tree-ssa-dom.c (find_equivalent_equality_comparison): Do not a eliminate type convers...
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "cfgloop.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "domwalk.h"
41 #include "real.h"
42 #include "tree-pass.h"
43 #include "tree-ssa-propagate.h"
44 #include "langhooks.h"
45
46 /* This file implements optimizations on the dominator tree. */
47
48
49 /* Structure for recording edge equivalences as well as any pending
50 edge redirections during the dominator optimizer.
51
52 Computing and storing the edge equivalences instead of creating
53 them on-demand can save significant amounts of time, particularly
54 for pathological cases involving switch statements.
55
56 These structures live for a single iteration of the dominator
57 optimizer in the edge's AUX field. At the end of an iteration we
58 free each of these structures and update the AUX field to point
59 to any requested redirection target (the code for updating the
60 CFG and SSA graph for edge redirection expects redirection edge
61 targets to be in the AUX field for each edge. */
62
63 struct edge_info
64 {
65 /* If this edge creates a simple equivalence, the LHS and RHS of
66 the equivalence will be stored here. */
67 tree lhs;
68 tree rhs;
69
70 /* Traversing an edge may also indicate one or more particular conditions
71 are true or false. The number of recorded conditions can vary, but
72 can be determined by the condition's code. So we have an array
73 and its maximum index rather than use a varray. */
74 tree *cond_equivalences;
75 unsigned int max_cond_equivalences;
76
77 /* If we can thread this edge this field records the new target. */
78 edge redirection_target;
79 };
80
81
82 /* Hash table with expressions made available during the renaming process.
83 When an assignment of the form X_i = EXPR is found, the statement is
84 stored in this table. If the same expression EXPR is later found on the
85 RHS of another statement, it is replaced with X_i (thus performing
86 global redundancy elimination). Similarly as we pass through conditionals
87 we record the conditional itself as having either a true or false value
88 in this table. */
89 static htab_t avail_exprs;
90
91 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
92 expressions it enters into the hash table along with a marker entry
93 (null). When we finish processing the block, we pop off entries and
94 remove the expressions from the global hash table until we hit the
95 marker. */
96 static VEC(tree,heap) *avail_exprs_stack;
97
98 /* Stack of statements we need to rescan during finalization for newly
99 exposed variables.
100
101 Statement rescanning must occur after the current block's available
102 expressions are removed from AVAIL_EXPRS. Else we may change the
103 hash code for an expression and be unable to find/remove it from
104 AVAIL_EXPRS. */
105 static VEC(tree,heap) *stmts_to_rescan;
106
107 /* Structure for entries in the expression hash table.
108
109 This requires more memory for the hash table entries, but allows us
110 to avoid creating silly tree nodes and annotations for conditionals,
111 eliminates 2 global hash tables and two block local varrays.
112
113 It also allows us to reduce the number of hash table lookups we
114 have to perform in lookup_avail_expr and finally it allows us to
115 significantly reduce the number of calls into the hashing routine
116 itself. */
117
118 struct expr_hash_elt
119 {
120 /* The value (lhs) of this expression. */
121 tree lhs;
122
123 /* The expression (rhs) we want to record. */
124 tree rhs;
125
126 /* The stmt pointer if this element corresponds to a statement. */
127 tree stmt;
128
129 /* The hash value for RHS/ann. */
130 hashval_t hash;
131 };
132
133 /* Stack of dest,src pairs that need to be restored during finalization.
134
135 A NULL entry is used to mark the end of pairs which need to be
136 restored during finalization of this block. */
137 static VEC(tree,heap) *const_and_copies_stack;
138
139 /* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
140 know their exact value. */
141 static bitmap nonzero_vars;
142
143 /* Bitmap of blocks that are scheduled to be threaded through. This
144 is used to communicate with thread_through_blocks. */
145 static bitmap threaded_blocks;
146
147 /* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
148 when the current block is finalized.
149
150 A NULL entry is used to mark the end of names needing their
151 entry in NONZERO_VARS cleared during finalization of this block. */
152 static VEC(tree,heap) *nonzero_vars_stack;
153
154 /* Track whether or not we have changed the control flow graph. */
155 static bool cfg_altered;
156
157 /* Bitmap of blocks that have had EH statements cleaned. We should
158 remove their dead edges eventually. */
159 static bitmap need_eh_cleanup;
160
161 /* Statistics for dominator optimizations. */
162 struct opt_stats_d
163 {
164 long num_stmts;
165 long num_exprs_considered;
166 long num_re;
167 long num_const_prop;
168 long num_copy_prop;
169 };
170
171 static struct opt_stats_d opt_stats;
172
173 /* Value range propagation record. Each time we encounter a conditional
174 of the form SSA_NAME COND CONST we create a new vrp_element to record
175 how the condition affects the possible values SSA_NAME may have.
176
177 Each record contains the condition tested (COND), and the range of
178 values the variable may legitimately have if COND is true. Note the
179 range of values may be a smaller range than COND specifies if we have
180 recorded other ranges for this variable. Each record also contains the
181 block in which the range was recorded for invalidation purposes.
182
183 Note that the current known range is computed lazily. This allows us
184 to avoid the overhead of computing ranges which are never queried.
185
186 When we encounter a conditional, we look for records which constrain
187 the SSA_NAME used in the condition. In some cases those records allow
188 us to determine the condition's result at compile time. In other cases
189 they may allow us to simplify the condition.
190
191 We also use value ranges to do things like transform signed div/mod
192 operations into unsigned div/mod or to simplify ABS_EXPRs.
193
194 Simple experiments have shown these optimizations to not be all that
195 useful on switch statements (much to my surprise). So switch statement
196 optimizations are not performed.
197
198 Note carefully we do not propagate information through each statement
199 in the block. i.e., if we know variable X has a value defined of
200 [0, 25] and we encounter Y = X + 1, we do not track a value range
201 for Y (which would be [1, 26] if we cared). Similarly we do not
202 constrain values as we encounter narrowing typecasts, etc. */
203
204 struct vrp_element
205 {
206 /* The highest and lowest values the variable in COND may contain when
207 COND is true. Note this may not necessarily be the same values
208 tested by COND if the same variable was used in earlier conditionals.
209
210 Note this is computed lazily and thus can be NULL indicating that
211 the values have not been computed yet. */
212 tree low;
213 tree high;
214
215 /* The actual conditional we recorded. This is needed since we compute
216 ranges lazily. */
217 tree cond;
218
219 /* The basic block where this record was created. We use this to determine
220 when to remove records. */
221 basic_block bb;
222 };
223
224 /* A hash table holding value range records (VRP_ELEMENTs) for a given
225 SSA_NAME. We used to use a varray indexed by SSA_NAME_VERSION, but
226 that gets awful wasteful, particularly since the density objects
227 with useful information is very low. */
228 static htab_t vrp_data;
229
230 typedef struct vrp_element *vrp_element_p;
231
232 DEF_VEC_P(vrp_element_p);
233 DEF_VEC_ALLOC_P(vrp_element_p,heap);
234
235 /* An entry in the VRP_DATA hash table. We record the variable and a
236 varray of VRP_ELEMENT records associated with that variable. */
237 struct vrp_hash_elt
238 {
239 tree var;
240 VEC(vrp_element_p,heap) *records;
241 };
242
243 /* Array of variables which have their values constrained by operations
244 in this basic block. We use this during finalization to know
245 which variables need their VRP data updated. */
246
247 /* Stack of SSA_NAMEs which had their values constrained by operations
248 in this basic block. During finalization of this block we use this
249 list to determine which variables need their VRP data updated.
250
251 A NULL entry marks the end of the SSA_NAMEs associated with this block. */
252 static VEC(tree,heap) *vrp_variables_stack;
253
254 struct eq_expr_value
255 {
256 tree src;
257 tree dst;
258 };
259
260 /* Local functions. */
261 static void optimize_stmt (struct dom_walk_data *,
262 basic_block bb,
263 block_stmt_iterator);
264 static tree lookup_avail_expr (tree, bool);
265 static hashval_t vrp_hash (const void *);
266 static int vrp_eq (const void *, const void *);
267 static hashval_t avail_expr_hash (const void *);
268 static hashval_t real_avail_expr_hash (const void *);
269 static int avail_expr_eq (const void *, const void *);
270 static void htab_statistics (FILE *, htab_t);
271 static void record_cond (tree, tree);
272 static void record_const_or_copy (tree, tree);
273 static void record_equality (tree, tree);
274 static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
275 static tree simplify_rhs_and_lookup_avail_expr (tree, int);
276 static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
277 static tree simplify_switch_and_lookup_avail_expr (tree, int);
278 static tree find_equivalent_equality_comparison (tree);
279 static void record_range (tree, basic_block);
280 static bool extract_range_from_cond (tree, tree *, tree *, int *);
281 static void record_equivalences_from_phis (basic_block);
282 static void record_equivalences_from_incoming_edge (basic_block);
283 static bool eliminate_redundant_computations (tree, stmt_ann_t);
284 static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
285 static void thread_across_edge (struct dom_walk_data *, edge);
286 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
287 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
288 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
289 static void remove_local_expressions_from_table (void);
290 static void restore_vars_to_original_value (void);
291 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
292 static void restore_nonzero_vars_to_original_value (void);
293 static inline bool unsafe_associative_fp_binop (tree);
294
295
296 /* Local version of fold that doesn't introduce cruft. */
297
298 static tree
299 local_fold (tree t)
300 {
301 t = fold (t);
302
303 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
304 may have been added by fold, and "useless" type conversions that might
305 now be apparent due to propagation. */
306 STRIP_USELESS_TYPE_CONVERSION (t);
307
308 return t;
309 }
310
311 /* Allocate an EDGE_INFO for edge E and attach it to E.
312 Return the new EDGE_INFO structure. */
313
314 static struct edge_info *
315 allocate_edge_info (edge e)
316 {
317 struct edge_info *edge_info;
318
319 edge_info = xcalloc (1, sizeof (struct edge_info));
320
321 e->aux = edge_info;
322 return edge_info;
323 }
324
325 /* Free all EDGE_INFO structures associated with edges in the CFG.
326 If a particular edge can be threaded, copy the redirection
327 target from the EDGE_INFO structure into the edge's AUX field
328 as required by code to update the CFG and SSA graph for
329 jump threading. */
330
331 static void
332 free_all_edge_infos (void)
333 {
334 basic_block bb;
335 edge_iterator ei;
336 edge e;
337
338 FOR_EACH_BB (bb)
339 {
340 FOR_EACH_EDGE (e, ei, bb->preds)
341 {
342 struct edge_info *edge_info = e->aux;
343
344 if (edge_info)
345 {
346 e->aux = edge_info->redirection_target;
347 if (edge_info->cond_equivalences)
348 free (edge_info->cond_equivalences);
349 free (edge_info);
350 }
351 }
352 }
353 }
354
355 /* Free an instance of vrp_hash_elt. */
356
357 static void
358 vrp_free (void *data)
359 {
360 struct vrp_hash_elt *elt = data;
361 struct VEC(vrp_element_p,heap) **vrp_elt = &elt->records;
362
363 VEC_free (vrp_element_p, heap, *vrp_elt);
364 free (elt);
365 }
366
367 /* Jump threading, redundancy elimination and const/copy propagation.
368
369 This pass may expose new symbols that need to be renamed into SSA. For
370 every new symbol exposed, its corresponding bit will be set in
371 VARS_TO_RENAME. */
372
373 static void
374 tree_ssa_dominator_optimize (void)
375 {
376 struct dom_walk_data walk_data;
377 unsigned int i;
378 struct loops loops_info;
379
380 memset (&opt_stats, 0, sizeof (opt_stats));
381
382 /* Create our hash tables. */
383 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
384 vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq,
385 vrp_free);
386 avail_exprs_stack = VEC_alloc (tree, heap, 20);
387 const_and_copies_stack = VEC_alloc (tree, heap, 20);
388 nonzero_vars_stack = VEC_alloc (tree, heap, 20);
389 vrp_variables_stack = VEC_alloc (tree, heap, 20);
390 stmts_to_rescan = VEC_alloc (tree, heap, 20);
391 nonzero_vars = BITMAP_ALLOC (NULL);
392 threaded_blocks = BITMAP_ALLOC (NULL);
393 need_eh_cleanup = BITMAP_ALLOC (NULL);
394
395 /* Setup callbacks for the generic dominator tree walker. */
396 walk_data.walk_stmts_backward = false;
397 walk_data.dom_direction = CDI_DOMINATORS;
398 walk_data.initialize_block_local_data = NULL;
399 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
400 walk_data.before_dom_children_walk_stmts = optimize_stmt;
401 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
402 walk_data.after_dom_children_before_stmts = NULL;
403 walk_data.after_dom_children_walk_stmts = NULL;
404 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
405 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
406 When we attach more stuff we'll need to fill this out with a real
407 structure. */
408 walk_data.global_data = NULL;
409 walk_data.block_local_data_size = 0;
410 walk_data.interesting_blocks = NULL;
411
412 /* Now initialize the dominator walker. */
413 init_walk_dominator_tree (&walk_data);
414
415 calculate_dominance_info (CDI_DOMINATORS);
416
417 /* We need to know which edges exit loops so that we can
418 aggressively thread through loop headers to an exit
419 edge. */
420 flow_loops_find (&loops_info);
421 mark_loop_exit_edges (&loops_info);
422 flow_loops_free (&loops_info);
423
424 /* Clean up the CFG so that any forwarder blocks created by loop
425 canonicalization are removed. */
426 cleanup_tree_cfg ();
427 calculate_dominance_info (CDI_DOMINATORS);
428
429 /* If we prove certain blocks are unreachable, then we want to
430 repeat the dominator optimization process as PHI nodes may
431 have turned into copies which allows better propagation of
432 values. So we repeat until we do not identify any new unreachable
433 blocks. */
434 do
435 {
436 /* Optimize the dominator tree. */
437 cfg_altered = false;
438
439 /* We need accurate information regarding back edges in the CFG
440 for jump threading. */
441 mark_dfs_back_edges ();
442
443 /* Recursively walk the dominator tree optimizing statements. */
444 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
445
446 {
447 block_stmt_iterator bsi;
448 basic_block bb;
449 FOR_EACH_BB (bb)
450 {
451 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
452 {
453 update_stmt_if_modified (bsi_stmt (bsi));
454 }
455 }
456 }
457
458 /* If we exposed any new variables, go ahead and put them into
459 SSA form now, before we handle jump threading. This simplifies
460 interactions between rewriting of _DECL nodes into SSA form
461 and rewriting SSA_NAME nodes into SSA form after block
462 duplication and CFG manipulation. */
463 update_ssa (TODO_update_ssa);
464
465 free_all_edge_infos ();
466
467 /* Thread jumps, creating duplicate blocks as needed. */
468 cfg_altered |= thread_through_all_blocks (threaded_blocks);
469
470 /* Removal of statements may make some EH edges dead. Purge
471 such edges from the CFG as needed. */
472 if (!bitmap_empty_p (need_eh_cleanup))
473 {
474 cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
475 bitmap_zero (need_eh_cleanup);
476 }
477
478 if (cfg_altered)
479 free_dominance_info (CDI_DOMINATORS);
480
481 cfg_altered = cleanup_tree_cfg ();
482
483 if (rediscover_loops_after_threading)
484 {
485 /* Rerun basic loop analysis to discover any newly
486 created loops and update the set of exit edges. */
487 rediscover_loops_after_threading = false;
488 flow_loops_find (&loops_info);
489 mark_loop_exit_edges (&loops_info);
490 flow_loops_free (&loops_info);
491
492 /* Remove any forwarder blocks inserted by loop
493 header canonicalization. */
494 cleanup_tree_cfg ();
495 }
496
497 calculate_dominance_info (CDI_DOMINATORS);
498
499 update_ssa (TODO_update_ssa);
500
501 /* Reinitialize the various tables. */
502 bitmap_clear (nonzero_vars);
503 bitmap_clear (threaded_blocks);
504 htab_empty (avail_exprs);
505 htab_empty (vrp_data);
506
507 /* Finally, remove everything except invariants in SSA_NAME_VALUE.
508
509 This must be done before we iterate as we might have a
510 reference to an SSA_NAME which was removed by the call to
511 update_ssa.
512
513 Long term we will be able to let everything in SSA_NAME_VALUE
514 persist. However, for now, we know this is the safe thing to do. */
515 for (i = 0; i < num_ssa_names; i++)
516 {
517 tree name = ssa_name (i);
518 tree value;
519
520 if (!name)
521 continue;
522
523 value = SSA_NAME_VALUE (name);
524 if (value && !is_gimple_min_invariant (value))
525 SSA_NAME_VALUE (name) = NULL;
526 }
527 }
528 while (optimize > 1 && cfg_altered);
529
530 /* Debugging dumps. */
531 if (dump_file && (dump_flags & TDF_STATS))
532 dump_dominator_optimization_stats (dump_file);
533
534 /* We emptied the hash table earlier, now delete it completely. */
535 htab_delete (avail_exprs);
536 htab_delete (vrp_data);
537
538 /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
539 CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
540 of the do-while loop above. */
541
542 /* And finalize the dominator walker. */
543 fini_walk_dominator_tree (&walk_data);
544
545 /* Free nonzero_vars. */
546 BITMAP_FREE (nonzero_vars);
547 BITMAP_FREE (threaded_blocks);
548 BITMAP_FREE (need_eh_cleanup);
549
550 VEC_free (tree, heap, avail_exprs_stack);
551 VEC_free (tree, heap, const_and_copies_stack);
552 VEC_free (tree, heap, nonzero_vars_stack);
553 VEC_free (tree, heap, vrp_variables_stack);
554 VEC_free (tree, heap, stmts_to_rescan);
555 }
556
557 static bool
558 gate_dominator (void)
559 {
560 return flag_tree_dom != 0;
561 }
562
563 struct tree_opt_pass pass_dominator =
564 {
565 "dom", /* name */
566 gate_dominator, /* gate */
567 tree_ssa_dominator_optimize, /* execute */
568 NULL, /* sub */
569 NULL, /* next */
570 0, /* static_pass_number */
571 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
572 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
573 0, /* properties_provided */
574 0, /* properties_destroyed */
575 0, /* todo_flags_start */
576 TODO_dump_func
577 | TODO_update_ssa
578 | TODO_verify_ssa, /* todo_flags_finish */
579 0 /* letter */
580 };
581
582
583 /* We are exiting E->src, see if E->dest ends with a conditional
584 jump which has a known value when reached via E.
585
586 Special care is necessary if E is a back edge in the CFG as we
587 will have already recorded equivalences for E->dest into our
588 various tables, including the result of the conditional at
589 the end of E->dest. Threading opportunities are severely
590 limited in that case to avoid short-circuiting the loop
591 incorrectly.
592
593 Note it is quite common for the first block inside a loop to
594 end with a conditional which is either always true or always
595 false when reached via the loop backedge. Thus we do not want
596 to blindly disable threading across a loop backedge. */
597
598 static void
599 thread_across_edge (struct dom_walk_data *walk_data, edge e)
600 {
601 block_stmt_iterator bsi;
602 tree stmt = NULL;
603 tree phi;
604
605 /* If E->dest does not end with a conditional, then there is
606 nothing to do. */
607 bsi = bsi_last (e->dest);
608 if (bsi_end_p (bsi)
609 || ! bsi_stmt (bsi)
610 || (TREE_CODE (bsi_stmt (bsi)) != COND_EXPR
611 && TREE_CODE (bsi_stmt (bsi)) != GOTO_EXPR
612 && TREE_CODE (bsi_stmt (bsi)) != SWITCH_EXPR))
613 return;
614
615 /* The basic idea here is to use whatever knowledge we have
616 from our dominator walk to simplify statements in E->dest,
617 with the ultimate goal being to simplify the conditional
618 at the end of E->dest.
619
620 Note that we must undo any changes we make to the underlying
621 statements as the simplifications we are making are control
622 flow sensitive (ie, the simplifications are valid when we
623 traverse E, but may not be valid on other paths to E->dest. */
624
625 /* Each PHI creates a temporary equivalence, record them. Again
626 these are context sensitive equivalences and will be removed
627 by our caller. */
628 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
629 {
630 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
631 tree dst = PHI_RESULT (phi);
632
633 /* If the desired argument is not the same as this PHI's result
634 and it is set by a PHI in E->dest, then we can not thread
635 through E->dest. */
636 if (src != dst
637 && TREE_CODE (src) == SSA_NAME
638 && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
639 && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
640 return;
641
642 record_const_or_copy (dst, src);
643 }
644
645 /* Try to simplify each statement in E->dest, ultimately leading to
646 a simplification of the COND_EXPR at the end of E->dest.
647
648 We might consider marking just those statements which ultimately
649 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
650 would be recovered by trying to simplify fewer statements.
651
652 If we are able to simplify a statement into the form
653 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
654 a context sensitive equivalency which may help us simplify
655 later statements in E->dest.
656
657 Failure to simplify into the form above merely means that the
658 statement provides no equivalences to help simplify later
659 statements. This does not prevent threading through E->dest. */
660 for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
661 {
662 tree cached_lhs;
663
664 stmt = bsi_stmt (bsi);
665
666 /* Ignore empty statements and labels. */
667 if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
668 continue;
669
670 /* Safely handle threading across loop backedges. This is
671 over conservative, but still allows us to capture the
672 majority of the cases where we can thread across a loop
673 backedge. */
674 if ((e->flags & EDGE_DFS_BACK) != 0
675 && TREE_CODE (stmt) != COND_EXPR
676 && TREE_CODE (stmt) != SWITCH_EXPR)
677 return;
678
679 /* If the statement has volatile operands, then we assume we
680 can not thread through this block. This is overly
681 conservative in some ways. */
682 if (TREE_CODE (stmt) == ASM_EXPR && ASM_VOLATILE_P (stmt))
683 return;
684
685 /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
686 value, then do not try to simplify this statement as it will
687 not simplify in any way that is helpful for jump threading. */
688 if (TREE_CODE (stmt) != MODIFY_EXPR
689 || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
690 continue;
691
692 /* At this point we have a statement which assigns an RHS to an
693 SSA_VAR on the LHS. We want to try and simplify this statement
694 to expose more context sensitive equivalences which in turn may
695 allow us to simplify the condition at the end of the loop. */
696 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
697 cached_lhs = TREE_OPERAND (stmt, 1);
698 else
699 {
700 /* Copy the operands. */
701 tree *copy;
702 ssa_op_iter iter;
703 use_operand_p use_p;
704 unsigned int num, i = 0;
705
706 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
707 copy = xcalloc (num, sizeof (tree));
708
709 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
710 the operands. */
711 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
712 {
713 tree tmp = NULL;
714 tree use = USE_FROM_PTR (use_p);
715
716 copy[i++] = use;
717 if (TREE_CODE (use) == SSA_NAME)
718 tmp = SSA_NAME_VALUE (use);
719 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
720 SET_USE (use_p, tmp);
721 }
722
723 /* Try to fold/lookup the new expression. Inserting the
724 expression into the hash table is unlikely to help
725 simplify anything later, so just query the hashtable. */
726 cached_lhs = fold (TREE_OPERAND (stmt, 1));
727 if (TREE_CODE (cached_lhs) != SSA_NAME
728 && !is_gimple_min_invariant (cached_lhs))
729 cached_lhs = lookup_avail_expr (stmt, false);
730
731
732 /* Restore the statement's original uses/defs. */
733 i = 0;
734 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
735 SET_USE (use_p, copy[i++]);
736
737 free (copy);
738 }
739
740 /* Record the context sensitive equivalence if we were able
741 to simplify this statement. */
742 if (cached_lhs
743 && (TREE_CODE (cached_lhs) == SSA_NAME
744 || is_gimple_min_invariant (cached_lhs)))
745 record_const_or_copy (TREE_OPERAND (stmt, 0), cached_lhs);
746 }
747
748 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
749 will be taken. */
750 if (stmt
751 && (TREE_CODE (stmt) == COND_EXPR
752 || TREE_CODE (stmt) == GOTO_EXPR
753 || TREE_CODE (stmt) == SWITCH_EXPR))
754 {
755 tree cond, cached_lhs;
756
757 /* Now temporarily cprop the operands and try to find the resulting
758 expression in the hash tables. */
759 if (TREE_CODE (stmt) == COND_EXPR)
760 cond = COND_EXPR_COND (stmt);
761 else if (TREE_CODE (stmt) == GOTO_EXPR)
762 cond = GOTO_DESTINATION (stmt);
763 else
764 cond = SWITCH_COND (stmt);
765
766 if (COMPARISON_CLASS_P (cond))
767 {
768 tree dummy_cond, op0, op1;
769 enum tree_code cond_code;
770
771 op0 = TREE_OPERAND (cond, 0);
772 op1 = TREE_OPERAND (cond, 1);
773 cond_code = TREE_CODE (cond);
774
775 /* Get the current value of both operands. */
776 if (TREE_CODE (op0) == SSA_NAME)
777 {
778 tree tmp = SSA_NAME_VALUE (op0);
779 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
780 op0 = tmp;
781 }
782
783 if (TREE_CODE (op1) == SSA_NAME)
784 {
785 tree tmp = SSA_NAME_VALUE (op1);
786 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
787 op1 = tmp;
788 }
789
790 /* Stuff the operator and operands into our dummy conditional
791 expression, creating the dummy conditional if necessary. */
792 dummy_cond = walk_data->global_data;
793 if (! dummy_cond)
794 {
795 dummy_cond = build (cond_code, boolean_type_node, op0, op1);
796 dummy_cond = build (COND_EXPR, void_type_node,
797 dummy_cond, NULL, NULL);
798 walk_data->global_data = dummy_cond;
799 }
800 else
801 {
802 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
803 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
804 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
805 }
806
807 /* If the conditional folds to an invariant, then we are done,
808 otherwise look it up in the hash tables. */
809 cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
810 if (! is_gimple_min_invariant (cached_lhs))
811 {
812 cached_lhs = lookup_avail_expr (dummy_cond, false);
813 if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
814 cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
815 NULL,
816 false);
817 }
818 }
819 /* We can have conditionals which just test the state of a
820 variable rather than use a relational operator. These are
821 simpler to handle. */
822 else if (TREE_CODE (cond) == SSA_NAME)
823 {
824 cached_lhs = cond;
825 cached_lhs = SSA_NAME_VALUE (cached_lhs);
826 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
827 cached_lhs = NULL;
828 }
829 else
830 cached_lhs = lookup_avail_expr (stmt, false);
831
832 if (cached_lhs)
833 {
834 edge taken_edge = find_taken_edge (e->dest, cached_lhs);
835 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
836
837 if (dest == e->dest)
838 return;
839
840 /* If we have a known destination for the conditional, then
841 we can perform this optimization, which saves at least one
842 conditional jump each time it applies since we get to
843 bypass the conditional at our original destination. */
844 if (dest)
845 {
846 struct edge_info *edge_info;
847
848 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
849 e->count, taken_edge);
850 if (e->aux)
851 edge_info = e->aux;
852 else
853 edge_info = allocate_edge_info (e);
854 edge_info->redirection_target = taken_edge;
855 bitmap_set_bit (threaded_blocks, e->dest->index);
856 }
857 }
858 }
859 }
860
861
862 /* Initialize local stacks for this optimizer and record equivalences
863 upon entry to BB. Equivalences can come from the edge traversed to
864 reach BB or they may come from PHI nodes at the start of BB. */
865
866 static void
867 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
868 basic_block bb)
869 {
870 if (dump_file && (dump_flags & TDF_DETAILS))
871 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
872
873 /* Push a marker on the stacks of local information so that we know how
874 far to unwind when we finalize this block. */
875 VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
876 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
877 VEC_safe_push (tree, heap, nonzero_vars_stack, NULL_TREE);
878 VEC_safe_push (tree, heap, vrp_variables_stack, NULL_TREE);
879
880 record_equivalences_from_incoming_edge (bb);
881
882 /* PHI nodes can create equivalences too. */
883 record_equivalences_from_phis (bb);
884 }
885
886 /* Given an expression EXPR (a relational expression or a statement),
887 initialize the hash table element pointed by by ELEMENT. */
888
889 static void
890 initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
891 {
892 /* Hash table elements may be based on conditional expressions or statements.
893
894 For the former case, we have no annotation and we want to hash the
895 conditional expression. In the latter case we have an annotation and
896 we want to record the expression the statement evaluates. */
897 if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
898 {
899 element->stmt = NULL;
900 element->rhs = expr;
901 }
902 else if (TREE_CODE (expr) == COND_EXPR)
903 {
904 element->stmt = expr;
905 element->rhs = COND_EXPR_COND (expr);
906 }
907 else if (TREE_CODE (expr) == SWITCH_EXPR)
908 {
909 element->stmt = expr;
910 element->rhs = SWITCH_COND (expr);
911 }
912 else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
913 {
914 element->stmt = expr;
915 element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
916 }
917 else if (TREE_CODE (expr) == GOTO_EXPR)
918 {
919 element->stmt = expr;
920 element->rhs = GOTO_DESTINATION (expr);
921 }
922 else
923 {
924 element->stmt = expr;
925 element->rhs = TREE_OPERAND (expr, 1);
926 }
927
928 element->lhs = lhs;
929 element->hash = avail_expr_hash (element);
930 }
931
932 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
933 LIMIT entries left in LOCALs. */
934
935 static void
936 remove_local_expressions_from_table (void)
937 {
938 /* Remove all the expressions made available in this block. */
939 while (VEC_length (tree, avail_exprs_stack) > 0)
940 {
941 struct expr_hash_elt element;
942 tree expr = VEC_pop (tree, avail_exprs_stack);
943
944 if (expr == NULL_TREE)
945 break;
946
947 initialize_hash_element (expr, NULL, &element);
948 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
949 }
950 }
951
952 /* Use the SSA_NAMES in LOCALS to restore TABLE to its original
953 state, stopping when there are LIMIT entries left in LOCALs. */
954
955 static void
956 restore_nonzero_vars_to_original_value (void)
957 {
958 while (VEC_length (tree, nonzero_vars_stack) > 0)
959 {
960 tree name = VEC_pop (tree, nonzero_vars_stack);
961
962 if (name == NULL)
963 break;
964
965 bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
966 }
967 }
968
969 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
970 CONST_AND_COPIES to its original state, stopping when we hit a
971 NULL marker. */
972
973 static void
974 restore_vars_to_original_value (void)
975 {
976 while (VEC_length (tree, const_and_copies_stack) > 0)
977 {
978 tree prev_value, dest;
979
980 dest = VEC_pop (tree, const_and_copies_stack);
981
982 if (dest == NULL)
983 break;
984
985 prev_value = VEC_pop (tree, const_and_copies_stack);
986 SSA_NAME_VALUE (dest) = prev_value;
987 }
988 }
989
990 /* We have finished processing the dominator children of BB, perform
991 any finalization actions in preparation for leaving this node in
992 the dominator tree. */
993
994 static void
995 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
996 {
997 tree last;
998
999 /* If we are at a leaf node in the dominator tree, see if we can thread
1000 the edge from BB through its successor.
1001
1002 Do this before we remove entries from our equivalence tables. */
1003 if (single_succ_p (bb)
1004 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1005 && (get_immediate_dominator (CDI_DOMINATORS, single_succ (bb)) != bb
1006 || phi_nodes (single_succ (bb))))
1007
1008 {
1009 thread_across_edge (walk_data, single_succ_edge (bb));
1010 }
1011 else if ((last = last_stmt (bb))
1012 && TREE_CODE (last) == COND_EXPR
1013 && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
1014 || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1015 && EDGE_COUNT (bb->succs) == 2
1016 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1017 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1018 {
1019 edge true_edge, false_edge;
1020
1021 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1022
1023 /* If the THEN arm is the end of a dominator tree or has PHI nodes,
1024 then try to thread through its edge. */
1025 if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
1026 || phi_nodes (true_edge->dest))
1027 {
1028 struct edge_info *edge_info;
1029 unsigned int i;
1030
1031 /* Push a marker onto the available expression stack so that we
1032 unwind any expressions related to the TRUE arm before processing
1033 the false arm below. */
1034 VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
1035 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1036
1037 edge_info = true_edge->aux;
1038
1039 /* If we have info associated with this edge, record it into
1040 our equivalency tables. */
1041 if (edge_info)
1042 {
1043 tree *cond_equivalences = edge_info->cond_equivalences;
1044 tree lhs = edge_info->lhs;
1045 tree rhs = edge_info->rhs;
1046
1047 /* If we have a simple NAME = VALUE equivalency record it. */
1048 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1049 record_const_or_copy (lhs, rhs);
1050
1051 /* If we have 0 = COND or 1 = COND equivalences, record them
1052 into our expression hash tables. */
1053 if (cond_equivalences)
1054 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1055 {
1056 tree expr = cond_equivalences[i];
1057 tree value = cond_equivalences[i + 1];
1058
1059 record_cond (expr, value);
1060 }
1061 }
1062
1063 /* Now thread the edge. */
1064 thread_across_edge (walk_data, true_edge);
1065
1066 /* And restore the various tables to their state before
1067 we threaded this edge. */
1068 remove_local_expressions_from_table ();
1069 restore_vars_to_original_value ();
1070 }
1071
1072 /* Similarly for the ELSE arm. */
1073 if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
1074 || phi_nodes (false_edge->dest))
1075 {
1076 struct edge_info *edge_info;
1077 unsigned int i;
1078
1079 edge_info = false_edge->aux;
1080
1081 /* If we have info associated with this edge, record it into
1082 our equivalency tables. */
1083 if (edge_info)
1084 {
1085 tree *cond_equivalences = edge_info->cond_equivalences;
1086 tree lhs = edge_info->lhs;
1087 tree rhs = edge_info->rhs;
1088
1089 /* If we have a simple NAME = VALUE equivalency record it. */
1090 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1091 record_const_or_copy (lhs, rhs);
1092
1093 /* If we have 0 = COND or 1 = COND equivalences, record them
1094 into our expression hash tables. */
1095 if (cond_equivalences)
1096 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1097 {
1098 tree expr = cond_equivalences[i];
1099 tree value = cond_equivalences[i + 1];
1100
1101 record_cond (expr, value);
1102 }
1103 }
1104
1105 thread_across_edge (walk_data, false_edge);
1106
1107 /* No need to remove local expressions from our tables
1108 or restore vars to their original value as that will
1109 be done immediately below. */
1110 }
1111 }
1112
1113 remove_local_expressions_from_table ();
1114 restore_nonzero_vars_to_original_value ();
1115 restore_vars_to_original_value ();
1116
1117 /* Remove VRP records associated with this basic block. They are no
1118 longer valid.
1119
1120 To be efficient, we note which variables have had their values
1121 constrained in this block. So walk over each variable in the
1122 VRP_VARIABLEs array. */
1123 while (VEC_length (tree, vrp_variables_stack) > 0)
1124 {
1125 tree var = VEC_pop (tree, vrp_variables_stack);
1126 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1127 void **slot;
1128
1129 /* Each variable has a stack of value range records. We want to
1130 invalidate those associated with our basic block. So we walk
1131 the array backwards popping off records associated with our
1132 block. Once we hit a record not associated with our block
1133 we are done. */
1134 VEC(vrp_element_p,heap) **var_vrp_records;
1135
1136 if (var == NULL)
1137 break;
1138
1139 vrp_hash_elt.var = var;
1140 vrp_hash_elt.records = NULL;
1141
1142 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
1143
1144 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
1145 var_vrp_records = &vrp_hash_elt_p->records;
1146
1147 while (VEC_length (vrp_element_p, *var_vrp_records) > 0)
1148 {
1149 struct vrp_element *element
1150 = VEC_last (vrp_element_p, *var_vrp_records);
1151
1152 if (element->bb != bb)
1153 break;
1154
1155 VEC_pop (vrp_element_p, *var_vrp_records);
1156 }
1157 }
1158
1159 /* If we queued any statements to rescan in this block, then
1160 go ahead and rescan them now. */
1161 while (VEC_length (tree, stmts_to_rescan) > 0)
1162 {
1163 tree stmt = VEC_last (tree, stmts_to_rescan);
1164 basic_block stmt_bb = bb_for_stmt (stmt);
1165
1166 if (stmt_bb != bb)
1167 break;
1168
1169 VEC_pop (tree, stmts_to_rescan);
1170 mark_new_vars_to_rename (stmt);
1171 }
1172 }
1173
1174 /* PHI nodes can create equivalences too.
1175
1176 Ignoring any alternatives which are the same as the result, if
1177 all the alternatives are equal, then the PHI node creates an
1178 equivalence.
1179
1180 Additionally, if all the PHI alternatives are known to have a nonzero
1181 value, then the result of this PHI is known to have a nonzero value,
1182 even if we do not know its exact value. */
1183
1184 static void
1185 record_equivalences_from_phis (basic_block bb)
1186 {
1187 tree phi;
1188
1189 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1190 {
1191 tree lhs = PHI_RESULT (phi);
1192 tree rhs = NULL;
1193 int i;
1194
1195 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1196 {
1197 tree t = PHI_ARG_DEF (phi, i);
1198
1199 /* Ignore alternatives which are the same as our LHS. Since
1200 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1201 can simply compare pointers. */
1202 if (lhs == t)
1203 continue;
1204
1205 /* If we have not processed an alternative yet, then set
1206 RHS to this alternative. */
1207 if (rhs == NULL)
1208 rhs = t;
1209 /* If we have processed an alternative (stored in RHS), then
1210 see if it is equal to this one. If it isn't, then stop
1211 the search. */
1212 else if (! operand_equal_for_phi_arg_p (rhs, t))
1213 break;
1214 }
1215
1216 /* If we had no interesting alternatives, then all the RHS alternatives
1217 must have been the same as LHS. */
1218 if (!rhs)
1219 rhs = lhs;
1220
1221 /* If we managed to iterate through each PHI alternative without
1222 breaking out of the loop, then we have a PHI which may create
1223 a useful equivalence. We do not need to record unwind data for
1224 this, since this is a true assignment and not an equivalence
1225 inferred from a comparison. All uses of this ssa name are dominated
1226 by this assignment, so unwinding just costs time and space. */
1227 if (i == PHI_NUM_ARGS (phi)
1228 && may_propagate_copy (lhs, rhs))
1229 SSA_NAME_VALUE (lhs) = rhs;
1230
1231 /* Now see if we know anything about the nonzero property for the
1232 result of this PHI. */
1233 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1234 {
1235 if (!PHI_ARG_NONZERO (phi, i))
1236 break;
1237 }
1238
1239 if (i == PHI_NUM_ARGS (phi))
1240 bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
1241 }
1242 }
1243
1244 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1245 return that edge. Otherwise return NULL. */
1246 static edge
1247 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1248 {
1249 edge retval = NULL;
1250 edge e;
1251 edge_iterator ei;
1252
1253 FOR_EACH_EDGE (e, ei, bb->preds)
1254 {
1255 /* A loop back edge can be identified by the destination of
1256 the edge dominating the source of the edge. */
1257 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1258 continue;
1259
1260 /* If we have already seen a non-loop edge, then we must have
1261 multiple incoming non-loop edges and thus we return NULL. */
1262 if (retval)
1263 return NULL;
1264
1265 /* This is the first non-loop incoming edge we have found. Record
1266 it. */
1267 retval = e;
1268 }
1269
1270 return retval;
1271 }
1272
1273 /* Record any equivalences created by the incoming edge to BB. If BB
1274 has more than one incoming edge, then no equivalence is created. */
1275
1276 static void
1277 record_equivalences_from_incoming_edge (basic_block bb)
1278 {
1279 edge e;
1280 basic_block parent;
1281 struct edge_info *edge_info;
1282
1283 /* If our parent block ended with a control statement, then we may be
1284 able to record some equivalences based on which outgoing edge from
1285 the parent was followed. */
1286 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1287
1288 e = single_incoming_edge_ignoring_loop_edges (bb);
1289
1290 /* If we had a single incoming edge from our parent block, then enter
1291 any data associated with the edge into our tables. */
1292 if (e && e->src == parent)
1293 {
1294 unsigned int i;
1295
1296 edge_info = e->aux;
1297
1298 if (edge_info)
1299 {
1300 tree lhs = edge_info->lhs;
1301 tree rhs = edge_info->rhs;
1302 tree *cond_equivalences = edge_info->cond_equivalences;
1303
1304 if (lhs)
1305 record_equality (lhs, rhs);
1306
1307 if (cond_equivalences)
1308 {
1309 bool recorded_range = false;
1310 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1311 {
1312 tree expr = cond_equivalences[i];
1313 tree value = cond_equivalences[i + 1];
1314
1315 record_cond (expr, value);
1316
1317 /* For the first true equivalence, record range
1318 information. We only do this for the first
1319 true equivalence as it should dominate any
1320 later true equivalences. */
1321 if (! recorded_range
1322 && COMPARISON_CLASS_P (expr)
1323 && value == boolean_true_node
1324 && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
1325 {
1326 record_range (expr, bb);
1327 recorded_range = true;
1328 }
1329 }
1330 }
1331 }
1332 }
1333 }
1334
1335 /* Dump SSA statistics on FILE. */
1336
1337 void
1338 dump_dominator_optimization_stats (FILE *file)
1339 {
1340 long n_exprs;
1341
1342 fprintf (file, "Total number of statements: %6ld\n\n",
1343 opt_stats.num_stmts);
1344 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1345 opt_stats.num_exprs_considered);
1346
1347 n_exprs = opt_stats.num_exprs_considered;
1348 if (n_exprs == 0)
1349 n_exprs = 1;
1350
1351 fprintf (file, " Redundant expressions eliminated: %6ld (%.0f%%)\n",
1352 opt_stats.num_re, PERCENT (opt_stats.num_re,
1353 n_exprs));
1354 fprintf (file, " Constants propagated: %6ld\n",
1355 opt_stats.num_const_prop);
1356 fprintf (file, " Copies propagated: %6ld\n",
1357 opt_stats.num_copy_prop);
1358
1359 fprintf (file, "\nHash table statistics:\n");
1360
1361 fprintf (file, " avail_exprs: ");
1362 htab_statistics (file, avail_exprs);
1363 }
1364
1365
1366 /* Dump SSA statistics on stderr. */
1367
1368 void
1369 debug_dominator_optimization_stats (void)
1370 {
1371 dump_dominator_optimization_stats (stderr);
1372 }
1373
1374
1375 /* Dump statistics for the hash table HTAB. */
1376
1377 static void
1378 htab_statistics (FILE *file, htab_t htab)
1379 {
1380 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1381 (long) htab_size (htab),
1382 (long) htab_elements (htab),
1383 htab_collisions (htab));
1384 }
1385
1386 /* Record the fact that VAR has a nonzero value, though we may not know
1387 its exact value. Note that if VAR is already known to have a nonzero
1388 value, then we do nothing. */
1389
1390 static void
1391 record_var_is_nonzero (tree var)
1392 {
1393 int indx = SSA_NAME_VERSION (var);
1394
1395 if (bitmap_bit_p (nonzero_vars, indx))
1396 return;
1397
1398 /* Mark it in the global table. */
1399 bitmap_set_bit (nonzero_vars, indx);
1400
1401 /* Record this SSA_NAME so that we can reset the global table
1402 when we leave this block. */
1403 VEC_safe_push (tree, heap, nonzero_vars_stack, var);
1404 }
1405
1406 /* Enter a statement into the true/false expression hash table indicating
1407 that the condition COND has the value VALUE. */
1408
1409 static void
1410 record_cond (tree cond, tree value)
1411 {
1412 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
1413 void **slot;
1414
1415 initialize_hash_element (cond, value, element);
1416
1417 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1418 element->hash, INSERT);
1419 if (*slot == NULL)
1420 {
1421 *slot = (void *) element;
1422 VEC_safe_push (tree, heap, avail_exprs_stack, cond);
1423 }
1424 else
1425 free (element);
1426 }
1427
1428 /* Build a new conditional using NEW_CODE, OP0 and OP1 and store
1429 the new conditional into *p, then store a boolean_true_node
1430 into *(p + 1). */
1431
1432 static void
1433 build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
1434 {
1435 *p = build2 (new_code, boolean_type_node, op0, op1);
1436 p++;
1437 *p = boolean_true_node;
1438 }
1439
1440 /* Record that COND is true and INVERTED is false into the edge information
1441 structure. Also record that any conditions dominated by COND are true
1442 as well.
1443
1444 For example, if a < b is true, then a <= b must also be true. */
1445
1446 static void
1447 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1448 {
1449 tree op0, op1;
1450
1451 if (!COMPARISON_CLASS_P (cond))
1452 return;
1453
1454 op0 = TREE_OPERAND (cond, 0);
1455 op1 = TREE_OPERAND (cond, 1);
1456
1457 switch (TREE_CODE (cond))
1458 {
1459 case LT_EXPR:
1460 case GT_EXPR:
1461 edge_info->max_cond_equivalences = 12;
1462 edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
1463 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1464 ? LE_EXPR : GE_EXPR),
1465 op0, op1, &edge_info->cond_equivalences[4]);
1466 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1467 &edge_info->cond_equivalences[6]);
1468 build_and_record_new_cond (NE_EXPR, op0, op1,
1469 &edge_info->cond_equivalences[8]);
1470 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1471 &edge_info->cond_equivalences[10]);
1472 break;
1473
1474 case GE_EXPR:
1475 case LE_EXPR:
1476 edge_info->max_cond_equivalences = 6;
1477 edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
1478 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1479 &edge_info->cond_equivalences[4]);
1480 break;
1481
1482 case EQ_EXPR:
1483 edge_info->max_cond_equivalences = 10;
1484 edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
1485 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1486 &edge_info->cond_equivalences[4]);
1487 build_and_record_new_cond (LE_EXPR, op0, op1,
1488 &edge_info->cond_equivalences[6]);
1489 build_and_record_new_cond (GE_EXPR, op0, op1,
1490 &edge_info->cond_equivalences[8]);
1491 break;
1492
1493 case UNORDERED_EXPR:
1494 edge_info->max_cond_equivalences = 16;
1495 edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
1496 build_and_record_new_cond (NE_EXPR, op0, op1,
1497 &edge_info->cond_equivalences[4]);
1498 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1499 &edge_info->cond_equivalences[6]);
1500 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1501 &edge_info->cond_equivalences[8]);
1502 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1503 &edge_info->cond_equivalences[10]);
1504 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1505 &edge_info->cond_equivalences[12]);
1506 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1507 &edge_info->cond_equivalences[14]);
1508 break;
1509
1510 case UNLT_EXPR:
1511 case UNGT_EXPR:
1512 edge_info->max_cond_equivalences = 8;
1513 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1514 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1515 ? UNLE_EXPR : UNGE_EXPR),
1516 op0, op1, &edge_info->cond_equivalences[4]);
1517 build_and_record_new_cond (NE_EXPR, op0, op1,
1518 &edge_info->cond_equivalences[6]);
1519 break;
1520
1521 case UNEQ_EXPR:
1522 edge_info->max_cond_equivalences = 8;
1523 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1524 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1525 &edge_info->cond_equivalences[4]);
1526 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1527 &edge_info->cond_equivalences[6]);
1528 break;
1529
1530 case LTGT_EXPR:
1531 edge_info->max_cond_equivalences = 8;
1532 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1533 build_and_record_new_cond (NE_EXPR, op0, op1,
1534 &edge_info->cond_equivalences[4]);
1535 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1536 &edge_info->cond_equivalences[6]);
1537 break;
1538
1539 default:
1540 edge_info->max_cond_equivalences = 4;
1541 edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
1542 break;
1543 }
1544
1545 /* Now store the original true and false conditions into the first
1546 two slots. */
1547 edge_info->cond_equivalences[0] = cond;
1548 edge_info->cond_equivalences[1] = boolean_true_node;
1549 edge_info->cond_equivalences[2] = inverted;
1550 edge_info->cond_equivalences[3] = boolean_false_node;
1551 }
1552
1553 /* A helper function for record_const_or_copy and record_equality.
1554 Do the work of recording the value and undo info. */
1555
1556 static void
1557 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1558 {
1559 SSA_NAME_VALUE (x) = y;
1560
1561 VEC_reserve (tree, heap, const_and_copies_stack, 2);
1562 VEC_quick_push (tree, const_and_copies_stack, prev_x);
1563 VEC_quick_push (tree, const_and_copies_stack, x);
1564 }
1565
1566
1567 /* Return the loop depth of the basic block of the defining statement of X.
1568 This number should not be treated as absolutely correct because the loop
1569 information may not be completely up-to-date when dom runs. However, it
1570 will be relatively correct, and as more passes are taught to keep loop info
1571 up to date, the result will become more and more accurate. */
1572
1573 int
1574 loop_depth_of_name (tree x)
1575 {
1576 tree defstmt;
1577 basic_block defbb;
1578
1579 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1580 if (TREE_CODE (x) != SSA_NAME)
1581 return 0;
1582
1583 /* Otherwise return the loop depth of the defining statement's bb.
1584 Note that there may not actually be a bb for this statement, if the
1585 ssa_name is live on entry. */
1586 defstmt = SSA_NAME_DEF_STMT (x);
1587 defbb = bb_for_stmt (defstmt);
1588 if (!defbb)
1589 return 0;
1590
1591 return defbb->loop_depth;
1592 }
1593
1594
1595 /* Record that X is equal to Y in const_and_copies. Record undo
1596 information in the block-local vector. */
1597
1598 static void
1599 record_const_or_copy (tree x, tree y)
1600 {
1601 tree prev_x = SSA_NAME_VALUE (x);
1602
1603 if (TREE_CODE (y) == SSA_NAME)
1604 {
1605 tree tmp = SSA_NAME_VALUE (y);
1606 if (tmp)
1607 y = tmp;
1608 }
1609
1610 record_const_or_copy_1 (x, y, prev_x);
1611 }
1612
1613 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1614 This constrains the cases in which we may treat this as assignment. */
1615
1616 static void
1617 record_equality (tree x, tree y)
1618 {
1619 tree prev_x = NULL, prev_y = NULL;
1620
1621 if (TREE_CODE (x) == SSA_NAME)
1622 prev_x = SSA_NAME_VALUE (x);
1623 if (TREE_CODE (y) == SSA_NAME)
1624 prev_y = SSA_NAME_VALUE (y);
1625
1626 /* If one of the previous values is invariant, or invariant in more loops
1627 (by depth), then use that.
1628 Otherwise it doesn't matter which value we choose, just so
1629 long as we canonicalize on one value. */
1630 if (TREE_INVARIANT (y))
1631 ;
1632 else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1633 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1634 else if (prev_x && TREE_INVARIANT (prev_x))
1635 x = y, y = prev_x, prev_x = prev_y;
1636 else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
1637 y = prev_y;
1638
1639 /* After the swapping, we must have one SSA_NAME. */
1640 if (TREE_CODE (x) != SSA_NAME)
1641 return;
1642
1643 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1644 variable compared against zero. If we're honoring signed zeros,
1645 then we cannot record this value unless we know that the value is
1646 nonzero. */
1647 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1648 && (TREE_CODE (y) != REAL_CST
1649 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1650 return;
1651
1652 record_const_or_copy_1 (x, y, prev_x);
1653 }
1654
1655 /* Return true, if it is ok to do folding of an associative expression.
1656 EXP is the tree for the associative expression. */
1657
1658 static inline bool
1659 unsafe_associative_fp_binop (tree exp)
1660 {
1661 enum tree_code code = TREE_CODE (exp);
1662 return !(!flag_unsafe_math_optimizations
1663 && (code == MULT_EXPR || code == PLUS_EXPR
1664 || code == MINUS_EXPR)
1665 && FLOAT_TYPE_P (TREE_TYPE (exp)));
1666 }
1667
1668 /* Returns true when STMT is a simple iv increment. It detects the
1669 following situation:
1670
1671 i_1 = phi (..., i_2)
1672 i_2 = i_1 +/- ... */
1673
1674 static bool
1675 simple_iv_increment_p (tree stmt)
1676 {
1677 tree lhs, rhs, preinc, phi;
1678 unsigned i;
1679
1680 if (TREE_CODE (stmt) != MODIFY_EXPR)
1681 return false;
1682
1683 lhs = TREE_OPERAND (stmt, 0);
1684 if (TREE_CODE (lhs) != SSA_NAME)
1685 return false;
1686
1687 rhs = TREE_OPERAND (stmt, 1);
1688
1689 if (TREE_CODE (rhs) != PLUS_EXPR
1690 && TREE_CODE (rhs) != MINUS_EXPR)
1691 return false;
1692
1693 preinc = TREE_OPERAND (rhs, 0);
1694 if (TREE_CODE (preinc) != SSA_NAME)
1695 return false;
1696
1697 phi = SSA_NAME_DEF_STMT (preinc);
1698 if (TREE_CODE (phi) != PHI_NODE)
1699 return false;
1700
1701 for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
1702 if (PHI_ARG_DEF (phi, i) == lhs)
1703 return true;
1704
1705 return false;
1706 }
1707
1708 /* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
1709 hash tables. Try to simplify the RHS using whatever equivalences
1710 we may have recorded.
1711
1712 If we are able to simplify the RHS, then lookup the simplified form in
1713 the hash table and return the result. Otherwise return NULL. */
1714
1715 static tree
1716 simplify_rhs_and_lookup_avail_expr (tree stmt, int insert)
1717 {
1718 tree rhs = TREE_OPERAND (stmt, 1);
1719 enum tree_code rhs_code = TREE_CODE (rhs);
1720 tree result = NULL;
1721
1722 /* If we have lhs = ~x, look and see if we earlier had x = ~y.
1723 In which case we can change this statement to be lhs = y.
1724 Which can then be copy propagated.
1725
1726 Similarly for negation. */
1727 if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
1728 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1729 {
1730 /* Get the definition statement for our RHS. */
1731 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1732
1733 /* See if the RHS_DEF_STMT has the same form as our statement. */
1734 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
1735 && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
1736 {
1737 tree rhs_def_operand;
1738
1739 rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);
1740
1741 /* Verify that RHS_DEF_OPERAND is a suitable SSA variable. */
1742 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1743 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1744 result = update_rhs_and_lookup_avail_expr (stmt,
1745 rhs_def_operand,
1746 insert);
1747 }
1748 }
1749
1750 /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
1751 If OP is associative, create and fold (y OP C2) OP C1 which
1752 should result in (y OP C3), use that as the RHS for the
1753 assignment. Add minus to this, as we handle it specially below. */
1754 if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
1755 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
1756 && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
1757 {
1758 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1759
1760 /* If the statement defines an induction variable, do not propagate
1761 its value, so that we do not create overlapping life ranges. */
1762 if (simple_iv_increment_p (rhs_def_stmt))
1763 goto dont_fold_assoc;
1764
1765 /* See if the RHS_DEF_STMT has the same form as our statement. */
1766 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
1767 {
1768 tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
1769 enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);
1770
1771 if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
1772 || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
1773 || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
1774 {
1775 tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
1776 tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);
1777
1778 if (TREE_CODE (def_stmt_op0) == SSA_NAME
1779 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
1780 && is_gimple_min_invariant (def_stmt_op1))
1781 {
1782 tree outer_const = TREE_OPERAND (rhs, 1);
1783 tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
1784 tree t;
1785
1786 /* If we care about correct floating point results, then
1787 don't fold x + c1 - c2. Note that we need to take both
1788 the codes and the signs to figure this out. */
1789 if (FLOAT_TYPE_P (type)
1790 && !flag_unsafe_math_optimizations
1791 && (rhs_def_code == PLUS_EXPR
1792 || rhs_def_code == MINUS_EXPR))
1793 {
1794 bool neg = false;
1795
1796 neg ^= (rhs_code == MINUS_EXPR);
1797 neg ^= (rhs_def_code == MINUS_EXPR);
1798 neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
1799 neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));
1800
1801 if (neg)
1802 goto dont_fold_assoc;
1803 }
1804
1805 /* Ho hum. So fold will only operate on the outermost
1806 thingy that we give it, so we have to build the new
1807 expression in two pieces. This requires that we handle
1808 combinations of plus and minus. */
1809 if (rhs_def_code != rhs_code)
1810 {
1811 if (rhs_def_code == MINUS_EXPR)
1812 t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
1813 else
1814 t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
1815 rhs_code = PLUS_EXPR;
1816 }
1817 else if (rhs_def_code == MINUS_EXPR)
1818 t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
1819 else
1820 t = build (rhs_def_code, type, def_stmt_op1, outer_const);
1821 t = local_fold (t);
1822 t = build (rhs_code, type, def_stmt_op0, t);
1823 t = local_fold (t);
1824
1825 /* If the result is a suitable looking gimple expression,
1826 then use it instead of the original for STMT. */
1827 if (TREE_CODE (t) == SSA_NAME
1828 || (UNARY_CLASS_P (t)
1829 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1830 || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
1831 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
1832 && is_gimple_val (TREE_OPERAND (t, 1))))
1833 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1834 }
1835 }
1836 }
1837 dont_fold_assoc:;
1838 }
1839
1840 /* Optimize *"foo" into 'f'. This is done here rather than
1841 in fold to avoid problems with stuff like &*"foo". */
1842 if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
1843 {
1844 tree t = fold_read_from_constant_string (rhs);
1845
1846 if (t)
1847 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1848 }
1849
1850 return result;
1851 }
1852
1853 /* COND is a condition of the form:
1854
1855 x == const or x != const
1856
1857 Look back to x's defining statement and see if x is defined as
1858
1859 x = (type) y;
1860
1861 If const is unchanged if we convert it to type, then we can build
1862 the equivalent expression:
1863
1864
1865 y == const or y != const
1866
1867 Which may allow further optimizations.
1868
1869 Return the equivalent comparison or NULL if no such equivalent comparison
1870 was found. */
1871
1872 static tree
1873 find_equivalent_equality_comparison (tree cond)
1874 {
1875 tree op0 = TREE_OPERAND (cond, 0);
1876 tree op1 = TREE_OPERAND (cond, 1);
1877 tree def_stmt = SSA_NAME_DEF_STMT (op0);
1878
1879 /* OP0 might have been a parameter, so first make sure it
1880 was defined by a MODIFY_EXPR. */
1881 if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
1882 {
1883 tree def_rhs = TREE_OPERAND (def_stmt, 1);
1884
1885
1886 /* If either operand to the comparison is a pointer to
1887 a function, then we can not apply this optimization
1888 as some targets require function pointers to be
1889 canonicalized and in this case this optimization would
1890 eliminate a necessary canonicalization. */
1891 if ((POINTER_TYPE_P (TREE_TYPE (op0))
1892 && TREE_CODE (TREE_TYPE (TREE_TYPE (op0))) == FUNCTION_TYPE)
1893 || (POINTER_TYPE_P (TREE_TYPE (op1))
1894 && TREE_CODE (TREE_TYPE (TREE_TYPE (op1))) == FUNCTION_TYPE))
1895 return NULL;
1896
1897 /* Now make sure the RHS of the MODIFY_EXPR is a typecast. */
1898 if ((TREE_CODE (def_rhs) == NOP_EXPR
1899 || TREE_CODE (def_rhs) == CONVERT_EXPR)
1900 && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
1901 {
1902 tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
1903 tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
1904 tree new;
1905
1906 if (TYPE_PRECISION (def_rhs_inner_type)
1907 > TYPE_PRECISION (TREE_TYPE (def_rhs)))
1908 return NULL;
1909
1910 /* If the inner type of the conversion is a pointer to
1911 a function, then we can not apply this optimization
1912 as some targets require function pointers to be
1913 canonicalized. This optimization would result in
1914 canonicalization of the pointer when it was not originally
1915 needed/intended. */
1916 if (POINTER_TYPE_P (def_rhs_inner_type)
1917 && TREE_CODE (TREE_TYPE (def_rhs_inner_type)) == FUNCTION_TYPE)
1918 return NULL;
1919
1920 /* What we want to prove is that if we convert OP1 to
1921 the type of the object inside the NOP_EXPR that the
1922 result is still equivalent to SRC.
1923
1924 If that is true, the build and return new equivalent
1925 condition which uses the source of the typecast and the
1926 new constant (which has only changed its type). */
1927 new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
1928 new = local_fold (new);
1929 if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
1930 return build (TREE_CODE (cond), TREE_TYPE (cond),
1931 def_rhs_inner, new);
1932 }
1933 }
1934 return NULL;
1935 }
1936
1937 /* STMT is a COND_EXPR for which we could not trivially determine its
1938 result. This routine attempts to find equivalent forms of the
1939 condition which we may be able to optimize better. It also
1940 uses simple value range propagation to optimize conditionals. */
1941
1942 static tree
1943 simplify_cond_and_lookup_avail_expr (tree stmt,
1944 stmt_ann_t ann,
1945 int insert)
1946 {
1947 tree cond = COND_EXPR_COND (stmt);
1948
1949 if (COMPARISON_CLASS_P (cond))
1950 {
1951 tree op0 = TREE_OPERAND (cond, 0);
1952 tree op1 = TREE_OPERAND (cond, 1);
1953
1954 if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
1955 {
1956 int limit;
1957 tree low, high, cond_low, cond_high;
1958 int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
1959 VEC(vrp_element_p,heap) **vrp_records;
1960 struct vrp_element *element;
1961 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1962 void **slot;
1963
1964 /* First see if we have test of an SSA_NAME against a constant
1965 where the SSA_NAME is defined by an earlier typecast which
1966 is irrelevant when performing tests against the given
1967 constant. */
1968 if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1969 {
1970 tree new_cond = find_equivalent_equality_comparison (cond);
1971
1972 if (new_cond)
1973 {
1974 /* Update the statement to use the new equivalent
1975 condition. */
1976 COND_EXPR_COND (stmt) = new_cond;
1977
1978 /* If this is not a real stmt, ann will be NULL and we
1979 avoid processing the operands. */
1980 if (ann)
1981 mark_stmt_modified (stmt);
1982
1983 /* Lookup the condition and return its known value if it
1984 exists. */
1985 new_cond = lookup_avail_expr (stmt, insert);
1986 if (new_cond)
1987 return new_cond;
1988
1989 /* The operands have changed, so update op0 and op1. */
1990 op0 = TREE_OPERAND (cond, 0);
1991 op1 = TREE_OPERAND (cond, 1);
1992 }
1993 }
1994
1995 /* Consult the value range records for this variable (if they exist)
1996 to see if we can eliminate or simplify this conditional.
1997
1998 Note two tests are necessary to determine no records exist.
1999 First we have to see if the virtual array exists, if it
2000 exists, then we have to check its active size.
2001
2002 Also note the vast majority of conditionals are not testing
2003 a variable which has had its range constrained by an earlier
2004 conditional. So this filter avoids a lot of unnecessary work. */
2005 vrp_hash_elt.var = op0;
2006 vrp_hash_elt.records = NULL;
2007 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
2008 if (slot == NULL)
2009 return NULL;
2010
2011 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
2012 vrp_records = &vrp_hash_elt_p->records;
2013
2014 limit = VEC_length (vrp_element_p, *vrp_records);
2015
2016 /* If we have no value range records for this variable, or we are
2017 unable to extract a range for this condition, then there is
2018 nothing to do. */
2019 if (limit == 0
2020 || ! extract_range_from_cond (cond, &cond_high,
2021 &cond_low, &cond_inverted))
2022 return NULL;
2023
2024 /* We really want to avoid unnecessary computations of range
2025 info. So all ranges are computed lazily; this avoids a
2026 lot of unnecessary work. i.e., we record the conditional,
2027 but do not process how it constrains the variable's
2028 potential values until we know that processing the condition
2029 could be helpful.
2030
2031 However, we do not want to have to walk a potentially long
2032 list of ranges, nor do we want to compute a variable's
2033 range more than once for a given path.
2034
2035 Luckily, each time we encounter a conditional that can not
2036 be otherwise optimized we will end up here and we will
2037 compute the necessary range information for the variable
2038 used in this condition.
2039
2040 Thus you can conclude that there will never be more than one
2041 conditional associated with a variable which has not been
2042 processed. So we never need to merge more than one new
2043 conditional into the current range.
2044
2045 These properties also help us avoid unnecessary work. */
2046 element = VEC_last (vrp_element_p, *vrp_records);
2047
2048 if (element->high && element->low)
2049 {
2050 /* The last element has been processed, so there is no range
2051 merging to do, we can simply use the high/low values
2052 recorded in the last element. */
2053 low = element->low;
2054 high = element->high;
2055 }
2056 else
2057 {
2058 tree tmp_high, tmp_low;
2059 int dummy;
2060
2061 /* The last element has not been processed. Process it now.
2062 record_range should ensure for cond inverted is not set.
2063 This call can only fail if cond is x < min or x > max,
2064 which fold should have optimized into false.
2065 If that doesn't happen, just pretend all values are
2066 in the range. */
2067 if (! extract_range_from_cond (element->cond, &tmp_high,
2068 &tmp_low, &dummy))
2069 gcc_unreachable ();
2070 else
2071 gcc_assert (dummy == 0);
2072
2073 /* If this is the only element, then no merging is necessary,
2074 the high/low values from extract_range_from_cond are all
2075 we need. */
2076 if (limit == 1)
2077 {
2078 low = tmp_low;
2079 high = tmp_high;
2080 }
2081 else
2082 {
2083 /* Get the high/low value from the previous element. */
2084 struct vrp_element *prev
2085 = VEC_index (vrp_element_p, *vrp_records, limit - 2);
2086 low = prev->low;
2087 high = prev->high;
2088
2089 /* Merge in this element's range with the range from the
2090 previous element.
2091
2092 The low value for the merged range is the maximum of
2093 the previous low value and the low value of this record.
2094
2095 Similarly the high value for the merged range is the
2096 minimum of the previous high value and the high value of
2097 this record. */
2098 low = (low && tree_int_cst_compare (low, tmp_low) == 1
2099 ? low : tmp_low);
2100 high = (high && tree_int_cst_compare (high, tmp_high) == -1
2101 ? high : tmp_high);
2102 }
2103
2104 /* And record the computed range. */
2105 element->low = low;
2106 element->high = high;
2107
2108 }
2109
2110 /* After we have constrained this variable's potential values,
2111 we try to determine the result of the given conditional.
2112
2113 To simplify later tests, first determine if the current
2114 low value is the same low value as the conditional.
2115 Similarly for the current high value and the high value
2116 for the conditional. */
2117 lowequal = tree_int_cst_equal (low, cond_low);
2118 highequal = tree_int_cst_equal (high, cond_high);
2119
2120 if (lowequal && highequal)
2121 return (cond_inverted ? boolean_false_node : boolean_true_node);
2122
2123 /* To simplify the overlap/subset tests below we may want
2124 to swap the two ranges so that the larger of the two
2125 ranges occurs "first". */
2126 swapped = 0;
2127 if (tree_int_cst_compare (low, cond_low) == 1
2128 || (lowequal
2129 && tree_int_cst_compare (cond_high, high) == 1))
2130 {
2131 tree temp;
2132
2133 swapped = 1;
2134 temp = low;
2135 low = cond_low;
2136 cond_low = temp;
2137 temp = high;
2138 high = cond_high;
2139 cond_high = temp;
2140 }
2141
2142 /* Now determine if there is no overlap in the ranges
2143 or if the second range is a subset of the first range. */
2144 no_overlap = tree_int_cst_lt (high, cond_low);
2145 subset = tree_int_cst_compare (cond_high, high) != 1;
2146
2147 /* If there was no overlap in the ranges, then this conditional
2148 always has a false value (unless we had to invert this
2149 conditional, in which case it always has a true value). */
2150 if (no_overlap)
2151 return (cond_inverted ? boolean_true_node : boolean_false_node);
2152
2153 /* If the current range is a subset of the condition's range,
2154 then this conditional always has a true value (unless we
2155 had to invert this conditional, in which case it always
2156 has a true value). */
2157 if (subset && swapped)
2158 return (cond_inverted ? boolean_false_node : boolean_true_node);
2159
2160 /* We were unable to determine the result of the conditional.
2161 However, we may be able to simplify the conditional. First
2162 merge the ranges in the same manner as range merging above. */
2163 low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
2164 high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
2165
2166 /* If the range has converged to a single point, then turn this
2167 into an equality comparison. */
2168 if (TREE_CODE (cond) != EQ_EXPR
2169 && TREE_CODE (cond) != NE_EXPR
2170 && tree_int_cst_equal (low, high))
2171 {
2172 TREE_SET_CODE (cond, EQ_EXPR);
2173 TREE_OPERAND (cond, 1) = high;
2174 }
2175 }
2176 }
2177 return 0;
2178 }
2179
2180 /* STMT is a SWITCH_EXPR for which we could not trivially determine its
2181 result. This routine attempts to find equivalent forms of the
2182 condition which we may be able to optimize better. */
2183
2184 static tree
2185 simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
2186 {
2187 tree cond = SWITCH_COND (stmt);
2188 tree def, to, ti;
2189
2190 /* The optimization that we really care about is removing unnecessary
2191 casts. That will let us do much better in propagating the inferred
2192 constant at the switch target. */
2193 if (TREE_CODE (cond) == SSA_NAME)
2194 {
2195 def = SSA_NAME_DEF_STMT (cond);
2196 if (TREE_CODE (def) == MODIFY_EXPR)
2197 {
2198 def = TREE_OPERAND (def, 1);
2199 if (TREE_CODE (def) == NOP_EXPR)
2200 {
2201 int need_precision;
2202 bool fail;
2203
2204 def = TREE_OPERAND (def, 0);
2205
2206 #ifdef ENABLE_CHECKING
2207 /* ??? Why was Jeff testing this? We are gimple... */
2208 gcc_assert (is_gimple_val (def));
2209 #endif
2210
2211 to = TREE_TYPE (cond);
2212 ti = TREE_TYPE (def);
2213
2214 /* If we have an extension that preserves value, then we
2215 can copy the source value into the switch. */
2216
2217 need_precision = TYPE_PRECISION (ti);
2218 fail = false;
2219 if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
2220 fail = true;
2221 else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
2222 need_precision += 1;
2223 if (TYPE_PRECISION (to) < need_precision)
2224 fail = true;
2225
2226 if (!fail)
2227 {
2228 SWITCH_COND (stmt) = def;
2229 mark_stmt_modified (stmt);
2230
2231 return lookup_avail_expr (stmt, insert);
2232 }
2233 }
2234 }
2235 }
2236
2237 return 0;
2238 }
2239
2240
2241 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2242 known value for that SSA_NAME (or NULL if no value is known).
2243
2244 NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
2245 even if we don't know their precise value.
2246
2247 Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
2248 nodes of the successors of BB. */
2249
2250 static void
2251 cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
2252 {
2253 edge e;
2254 edge_iterator ei;
2255
2256 FOR_EACH_EDGE (e, ei, bb->succs)
2257 {
2258 tree phi;
2259 int indx;
2260
2261 /* If this is an abnormal edge, then we do not want to copy propagate
2262 into the PHI alternative associated with this edge. */
2263 if (e->flags & EDGE_ABNORMAL)
2264 continue;
2265
2266 phi = phi_nodes (e->dest);
2267 if (! phi)
2268 continue;
2269
2270 indx = e->dest_idx;
2271 for ( ; phi; phi = PHI_CHAIN (phi))
2272 {
2273 tree new;
2274 use_operand_p orig_p;
2275 tree orig;
2276
2277 /* The alternative may be associated with a constant, so verify
2278 it is an SSA_NAME before doing anything with it. */
2279 orig_p = PHI_ARG_DEF_PTR (phi, indx);
2280 orig = USE_FROM_PTR (orig_p);
2281 if (TREE_CODE (orig) != SSA_NAME)
2282 continue;
2283
2284 /* If the alternative is known to have a nonzero value, record
2285 that fact in the PHI node itself for future use. */
2286 if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
2287 PHI_ARG_NONZERO (phi, indx) = true;
2288
2289 /* If we have *ORIG_P in our constant/copy table, then replace
2290 ORIG_P with its value in our constant/copy table. */
2291 new = SSA_NAME_VALUE (orig);
2292 if (new
2293 && new != orig
2294 && (TREE_CODE (new) == SSA_NAME
2295 || is_gimple_min_invariant (new))
2296 && may_propagate_copy (orig, new))
2297 propagate_value (orig_p, new);
2298 }
2299 }
2300 }
2301
2302 /* We have finished optimizing BB, record any information implied by
2303 taking a specific outgoing edge from BB. */
2304
2305 static void
2306 record_edge_info (basic_block bb)
2307 {
2308 block_stmt_iterator bsi = bsi_last (bb);
2309 struct edge_info *edge_info;
2310
2311 if (! bsi_end_p (bsi))
2312 {
2313 tree stmt = bsi_stmt (bsi);
2314
2315 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
2316 {
2317 tree cond = SWITCH_COND (stmt);
2318
2319 if (TREE_CODE (cond) == SSA_NAME)
2320 {
2321 tree labels = SWITCH_LABELS (stmt);
2322 int i, n_labels = TREE_VEC_LENGTH (labels);
2323 tree *info = xcalloc (last_basic_block, sizeof (tree));
2324 edge e;
2325 edge_iterator ei;
2326
2327 for (i = 0; i < n_labels; i++)
2328 {
2329 tree label = TREE_VEC_ELT (labels, i);
2330 basic_block target_bb = label_to_block (CASE_LABEL (label));
2331
2332 if (CASE_HIGH (label)
2333 || !CASE_LOW (label)
2334 || info[target_bb->index])
2335 info[target_bb->index] = error_mark_node;
2336 else
2337 info[target_bb->index] = label;
2338 }
2339
2340 FOR_EACH_EDGE (e, ei, bb->succs)
2341 {
2342 basic_block target_bb = e->dest;
2343 tree node = info[target_bb->index];
2344
2345 if (node != NULL && node != error_mark_node)
2346 {
2347 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
2348 edge_info = allocate_edge_info (e);
2349 edge_info->lhs = cond;
2350 edge_info->rhs = x;
2351 }
2352 }
2353 free (info);
2354 }
2355 }
2356
2357 /* A COND_EXPR may create equivalences too. */
2358 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2359 {
2360 tree cond = COND_EXPR_COND (stmt);
2361 edge true_edge;
2362 edge false_edge;
2363
2364 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2365
2366 /* If the conditional is a single variable 'X', record 'X = 1'
2367 for the true edge and 'X = 0' on the false edge. */
2368 if (SSA_VAR_P (cond))
2369 {
2370 struct edge_info *edge_info;
2371
2372 edge_info = allocate_edge_info (true_edge);
2373 edge_info->lhs = cond;
2374 edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));
2375
2376 edge_info = allocate_edge_info (false_edge);
2377 edge_info->lhs = cond;
2378 edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
2379 }
2380 /* Equality tests may create one or two equivalences. */
2381 else if (COMPARISON_CLASS_P (cond))
2382 {
2383 tree op0 = TREE_OPERAND (cond, 0);
2384 tree op1 = TREE_OPERAND (cond, 1);
2385
2386 /* Special case comparing booleans against a constant as we
2387 know the value of OP0 on both arms of the branch. i.e., we
2388 can record an equivalence for OP0 rather than COND. */
2389 if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2390 && TREE_CODE (op0) == SSA_NAME
2391 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
2392 && is_gimple_min_invariant (op1))
2393 {
2394 if (TREE_CODE (cond) == EQ_EXPR)
2395 {
2396 edge_info = allocate_edge_info (true_edge);
2397 edge_info->lhs = op0;
2398 edge_info->rhs = (integer_zerop (op1)
2399 ? boolean_false_node
2400 : boolean_true_node);
2401
2402 edge_info = allocate_edge_info (false_edge);
2403 edge_info->lhs = op0;
2404 edge_info->rhs = (integer_zerop (op1)
2405 ? boolean_true_node
2406 : boolean_false_node);
2407 }
2408 else
2409 {
2410 edge_info = allocate_edge_info (true_edge);
2411 edge_info->lhs = op0;
2412 edge_info->rhs = (integer_zerop (op1)
2413 ? boolean_true_node
2414 : boolean_false_node);
2415
2416 edge_info = allocate_edge_info (false_edge);
2417 edge_info->lhs = op0;
2418 edge_info->rhs = (integer_zerop (op1)
2419 ? boolean_false_node
2420 : boolean_true_node);
2421 }
2422 }
2423
2424 else if (is_gimple_min_invariant (op0)
2425 && (TREE_CODE (op1) == SSA_NAME
2426 || is_gimple_min_invariant (op1)))
2427 {
2428 tree inverted = invert_truthvalue (cond);
2429 struct edge_info *edge_info;
2430
2431 edge_info = allocate_edge_info (true_edge);
2432 record_conditions (edge_info, cond, inverted);
2433
2434 if (TREE_CODE (cond) == EQ_EXPR)
2435 {
2436 edge_info->lhs = op1;
2437 edge_info->rhs = op0;
2438 }
2439
2440 edge_info = allocate_edge_info (false_edge);
2441 record_conditions (edge_info, inverted, cond);
2442
2443 if (TREE_CODE (cond) == NE_EXPR)
2444 {
2445 edge_info->lhs = op1;
2446 edge_info->rhs = op0;
2447 }
2448 }
2449
2450 else if (TREE_CODE (op0) == SSA_NAME
2451 && (is_gimple_min_invariant (op1)
2452 || TREE_CODE (op1) == SSA_NAME))
2453 {
2454 tree inverted = invert_truthvalue (cond);
2455 struct edge_info *edge_info;
2456
2457 edge_info = allocate_edge_info (true_edge);
2458 record_conditions (edge_info, cond, inverted);
2459
2460 if (TREE_CODE (cond) == EQ_EXPR)
2461 {
2462 edge_info->lhs = op0;
2463 edge_info->rhs = op1;
2464 }
2465
2466 edge_info = allocate_edge_info (false_edge);
2467 record_conditions (edge_info, inverted, cond);
2468
2469 if (TREE_CODE (cond) == NE_EXPR)
2470 {
2471 edge_info->lhs = op0;
2472 edge_info->rhs = op1;
2473 }
2474 }
2475 }
2476
2477 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
2478 }
2479 }
2480 }
2481
2482 /* Propagate information from BB to its outgoing edges.
2483
2484 This can include equivalency information implied by control statements
2485 at the end of BB and const/copy propagation into PHIs in BB's
2486 successor blocks. */
2487
2488 static void
2489 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2490 basic_block bb)
2491 {
2492 record_edge_info (bb);
2493 cprop_into_successor_phis (bb, nonzero_vars);
2494 }
2495
2496 /* Search for redundant computations in STMT. If any are found, then
2497 replace them with the variable holding the result of the computation.
2498
2499 If safe, record this expression into the available expression hash
2500 table. */
2501
2502 static bool
2503 eliminate_redundant_computations (tree stmt, stmt_ann_t ann)
2504 {
2505 tree *expr_p, def = NULL_TREE;
2506 bool insert = true;
2507 tree cached_lhs;
2508 bool retval = false;
2509
2510 if (TREE_CODE (stmt) == MODIFY_EXPR)
2511 def = TREE_OPERAND (stmt, 0);
2512
2513 /* Certain expressions on the RHS can be optimized away, but can not
2514 themselves be entered into the hash tables. */
2515 if (ann->makes_aliased_stores
2516 || ! def
2517 || TREE_CODE (def) != SSA_NAME
2518 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2519 || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF)
2520 /* Do not record equivalences for increments of ivs. This would create
2521 overlapping live ranges for a very questionable gain. */
2522 || simple_iv_increment_p (stmt))
2523 insert = false;
2524
2525 /* Check if the expression has been computed before. */
2526 cached_lhs = lookup_avail_expr (stmt, insert);
2527
2528 /* If this is an assignment and the RHS was not in the hash table,
2529 then try to simplify the RHS and lookup the new RHS in the
2530 hash table. */
2531 if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
2532 cached_lhs = simplify_rhs_and_lookup_avail_expr (stmt, insert);
2533 /* Similarly if this is a COND_EXPR and we did not find its
2534 expression in the hash table, simplify the condition and
2535 try again. */
2536 else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
2537 cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
2538 /* Similarly for a SWITCH_EXPR. */
2539 else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
2540 cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);
2541
2542 opt_stats.num_exprs_considered++;
2543
2544 /* Get a pointer to the expression we are trying to optimize. */
2545 if (TREE_CODE (stmt) == COND_EXPR)
2546 expr_p = &COND_EXPR_COND (stmt);
2547 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2548 expr_p = &SWITCH_COND (stmt);
2549 else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
2550 expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
2551 else
2552 expr_p = &TREE_OPERAND (stmt, 1);
2553
2554 /* It is safe to ignore types here since we have already done
2555 type checking in the hashing and equality routines. In fact
2556 type checking here merely gets in the way of constant
2557 propagation. Also, make sure that it is safe to propagate
2558 CACHED_LHS into *EXPR_P. */
2559 if (cached_lhs
2560 && (TREE_CODE (cached_lhs) != SSA_NAME
2561 || may_propagate_copy (*expr_p, cached_lhs)))
2562 {
2563 if (dump_file && (dump_flags & TDF_DETAILS))
2564 {
2565 fprintf (dump_file, " Replaced redundant expr '");
2566 print_generic_expr (dump_file, *expr_p, dump_flags);
2567 fprintf (dump_file, "' with '");
2568 print_generic_expr (dump_file, cached_lhs, dump_flags);
2569 fprintf (dump_file, "'\n");
2570 }
2571
2572 opt_stats.num_re++;
2573
2574 #if defined ENABLE_CHECKING
2575 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
2576 || is_gimple_min_invariant (cached_lhs));
2577 #endif
2578
2579 if (TREE_CODE (cached_lhs) == ADDR_EXPR
2580 || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
2581 && is_gimple_min_invariant (cached_lhs)))
2582 retval = true;
2583
2584 propagate_tree_value (expr_p, cached_lhs);
2585 mark_stmt_modified (stmt);
2586 }
2587 return retval;
2588 }
2589
2590 /* STMT, a MODIFY_EXPR, may create certain equivalences, in either
2591 the available expressions table or the const_and_copies table.
2592 Detect and record those equivalences. */
2593
2594 static void
2595 record_equivalences_from_stmt (tree stmt,
2596 int may_optimize_p,
2597 stmt_ann_t ann)
2598 {
2599 tree lhs = TREE_OPERAND (stmt, 0);
2600 enum tree_code lhs_code = TREE_CODE (lhs);
2601 int i;
2602
2603 if (lhs_code == SSA_NAME)
2604 {
2605 tree rhs = TREE_OPERAND (stmt, 1);
2606
2607 /* Strip away any useless type conversions. */
2608 STRIP_USELESS_TYPE_CONVERSION (rhs);
2609
2610 /* If the RHS of the assignment is a constant or another variable that
2611 may be propagated, register it in the CONST_AND_COPIES table. We
2612 do not need to record unwind data for this, since this is a true
2613 assignment and not an equivalence inferred from a comparison. All
2614 uses of this ssa name are dominated by this assignment, so unwinding
2615 just costs time and space. */
2616 if (may_optimize_p
2617 && (TREE_CODE (rhs) == SSA_NAME
2618 || is_gimple_min_invariant (rhs)))
2619 SSA_NAME_VALUE (lhs) = rhs;
2620
2621 if (expr_computes_nonzero (rhs))
2622 record_var_is_nonzero (lhs);
2623 }
2624
2625 /* Look at both sides for pointer dereferences. If we find one, then
2626 the pointer must be nonnull and we can enter that equivalence into
2627 the hash tables. */
2628 if (flag_delete_null_pointer_checks)
2629 for (i = 0; i < 2; i++)
2630 {
2631 tree t = TREE_OPERAND (stmt, i);
2632
2633 /* Strip away any COMPONENT_REFs. */
2634 while (TREE_CODE (t) == COMPONENT_REF)
2635 t = TREE_OPERAND (t, 0);
2636
2637 /* Now see if this is a pointer dereference. */
2638 if (INDIRECT_REF_P (t))
2639 {
2640 tree op = TREE_OPERAND (t, 0);
2641
2642 /* If the pointer is a SSA variable, then enter new
2643 equivalences into the hash table. */
2644 while (TREE_CODE (op) == SSA_NAME)
2645 {
2646 tree def = SSA_NAME_DEF_STMT (op);
2647
2648 record_var_is_nonzero (op);
2649
2650 /* And walk up the USE-DEF chains noting other SSA_NAMEs
2651 which are known to have a nonzero value. */
2652 if (def
2653 && TREE_CODE (def) == MODIFY_EXPR
2654 && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
2655 op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
2656 else
2657 break;
2658 }
2659 }
2660 }
2661
2662 /* A memory store, even an aliased store, creates a useful
2663 equivalence. By exchanging the LHS and RHS, creating suitable
2664 vops and recording the result in the available expression table,
2665 we may be able to expose more redundant loads. */
2666 if (!ann->has_volatile_ops
2667 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
2668 || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
2669 && !is_gimple_reg (lhs))
2670 {
2671 tree rhs = TREE_OPERAND (stmt, 1);
2672 tree new;
2673
2674 /* FIXME: If the LHS of the assignment is a bitfield and the RHS
2675 is a constant, we need to adjust the constant to fit into the
2676 type of the LHS. If the LHS is a bitfield and the RHS is not
2677 a constant, then we can not record any equivalences for this
2678 statement since we would need to represent the widening or
2679 narrowing of RHS. This fixes gcc.c-torture/execute/921016-1.c
2680 and should not be necessary if GCC represented bitfields
2681 properly. */
2682 if (lhs_code == COMPONENT_REF
2683 && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
2684 {
2685 if (TREE_CONSTANT (rhs))
2686 rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
2687 else
2688 rhs = NULL;
2689
2690 /* If the value overflowed, then we can not use this equivalence. */
2691 if (rhs && ! is_gimple_min_invariant (rhs))
2692 rhs = NULL;
2693 }
2694
2695 if (rhs)
2696 {
2697 /* Build a new statement with the RHS and LHS exchanged. */
2698 new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);
2699
2700 create_ssa_artficial_load_stmt (new, stmt);
2701
2702 /* Finally enter the statement into the available expression
2703 table. */
2704 lookup_avail_expr (new, true);
2705 }
2706 }
2707 }
2708
2709 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2710 CONST_AND_COPIES. */
2711
2712 static bool
2713 cprop_operand (tree stmt, use_operand_p op_p)
2714 {
2715 bool may_have_exposed_new_symbols = false;
2716 tree val;
2717 tree op = USE_FROM_PTR (op_p);
2718
2719 /* If the operand has a known constant value or it is known to be a
2720 copy of some other variable, use the value or copy stored in
2721 CONST_AND_COPIES. */
2722 val = SSA_NAME_VALUE (op);
2723 if (val && val != op && TREE_CODE (val) != VALUE_HANDLE)
2724 {
2725 tree op_type, val_type;
2726
2727 /* Do not change the base variable in the virtual operand
2728 tables. That would make it impossible to reconstruct
2729 the renamed virtual operand if we later modify this
2730 statement. Also only allow the new value to be an SSA_NAME
2731 for propagation into virtual operands. */
2732 if (!is_gimple_reg (op)
2733 && (TREE_CODE (val) != SSA_NAME
2734 || is_gimple_reg (val)
2735 || get_virtual_var (val) != get_virtual_var (op)))
2736 return false;
2737
2738 /* Do not replace hard register operands in asm statements. */
2739 if (TREE_CODE (stmt) == ASM_EXPR
2740 && !may_propagate_copy_into_asm (op))
2741 return false;
2742
2743 /* Get the toplevel type of each operand. */
2744 op_type = TREE_TYPE (op);
2745 val_type = TREE_TYPE (val);
2746
2747 /* While both types are pointers, get the type of the object
2748 pointed to. */
2749 while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
2750 {
2751 op_type = TREE_TYPE (op_type);
2752 val_type = TREE_TYPE (val_type);
2753 }
2754
2755 /* Make sure underlying types match before propagating a constant by
2756 converting the constant to the proper type. Note that convert may
2757 return a non-gimple expression, in which case we ignore this
2758 propagation opportunity. */
2759 if (TREE_CODE (val) != SSA_NAME)
2760 {
2761 if (!lang_hooks.types_compatible_p (op_type, val_type))
2762 {
2763 val = fold_convert (TREE_TYPE (op), val);
2764 if (!is_gimple_min_invariant (val))
2765 return false;
2766 }
2767 }
2768
2769 /* Certain operands are not allowed to be copy propagated due
2770 to their interaction with exception handling and some GCC
2771 extensions. */
2772 else if (!may_propagate_copy (op, val))
2773 return false;
2774
2775 /* Do not propagate copies if the propagated value is at a deeper loop
2776 depth than the propagatee. Otherwise, this may move loop variant
2777 variables outside of their loops and prevent coalescing
2778 opportunities. If the value was loop invariant, it will be hoisted
2779 by LICM and exposed for copy propagation. */
2780 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2781 return false;
2782
2783 /* Dump details. */
2784 if (dump_file && (dump_flags & TDF_DETAILS))
2785 {
2786 fprintf (dump_file, " Replaced '");
2787 print_generic_expr (dump_file, op, dump_flags);
2788 fprintf (dump_file, "' with %s '",
2789 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2790 print_generic_expr (dump_file, val, dump_flags);
2791 fprintf (dump_file, "'\n");
2792 }
2793
2794 /* If VAL is an ADDR_EXPR or a constant of pointer type, note
2795 that we may have exposed a new symbol for SSA renaming. */
2796 if (TREE_CODE (val) == ADDR_EXPR
2797 || (POINTER_TYPE_P (TREE_TYPE (op))
2798 && is_gimple_min_invariant (val)))
2799 may_have_exposed_new_symbols = true;
2800
2801 if (TREE_CODE (val) != SSA_NAME)
2802 opt_stats.num_const_prop++;
2803 else
2804 opt_stats.num_copy_prop++;
2805
2806 propagate_value (op_p, val);
2807
2808 /* And note that we modified this statement. This is now
2809 safe, even if we changed virtual operands since we will
2810 rescan the statement and rewrite its operands again. */
2811 mark_stmt_modified (stmt);
2812 }
2813 return may_have_exposed_new_symbols;
2814 }
2815
2816 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2817 known value for that SSA_NAME (or NULL if no value is known).
2818
2819 Propagate values from CONST_AND_COPIES into the uses, vuses and
2820 v_may_def_ops of STMT. */
2821
2822 static bool
2823 cprop_into_stmt (tree stmt)
2824 {
2825 bool may_have_exposed_new_symbols = false;
2826 use_operand_p op_p;
2827 ssa_op_iter iter;
2828
2829 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2830 {
2831 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2832 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
2833 }
2834
2835 return may_have_exposed_new_symbols;
2836 }
2837
2838
2839 /* Optimize the statement pointed by iterator SI.
2840
2841 We try to perform some simplistic global redundancy elimination and
2842 constant propagation:
2843
2844 1- To detect global redundancy, we keep track of expressions that have
2845 been computed in this block and its dominators. If we find that the
2846 same expression is computed more than once, we eliminate repeated
2847 computations by using the target of the first one.
2848
2849 2- Constant values and copy assignments. This is used to do very
2850 simplistic constant and copy propagation. When a constant or copy
2851 assignment is found, we map the value on the RHS of the assignment to
2852 the variable in the LHS in the CONST_AND_COPIES table. */
2853
2854 static void
2855 optimize_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2856 basic_block bb, block_stmt_iterator si)
2857 {
2858 stmt_ann_t ann;
2859 tree stmt, old_stmt;
2860 bool may_optimize_p;
2861 bool may_have_exposed_new_symbols = false;
2862
2863 old_stmt = stmt = bsi_stmt (si);
2864
2865 update_stmt_if_modified (stmt);
2866 ann = stmt_ann (stmt);
2867 opt_stats.num_stmts++;
2868 may_have_exposed_new_symbols = false;
2869
2870 if (dump_file && (dump_flags & TDF_DETAILS))
2871 {
2872 fprintf (dump_file, "Optimizing statement ");
2873 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2874 }
2875
2876 /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs. */
2877 may_have_exposed_new_symbols = cprop_into_stmt (stmt);
2878
2879 /* If the statement has been modified with constant replacements,
2880 fold its RHS before checking for redundant computations. */
2881 if (ann->modified)
2882 {
2883 tree rhs;
2884
2885 /* Try to fold the statement making sure that STMT is kept
2886 up to date. */
2887 if (fold_stmt (bsi_stmt_ptr (si)))
2888 {
2889 stmt = bsi_stmt (si);
2890 ann = stmt_ann (stmt);
2891
2892 if (dump_file && (dump_flags & TDF_DETAILS))
2893 {
2894 fprintf (dump_file, " Folded to: ");
2895 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2896 }
2897 }
2898
2899 rhs = get_rhs (stmt);
2900 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2901 recompute_tree_invarant_for_addr_expr (rhs);
2902
2903 /* Constant/copy propagation above may change the set of
2904 virtual operands associated with this statement. Folding
2905 may remove the need for some virtual operands.
2906
2907 Indicate we will need to rescan and rewrite the statement. */
2908 may_have_exposed_new_symbols = true;
2909 }
2910
2911 /* Check for redundant computations. Do this optimization only
2912 for assignments that have no volatile ops and conditionals. */
2913 may_optimize_p = (!ann->has_volatile_ops
2914 && ((TREE_CODE (stmt) == RETURN_EXPR
2915 && TREE_OPERAND (stmt, 0)
2916 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
2917 && ! (TREE_SIDE_EFFECTS
2918 (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
2919 || (TREE_CODE (stmt) == MODIFY_EXPR
2920 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
2921 || TREE_CODE (stmt) == COND_EXPR
2922 || TREE_CODE (stmt) == SWITCH_EXPR));
2923
2924 if (may_optimize_p)
2925 may_have_exposed_new_symbols
2926 |= eliminate_redundant_computations (stmt, ann);
2927
2928 /* Record any additional equivalences created by this statement. */
2929 if (TREE_CODE (stmt) == MODIFY_EXPR)
2930 record_equivalences_from_stmt (stmt,
2931 may_optimize_p,
2932 ann);
2933
2934 /* If STMT is a COND_EXPR and it was modified, then we may know
2935 where it goes. If that is the case, then mark the CFG as altered.
2936
2937 This will cause us to later call remove_unreachable_blocks and
2938 cleanup_tree_cfg when it is safe to do so. It is not safe to
2939 clean things up here since removal of edges and such can trigger
2940 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2941 the manager.
2942
2943 That's all fine and good, except that once SSA_NAMEs are released
2944 to the manager, we must not call create_ssa_name until all references
2945 to released SSA_NAMEs have been eliminated.
2946
2947 All references to the deleted SSA_NAMEs can not be eliminated until
2948 we remove unreachable blocks.
2949
2950 We can not remove unreachable blocks until after we have completed
2951 any queued jump threading.
2952
2953 We can not complete any queued jump threads until we have taken
2954 appropriate variables out of SSA form. Taking variables out of
2955 SSA form can call create_ssa_name and thus we lose.
2956
2957 Ultimately I suspect we're going to need to change the interface
2958 into the SSA_NAME manager. */
2959
2960 if (ann->modified)
2961 {
2962 tree val = NULL;
2963
2964 if (TREE_CODE (stmt) == COND_EXPR)
2965 val = COND_EXPR_COND (stmt);
2966 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2967 val = SWITCH_COND (stmt);
2968
2969 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2970 cfg_altered = true;
2971
2972 /* If we simplified a statement in such a way as to be shown that it
2973 cannot trap, update the eh information and the cfg to match. */
2974 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2975 {
2976 bitmap_set_bit (need_eh_cleanup, bb->index);
2977 if (dump_file && (dump_flags & TDF_DETAILS))
2978 fprintf (dump_file, " Flagged to clear EH edges.\n");
2979 }
2980 }
2981
2982 if (may_have_exposed_new_symbols)
2983 VEC_safe_push (tree, heap, stmts_to_rescan, bsi_stmt (si));
2984 }
2985
2986 /* Replace the RHS of STMT with NEW_RHS. If RHS can be found in the
2987 available expression hashtable, then return the LHS from the hash
2988 table.
2989
2990 If INSERT is true, then we also update the available expression
2991 hash table to account for the changes made to STMT. */
2992
2993 static tree
2994 update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
2995 {
2996 tree cached_lhs = NULL;
2997
2998 /* Remove the old entry from the hash table. */
2999 if (insert)
3000 {
3001 struct expr_hash_elt element;
3002
3003 initialize_hash_element (stmt, NULL, &element);
3004 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
3005 }
3006
3007 /* Now update the RHS of the assignment. */
3008 TREE_OPERAND (stmt, 1) = new_rhs;
3009
3010 /* Now lookup the updated statement in the hash table. */
3011 cached_lhs = lookup_avail_expr (stmt, insert);
3012
3013 /* We have now called lookup_avail_expr twice with two different
3014 versions of this same statement, once in optimize_stmt, once here.
3015
3016 We know the call in optimize_stmt did not find an existing entry
3017 in the hash table, so a new entry was created. At the same time
3018 this statement was pushed onto the AVAIL_EXPRS_STACK vector.
3019
3020 If this call failed to find an existing entry on the hash table,
3021 then the new version of this statement was entered into the
3022 hash table. And this statement was pushed onto BLOCK_AVAIL_EXPR
3023 for the second time. So there are two copies on BLOCK_AVAIL_EXPRs
3024
3025 If this call succeeded, we still have one copy of this statement
3026 on the BLOCK_AVAIL_EXPRs vector.
3027
3028 For both cases, we need to pop the most recent entry off the
3029 BLOCK_AVAIL_EXPRs vector. For the case where we never found this
3030 statement in the hash tables, that will leave precisely one
3031 copy of this statement on BLOCK_AVAIL_EXPRs. For the case where
3032 we found a copy of this statement in the second hash table lookup
3033 we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs. */
3034 if (insert)
3035 VEC_pop (tree, avail_exprs_stack);
3036
3037 /* And make sure we record the fact that we modified this
3038 statement. */
3039 mark_stmt_modified (stmt);
3040
3041 return cached_lhs;
3042 }
3043
3044 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. If
3045 found, return its LHS. Otherwise insert STMT in the table and return
3046 NULL_TREE.
3047
3048 Also, when an expression is first inserted in the AVAIL_EXPRS table, it
3049 is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
3050 can be removed when we finish processing this block and its children.
3051
3052 NOTE: This function assumes that STMT is a MODIFY_EXPR node that
3053 contains no CALL_EXPR on its RHS and makes no volatile nor
3054 aliased references. */
3055
3056 static tree
3057 lookup_avail_expr (tree stmt, bool insert)
3058 {
3059 void **slot;
3060 tree lhs;
3061 tree temp;
3062 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
3063
3064 lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;
3065
3066 initialize_hash_element (stmt, lhs, element);
3067
3068 /* Don't bother remembering constant assignments and copy operations.
3069 Constants and copy operations are handled by the constant/copy propagator
3070 in optimize_stmt. */
3071 if (TREE_CODE (element->rhs) == SSA_NAME
3072 || is_gimple_min_invariant (element->rhs))
3073 {
3074 free (element);
3075 return NULL_TREE;
3076 }
3077
3078 /* If this is an equality test against zero, see if we have recorded a
3079 nonzero value for the variable in question. */
3080 if ((TREE_CODE (element->rhs) == EQ_EXPR
3081 || TREE_CODE (element->rhs) == NE_EXPR)
3082 && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
3083 && integer_zerop (TREE_OPERAND (element->rhs, 1)))
3084 {
3085 int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));
3086
3087 if (bitmap_bit_p (nonzero_vars, indx))
3088 {
3089 tree t = element->rhs;
3090 free (element);
3091
3092 if (TREE_CODE (t) == EQ_EXPR)
3093 return boolean_false_node;
3094 else
3095 return boolean_true_node;
3096 }
3097 }
3098
3099 /* Finally try to find the expression in the main expression hash table. */
3100 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
3101 (insert ? INSERT : NO_INSERT));
3102 if (slot == NULL)
3103 {
3104 free (element);
3105 return NULL_TREE;
3106 }
3107
3108 if (*slot == NULL)
3109 {
3110 *slot = (void *) element;
3111 VEC_safe_push (tree, heap, avail_exprs_stack,
3112 stmt ? stmt : element->rhs);
3113 return NULL_TREE;
3114 }
3115
3116 /* Extract the LHS of the assignment so that it can be used as the current
3117 definition of another variable. */
3118 lhs = ((struct expr_hash_elt *)*slot)->lhs;
3119
3120 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
3121 use the value from the const_and_copies table. */
3122 if (TREE_CODE (lhs) == SSA_NAME)
3123 {
3124 temp = SSA_NAME_VALUE (lhs);
3125 if (temp && TREE_CODE (temp) != VALUE_HANDLE)
3126 lhs = temp;
3127 }
3128
3129 free (element);
3130 return lhs;
3131 }
3132
3133 /* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
3134 range of values that result in the conditional having a true value.
3135
3136 Return true if we are successful in extracting a range from COND and
3137 false if we are unsuccessful. */
3138
3139 static bool
3140 extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
3141 {
3142 tree op1 = TREE_OPERAND (cond, 1);
3143 tree high, low, type;
3144 int inverted;
3145
3146 type = TREE_TYPE (op1);
3147
3148 /* Experiments have shown that it's rarely, if ever useful to
3149 record ranges for enumerations. Presumably this is due to
3150 the fact that they're rarely used directly. They are typically
3151 cast into an integer type and used that way. */
3152 if (TREE_CODE (type) != INTEGER_TYPE
3153 /* We don't know how to deal with types with variable bounds. */
3154 || TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
3155 || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST)
3156 return 0;
3157
3158 switch (TREE_CODE (cond))
3159 {
3160 case EQ_EXPR:
3161 high = low = op1;
3162 inverted = 0;
3163 break;
3164
3165 case NE_EXPR:
3166 high = low = op1;
3167 inverted = 1;
3168 break;
3169
3170 case GE_EXPR:
3171 low = op1;
3172 high = TYPE_MAX_VALUE (type);
3173 inverted = 0;
3174 break;
3175
3176 case GT_EXPR:
3177 high = TYPE_MAX_VALUE (type);
3178 if (!tree_int_cst_lt (op1, high))
3179 return 0;
3180 low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
3181 inverted = 0;
3182 break;
3183
3184 case LE_EXPR:
3185 high = op1;
3186 low = TYPE_MIN_VALUE (type);
3187 inverted = 0;
3188 break;
3189
3190 case LT_EXPR:
3191 low = TYPE_MIN_VALUE (type);
3192 if (!tree_int_cst_lt (low, op1))
3193 return 0;
3194 high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
3195 inverted = 0;
3196 break;
3197
3198 default:
3199 return 0;
3200 }
3201
3202 *hi_p = high;
3203 *lo_p = low;
3204 *inverted_p = inverted;
3205 return 1;
3206 }
3207
3208 /* Record a range created by COND for basic block BB. */
3209
3210 static void
3211 record_range (tree cond, basic_block bb)
3212 {
3213 enum tree_code code = TREE_CODE (cond);
3214
3215 /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
3216 They rarely allow for meaningful range optimizations and significantly
3217 complicate the implementation. */
3218 if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
3219 || code == GE_EXPR || code == EQ_EXPR)
3220 && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
3221 {
3222 struct vrp_hash_elt *vrp_hash_elt;
3223 struct vrp_element *element;
3224 VEC(vrp_element_p,heap) **vrp_records_p;
3225 void **slot;
3226
3227
3228 vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
3229 vrp_hash_elt->var = TREE_OPERAND (cond, 0);
3230 vrp_hash_elt->records = NULL;
3231 slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);
3232
3233 if (*slot == NULL)
3234 *slot = (void *) vrp_hash_elt;
3235 else
3236 vrp_free (vrp_hash_elt);
3237
3238 vrp_hash_elt = (struct vrp_hash_elt *) *slot;
3239 vrp_records_p = &vrp_hash_elt->records;
3240
3241 element = ggc_alloc (sizeof (struct vrp_element));
3242 element->low = NULL;
3243 element->high = NULL;
3244 element->cond = cond;
3245 element->bb = bb;
3246
3247 VEC_safe_push (vrp_element_p, heap, *vrp_records_p, element);
3248 VEC_safe_push (tree, heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
3249 }
3250 }
3251
3252 /* Hashing and equality functions for VRP_DATA.
3253
3254 Since this hash table is addressed by SSA_NAMEs, we can hash on
3255 their version number and equality can be determined with a
3256 pointer comparison. */
3257
3258 static hashval_t
3259 vrp_hash (const void *p)
3260 {
3261 tree var = ((struct vrp_hash_elt *)p)->var;
3262
3263 return SSA_NAME_VERSION (var);
3264 }
3265
3266 static int
3267 vrp_eq (const void *p1, const void *p2)
3268 {
3269 tree var1 = ((struct vrp_hash_elt *)p1)->var;
3270 tree var2 = ((struct vrp_hash_elt *)p2)->var;
3271
3272 return var1 == var2;
3273 }
3274
3275 /* Hashing and equality functions for AVAIL_EXPRS. The table stores
3276 MODIFY_EXPR statements. We compute a value number for expressions using
3277 the code of the expression and the SSA numbers of its operands. */
3278
3279 static hashval_t
3280 avail_expr_hash (const void *p)
3281 {
3282 tree stmt = ((struct expr_hash_elt *)p)->stmt;
3283 tree rhs = ((struct expr_hash_elt *)p)->rhs;
3284 tree vuse;
3285 ssa_op_iter iter;
3286 hashval_t val = 0;
3287
3288 /* iterative_hash_expr knows how to deal with any expression and
3289 deals with commutative operators as well, so just use it instead
3290 of duplicating such complexities here. */
3291 val = iterative_hash_expr (rhs, val);
3292
3293 /* If the hash table entry is not associated with a statement, then we
3294 can just hash the expression and not worry about virtual operands
3295 and such. */
3296 if (!stmt || !stmt_ann (stmt))
3297 return val;
3298
3299 /* Add the SSA version numbers of every vuse operand. This is important
3300 because compound variables like arrays are not renamed in the
3301 operands. Rather, the rename is done on the virtual variable
3302 representing all the elements of the array. */
3303 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, iter, SSA_OP_VUSE)
3304 val = iterative_hash_expr (vuse, val);
3305
3306 return val;
3307 }
3308
3309 static hashval_t
3310 real_avail_expr_hash (const void *p)
3311 {
3312 return ((const struct expr_hash_elt *)p)->hash;
3313 }
3314
3315 static int
3316 avail_expr_eq (const void *p1, const void *p2)
3317 {
3318 tree stmt1 = ((struct expr_hash_elt *)p1)->stmt;
3319 tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
3320 tree stmt2 = ((struct expr_hash_elt *)p2)->stmt;
3321 tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;
3322
3323 /* If they are the same physical expression, return true. */
3324 if (rhs1 == rhs2 && stmt1 == stmt2)
3325 return true;
3326
3327 /* If their codes are not equal, then quit now. */
3328 if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
3329 return false;
3330
3331 /* In case of a collision, both RHS have to be identical and have the
3332 same VUSE operands. */
3333 if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
3334 || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
3335 && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
3336 {
3337 bool ret = compare_ssa_operands_equal (stmt1, stmt2, SSA_OP_VUSE);
3338 gcc_assert (!ret || ((struct expr_hash_elt *)p1)->hash
3339 == ((struct expr_hash_elt *)p2)->hash);
3340 return ret;
3341 }
3342
3343 return false;
3344 }