INTEGER_TYPE)
3198 return 0;
3199
3200 type = TREE_TYPE (op1);
3201
3202 switch (TREE_CODE (cond))
3203 {
3204 case EQ_EXPR:
3205 high = low = op1;
3206 inverted = 0;
3207 break;
3208
3209 case NE_EXPR:
3210 high = low = op1;
3211 inverted = 1;
3212 break;
3213
3214 case GE_EXPR:
3215 low = op1;
3216 high = TYPE_MAX_VALUE (type);
3217 inverted = 0;
3218 break;
3219
3220 case GT_EXPR:
3221 high = TYPE_MAX_VALUE (type);
3222 if (!tree_int_cst_lt (op1, high))
3223 return 0;
3224 low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
3225 inverted = 0;
3226 break;
3227
3228 case LE_EXPR:
3229 high = op1;
3230 low = TYPE_MIN_VALUE (type);
3231 inverted = 0;
3232 break;
3233
3234 case LT_EXPR:
3235 low = TYPE_MIN_VALUE (type);
3236 if (!tree_int_cst_lt (low, op1))
3237 return 0;
3238 high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
3239 inverted = 0;
3240 break;
3241
3242 default:
3243 return 0;
3244 }
3245
3246 *hi_p = high;
3247 *lo_p = low;
3248 *inverted_p = inverted;
3249 return 1;
3250 }
3251
3252 /* Record a range created by COND for basic block BB. */
3253
3254 static void
3255 record_range (tree cond, basic_block bb)
3256 {
3257 enum tree_code code = TREE_CODE (cond);
3258
3259 /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
3260 They rarely allow for meaningful range optimizations and significantly
3261 complicate the implementation. */
3262 if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
3263 || code == GE_EXPR || code == EQ_EXPR)
3264 && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
3265 {
3266 struct vrp_hash_elt *vrp_hash_elt;
3267 struct vrp_element *element;
3268 varray_type *vrp_records_p;
3269 void **slot;
3270
3271
3272 vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
3273 vrp_hash_elt->var = TREE_OPERAND (cond, 0);
3274 vrp_hash_elt->records = NULL;
3275 slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);
3276
3277 if (*slot == NULL)
3278 *slot = (void *) vrp_hash_elt;
3279 else
3280 free (vrp_hash_elt);
3281
3282 vrp_hash_elt = (struct vrp_hash_elt *) *slot;
3283 vrp_records_p = &vrp_hash_elt->records;
3284
3285 element = ggc_alloc (sizeof (struct vrp_element));
3286 element->low = NULL;
3287 element->high = NULL;
3288 element->cond = cond;
3289 element->bb = bb;
3290
3291 if (*vrp_records_p == NULL)
3292 VARRAY_GENERIC_PTR_INIT (*vrp_records_p, 2, "vrp records");
3293
3294 VARRAY_PUSH_GENERIC_PTR (*vrp_records_p, element);
3295 VEC_safe_push (tree_on_heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
3296 }
3297 }
3298
3299 /* Hashing and equality functions for VRP_DATA.
3300
3301 Since this hash table is addressed by SSA_NAMEs, we can hash on
3302 their version number and equality can be determined with a
3303 pointer comparison. */
3304
3305 static hashval_t
3306 vrp_hash (const void *p)
3307 {
3308 tree var = ((struct vrp_hash_elt *)p)->var;
3309
3310 return SSA_NAME_VERSION (var);
3311 }
3312
3313 static int
3314 vrp_eq (const void *p1, const void *p2)
3315 {
3316 tree var1 = ((struct vrp_hash_elt *)p1)->var;
3317 tree var2 = ((struct vrp_hash_elt *)p2)->var;
3318
3319 return var1 == var2;
3320 }
3321
3322 /* Hashing and equality functions for AVAIL_EXPRS. The table stores
3323 MODIFY_EXPR statements. We compute a value number for expressions using
3324 the code of the expression and the SSA numbers of its operands. */
3325
3326 static hashval_t
3327 avail_expr_hash (const void *p)
3328 {
3329 stmt_ann_t ann = ((struct expr_hash_elt *)p)->ann;
3330 tree rhs = ((struct expr_hash_elt *)p)->rhs;
3331 hashval_t val = 0;
3332 size_t i;
3333 vuse_optype vuses;
3334
3335 /* iterative_hash_expr knows how to deal with any expression and
3336 deals with commutative operators as well, so just use it instead
3337 of duplicating such complexities here. */
3338 val = iterative_hash_expr (rhs, val);
3339
3340 /* If the hash table entry is not associated with a statement, then we
3341 can just hash the expression and not worry about virtual operands
3342 and such. */
3343 if (!ann)
3344 return val;
3345
3346 /* Add the SSA version numbers of every vuse operand. This is important
3347 because compound variables like arrays are not renamed in the
3348 operands. Rather, the rename is done on the virtual variable
3349 representing all the elements of the array. */
3350 vuses = VUSE_OPS (ann);
3351 for (i = 0; i < NUM_VUSES (vuses); i++)
3352 val = iterative_hash_expr (VUSE_OP (vuses, i), val);
3353
3354 return val;
3355 }
3356
3357 static hashval_t
3358 real_avail_expr_hash (const void *p)
3359 {
3360 return ((const struct expr_hash_elt *)p)->hash;
3361 }
3362
3363 static int
3364 avail_expr_eq (const void *p1, const void *p2)
3365 {
3366 stmt_ann_t ann1 = ((struct expr_hash_elt *)p1)->ann;
3367 tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
3368 stmt_ann_t ann2 = ((struct expr_hash_elt *)p2)->ann;
3369 tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;
3370
3371 /* If they are the same physical expression, return true. */
3372 if (rhs1 == rhs2 && ann1 == ann2)
3373 return true;
3374
3375 /* If their codes are not equal, then quit now. */
3376 if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
3377 return false;
3378
3379 /* In case of a collision, both RHS have to be identical and have the
3380 same VUSE operands. */
3381 if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
3382 || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
3383 && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
3384 {
3385 vuse_optype ops1 = NULL;
3386 vuse_optype ops2 = NULL;
3387 size_t num_ops1 = 0;
3388 size_t num_ops2 = 0;
3389 size_t i;
3390
3391 if (ann1)
3392 {
3393 ops1 = VUSE_OPS (ann1);
3394 num_ops1 = NUM_VUSES (ops1);
3395 }
3396
3397 if (ann2)
3398 {
3399 ops2 = VUSE_OPS (ann2);
3400 num_ops2 = NUM_VUSES (ops2);
3401 }
3402
3403 /* If the number of virtual uses is different, then we consider
3404 them not equal. */
3405 if (num_ops1 != num_ops2)
3406 return false;
3407
3408 for (i = 0; i < num_ops1; i++)
3409 if (VUSE_OP (ops1, i) != VUSE_OP (ops2, i))
3410 return false;
3411
3412 gcc_assert (((struct expr_hash_elt *)p1)->hash
3413 == ((struct expr_hash_elt *)p2)->hash);
3414 return true;
3415 }
3416
3417 return false;
3418 }
3419
3420 /* Given STMT and a pointer to the block local definitions BLOCK_DEFS_P,
3421 register register all objects set by this statement into BLOCK_DEFS_P
3422 and CURRDEFS. */
3423
3424 static void
3425 register_definitions_for_stmt (tree stmt)
3426 {
3427 tree def;
3428 ssa_op_iter iter;
3429
3430 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
3431 {
3432
3433 /* FIXME: We shouldn't be registering new defs if the variable
3434 doesn't need to be renamed. */
3435 register_new_def (def, &block_defs_stack);
3436 }
3437 }
3438