tree-ssa-dom.c (vrp_element_p): Define.
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "cfgloop.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "timevar.h"
39 #include "tree-dump.h"
40 #include "tree-flow.h"
41 #include "domwalk.h"
42 #include "real.h"
43 #include "tree-pass.h"
44 #include "tree-ssa-propagate.h"
45 #include "langhooks.h"
46
47 /* This file implements optimizations on the dominator tree. */
48
49
50 /* Structure for recording edge equivalences as well as any pending
51 edge redirections during the dominator optimizer.
52
53 Computing and storing the edge equivalences instead of creating
54 them on-demand can save significant amounts of time, particularly
55 for pathological cases involving switch statements.
56
57 These structures live for a single iteration of the dominator
58 optimizer in the edge's AUX field. At the end of an iteration we
59 free each of these structures and update the AUX field to point
60 to any requested redirection target (the code for updating the
61 CFG and SSA graph for edge redirection expects redirection edge
62 targets to be in the AUX field for each edge. */
63
64 struct edge_info
65 {
66 /* If this edge creates a simple equivalence, the LHS and RHS of
67 the equivalence will be stored here. */
68 tree lhs;
69 tree rhs;
70
71 /* Traversing an edge may also indicate one or more particular conditions
72 are true or false. The number of recorded conditions can vary, but
73 can be determined by the condition's code. So we have an array
74 and its maximum index rather than use a varray. */
75 tree *cond_equivalences;
76 unsigned int max_cond_equivalences;
77
78 /* If we can thread this edge this field records the new target. */
79 edge redirection_target;
80 };
81
82
83 /* Hash table with expressions made available during the renaming process.
84 When an assignment of the form X_i = EXPR is found, the statement is
85 stored in this table. If the same expression EXPR is later found on the
86 RHS of another statement, it is replaced with X_i (thus performing
87 global redundancy elimination). Similarly as we pass through conditionals
88 we record the conditional itself as having either a true or false value
89 in this table. */
90 static htab_t avail_exprs;
91
92 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
93 expressions it enters into the hash table along with a marker entry
94 (null). When we finish processing the block, we pop off entries and
95 remove the expressions from the global hash table until we hit the
96 marker. */
97 static VEC(tree,heap) *avail_exprs_stack;
98
99 /* Stack of statements we need to rescan during finalization for newly
100 exposed variables.
101
102 Statement rescanning must occur after the current block's available
103 expressions are removed from AVAIL_EXPRS. Else we may change the
104 hash code for an expression and be unable to find/remove it from
105 AVAIL_EXPRS. */
106 static VEC(tree,heap) *stmts_to_rescan;
107
108 /* Structure for entries in the expression hash table.
109
110 This requires more memory for the hash table entries, but allows us
111 to avoid creating silly tree nodes and annotations for conditionals,
112 eliminates 2 global hash tables and two block local varrays.
113
114 It also allows us to reduce the number of hash table lookups we
115 have to perform in lookup_avail_expr and finally it allows us to
116 significantly reduce the number of calls into the hashing routine
117 itself. */
118
119 struct expr_hash_elt
120 {
121 /* The value (lhs) of this expression. */
122 tree lhs;
123
124 /* The expression (rhs) we want to record. */
125 tree rhs;
126
127 /* The stmt pointer if this element corresponds to a statement. */
128 tree stmt;
129
130 /* The hash value for RHS/ann. */
131 hashval_t hash;
132 };
133
134 /* Stack of dest,src pairs that need to be restored during finalization.
135
136 A NULL entry is used to mark the end of pairs which need to be
137 restored during finalization of this block. */
138 static VEC(tree,heap) *const_and_copies_stack;
139
140 /* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
141 know their exact value. */
142 static bitmap nonzero_vars;
143
144 /* Bitmap of blocks that are scheduled to be threaded through. This
145 is used to communicate with thread_through_blocks. */
146 static bitmap threaded_blocks;
147
148 /* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
149 when the current block is finalized.
150
151 A NULL entry is used to mark the end of names needing their
152 entry in NONZERO_VARS cleared during finalization of this block. */
153 static VEC(tree,heap) *nonzero_vars_stack;
154
155 /* Track whether or not we have changed the control flow graph. */
156 static bool cfg_altered;
157
158 /* Bitmap of blocks that have had EH statements cleaned. We should
159 remove their dead edges eventually. */
160 static bitmap need_eh_cleanup;
161
162 /* Statistics for dominator optimizations. */
163 struct opt_stats_d
164 {
165 long num_stmts;
166 long num_exprs_considered;
167 long num_re;
168 long num_const_prop;
169 long num_copy_prop;
170 };
171
172 static struct opt_stats_d opt_stats;
173
174 /* Value range propagation record. Each time we encounter a conditional
175 of the form SSA_NAME COND CONST we create a new vrp_element to record
176 how the condition affects the possible values SSA_NAME may have.
177
178 Each record contains the condition tested (COND), and the range of
179 values the variable may legitimately have if COND is true. Note the
180 range of values may be a smaller range than COND specifies if we have
181 recorded other ranges for this variable. Each record also contains the
182 block in which the range was recorded for invalidation purposes.
183
184 Note that the current known range is computed lazily. This allows us
185 to avoid the overhead of computing ranges which are never queried.
186
187 When we encounter a conditional, we look for records which constrain
188 the SSA_NAME used in the condition. In some cases those records allow
189 us to determine the condition's result at compile time. In other cases
190 they may allow us to simplify the condition.
191
192 We also use value ranges to do things like transform signed div/mod
193 operations into unsigned div/mod or to simplify ABS_EXPRs.
194
195 Simple experiments have shown these optimizations to not be all that
196 useful on switch statements (much to my surprise). So switch statement
197 optimizations are not performed.
198
199 Note carefully we do not propagate information through each statement
200 in the block. i.e., if we know variable X has a value defined of
201 [0, 25] and we encounter Y = X + 1, we do not track a value range
202 for Y (which would be [1, 26] if we cared). Similarly we do not
203 constrain values as we encounter narrowing typecasts, etc. */
204
205 struct vrp_element
206 {
207 /* The highest and lowest values the variable in COND may contain when
208 COND is true. Note this may not necessarily be the same values
209 tested by COND if the same variable was used in earlier conditionals.
210
211 Note this is computed lazily and thus can be NULL indicating that
212 the values have not been computed yet. */
213 tree low;
214 tree high;
215
216 /* The actual conditional we recorded. This is needed since we compute
217 ranges lazily. */
218 tree cond;
219
220 /* The basic block where this record was created. We use this to determine
221 when to remove records. */
222 basic_block bb;
223 };
224
225 /* A hash table holding value range records (VRP_ELEMENTs) for a given
226 SSA_NAME. We used to use a varray indexed by SSA_NAME_VERSION, but
227 that gets awful wasteful, particularly since the density objects
228 with useful information is very low. */
229 static htab_t vrp_data;
230
231 typedef struct vrp_element *vrp_element_p;
232
233 DEF_VEC_P(vrp_element_p);
234 DEF_VEC_ALLOC_P(vrp_element_p,heap);
235
236 /* An entry in the VRP_DATA hash table. We record the variable and a
237 varray of VRP_ELEMENT records associated with that variable. */
238 struct vrp_hash_elt
239 {
240 tree var;
241 VEC(vrp_element_p,heap) *records;
242 };
243
244 /* Array of variables which have their values constrained by operations
245 in this basic block. We use this during finalization to know
246 which variables need their VRP data updated. */
247
248 /* Stack of SSA_NAMEs which had their values constrained by operations
249 in this basic block. During finalization of this block we use this
250 list to determine which variables need their VRP data updated.
251
252 A NULL entry marks the end of the SSA_NAMEs associated with this block. */
253 static VEC(tree,heap) *vrp_variables_stack;
254
255 struct eq_expr_value
256 {
257 tree src;
258 tree dst;
259 };
260
261 /* Local functions. */
262 static void optimize_stmt (struct dom_walk_data *,
263 basic_block bb,
264 block_stmt_iterator);
265 static tree lookup_avail_expr (tree, bool);
266 static hashval_t vrp_hash (const void *);
267 static int vrp_eq (const void *, const void *);
268 static hashval_t avail_expr_hash (const void *);
269 static hashval_t real_avail_expr_hash (const void *);
270 static int avail_expr_eq (const void *, const void *);
271 static void htab_statistics (FILE *, htab_t);
272 static void record_cond (tree, tree);
273 static void record_const_or_copy (tree, tree);
274 static void record_equality (tree, tree);
275 static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
276 static tree simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *,
277 tree, int);
278 static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
279 static tree simplify_switch_and_lookup_avail_expr (tree, int);
280 static tree find_equivalent_equality_comparison (tree);
281 static void record_range (tree, basic_block);
282 static bool extract_range_from_cond (tree, tree *, tree *, int *);
283 static void record_equivalences_from_phis (basic_block);
284 static void record_equivalences_from_incoming_edge (basic_block);
285 static bool eliminate_redundant_computations (struct dom_walk_data *,
286 tree, stmt_ann_t);
287 static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
288 static void thread_across_edge (struct dom_walk_data *, edge);
289 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
290 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
291 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
292 static void remove_local_expressions_from_table (void);
293 static void restore_vars_to_original_value (void);
294 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
295 static void restore_nonzero_vars_to_original_value (void);
296 static inline bool unsafe_associative_fp_binop (tree);
297
298
299 /* Local version of fold that doesn't introduce cruft. */
300
301 static tree
302 local_fold (tree t)
303 {
304 t = fold (t);
305
306 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
307 may have been added by fold, and "useless" type conversions that might
308 now be apparent due to propagation. */
309 STRIP_USELESS_TYPE_CONVERSION (t);
310
311 return t;
312 }
313
314 /* Allocate an EDGE_INFO for edge E and attach it to E.
315 Return the new EDGE_INFO structure. */
316
317 static struct edge_info *
318 allocate_edge_info (edge e)
319 {
320 struct edge_info *edge_info;
321
322 edge_info = xcalloc (1, sizeof (struct edge_info));
323
324 e->aux = edge_info;
325 return edge_info;
326 }
327
328 /* Free all EDGE_INFO structures associated with edges in the CFG.
329 If a particular edge can be threaded, copy the redirection
330 target from the EDGE_INFO structure into the edge's AUX field
331 as required by code to update the CFG and SSA graph for
332 jump threading. */
333
334 static void
335 free_all_edge_infos (void)
336 {
337 basic_block bb;
338 edge_iterator ei;
339 edge e;
340
341 FOR_EACH_BB (bb)
342 {
343 FOR_EACH_EDGE (e, ei, bb->preds)
344 {
345 struct edge_info *edge_info = e->aux;
346
347 if (edge_info)
348 {
349 e->aux = edge_info->redirection_target;
350 if (edge_info->cond_equivalences)
351 free (edge_info->cond_equivalences);
352 free (edge_info);
353 }
354 }
355 }
356 }
357
358 /* Free an instance of vrp_hash_elt. */
359
360 static void
361 vrp_free (void *data)
362 {
363 struct vrp_hash_elt *elt = data;
364 struct VEC(vrp_element_p,heap) **vrp_elt = &elt->records;
365
366 VEC_free (vrp_element_p, heap, *vrp_elt);
367 free (elt);
368 }
369
370 /* Jump threading, redundancy elimination and const/copy propagation.
371
372 This pass may expose new symbols that need to be renamed into SSA. For
373 every new symbol exposed, its corresponding bit will be set in
374 VARS_TO_RENAME. */
375
376 static void
377 tree_ssa_dominator_optimize (void)
378 {
379 struct dom_walk_data walk_data;
380 unsigned int i;
381 struct loops loops_info;
382
383 memset (&opt_stats, 0, sizeof (opt_stats));
384
385 /* Create our hash tables. */
386 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
387 vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq,
388 vrp_free);
389 avail_exprs_stack = VEC_alloc (tree, heap, 20);
390 const_and_copies_stack = VEC_alloc (tree, heap, 20);
391 nonzero_vars_stack = VEC_alloc (tree, heap, 20);
392 vrp_variables_stack = VEC_alloc (tree, heap, 20);
393 stmts_to_rescan = VEC_alloc (tree, heap, 20);
394 nonzero_vars = BITMAP_ALLOC (NULL);
395 threaded_blocks = BITMAP_ALLOC (NULL);
396 need_eh_cleanup = BITMAP_ALLOC (NULL);
397
398 /* Setup callbacks for the generic dominator tree walker. */
399 walk_data.walk_stmts_backward = false;
400 walk_data.dom_direction = CDI_DOMINATORS;
401 walk_data.initialize_block_local_data = NULL;
402 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
403 walk_data.before_dom_children_walk_stmts = optimize_stmt;
404 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
405 walk_data.after_dom_children_before_stmts = NULL;
406 walk_data.after_dom_children_walk_stmts = NULL;
407 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
408 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
409 When we attach more stuff we'll need to fill this out with a real
410 structure. */
411 walk_data.global_data = NULL;
412 walk_data.block_local_data_size = 0;
413 walk_data.interesting_blocks = NULL;
414
415 /* Now initialize the dominator walker. */
416 init_walk_dominator_tree (&walk_data);
417
418 calculate_dominance_info (CDI_DOMINATORS);
419
420 /* We need to know which edges exit loops so that we can
421 aggressively thread through loop headers to an exit
422 edge. */
423 flow_loops_find (&loops_info);
424 mark_loop_exit_edges (&loops_info);
425 flow_loops_free (&loops_info);
426
427 /* Clean up the CFG so that any forwarder blocks created by loop
428 canonicalization are removed. */
429 cleanup_tree_cfg ();
430 calculate_dominance_info (CDI_DOMINATORS);
431
432 /* If we prove certain blocks are unreachable, then we want to
433 repeat the dominator optimization process as PHI nodes may
434 have turned into copies which allows better propagation of
435 values. So we repeat until we do not identify any new unreachable
436 blocks. */
437 do
438 {
439 /* Optimize the dominator tree. */
440 cfg_altered = false;
441
442 /* We need accurate information regarding back edges in the CFG
443 for jump threading. */
444 mark_dfs_back_edges ();
445
446 /* Recursively walk the dominator tree optimizing statements. */
447 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
448
449 {
450 block_stmt_iterator bsi;
451 basic_block bb;
452 FOR_EACH_BB (bb)
453 {
454 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
455 {
456 update_stmt_if_modified (bsi_stmt (bsi));
457 }
458 }
459 }
460
461 /* If we exposed any new variables, go ahead and put them into
462 SSA form now, before we handle jump threading. This simplifies
463 interactions between rewriting of _DECL nodes into SSA form
464 and rewriting SSA_NAME nodes into SSA form after block
465 duplication and CFG manipulation. */
466 update_ssa (TODO_update_ssa);
467
468 free_all_edge_infos ();
469
470 /* Thread jumps, creating duplicate blocks as needed. */
471 cfg_altered |= thread_through_all_blocks (threaded_blocks);
472
473 /* Removal of statements may make some EH edges dead. Purge
474 such edges from the CFG as needed. */
475 if (!bitmap_empty_p (need_eh_cleanup))
476 {
477 cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
478 bitmap_zero (need_eh_cleanup);
479 }
480
481 if (cfg_altered)
482 free_dominance_info (CDI_DOMINATORS);
483
484 cfg_altered = cleanup_tree_cfg ();
485
486 if (rediscover_loops_after_threading)
487 {
488 /* Rerun basic loop analysis to discover any newly
489 created loops and update the set of exit edges. */
490 rediscover_loops_after_threading = false;
491 flow_loops_find (&loops_info);
492 mark_loop_exit_edges (&loops_info);
493 flow_loops_free (&loops_info);
494
495 /* Remove any forwarder blocks inserted by loop
496 header canonicalization. */
497 cleanup_tree_cfg ();
498 }
499
500 calculate_dominance_info (CDI_DOMINATORS);
501
502 update_ssa (TODO_update_ssa);
503
504 /* Reinitialize the various tables. */
505 bitmap_clear (nonzero_vars);
506 bitmap_clear (threaded_blocks);
507 htab_empty (avail_exprs);
508 htab_empty (vrp_data);
509
510 /* Finally, remove everything except invariants in SSA_NAME_VALUE.
511
512 This must be done before we iterate as we might have a
513 reference to an SSA_NAME which was removed by the call to
514 update_ssa.
515
516 Long term we will be able to let everything in SSA_NAME_VALUE
517 persist. However, for now, we know this is the safe thing to do. */
518 for (i = 0; i < num_ssa_names; i++)
519 {
520 tree name = ssa_name (i);
521 tree value;
522
523 if (!name)
524 continue;
525
526 value = SSA_NAME_VALUE (name);
527 if (value && !is_gimple_min_invariant (value))
528 SSA_NAME_VALUE (name) = NULL;
529 }
530 }
531 while (optimize > 1 && cfg_altered);
532
533 /* Debugging dumps. */
534 if (dump_file && (dump_flags & TDF_STATS))
535 dump_dominator_optimization_stats (dump_file);
536
537 /* We emptied the hash table earlier, now delete it completely. */
538 htab_delete (avail_exprs);
539 htab_delete (vrp_data);
540
541 /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
542 CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
543 of the do-while loop above. */
544
545 /* And finalize the dominator walker. */
546 fini_walk_dominator_tree (&walk_data);
547
548 /* Free nonzero_vars. */
549 BITMAP_FREE (nonzero_vars);
550 BITMAP_FREE (threaded_blocks);
551 BITMAP_FREE (need_eh_cleanup);
552
553 VEC_free (tree, heap, avail_exprs_stack);
554 VEC_free (tree, heap, const_and_copies_stack);
555 VEC_free (tree, heap, nonzero_vars_stack);
556 VEC_free (tree, heap, vrp_variables_stack);
557 VEC_free (tree, heap, stmts_to_rescan);
558 }
559
560 static bool
561 gate_dominator (void)
562 {
563 return flag_tree_dom != 0;
564 }
565
566 struct tree_opt_pass pass_dominator =
567 {
568 "dom", /* name */
569 gate_dominator, /* gate */
570 tree_ssa_dominator_optimize, /* execute */
571 NULL, /* sub */
572 NULL, /* next */
573 0, /* static_pass_number */
574 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
575 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
576 0, /* properties_provided */
577 0, /* properties_destroyed */
578 0, /* todo_flags_start */
579 TODO_dump_func
580 | TODO_update_ssa
581 | TODO_verify_ssa, /* todo_flags_finish */
582 0 /* letter */
583 };
584
585
586 /* We are exiting E->src, see if E->dest ends with a conditional
587 jump which has a known value when reached via E.
588
589 Special care is necessary if E is a back edge in the CFG as we
590 will have already recorded equivalences for E->dest into our
591 various tables, including the result of the conditional at
592 the end of E->dest. Threading opportunities are severely
593 limited in that case to avoid short-circuiting the loop
594 incorrectly.
595
596 Note it is quite common for the first block inside a loop to
597 end with a conditional which is either always true or always
598 false when reached via the loop backedge. Thus we do not want
599 to blindly disable threading across a loop backedge. */
600
601 static void
602 thread_across_edge (struct dom_walk_data *walk_data, edge e)
603 {
604 block_stmt_iterator bsi;
605 tree stmt = NULL;
606 tree phi;
607
608 /* If E->dest does not end with a conditional, then there is
609 nothing to do. */
610 bsi = bsi_last (e->dest);
611 if (bsi_end_p (bsi)
612 || ! bsi_stmt (bsi)
613 || (TREE_CODE (bsi_stmt (bsi)) != COND_EXPR
614 && TREE_CODE (bsi_stmt (bsi)) != GOTO_EXPR
615 && TREE_CODE (bsi_stmt (bsi)) != SWITCH_EXPR))
616 return;
617
618 /* The basic idea here is to use whatever knowledge we have
619 from our dominator walk to simplify statements in E->dest,
620 with the ultimate goal being to simplify the conditional
621 at the end of E->dest.
622
623 Note that we must undo any changes we make to the underlying
624 statements as the simplifications we are making are control
625 flow sensitive (ie, the simplifications are valid when we
626 traverse E, but may not be valid on other paths to E->dest. */
627
628 /* Each PHI creates a temporary equivalence, record them. Again
629 these are context sensitive equivalences and will be removed
630 by our caller. */
631 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
632 {
633 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
634 tree dst = PHI_RESULT (phi);
635
636 /* If the desired argument is not the same as this PHI's result
637 and it is set by a PHI in E->dest, then we can not thread
638 through E->dest. */
639 if (src != dst
640 && TREE_CODE (src) == SSA_NAME
641 && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
642 && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
643 return;
644
645 record_const_or_copy (dst, src);
646 }
647
648 /* Try to simplify each statement in E->dest, ultimately leading to
649 a simplification of the COND_EXPR at the end of E->dest.
650
651 We might consider marking just those statements which ultimately
652 feed the COND_EXPR. It's not clear if the overhead of bookkeeping
653 would be recovered by trying to simplify fewer statements.
654
655 If we are able to simplify a statement into the form
656 SSA_NAME = (SSA_NAME | gimple invariant), then we can record
657 a context sensitive equivalency which may help us simplify
658 later statements in E->dest.
659
660 Failure to simplify into the form above merely means that the
661 statement provides no equivalences to help simplify later
662 statements. This does not prevent threading through E->dest. */
663 for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
664 {
665 tree cached_lhs;
666
667 stmt = bsi_stmt (bsi);
668
669 /* Ignore empty statements and labels. */
670 if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
671 continue;
672
673 /* Safely handle threading across loop backedges. This is
674 over conservative, but still allows us to capture the
675 majority of the cases where we can thread across a loop
676 backedge. */
677 if ((e->flags & EDGE_DFS_BACK) != 0
678 && TREE_CODE (stmt) != COND_EXPR
679 && TREE_CODE (stmt) != SWITCH_EXPR)
680 return;
681
682 /* If the statement has volatile operands, then we assume we
683 can not thread through this block. This is overly
684 conservative in some ways. */
685 if (TREE_CODE (stmt) == ASM_EXPR && ASM_VOLATILE_P (stmt))
686 return;
687
688 /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
689 value, then do not try to simplify this statement as it will
690 not simplify in any way that is helpful for jump threading. */
691 if (TREE_CODE (stmt) != MODIFY_EXPR
692 || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
693 continue;
694
695 /* At this point we have a statement which assigns an RHS to an
696 SSA_VAR on the LHS. We want to try and simplify this statement
697 to expose more context sensitive equivalences which in turn may
698 allow us to simplify the condition at the end of the loop. */
699 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
700 cached_lhs = TREE_OPERAND (stmt, 1);
701 else
702 {
703 /* Copy the operands. */
704 tree *copy;
705 ssa_op_iter iter;
706 use_operand_p use_p;
707 unsigned int num, i = 0;
708
709 num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
710 copy = xcalloc (num, sizeof (tree));
711
712 /* Make a copy of the uses & vuses into USES_COPY, then cprop into
713 the operands. */
714 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
715 {
716 tree tmp = NULL;
717 tree use = USE_FROM_PTR (use_p);
718
719 copy[i++] = use;
720 if (TREE_CODE (use) == SSA_NAME)
721 tmp = SSA_NAME_VALUE (use);
722 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
723 SET_USE (use_p, tmp);
724 }
725
726 /* Try to fold/lookup the new expression. Inserting the
727 expression into the hash table is unlikely to help
728 simplify anything later, so just query the hashtable. */
729 cached_lhs = fold (TREE_OPERAND (stmt, 1));
730 if (TREE_CODE (cached_lhs) != SSA_NAME
731 && !is_gimple_min_invariant (cached_lhs))
732 cached_lhs = lookup_avail_expr (stmt, false);
733
734
735 /* Restore the statement's original uses/defs. */
736 i = 0;
737 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
738 SET_USE (use_p, copy[i++]);
739
740 free (copy);
741 }
742
743 /* Record the context sensitive equivalence if we were able
744 to simplify this statement. */
745 if (cached_lhs
746 && (TREE_CODE (cached_lhs) == SSA_NAME
747 || is_gimple_min_invariant (cached_lhs)))
748 record_const_or_copy (TREE_OPERAND (stmt, 0), cached_lhs);
749 }
750
751 /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
752 will be taken. */
753 if (stmt
754 && (TREE_CODE (stmt) == COND_EXPR
755 || TREE_CODE (stmt) == GOTO_EXPR
756 || TREE_CODE (stmt) == SWITCH_EXPR))
757 {
758 tree cond, cached_lhs;
759
760 /* Now temporarily cprop the operands and try to find the resulting
761 expression in the hash tables. */
762 if (TREE_CODE (stmt) == COND_EXPR)
763 cond = COND_EXPR_COND (stmt);
764 else if (TREE_CODE (stmt) == GOTO_EXPR)
765 cond = GOTO_DESTINATION (stmt);
766 else
767 cond = SWITCH_COND (stmt);
768
769 if (COMPARISON_CLASS_P (cond))
770 {
771 tree dummy_cond, op0, op1;
772 enum tree_code cond_code;
773
774 op0 = TREE_OPERAND (cond, 0);
775 op1 = TREE_OPERAND (cond, 1);
776 cond_code = TREE_CODE (cond);
777
778 /* Get the current value of both operands. */
779 if (TREE_CODE (op0) == SSA_NAME)
780 {
781 tree tmp = SSA_NAME_VALUE (op0);
782 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
783 op0 = tmp;
784 }
785
786 if (TREE_CODE (op1) == SSA_NAME)
787 {
788 tree tmp = SSA_NAME_VALUE (op1);
789 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
790 op1 = tmp;
791 }
792
793 /* Stuff the operator and operands into our dummy conditional
794 expression, creating the dummy conditional if necessary. */
795 dummy_cond = walk_data->global_data;
796 if (! dummy_cond)
797 {
798 dummy_cond = build (cond_code, boolean_type_node, op0, op1);
799 dummy_cond = build (COND_EXPR, void_type_node,
800 dummy_cond, NULL, NULL);
801 walk_data->global_data = dummy_cond;
802 }
803 else
804 {
805 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
806 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
807 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
808 }
809
810 /* If the conditional folds to an invariant, then we are done,
811 otherwise look it up in the hash tables. */
812 cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
813 if (! is_gimple_min_invariant (cached_lhs))
814 {
815 cached_lhs = lookup_avail_expr (dummy_cond, false);
816 if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
817 cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
818 NULL,
819 false);
820 }
821 }
822 /* We can have conditionals which just test the state of a
823 variable rather than use a relational operator. These are
824 simpler to handle. */
825 else if (TREE_CODE (cond) == SSA_NAME)
826 {
827 cached_lhs = cond;
828 cached_lhs = SSA_NAME_VALUE (cached_lhs);
829 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
830 cached_lhs = NULL;
831 }
832 else
833 cached_lhs = lookup_avail_expr (stmt, false);
834
835 if (cached_lhs)
836 {
837 edge taken_edge = find_taken_edge (e->dest, cached_lhs);
838 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
839
840 if (dest == e->dest)
841 return;
842
843 /* If we have a known destination for the conditional, then
844 we can perform this optimization, which saves at least one
845 conditional jump each time it applies since we get to
846 bypass the conditional at our original destination. */
847 if (dest)
848 {
849 struct edge_info *edge_info;
850
851 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
852 e->count, taken_edge);
853 if (e->aux)
854 edge_info = e->aux;
855 else
856 edge_info = allocate_edge_info (e);
857 edge_info->redirection_target = taken_edge;
858 bitmap_set_bit (threaded_blocks, e->dest->index);
859 }
860 }
861 }
862 }
863
864
865 /* Initialize local stacks for this optimizer and record equivalences
866 upon entry to BB. Equivalences can come from the edge traversed to
867 reach BB or they may come from PHI nodes at the start of BB. */
868
869 static void
870 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
871 basic_block bb)
872 {
873 if (dump_file && (dump_flags & TDF_DETAILS))
874 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
875
876 /* Push a marker on the stacks of local information so that we know how
877 far to unwind when we finalize this block. */
878 VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
879 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
880 VEC_safe_push (tree, heap, nonzero_vars_stack, NULL_TREE);
881 VEC_safe_push (tree, heap, vrp_variables_stack, NULL_TREE);
882
883 record_equivalences_from_incoming_edge (bb);
884
885 /* PHI nodes can create equivalences too. */
886 record_equivalences_from_phis (bb);
887 }
888
889 /* Given an expression EXPR (a relational expression or a statement),
890 initialize the hash table element pointed by by ELEMENT. */
891
892 static void
893 initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
894 {
895 /* Hash table elements may be based on conditional expressions or statements.
896
897 For the former case, we have no annotation and we want to hash the
898 conditional expression. In the latter case we have an annotation and
899 we want to record the expression the statement evaluates. */
900 if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
901 {
902 element->stmt = NULL;
903 element->rhs = expr;
904 }
905 else if (TREE_CODE (expr) == COND_EXPR)
906 {
907 element->stmt = expr;
908 element->rhs = COND_EXPR_COND (expr);
909 }
910 else if (TREE_CODE (expr) == SWITCH_EXPR)
911 {
912 element->stmt = expr;
913 element->rhs = SWITCH_COND (expr);
914 }
915 else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
916 {
917 element->stmt = expr;
918 element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
919 }
920 else if (TREE_CODE (expr) == GOTO_EXPR)
921 {
922 element->stmt = expr;
923 element->rhs = GOTO_DESTINATION (expr);
924 }
925 else
926 {
927 element->stmt = expr;
928 element->rhs = TREE_OPERAND (expr, 1);
929 }
930
931 element->lhs = lhs;
932 element->hash = avail_expr_hash (element);
933 }
934
935 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
936 LIMIT entries left in LOCALs. */
937
938 static void
939 remove_local_expressions_from_table (void)
940 {
941 /* Remove all the expressions made available in this block. */
942 while (VEC_length (tree, avail_exprs_stack) > 0)
943 {
944 struct expr_hash_elt element;
945 tree expr = VEC_pop (tree, avail_exprs_stack);
946
947 if (expr == NULL_TREE)
948 break;
949
950 initialize_hash_element (expr, NULL, &element);
951 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
952 }
953 }
954
955 /* Use the SSA_NAMES in LOCALS to restore TABLE to its original
956 state, stopping when there are LIMIT entries left in LOCALs. */
957
958 static void
959 restore_nonzero_vars_to_original_value (void)
960 {
961 while (VEC_length (tree, nonzero_vars_stack) > 0)
962 {
963 tree name = VEC_pop (tree, nonzero_vars_stack);
964
965 if (name == NULL)
966 break;
967
968 bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
969 }
970 }
971
972 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
973 CONST_AND_COPIES to its original state, stopping when we hit a
974 NULL marker. */
975
976 static void
977 restore_vars_to_original_value (void)
978 {
979 while (VEC_length (tree, const_and_copies_stack) > 0)
980 {
981 tree prev_value, dest;
982
983 dest = VEC_pop (tree, const_and_copies_stack);
984
985 if (dest == NULL)
986 break;
987
988 prev_value = VEC_pop (tree, const_and_copies_stack);
989 SSA_NAME_VALUE (dest) = prev_value;
990 }
991 }
992
993 /* We have finished processing the dominator children of BB, perform
994 any finalization actions in preparation for leaving this node in
995 the dominator tree. */
996
997 static void
998 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
999 {
1000 tree last;
1001
1002 /* If we are at a leaf node in the dominator tree, see if we can thread
1003 the edge from BB through its successor.
1004
1005 Do this before we remove entries from our equivalence tables. */
1006 if (single_succ_p (bb)
1007 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1008 && (get_immediate_dominator (CDI_DOMINATORS, single_succ (bb)) != bb
1009 || phi_nodes (single_succ (bb))))
1010
1011 {
1012 thread_across_edge (walk_data, single_succ_edge (bb));
1013 }
1014 else if ((last = last_stmt (bb))
1015 && TREE_CODE (last) == COND_EXPR
1016 && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
1017 || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1018 && EDGE_COUNT (bb->succs) == 2
1019 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1020 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1021 {
1022 edge true_edge, false_edge;
1023
1024 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1025
1026 /* If the THEN arm is the end of a dominator tree or has PHI nodes,
1027 then try to thread through its edge. */
1028 if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
1029 || phi_nodes (true_edge->dest))
1030 {
1031 struct edge_info *edge_info;
1032 unsigned int i;
1033
1034 /* Push a marker onto the available expression stack so that we
1035 unwind any expressions related to the TRUE arm before processing
1036 the false arm below. */
1037 VEC_safe_push (tree, heap, avail_exprs_stack, NULL_TREE);
1038 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
1039
1040 edge_info = true_edge->aux;
1041
1042 /* If we have info associated with this edge, record it into
1043 our equivalency tables. */
1044 if (edge_info)
1045 {
1046 tree *cond_equivalences = edge_info->cond_equivalences;
1047 tree lhs = edge_info->lhs;
1048 tree rhs = edge_info->rhs;
1049
1050 /* If we have a simple NAME = VALUE equivalency record it. */
1051 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1052 record_const_or_copy (lhs, rhs);
1053
1054 /* If we have 0 = COND or 1 = COND equivalences, record them
1055 into our expression hash tables. */
1056 if (cond_equivalences)
1057 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1058 {
1059 tree expr = cond_equivalences[i];
1060 tree value = cond_equivalences[i + 1];
1061
1062 record_cond (expr, value);
1063 }
1064 }
1065
1066 /* Now thread the edge. */
1067 thread_across_edge (walk_data, true_edge);
1068
1069 /* And restore the various tables to their state before
1070 we threaded this edge. */
1071 remove_local_expressions_from_table ();
1072 restore_vars_to_original_value ();
1073 }
1074
1075 /* Similarly for the ELSE arm. */
1076 if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
1077 || phi_nodes (false_edge->dest))
1078 {
1079 struct edge_info *edge_info;
1080 unsigned int i;
1081
1082 edge_info = false_edge->aux;
1083
1084 /* If we have info associated with this edge, record it into
1085 our equivalency tables. */
1086 if (edge_info)
1087 {
1088 tree *cond_equivalences = edge_info->cond_equivalences;
1089 tree lhs = edge_info->lhs;
1090 tree rhs = edge_info->rhs;
1091
1092 /* If we have a simple NAME = VALUE equivalency record it. */
1093 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1094 record_const_or_copy (lhs, rhs);
1095
1096 /* If we have 0 = COND or 1 = COND equivalences, record them
1097 into our expression hash tables. */
1098 if (cond_equivalences)
1099 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1100 {
1101 tree expr = cond_equivalences[i];
1102 tree value = cond_equivalences[i + 1];
1103
1104 record_cond (expr, value);
1105 }
1106 }
1107
1108 thread_across_edge (walk_data, false_edge);
1109
1110 /* No need to remove local expressions from our tables
1111 or restore vars to their original value as that will
1112 be done immediately below. */
1113 }
1114 }
1115
1116 remove_local_expressions_from_table ();
1117 restore_nonzero_vars_to_original_value ();
1118 restore_vars_to_original_value ();
1119
1120 /* Remove VRP records associated with this basic block. They are no
1121 longer valid.
1122
1123 To be efficient, we note which variables have had their values
1124 constrained in this block. So walk over each variable in the
1125 VRP_VARIABLEs array. */
1126 while (VEC_length (tree, vrp_variables_stack) > 0)
1127 {
1128 tree var = VEC_pop (tree, vrp_variables_stack);
1129 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1130 void **slot;
1131
1132 /* Each variable has a stack of value range records. We want to
1133 invalidate those associated with our basic block. So we walk
1134 the array backwards popping off records associated with our
1135 block. Once we hit a record not associated with our block
1136 we are done. */
1137 VEC(vrp_element_p,heap) **var_vrp_records;
1138
1139 if (var == NULL)
1140 break;
1141
1142 vrp_hash_elt.var = var;
1143 vrp_hash_elt.records = NULL;
1144
1145 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
1146
1147 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
1148 var_vrp_records = &vrp_hash_elt_p->records;
1149
1150 while (VEC_length (vrp_element_p, *var_vrp_records) > 0)
1151 {
1152 struct vrp_element *element
1153 = VEC_last (vrp_element_p, *var_vrp_records);
1154
1155 if (element->bb != bb)
1156 break;
1157
1158 VEC_pop (vrp_element_p, *var_vrp_records);
1159 }
1160 }
1161
1162 /* If we queued any statements to rescan in this block, then
1163 go ahead and rescan them now. */
1164 while (VEC_length (tree, stmts_to_rescan) > 0)
1165 {
1166 tree stmt = VEC_last (tree, stmts_to_rescan);
1167 basic_block stmt_bb = bb_for_stmt (stmt);
1168
1169 if (stmt_bb != bb)
1170 break;
1171
1172 VEC_pop (tree, stmts_to_rescan);
1173 mark_new_vars_to_rename (stmt);
1174 }
1175 }
1176
1177 /* PHI nodes can create equivalences too.
1178
1179 Ignoring any alternatives which are the same as the result, if
1180 all the alternatives are equal, then the PHI node creates an
1181 equivalence.
1182
1183 Additionally, if all the PHI alternatives are known to have a nonzero
1184 value, then the result of this PHI is known to have a nonzero value,
1185 even if we do not know its exact value. */
1186
1187 static void
1188 record_equivalences_from_phis (basic_block bb)
1189 {
1190 tree phi;
1191
1192 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1193 {
1194 tree lhs = PHI_RESULT (phi);
1195 tree rhs = NULL;
1196 int i;
1197
1198 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1199 {
1200 tree t = PHI_ARG_DEF (phi, i);
1201
1202 /* Ignore alternatives which are the same as our LHS. Since
1203 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1204 can simply compare pointers. */
1205 if (lhs == t)
1206 continue;
1207
1208 /* If we have not processed an alternative yet, then set
1209 RHS to this alternative. */
1210 if (rhs == NULL)
1211 rhs = t;
1212 /* If we have processed an alternative (stored in RHS), then
1213 see if it is equal to this one. If it isn't, then stop
1214 the search. */
1215 else if (! operand_equal_for_phi_arg_p (rhs, t))
1216 break;
1217 }
1218
1219 /* If we had no interesting alternatives, then all the RHS alternatives
1220 must have been the same as LHS. */
1221 if (!rhs)
1222 rhs = lhs;
1223
1224 /* If we managed to iterate through each PHI alternative without
1225 breaking out of the loop, then we have a PHI which may create
1226 a useful equivalence. We do not need to record unwind data for
1227 this, since this is a true assignment and not an equivalence
1228 inferred from a comparison. All uses of this ssa name are dominated
1229 by this assignment, so unwinding just costs time and space. */
1230 if (i == PHI_NUM_ARGS (phi)
1231 && may_propagate_copy (lhs, rhs))
1232 SSA_NAME_VALUE (lhs) = rhs;
1233
1234 /* Now see if we know anything about the nonzero property for the
1235 result of this PHI. */
1236 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1237 {
1238 if (!PHI_ARG_NONZERO (phi, i))
1239 break;
1240 }
1241
1242 if (i == PHI_NUM_ARGS (phi))
1243 bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
1244 }
1245 }
1246
1247 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1248 return that edge. Otherwise return NULL. */
1249 static edge
1250 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1251 {
1252 edge retval = NULL;
1253 edge e;
1254 edge_iterator ei;
1255
1256 FOR_EACH_EDGE (e, ei, bb->preds)
1257 {
1258 /* A loop back edge can be identified by the destination of
1259 the edge dominating the source of the edge. */
1260 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1261 continue;
1262
1263 /* If we have already seen a non-loop edge, then we must have
1264 multiple incoming non-loop edges and thus we return NULL. */
1265 if (retval)
1266 return NULL;
1267
1268 /* This is the first non-loop incoming edge we have found. Record
1269 it. */
1270 retval = e;
1271 }
1272
1273 return retval;
1274 }
1275
1276 /* Record any equivalences created by the incoming edge to BB. If BB
1277 has more than one incoming edge, then no equivalence is created. */
1278
1279 static void
1280 record_equivalences_from_incoming_edge (basic_block bb)
1281 {
1282 edge e;
1283 basic_block parent;
1284 struct edge_info *edge_info;
1285
1286 /* If our parent block ended with a control statement, then we may be
1287 able to record some equivalences based on which outgoing edge from
1288 the parent was followed. */
1289 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1290
1291 e = single_incoming_edge_ignoring_loop_edges (bb);
1292
1293 /* If we had a single incoming edge from our parent block, then enter
1294 any data associated with the edge into our tables. */
1295 if (e && e->src == parent)
1296 {
1297 unsigned int i;
1298
1299 edge_info = e->aux;
1300
1301 if (edge_info)
1302 {
1303 tree lhs = edge_info->lhs;
1304 tree rhs = edge_info->rhs;
1305 tree *cond_equivalences = edge_info->cond_equivalences;
1306
1307 if (lhs)
1308 record_equality (lhs, rhs);
1309
1310 if (cond_equivalences)
1311 {
1312 bool recorded_range = false;
1313 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1314 {
1315 tree expr = cond_equivalences[i];
1316 tree value = cond_equivalences[i + 1];
1317
1318 record_cond (expr, value);
1319
1320 /* For the first true equivalence, record range
1321 information. We only do this for the first
1322 true equivalence as it should dominate any
1323 later true equivalences. */
1324 if (! recorded_range
1325 && COMPARISON_CLASS_P (expr)
1326 && value == boolean_true_node
1327 && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
1328 {
1329 record_range (expr, bb);
1330 recorded_range = true;
1331 }
1332 }
1333 }
1334 }
1335 }
1336 }
1337
1338 /* Dump SSA statistics on FILE. */
1339
1340 void
1341 dump_dominator_optimization_stats (FILE *file)
1342 {
1343 long n_exprs;
1344
1345 fprintf (file, "Total number of statements: %6ld\n\n",
1346 opt_stats.num_stmts);
1347 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1348 opt_stats.num_exprs_considered);
1349
1350 n_exprs = opt_stats.num_exprs_considered;
1351 if (n_exprs == 0)
1352 n_exprs = 1;
1353
1354 fprintf (file, " Redundant expressions eliminated: %6ld (%.0f%%)\n",
1355 opt_stats.num_re, PERCENT (opt_stats.num_re,
1356 n_exprs));
1357 fprintf (file, " Constants propagated: %6ld\n",
1358 opt_stats.num_const_prop);
1359 fprintf (file, " Copies propagated: %6ld\n",
1360 opt_stats.num_copy_prop);
1361
1362 fprintf (file, "\nHash table statistics:\n");
1363
1364 fprintf (file, " avail_exprs: ");
1365 htab_statistics (file, avail_exprs);
1366 }
1367
1368
1369 /* Dump SSA statistics on stderr. */
1370
1371 void
1372 debug_dominator_optimization_stats (void)
1373 {
1374 dump_dominator_optimization_stats (stderr);
1375 }
1376
1377
1378 /* Dump statistics for the hash table HTAB. */
1379
1380 static void
1381 htab_statistics (FILE *file, htab_t htab)
1382 {
1383 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1384 (long) htab_size (htab),
1385 (long) htab_elements (htab),
1386 htab_collisions (htab));
1387 }
1388
1389 /* Record the fact that VAR has a nonzero value, though we may not know
1390 its exact value. Note that if VAR is already known to have a nonzero
1391 value, then we do nothing. */
1392
1393 static void
1394 record_var_is_nonzero (tree var)
1395 {
1396 int indx = SSA_NAME_VERSION (var);
1397
1398 if (bitmap_bit_p (nonzero_vars, indx))
1399 return;
1400
1401 /* Mark it in the global table. */
1402 bitmap_set_bit (nonzero_vars, indx);
1403
1404 /* Record this SSA_NAME so that we can reset the global table
1405 when we leave this block. */
1406 VEC_safe_push (tree, heap, nonzero_vars_stack, var);
1407 }
1408
1409 /* Enter a statement into the true/false expression hash table indicating
1410 that the condition COND has the value VALUE. */
1411
1412 static void
1413 record_cond (tree cond, tree value)
1414 {
1415 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
1416 void **slot;
1417
1418 initialize_hash_element (cond, value, element);
1419
1420 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1421 element->hash, INSERT);
1422 if (*slot == NULL)
1423 {
1424 *slot = (void *) element;
1425 VEC_safe_push (tree, heap, avail_exprs_stack, cond);
1426 }
1427 else
1428 free (element);
1429 }
1430
1431 /* Build a new conditional using NEW_CODE, OP0 and OP1 and store
1432 the new conditional into *p, then store a boolean_true_node
1433 into *(p + 1). */
1434
1435 static void
1436 build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
1437 {
1438 *p = build2 (new_code, boolean_type_node, op0, op1);
1439 p++;
1440 *p = boolean_true_node;
1441 }
1442
1443 /* Record that COND is true and INVERTED is false into the edge information
1444 structure. Also record that any conditions dominated by COND are true
1445 as well.
1446
1447 For example, if a < b is true, then a <= b must also be true. */
1448
1449 static void
1450 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1451 {
1452 tree op0, op1;
1453
1454 if (!COMPARISON_CLASS_P (cond))
1455 return;
1456
1457 op0 = TREE_OPERAND (cond, 0);
1458 op1 = TREE_OPERAND (cond, 1);
1459
1460 switch (TREE_CODE (cond))
1461 {
1462 case LT_EXPR:
1463 case GT_EXPR:
1464 edge_info->max_cond_equivalences = 12;
1465 edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
1466 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1467 ? LE_EXPR : GE_EXPR),
1468 op0, op1, &edge_info->cond_equivalences[4]);
1469 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1470 &edge_info->cond_equivalences[6]);
1471 build_and_record_new_cond (NE_EXPR, op0, op1,
1472 &edge_info->cond_equivalences[8]);
1473 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1474 &edge_info->cond_equivalences[10]);
1475 break;
1476
1477 case GE_EXPR:
1478 case LE_EXPR:
1479 edge_info->max_cond_equivalences = 6;
1480 edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
1481 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1482 &edge_info->cond_equivalences[4]);
1483 break;
1484
1485 case EQ_EXPR:
1486 edge_info->max_cond_equivalences = 10;
1487 edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
1488 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1489 &edge_info->cond_equivalences[4]);
1490 build_and_record_new_cond (LE_EXPR, op0, op1,
1491 &edge_info->cond_equivalences[6]);
1492 build_and_record_new_cond (GE_EXPR, op0, op1,
1493 &edge_info->cond_equivalences[8]);
1494 break;
1495
1496 case UNORDERED_EXPR:
1497 edge_info->max_cond_equivalences = 16;
1498 edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
1499 build_and_record_new_cond (NE_EXPR, op0, op1,
1500 &edge_info->cond_equivalences[4]);
1501 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1502 &edge_info->cond_equivalences[6]);
1503 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1504 &edge_info->cond_equivalences[8]);
1505 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1506 &edge_info->cond_equivalences[10]);
1507 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1508 &edge_info->cond_equivalences[12]);
1509 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1510 &edge_info->cond_equivalences[14]);
1511 break;
1512
1513 case UNLT_EXPR:
1514 case UNGT_EXPR:
1515 edge_info->max_cond_equivalences = 8;
1516 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1517 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1518 ? UNLE_EXPR : UNGE_EXPR),
1519 op0, op1, &edge_info->cond_equivalences[4]);
1520 build_and_record_new_cond (NE_EXPR, op0, op1,
1521 &edge_info->cond_equivalences[6]);
1522 break;
1523
1524 case UNEQ_EXPR:
1525 edge_info->max_cond_equivalences = 8;
1526 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1527 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1528 &edge_info->cond_equivalences[4]);
1529 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1530 &edge_info->cond_equivalences[6]);
1531 break;
1532
1533 case LTGT_EXPR:
1534 edge_info->max_cond_equivalences = 8;
1535 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1536 build_and_record_new_cond (NE_EXPR, op0, op1,
1537 &edge_info->cond_equivalences[4]);
1538 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1539 &edge_info->cond_equivalences[6]);
1540 break;
1541
1542 default:
1543 edge_info->max_cond_equivalences = 4;
1544 edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
1545 break;
1546 }
1547
1548 /* Now store the original true and false conditions into the first
1549 two slots. */
1550 edge_info->cond_equivalences[0] = cond;
1551 edge_info->cond_equivalences[1] = boolean_true_node;
1552 edge_info->cond_equivalences[2] = inverted;
1553 edge_info->cond_equivalences[3] = boolean_false_node;
1554 }
1555
1556 /* A helper function for record_const_or_copy and record_equality.
1557 Do the work of recording the value and undo info. */
1558
1559 static void
1560 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1561 {
1562 SSA_NAME_VALUE (x) = y;
1563
1564 VEC_reserve (tree, heap, const_and_copies_stack, 2);
1565 VEC_quick_push (tree, const_and_copies_stack, prev_x);
1566 VEC_quick_push (tree, const_and_copies_stack, x);
1567 }
1568
1569
1570 /* Return the loop depth of the basic block of the defining statement of X.
1571 This number should not be treated as absolutely correct because the loop
1572 information may not be completely up-to-date when dom runs. However, it
1573 will be relatively correct, and as more passes are taught to keep loop info
1574 up to date, the result will become more and more accurate. */
1575
1576 int
1577 loop_depth_of_name (tree x)
1578 {
1579 tree defstmt;
1580 basic_block defbb;
1581
1582 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1583 if (TREE_CODE (x) != SSA_NAME)
1584 return 0;
1585
1586 /* Otherwise return the loop depth of the defining statement's bb.
1587 Note that there may not actually be a bb for this statement, if the
1588 ssa_name is live on entry. */
1589 defstmt = SSA_NAME_DEF_STMT (x);
1590 defbb = bb_for_stmt (defstmt);
1591 if (!defbb)
1592 return 0;
1593
1594 return defbb->loop_depth;
1595 }
1596
1597
1598 /* Record that X is equal to Y in const_and_copies. Record undo
1599 information in the block-local vector. */
1600
1601 static void
1602 record_const_or_copy (tree x, tree y)
1603 {
1604 tree prev_x = SSA_NAME_VALUE (x);
1605
1606 if (TREE_CODE (y) == SSA_NAME)
1607 {
1608 tree tmp = SSA_NAME_VALUE (y);
1609 if (tmp)
1610 y = tmp;
1611 }
1612
1613 record_const_or_copy_1 (x, y, prev_x);
1614 }
1615
1616 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1617 This constrains the cases in which we may treat this as assignment. */
1618
1619 static void
1620 record_equality (tree x, tree y)
1621 {
1622 tree prev_x = NULL, prev_y = NULL;
1623
1624 if (TREE_CODE (x) == SSA_NAME)
1625 prev_x = SSA_NAME_VALUE (x);
1626 if (TREE_CODE (y) == SSA_NAME)
1627 prev_y = SSA_NAME_VALUE (y);
1628
1629 /* If one of the previous values is invariant, or invariant in more loops
1630 (by depth), then use that.
1631 Otherwise it doesn't matter which value we choose, just so
1632 long as we canonicalize on one value. */
1633 if (TREE_INVARIANT (y))
1634 ;
1635 else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1636 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1637 else if (prev_x && TREE_INVARIANT (prev_x))
1638 x = y, y = prev_x, prev_x = prev_y;
1639 else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
1640 y = prev_y;
1641
1642 /* After the swapping, we must have one SSA_NAME. */
1643 if (TREE_CODE (x) != SSA_NAME)
1644 return;
1645
1646 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1647 variable compared against zero. If we're honoring signed zeros,
1648 then we cannot record this value unless we know that the value is
1649 nonzero. */
1650 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1651 && (TREE_CODE (y) != REAL_CST
1652 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1653 return;
1654
1655 record_const_or_copy_1 (x, y, prev_x);
1656 }
1657
1658 /* Return true, if it is ok to do folding of an associative expression.
1659 EXP is the tree for the associative expression. */
1660
1661 static inline bool
1662 unsafe_associative_fp_binop (tree exp)
1663 {
1664 enum tree_code code = TREE_CODE (exp);
1665 return !(!flag_unsafe_math_optimizations
1666 && (code == MULT_EXPR || code == PLUS_EXPR
1667 || code == MINUS_EXPR)
1668 && FLOAT_TYPE_P (TREE_TYPE (exp)));
1669 }
1670
1671 /* Returns true when STMT is a simple iv increment. It detects the
1672 following situation:
1673
1674 i_1 = phi (..., i_2)
1675 i_2 = i_1 +/- ... */
1676
1677 static bool
1678 simple_iv_increment_p (tree stmt)
1679 {
1680 tree lhs, rhs, preinc, phi;
1681 unsigned i;
1682
1683 if (TREE_CODE (stmt) != MODIFY_EXPR)
1684 return false;
1685
1686 lhs = TREE_OPERAND (stmt, 0);
1687 if (TREE_CODE (lhs) != SSA_NAME)
1688 return false;
1689
1690 rhs = TREE_OPERAND (stmt, 1);
1691
1692 if (TREE_CODE (rhs) != PLUS_EXPR
1693 && TREE_CODE (rhs) != MINUS_EXPR)
1694 return false;
1695
1696 preinc = TREE_OPERAND (rhs, 0);
1697 if (TREE_CODE (preinc) != SSA_NAME)
1698 return false;
1699
1700 phi = SSA_NAME_DEF_STMT (preinc);
1701 if (TREE_CODE (phi) != PHI_NODE)
1702 return false;
1703
1704 for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
1705 if (PHI_ARG_DEF (phi, i) == lhs)
1706 return true;
1707
1708 return false;
1709 }
1710
1711 /* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
1712 hash tables. Try to simplify the RHS using whatever equivalences
1713 we may have recorded.
1714
1715 If we are able to simplify the RHS, then lookup the simplified form in
1716 the hash table and return the result. Otherwise return NULL. */
1717
1718 static tree
1719 simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *walk_data,
1720 tree stmt, int insert)
1721 {
1722 tree rhs = TREE_OPERAND (stmt, 1);
1723 enum tree_code rhs_code = TREE_CODE (rhs);
1724 tree result = NULL;
1725
1726 /* If we have lhs = ~x, look and see if we earlier had x = ~y.
1727 In which case we can change this statement to be lhs = y.
1728 Which can then be copy propagated.
1729
1730 Similarly for negation. */
1731 if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
1732 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1733 {
1734 /* Get the definition statement for our RHS. */
1735 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1736
1737 /* See if the RHS_DEF_STMT has the same form as our statement. */
1738 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
1739 && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
1740 {
1741 tree rhs_def_operand;
1742
1743 rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);
1744
1745 /* Verify that RHS_DEF_OPERAND is a suitable SSA variable. */
1746 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1747 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1748 result = update_rhs_and_lookup_avail_expr (stmt,
1749 rhs_def_operand,
1750 insert);
1751 }
1752 }
1753
1754 /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
1755 If OP is associative, create and fold (y OP C2) OP C1 which
1756 should result in (y OP C3), use that as the RHS for the
1757 assignment. Add minus to this, as we handle it specially below. */
1758 if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
1759 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
1760 && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
1761 {
1762 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1763
1764 /* If the statement defines an induction variable, do not propagate
1765 its value, so that we do not create overlapping life ranges. */
1766 if (simple_iv_increment_p (rhs_def_stmt))
1767 goto dont_fold_assoc;
1768
1769 /* See if the RHS_DEF_STMT has the same form as our statement. */
1770 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
1771 {
1772 tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
1773 enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);
1774
1775 if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
1776 || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
1777 || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
1778 {
1779 tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
1780 tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);
1781
1782 if (TREE_CODE (def_stmt_op0) == SSA_NAME
1783 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
1784 && is_gimple_min_invariant (def_stmt_op1))
1785 {
1786 tree outer_const = TREE_OPERAND (rhs, 1);
1787 tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
1788 tree t;
1789
1790 /* If we care about correct floating point results, then
1791 don't fold x + c1 - c2. Note that we need to take both
1792 the codes and the signs to figure this out. */
1793 if (FLOAT_TYPE_P (type)
1794 && !flag_unsafe_math_optimizations
1795 && (rhs_def_code == PLUS_EXPR
1796 || rhs_def_code == MINUS_EXPR))
1797 {
1798 bool neg = false;
1799
1800 neg ^= (rhs_code == MINUS_EXPR);
1801 neg ^= (rhs_def_code == MINUS_EXPR);
1802 neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
1803 neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));
1804
1805 if (neg)
1806 goto dont_fold_assoc;
1807 }
1808
1809 /* Ho hum. So fold will only operate on the outermost
1810 thingy that we give it, so we have to build the new
1811 expression in two pieces. This requires that we handle
1812 combinations of plus and minus. */
1813 if (rhs_def_code != rhs_code)
1814 {
1815 if (rhs_def_code == MINUS_EXPR)
1816 t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
1817 else
1818 t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
1819 rhs_code = PLUS_EXPR;
1820 }
1821 else if (rhs_def_code == MINUS_EXPR)
1822 t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
1823 else
1824 t = build (rhs_def_code, type, def_stmt_op1, outer_const);
1825 t = local_fold (t);
1826 t = build (rhs_code, type, def_stmt_op0, t);
1827 t = local_fold (t);
1828
1829 /* If the result is a suitable looking gimple expression,
1830 then use it instead of the original for STMT. */
1831 if (TREE_CODE (t) == SSA_NAME
1832 || (UNARY_CLASS_P (t)
1833 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1834 || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
1835 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
1836 && is_gimple_val (TREE_OPERAND (t, 1))))
1837 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1838 }
1839 }
1840 }
1841 dont_fold_assoc:;
1842 }
1843
1844 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
1845 and BIT_AND_EXPR respectively if the first operand is greater
1846 than zero and the second operand is an exact power of two. */
1847 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
1848 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
1849 && integer_pow2p (TREE_OPERAND (rhs, 1)))
1850 {
1851 tree val;
1852 tree op = TREE_OPERAND (rhs, 0);
1853
1854 if (TYPE_UNSIGNED (TREE_TYPE (op)))
1855 {
1856 val = integer_one_node;
1857 }
1858 else
1859 {
1860 tree dummy_cond = walk_data->global_data;
1861
1862 if (! dummy_cond)
1863 {
1864 dummy_cond = build (GT_EXPR, boolean_type_node,
1865 op, integer_zero_node);
1866 dummy_cond = build (COND_EXPR, void_type_node,
1867 dummy_cond, NULL, NULL);
1868 walk_data->global_data = dummy_cond;
1869 }
1870 else
1871 {
1872 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GT_EXPR);
1873 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1874 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1875 = integer_zero_node;
1876 }
1877 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1878 }
1879
1880 if (val && integer_onep (val))
1881 {
1882 tree t;
1883 tree op0 = TREE_OPERAND (rhs, 0);
1884 tree op1 = TREE_OPERAND (rhs, 1);
1885
1886 if (rhs_code == TRUNC_DIV_EXPR)
1887 t = build (RSHIFT_EXPR, TREE_TYPE (op0), op0,
1888 build_int_cst (NULL_TREE, tree_log2 (op1)));
1889 else
1890 t = build (BIT_AND_EXPR, TREE_TYPE (op0), op0,
1891 local_fold (build (MINUS_EXPR, TREE_TYPE (op1),
1892 op1, integer_one_node)));
1893
1894 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1895 }
1896 }
1897
1898 /* Transform ABS (X) into X or -X as appropriate. */
1899 if (rhs_code == ABS_EXPR
1900 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
1901 {
1902 tree val;
1903 tree op = TREE_OPERAND (rhs, 0);
1904 tree type = TREE_TYPE (op);
1905
1906 if (TYPE_UNSIGNED (type))
1907 {
1908 val = integer_zero_node;
1909 }
1910 else
1911 {
1912 tree dummy_cond = walk_data->global_data;
1913
1914 if (! dummy_cond)
1915 {
1916 dummy_cond = build (LE_EXPR, boolean_type_node,
1917 op, integer_zero_node);
1918 dummy_cond = build (COND_EXPR, void_type_node,
1919 dummy_cond, NULL, NULL);
1920 walk_data->global_data = dummy_cond;
1921 }
1922 else
1923 {
1924 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), LE_EXPR);
1925 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1926 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1927 = build_int_cst (type, 0);
1928 }
1929 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1930
1931 if (!val)
1932 {
1933 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GE_EXPR);
1934 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1935 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1936 = build_int_cst (type, 0);
1937
1938 val = simplify_cond_and_lookup_avail_expr (dummy_cond,
1939 NULL, false);
1940
1941 if (val)
1942 {
1943 if (integer_zerop (val))
1944 val = integer_one_node;
1945 else if (integer_onep (val))
1946 val = integer_zero_node;
1947 }
1948 }
1949 }
1950
1951 if (val
1952 && (integer_onep (val) || integer_zerop (val)))
1953 {
1954 tree t;
1955
1956 if (integer_onep (val))
1957 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
1958 else
1959 t = op;
1960
1961 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1962 }
1963 }
1964
1965 /* Optimize *"foo" into 'f'. This is done here rather than
1966 in fold to avoid problems with stuff like &*"foo". */
1967 if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
1968 {
1969 tree t = fold_read_from_constant_string (rhs);
1970
1971 if (t)
1972 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1973 }
1974
1975 return result;
1976 }
1977
1978 /* COND is a condition of the form:
1979
1980 x == const or x != const
1981
1982 Look back to x's defining statement and see if x is defined as
1983
1984 x = (type) y;
1985
1986 If const is unchanged if we convert it to type, then we can build
1987 the equivalent expression:
1988
1989
1990 y == const or y != const
1991
1992 Which may allow further optimizations.
1993
1994 Return the equivalent comparison or NULL if no such equivalent comparison
1995 was found. */
1996
1997 static tree
1998 find_equivalent_equality_comparison (tree cond)
1999 {
2000 tree op0 = TREE_OPERAND (cond, 0);
2001 tree op1 = TREE_OPERAND (cond, 1);
2002 tree def_stmt = SSA_NAME_DEF_STMT (op0);
2003
2004 /* OP0 might have been a parameter, so first make sure it
2005 was defined by a MODIFY_EXPR. */
2006 if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
2007 {
2008 tree def_rhs = TREE_OPERAND (def_stmt, 1);
2009
2010 /* Now make sure the RHS of the MODIFY_EXPR is a typecast. */
2011 if ((TREE_CODE (def_rhs) == NOP_EXPR
2012 || TREE_CODE (def_rhs) == CONVERT_EXPR)
2013 && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
2014 {
2015 tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
2016 tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
2017 tree new;
2018
2019 if (TYPE_PRECISION (def_rhs_inner_type)
2020 > TYPE_PRECISION (TREE_TYPE (def_rhs)))
2021 return NULL;
2022
2023 /* What we want to prove is that if we convert OP1 to
2024 the type of the object inside the NOP_EXPR that the
2025 result is still equivalent to SRC.
2026
2027 If that is true, the build and return new equivalent
2028 condition which uses the source of the typecast and the
2029 new constant (which has only changed its type). */
2030 new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
2031 new = local_fold (new);
2032 if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
2033 return build (TREE_CODE (cond), TREE_TYPE (cond),
2034 def_rhs_inner, new);
2035 }
2036 }
2037 return NULL;
2038 }
2039
2040 /* STMT is a COND_EXPR for which we could not trivially determine its
2041 result. This routine attempts to find equivalent forms of the
2042 condition which we may be able to optimize better. It also
2043 uses simple value range propagation to optimize conditionals. */
2044
2045 static tree
2046 simplify_cond_and_lookup_avail_expr (tree stmt,
2047 stmt_ann_t ann,
2048 int insert)
2049 {
2050 tree cond = COND_EXPR_COND (stmt);
2051
2052 if (COMPARISON_CLASS_P (cond))
2053 {
2054 tree op0 = TREE_OPERAND (cond, 0);
2055 tree op1 = TREE_OPERAND (cond, 1);
2056
2057 if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
2058 {
2059 int limit;
2060 tree low, high, cond_low, cond_high;
2061 int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
2062 VEC(vrp_element_p,heap) **vrp_records;
2063 struct vrp_element *element;
2064 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
2065 void **slot;
2066
2067 /* First see if we have test of an SSA_NAME against a constant
2068 where the SSA_NAME is defined by an earlier typecast which
2069 is irrelevant when performing tests against the given
2070 constant. */
2071 if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2072 {
2073 tree new_cond = find_equivalent_equality_comparison (cond);
2074
2075 if (new_cond)
2076 {
2077 /* Update the statement to use the new equivalent
2078 condition. */
2079 COND_EXPR_COND (stmt) = new_cond;
2080
2081 /* If this is not a real stmt, ann will be NULL and we
2082 avoid processing the operands. */
2083 if (ann)
2084 mark_stmt_modified (stmt);
2085
2086 /* Lookup the condition and return its known value if it
2087 exists. */
2088 new_cond = lookup_avail_expr (stmt, insert);
2089 if (new_cond)
2090 return new_cond;
2091
2092 /* The operands have changed, so update op0 and op1. */
2093 op0 = TREE_OPERAND (cond, 0);
2094 op1 = TREE_OPERAND (cond, 1);
2095 }
2096 }
2097
2098 /* Consult the value range records for this variable (if they exist)
2099 to see if we can eliminate or simplify this conditional.
2100
2101 Note two tests are necessary to determine no records exist.
2102 First we have to see if the virtual array exists, if it
2103 exists, then we have to check its active size.
2104
2105 Also note the vast majority of conditionals are not testing
2106 a variable which has had its range constrained by an earlier
2107 conditional. So this filter avoids a lot of unnecessary work. */
2108 vrp_hash_elt.var = op0;
2109 vrp_hash_elt.records = NULL;
2110 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
2111 if (slot == NULL)
2112 return NULL;
2113
2114 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
2115 vrp_records = &vrp_hash_elt_p->records;
2116
2117 limit = VEC_length (vrp_element_p, *vrp_records);
2118
2119 /* If we have no value range records for this variable, or we are
2120 unable to extract a range for this condition, then there is
2121 nothing to do. */
2122 if (limit == 0
2123 || ! extract_range_from_cond (cond, &cond_high,
2124 &cond_low, &cond_inverted))
2125 return NULL;
2126
2127 /* We really want to avoid unnecessary computations of range
2128 info. So all ranges are computed lazily; this avoids a
2129 lot of unnecessary work. i.e., we record the conditional,
2130 but do not process how it constrains the variable's
2131 potential values until we know that processing the condition
2132 could be helpful.
2133
2134 However, we do not want to have to walk a potentially long
2135 list of ranges, nor do we want to compute a variable's
2136 range more than once for a given path.
2137
2138 Luckily, each time we encounter a conditional that can not
2139 be otherwise optimized we will end up here and we will
2140 compute the necessary range information for the variable
2141 used in this condition.
2142
2143 Thus you can conclude that there will never be more than one
2144 conditional associated with a variable which has not been
2145 processed. So we never need to merge more than one new
2146 conditional into the current range.
2147
2148 These properties also help us avoid unnecessary work. */
2149 element = VEC_last (vrp_element_p, *vrp_records);
2150
2151 if (element->high && element->low)
2152 {
2153 /* The last element has been processed, so there is no range
2154 merging to do, we can simply use the high/low values
2155 recorded in the last element. */
2156 low = element->low;
2157 high = element->high;
2158 }
2159 else
2160 {
2161 tree tmp_high, tmp_low;
2162 int dummy;
2163
2164 /* The last element has not been processed. Process it now.
2165 record_range should ensure for cond inverted is not set.
2166 This call can only fail if cond is x < min or x > max,
2167 which fold should have optimized into false.
2168 If that doesn't happen, just pretend all values are
2169 in the range. */
2170 if (! extract_range_from_cond (element->cond, &tmp_high,
2171 &tmp_low, &dummy))
2172 gcc_unreachable ();
2173 else
2174 gcc_assert (dummy == 0);
2175
2176 /* If this is the only element, then no merging is necessary,
2177 the high/low values from extract_range_from_cond are all
2178 we need. */
2179 if (limit == 1)
2180 {
2181 low = tmp_low;
2182 high = tmp_high;
2183 }
2184 else
2185 {
2186 /* Get the high/low value from the previous element. */
2187 struct vrp_element *prev
2188 = VEC_index (vrp_element_p, *vrp_records, limit - 2);
2189 low = prev->low;
2190 high = prev->high;
2191
2192 /* Merge in this element's range with the range from the
2193 previous element.
2194
2195 The low value for the merged range is the maximum of
2196 the previous low value and the low value of this record.
2197
2198 Similarly the high value for the merged range is the
2199 minimum of the previous high value and the high value of
2200 this record. */
2201 low = (low && tree_int_cst_compare (low, tmp_low) == 1
2202 ? low : tmp_low);
2203 high = (high && tree_int_cst_compare (high, tmp_high) == -1
2204 ? high : tmp_high);
2205 }
2206
2207 /* And record the computed range. */
2208 element->low = low;
2209 element->high = high;
2210
2211 }
2212
2213 /* After we have constrained this variable's potential values,
2214 we try to determine the result of the given conditional.
2215
2216 To simplify later tests, first determine if the current
2217 low value is the same low value as the conditional.
2218 Similarly for the current high value and the high value
2219 for the conditional. */
2220 lowequal = tree_int_cst_equal (low, cond_low);
2221 highequal = tree_int_cst_equal (high, cond_high);
2222
2223 if (lowequal && highequal)
2224 return (cond_inverted ? boolean_false_node : boolean_true_node);
2225
2226 /* To simplify the overlap/subset tests below we may want
2227 to swap the two ranges so that the larger of the two
2228 ranges occurs "first". */
2229 swapped = 0;
2230 if (tree_int_cst_compare (low, cond_low) == 1
2231 || (lowequal
2232 && tree_int_cst_compare (cond_high, high) == 1))
2233 {
2234 tree temp;
2235
2236 swapped = 1;
2237 temp = low;
2238 low = cond_low;
2239 cond_low = temp;
2240 temp = high;
2241 high = cond_high;
2242 cond_high = temp;
2243 }
2244
2245 /* Now determine if there is no overlap in the ranges
2246 or if the second range is a subset of the first range. */
2247 no_overlap = tree_int_cst_lt (high, cond_low);
2248 subset = tree_int_cst_compare (cond_high, high) != 1;
2249
2250 /* If there was no overlap in the ranges, then this conditional
2251 always has a false value (unless we had to invert this
2252 conditional, in which case it always has a true value). */
2253 if (no_overlap)
2254 return (cond_inverted ? boolean_true_node : boolean_false_node);
2255
2256 /* If the current range is a subset of the condition's range,
2257 then this conditional always has a true value (unless we
2258 had to invert this conditional, in which case it always
2259 has a true value). */
2260 if (subset && swapped)
2261 return (cond_inverted ? boolean_false_node : boolean_true_node);
2262
2263 /* We were unable to determine the result of the conditional.
2264 However, we may be able to simplify the conditional. First
2265 merge the ranges in the same manner as range merging above. */
2266 low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
2267 high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
2268
2269 /* If the range has converged to a single point, then turn this
2270 into an equality comparison. */
2271 if (TREE_CODE (cond) != EQ_EXPR
2272 && TREE_CODE (cond) != NE_EXPR
2273 && tree_int_cst_equal (low, high))
2274 {
2275 TREE_SET_CODE (cond, EQ_EXPR);
2276 TREE_OPERAND (cond, 1) = high;
2277 }
2278 }
2279 }
2280 return 0;
2281 }
2282
2283 /* STMT is a SWITCH_EXPR for which we could not trivially determine its
2284 result. This routine attempts to find equivalent forms of the
2285 condition which we may be able to optimize better. */
2286
2287 static tree
2288 simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
2289 {
2290 tree cond = SWITCH_COND (stmt);
2291 tree def, to, ti;
2292
2293 /* The optimization that we really care about is removing unnecessary
2294 casts. That will let us do much better in propagating the inferred
2295 constant at the switch target. */
2296 if (TREE_CODE (cond) == SSA_NAME)
2297 {
2298 def = SSA_NAME_DEF_STMT (cond);
2299 if (TREE_CODE (def) == MODIFY_EXPR)
2300 {
2301 def = TREE_OPERAND (def, 1);
2302 if (TREE_CODE (def) == NOP_EXPR)
2303 {
2304 int need_precision;
2305 bool fail;
2306
2307 def = TREE_OPERAND (def, 0);
2308
2309 #ifdef ENABLE_CHECKING
2310 /* ??? Why was Jeff testing this? We are gimple... */
2311 gcc_assert (is_gimple_val (def));
2312 #endif
2313
2314 to = TREE_TYPE (cond);
2315 ti = TREE_TYPE (def);
2316
2317 /* If we have an extension that preserves value, then we
2318 can copy the source value into the switch. */
2319
2320 need_precision = TYPE_PRECISION (ti);
2321 fail = false;
2322 if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
2323 fail = true;
2324 else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
2325 need_precision += 1;
2326 if (TYPE_PRECISION (to) < need_precision)
2327 fail = true;
2328
2329 if (!fail)
2330 {
2331 SWITCH_COND (stmt) = def;
2332 mark_stmt_modified (stmt);
2333
2334 return lookup_avail_expr (stmt, insert);
2335 }
2336 }
2337 }
2338 }
2339
2340 return 0;
2341 }
2342
2343
2344 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2345 known value for that SSA_NAME (or NULL if no value is known).
2346
2347 NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
2348 even if we don't know their precise value.
2349
2350 Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
2351 nodes of the successors of BB. */
2352
2353 static void
2354 cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
2355 {
2356 edge e;
2357 edge_iterator ei;
2358
2359 FOR_EACH_EDGE (e, ei, bb->succs)
2360 {
2361 tree phi;
2362 int indx;
2363
2364 /* If this is an abnormal edge, then we do not want to copy propagate
2365 into the PHI alternative associated with this edge. */
2366 if (e->flags & EDGE_ABNORMAL)
2367 continue;
2368
2369 phi = phi_nodes (e->dest);
2370 if (! phi)
2371 continue;
2372
2373 indx = e->dest_idx;
2374 for ( ; phi; phi = PHI_CHAIN (phi))
2375 {
2376 tree new;
2377 use_operand_p orig_p;
2378 tree orig;
2379
2380 /* The alternative may be associated with a constant, so verify
2381 it is an SSA_NAME before doing anything with it. */
2382 orig_p = PHI_ARG_DEF_PTR (phi, indx);
2383 orig = USE_FROM_PTR (orig_p);
2384 if (TREE_CODE (orig) != SSA_NAME)
2385 continue;
2386
2387 /* If the alternative is known to have a nonzero value, record
2388 that fact in the PHI node itself for future use. */
2389 if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
2390 PHI_ARG_NONZERO (phi, indx) = true;
2391
2392 /* If we have *ORIG_P in our constant/copy table, then replace
2393 ORIG_P with its value in our constant/copy table. */
2394 new = SSA_NAME_VALUE (orig);
2395 if (new
2396 && new != orig
2397 && (TREE_CODE (new) == SSA_NAME
2398 || is_gimple_min_invariant (new))
2399 && may_propagate_copy (orig, new))
2400 propagate_value (orig_p, new);
2401 }
2402 }
2403 }
2404
2405 /* We have finished optimizing BB, record any information implied by
2406 taking a specific outgoing edge from BB. */
2407
2408 static void
2409 record_edge_info (basic_block bb)
2410 {
2411 block_stmt_iterator bsi = bsi_last (bb);
2412 struct edge_info *edge_info;
2413
2414 if (! bsi_end_p (bsi))
2415 {
2416 tree stmt = bsi_stmt (bsi);
2417
2418 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
2419 {
2420 tree cond = SWITCH_COND (stmt);
2421
2422 if (TREE_CODE (cond) == SSA_NAME)
2423 {
2424 tree labels = SWITCH_LABELS (stmt);
2425 int i, n_labels = TREE_VEC_LENGTH (labels);
2426 tree *info = xcalloc (n_basic_blocks, sizeof (tree));
2427 edge e;
2428 edge_iterator ei;
2429
2430 for (i = 0; i < n_labels; i++)
2431 {
2432 tree label = TREE_VEC_ELT (labels, i);
2433 basic_block target_bb = label_to_block (CASE_LABEL (label));
2434
2435 if (CASE_HIGH (label)
2436 || !CASE_LOW (label)
2437 || info[target_bb->index])
2438 info[target_bb->index] = error_mark_node;
2439 else
2440 info[target_bb->index] = label;
2441 }
2442
2443 FOR_EACH_EDGE (e, ei, bb->succs)
2444 {
2445 basic_block target_bb = e->dest;
2446 tree node = info[target_bb->index];
2447
2448 if (node != NULL && node != error_mark_node)
2449 {
2450 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
2451 edge_info = allocate_edge_info (e);
2452 edge_info->lhs = cond;
2453 edge_info->rhs = x;
2454 }
2455 }
2456 free (info);
2457 }
2458 }
2459
2460 /* A COND_EXPR may create equivalences too. */
2461 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2462 {
2463 tree cond = COND_EXPR_COND (stmt);
2464 edge true_edge;
2465 edge false_edge;
2466
2467 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2468
2469 /* If the conditional is a single variable 'X', record 'X = 1'
2470 for the true edge and 'X = 0' on the false edge. */
2471 if (SSA_VAR_P (cond))
2472 {
2473 struct edge_info *edge_info;
2474
2475 edge_info = allocate_edge_info (true_edge);
2476 edge_info->lhs = cond;
2477 edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));
2478
2479 edge_info = allocate_edge_info (false_edge);
2480 edge_info->lhs = cond;
2481 edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
2482 }
2483 /* Equality tests may create one or two equivalences. */
2484 else if (COMPARISON_CLASS_P (cond))
2485 {
2486 tree op0 = TREE_OPERAND (cond, 0);
2487 tree op1 = TREE_OPERAND (cond, 1);
2488
2489 /* Special case comparing booleans against a constant as we
2490 know the value of OP0 on both arms of the branch. i.e., we
2491 can record an equivalence for OP0 rather than COND. */
2492 if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2493 && TREE_CODE (op0) == SSA_NAME
2494 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
2495 && is_gimple_min_invariant (op1))
2496 {
2497 if (TREE_CODE (cond) == EQ_EXPR)
2498 {
2499 edge_info = allocate_edge_info (true_edge);
2500 edge_info->lhs = op0;
2501 edge_info->rhs = (integer_zerop (op1)
2502 ? boolean_false_node
2503 : boolean_true_node);
2504
2505 edge_info = allocate_edge_info (false_edge);
2506 edge_info->lhs = op0;
2507 edge_info->rhs = (integer_zerop (op1)
2508 ? boolean_true_node
2509 : boolean_false_node);
2510 }
2511 else
2512 {
2513 edge_info = allocate_edge_info (true_edge);
2514 edge_info->lhs = op0;
2515 edge_info->rhs = (integer_zerop (op1)
2516 ? boolean_true_node
2517 : boolean_false_node);
2518
2519 edge_info = allocate_edge_info (false_edge);
2520 edge_info->lhs = op0;
2521 edge_info->rhs = (integer_zerop (op1)
2522 ? boolean_false_node
2523 : boolean_true_node);
2524 }
2525 }
2526
2527 else if (is_gimple_min_invariant (op0)
2528 && (TREE_CODE (op1) == SSA_NAME
2529 || is_gimple_min_invariant (op1)))
2530 {
2531 tree inverted = invert_truthvalue (cond);
2532 struct edge_info *edge_info;
2533
2534 edge_info = allocate_edge_info (true_edge);
2535 record_conditions (edge_info, cond, inverted);
2536
2537 if (TREE_CODE (cond) == EQ_EXPR)
2538 {
2539 edge_info->lhs = op1;
2540 edge_info->rhs = op0;
2541 }
2542
2543 edge_info = allocate_edge_info (false_edge);
2544 record_conditions (edge_info, inverted, cond);
2545
2546 if (TREE_CODE (cond) == NE_EXPR)
2547 {
2548 edge_info->lhs = op1;
2549 edge_info->rhs = op0;
2550 }
2551 }
2552
2553 else if (TREE_CODE (op0) == SSA_NAME
2554 && (is_gimple_min_invariant (op1)
2555 || TREE_CODE (op1) == SSA_NAME))
2556 {
2557 tree inverted = invert_truthvalue (cond);
2558 struct edge_info *edge_info;
2559
2560 edge_info = allocate_edge_info (true_edge);
2561 record_conditions (edge_info, cond, inverted);
2562
2563 if (TREE_CODE (cond) == EQ_EXPR)
2564 {
2565 edge_info->lhs = op0;
2566 edge_info->rhs = op1;
2567 }
2568
2569 edge_info = allocate_edge_info (false_edge);
2570 record_conditions (edge_info, inverted, cond);
2571
2572 if (TREE_CODE (cond) == NE_EXPR)
2573 {
2574 edge_info->lhs = op0;
2575 edge_info->rhs = op1;
2576 }
2577 }
2578 }
2579
2580 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
2581 }
2582 }
2583 }
2584
2585 /* Propagate information from BB to its outgoing edges.
2586
2587 This can include equivalency information implied by control statements
2588 at the end of BB and const/copy propagation into PHIs in BB's
2589 successor blocks. */
2590
2591 static void
2592 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2593 basic_block bb)
2594 {
2595 record_edge_info (bb);
2596 cprop_into_successor_phis (bb, nonzero_vars);
2597 }
2598
2599 /* Search for redundant computations in STMT. If any are found, then
2600 replace them with the variable holding the result of the computation.
2601
2602 If safe, record this expression into the available expression hash
2603 table. */
2604
2605 static bool
2606 eliminate_redundant_computations (struct dom_walk_data *walk_data,
2607 tree stmt, stmt_ann_t ann)
2608 {
2609 tree *expr_p, def = NULL_TREE;
2610 bool insert = true;
2611 tree cached_lhs;
2612 bool retval = false;
2613
2614 if (TREE_CODE (stmt) == MODIFY_EXPR)
2615 def = TREE_OPERAND (stmt, 0);
2616
2617 /* Certain expressions on the RHS can be optimized away, but can not
2618 themselves be entered into the hash tables. */
2619 if (ann->makes_aliased_stores
2620 || ! def
2621 || TREE_CODE (def) != SSA_NAME
2622 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2623 || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF)
2624 /* Do not record equivalences for increments of ivs. This would create
2625 overlapping live ranges for a very questionable gain. */
2626 || simple_iv_increment_p (stmt))
2627 insert = false;
2628
2629 /* Check if the expression has been computed before. */
2630 cached_lhs = lookup_avail_expr (stmt, insert);
2631
2632 /* If this is an assignment and the RHS was not in the hash table,
2633 then try to simplify the RHS and lookup the new RHS in the
2634 hash table. */
2635 if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
2636 cached_lhs = simplify_rhs_and_lookup_avail_expr (walk_data, stmt, insert);
2637 /* Similarly if this is a COND_EXPR and we did not find its
2638 expression in the hash table, simplify the condition and
2639 try again. */
2640 else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
2641 cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
2642 /* Similarly for a SWITCH_EXPR. */
2643 else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
2644 cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);
2645
2646 opt_stats.num_exprs_considered++;
2647
2648 /* Get a pointer to the expression we are trying to optimize. */
2649 if (TREE_CODE (stmt) == COND_EXPR)
2650 expr_p = &COND_EXPR_COND (stmt);
2651 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2652 expr_p = &SWITCH_COND (stmt);
2653 else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
2654 expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
2655 else
2656 expr_p = &TREE_OPERAND (stmt, 1);
2657
2658 /* It is safe to ignore types here since we have already done
2659 type checking in the hashing and equality routines. In fact
2660 type checking here merely gets in the way of constant
2661 propagation. Also, make sure that it is safe to propagate
2662 CACHED_LHS into *EXPR_P. */
2663 if (cached_lhs
2664 && (TREE_CODE (cached_lhs) != SSA_NAME
2665 || may_propagate_copy (*expr_p, cached_lhs)))
2666 {
2667 if (dump_file && (dump_flags & TDF_DETAILS))
2668 {
2669 fprintf (dump_file, " Replaced redundant expr '");
2670 print_generic_expr (dump_file, *expr_p, dump_flags);
2671 fprintf (dump_file, "' with '");
2672 print_generic_expr (dump_file, cached_lhs, dump_flags);
2673 fprintf (dump_file, "'\n");
2674 }
2675
2676 opt_stats.num_re++;
2677
2678 #if defined ENABLE_CHECKING
2679 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
2680 || is_gimple_min_invariant (cached_lhs));
2681 #endif
2682
2683 if (TREE_CODE (cached_lhs) == ADDR_EXPR
2684 || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
2685 && is_gimple_min_invariant (cached_lhs)))
2686 retval = true;
2687
2688 propagate_tree_value (expr_p, cached_lhs);
2689 mark_stmt_modified (stmt);
2690 }
2691 return retval;
2692 }
2693
2694 /* STMT, a MODIFY_EXPR, may create certain equivalences, in either
2695 the available expressions table or the const_and_copies table.
2696 Detect and record those equivalences. */
2697
2698 static void
2699 record_equivalences_from_stmt (tree stmt,
2700 int may_optimize_p,
2701 stmt_ann_t ann)
2702 {
2703 tree lhs = TREE_OPERAND (stmt, 0);
2704 enum tree_code lhs_code = TREE_CODE (lhs);
2705 int i;
2706
2707 if (lhs_code == SSA_NAME)
2708 {
2709 tree rhs = TREE_OPERAND (stmt, 1);
2710
2711 /* Strip away any useless type conversions. */
2712 STRIP_USELESS_TYPE_CONVERSION (rhs);
2713
2714 /* If the RHS of the assignment is a constant or another variable that
2715 may be propagated, register it in the CONST_AND_COPIES table. We
2716 do not need to record unwind data for this, since this is a true
2717 assignment and not an equivalence inferred from a comparison. All
2718 uses of this ssa name are dominated by this assignment, so unwinding
2719 just costs time and space. */
2720 if (may_optimize_p
2721 && (TREE_CODE (rhs) == SSA_NAME
2722 || is_gimple_min_invariant (rhs)))
2723 SSA_NAME_VALUE (lhs) = rhs;
2724
2725 if (expr_computes_nonzero (rhs))
2726 record_var_is_nonzero (lhs);
2727 }
2728
2729 /* Look at both sides for pointer dereferences. If we find one, then
2730 the pointer must be nonnull and we can enter that equivalence into
2731 the hash tables. */
2732 if (flag_delete_null_pointer_checks)
2733 for (i = 0; i < 2; i++)
2734 {
2735 tree t = TREE_OPERAND (stmt, i);
2736
2737 /* Strip away any COMPONENT_REFs. */
2738 while (TREE_CODE (t) == COMPONENT_REF)
2739 t = TREE_OPERAND (t, 0);
2740
2741 /* Now see if this is a pointer dereference. */
2742 if (INDIRECT_REF_P (t))
2743 {
2744 tree op = TREE_OPERAND (t, 0);
2745
2746 /* If the pointer is a SSA variable, then enter new
2747 equivalences into the hash table. */
2748 while (TREE_CODE (op) == SSA_NAME)
2749 {
2750 tree def = SSA_NAME_DEF_STMT (op);
2751
2752 record_var_is_nonzero (op);
2753
2754 /* And walk up the USE-DEF chains noting other SSA_NAMEs
2755 which are known to have a nonzero value. */
2756 if (def
2757 && TREE_CODE (def) == MODIFY_EXPR
2758 && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
2759 op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
2760 else
2761 break;
2762 }
2763 }
2764 }
2765
2766 /* A memory store, even an aliased store, creates a useful
2767 equivalence. By exchanging the LHS and RHS, creating suitable
2768 vops and recording the result in the available expression table,
2769 we may be able to expose more redundant loads. */
2770 if (!ann->has_volatile_ops
2771 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
2772 || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
2773 && !is_gimple_reg (lhs))
2774 {
2775 tree rhs = TREE_OPERAND (stmt, 1);
2776 tree new;
2777
2778 /* FIXME: If the LHS of the assignment is a bitfield and the RHS
2779 is a constant, we need to adjust the constant to fit into the
2780 type of the LHS. If the LHS is a bitfield and the RHS is not
2781 a constant, then we can not record any equivalences for this
2782 statement since we would need to represent the widening or
2783 narrowing of RHS. This fixes gcc.c-torture/execute/921016-1.c
2784 and should not be necessary if GCC represented bitfields
2785 properly. */
2786 if (lhs_code == COMPONENT_REF
2787 && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
2788 {
2789 if (TREE_CONSTANT (rhs))
2790 rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
2791 else
2792 rhs = NULL;
2793
2794 /* If the value overflowed, then we can not use this equivalence. */
2795 if (rhs && ! is_gimple_min_invariant (rhs))
2796 rhs = NULL;
2797 }
2798
2799 if (rhs)
2800 {
2801 /* Build a new statement with the RHS and LHS exchanged. */
2802 new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);
2803
2804 create_ssa_artficial_load_stmt (new, stmt);
2805
2806 /* Finally enter the statement into the available expression
2807 table. */
2808 lookup_avail_expr (new, true);
2809 }
2810 }
2811 }
2812
2813 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2814 CONST_AND_COPIES. */
2815
2816 static bool
2817 cprop_operand (tree stmt, use_operand_p op_p)
2818 {
2819 bool may_have_exposed_new_symbols = false;
2820 tree val;
2821 tree op = USE_FROM_PTR (op_p);
2822
2823 /* If the operand has a known constant value or it is known to be a
2824 copy of some other variable, use the value or copy stored in
2825 CONST_AND_COPIES. */
2826 val = SSA_NAME_VALUE (op);
2827 if (val && val != op && TREE_CODE (val) != VALUE_HANDLE)
2828 {
2829 tree op_type, val_type;
2830
2831 /* Do not change the base variable in the virtual operand
2832 tables. That would make it impossible to reconstruct
2833 the renamed virtual operand if we later modify this
2834 statement. Also only allow the new value to be an SSA_NAME
2835 for propagation into virtual operands. */
2836 if (!is_gimple_reg (op)
2837 && (TREE_CODE (val) != SSA_NAME
2838 || is_gimple_reg (val)
2839 || get_virtual_var (val) != get_virtual_var (op)))
2840 return false;
2841
2842 /* Do not replace hard register operands in asm statements. */
2843 if (TREE_CODE (stmt) == ASM_EXPR
2844 && !may_propagate_copy_into_asm (op))
2845 return false;
2846
2847 /* Get the toplevel type of each operand. */
2848 op_type = TREE_TYPE (op);
2849 val_type = TREE_TYPE (val);
2850
2851 /* While both types are pointers, get the type of the object
2852 pointed to. */
2853 while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
2854 {
2855 op_type = TREE_TYPE (op_type);
2856 val_type = TREE_TYPE (val_type);
2857 }
2858
2859 /* Make sure underlying types match before propagating a constant by
2860 converting the constant to the proper type. Note that convert may
2861 return a non-gimple expression, in which case we ignore this
2862 propagation opportunity. */
2863 if (TREE_CODE (val) != SSA_NAME)
2864 {
2865 if (!lang_hooks.types_compatible_p (op_type, val_type))
2866 {
2867 val = fold_convert (TREE_TYPE (op), val);
2868 if (!is_gimple_min_invariant (val))
2869 return false;
2870 }
2871 }
2872
2873 /* Certain operands are not allowed to be copy propagated due
2874 to their interaction with exception handling and some GCC
2875 extensions. */
2876 else if (!may_propagate_copy (op, val))
2877 return false;
2878
2879 /* Do not propagate copies if the propagated value is at a deeper loop
2880 depth than the propagatee. Otherwise, this may move loop variant
2881 variables outside of their loops and prevent coalescing
2882 opportunities. If the value was loop invariant, it will be hoisted
2883 by LICM and exposed for copy propagation. */
2884 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2885 return false;
2886
2887 /* Dump details. */
2888 if (dump_file && (dump_flags & TDF_DETAILS))
2889 {
2890 fprintf (dump_file, " Replaced '");
2891 print_generic_expr (dump_file, op, dump_flags);
2892 fprintf (dump_file, "' with %s '",
2893 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2894 print_generic_expr (dump_file, val, dump_flags);
2895 fprintf (dump_file, "'\n");
2896 }
2897
2898 /* If VAL is an ADDR_EXPR or a constant of pointer type, note
2899 that we may have exposed a new symbol for SSA renaming. */
2900 if (TREE_CODE (val) == ADDR_EXPR
2901 || (POINTER_TYPE_P (TREE_TYPE (op))
2902 && is_gimple_min_invariant (val)))
2903 may_have_exposed_new_symbols = true;
2904
2905 if (TREE_CODE (val) != SSA_NAME)
2906 opt_stats.num_const_prop++;
2907 else
2908 opt_stats.num_copy_prop++;
2909
2910 propagate_value (op_p, val);
2911
2912 /* And note that we modified this statement. This is now
2913 safe, even if we changed virtual operands since we will
2914 rescan the statement and rewrite its operands again. */
2915 mark_stmt_modified (stmt);
2916 }
2917 return may_have_exposed_new_symbols;
2918 }
2919
2920 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2921 known value for that SSA_NAME (or NULL if no value is known).
2922
2923 Propagate values from CONST_AND_COPIES into the uses, vuses and
2924 v_may_def_ops of STMT. */
2925
2926 static bool
2927 cprop_into_stmt (tree stmt)
2928 {
2929 bool may_have_exposed_new_symbols = false;
2930 use_operand_p op_p;
2931 ssa_op_iter iter;
2932
2933 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2934 {
2935 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2936 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
2937 }
2938
2939 return may_have_exposed_new_symbols;
2940 }
2941
2942
2943 /* Optimize the statement pointed by iterator SI.
2944
2945 We try to perform some simplistic global redundancy elimination and
2946 constant propagation:
2947
2948 1- To detect global redundancy, we keep track of expressions that have
2949 been computed in this block and its dominators. If we find that the
2950 same expression is computed more than once, we eliminate repeated
2951 computations by using the target of the first one.
2952
2953 2- Constant values and copy assignments. This is used to do very
2954 simplistic constant and copy propagation. When a constant or copy
2955 assignment is found, we map the value on the RHS of the assignment to
2956 the variable in the LHS in the CONST_AND_COPIES table. */
2957
2958 static void
2959 optimize_stmt (struct dom_walk_data *walk_data, basic_block bb,
2960 block_stmt_iterator si)
2961 {
2962 stmt_ann_t ann;
2963 tree stmt, old_stmt;
2964 bool may_optimize_p;
2965 bool may_have_exposed_new_symbols = false;
2966
2967 old_stmt = stmt = bsi_stmt (si);
2968
2969 update_stmt_if_modified (stmt);
2970 ann = stmt_ann (stmt);
2971 opt_stats.num_stmts++;
2972 may_have_exposed_new_symbols = false;
2973
2974 if (dump_file && (dump_flags & TDF_DETAILS))
2975 {
2976 fprintf (dump_file, "Optimizing statement ");
2977 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2978 }
2979
2980 /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs. */
2981 may_have_exposed_new_symbols = cprop_into_stmt (stmt);
2982
2983 /* If the statement has been modified with constant replacements,
2984 fold its RHS before checking for redundant computations. */
2985 if (ann->modified)
2986 {
2987 tree rhs;
2988
2989 /* Try to fold the statement making sure that STMT is kept
2990 up to date. */
2991 if (fold_stmt (bsi_stmt_ptr (si)))
2992 {
2993 stmt = bsi_stmt (si);
2994 ann = stmt_ann (stmt);
2995
2996 if (dump_file && (dump_flags & TDF_DETAILS))
2997 {
2998 fprintf (dump_file, " Folded to: ");
2999 print_generic_stmt (dump_file, stmt, TDF_SLIM);
3000 }
3001 }
3002
3003 rhs = get_rhs (stmt);
3004 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
3005 recompute_tree_invarant_for_addr_expr (rhs);
3006
3007 /* Constant/copy propagation above may change the set of
3008 virtual operands associated with this statement. Folding
3009 may remove the need for some virtual operands.
3010
3011 Indicate we will need to rescan and rewrite the statement. */
3012 may_have_exposed_new_symbols = true;
3013 }
3014
3015 /* Check for redundant computations. Do this optimization only
3016 for assignments that have no volatile ops and conditionals. */
3017 may_optimize_p = (!ann->has_volatile_ops
3018 && ((TREE_CODE (stmt) == RETURN_EXPR
3019 && TREE_OPERAND (stmt, 0)
3020 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
3021 && ! (TREE_SIDE_EFFECTS
3022 (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
3023 || (TREE_CODE (stmt) == MODIFY_EXPR
3024 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
3025 || TREE_CODE (stmt) == COND_EXPR
3026 || TREE_CODE (stmt) == SWITCH_EXPR));
3027
3028 if (may_optimize_p)
3029 may_have_exposed_new_symbols
3030 |= eliminate_redundant_computations (walk_data, stmt, ann);
3031
3032 /* Record any additional equivalences created by this statement. */
3033 if (TREE_CODE (stmt) == MODIFY_EXPR)
3034 record_equivalences_from_stmt (stmt,
3035 may_optimize_p,
3036 ann);
3037
3038 /* If STMT is a COND_EXPR and it was modified, then we may know
3039 where it goes. If that is the case, then mark the CFG as altered.
3040
3041 This will cause us to later call remove_unreachable_blocks and
3042 cleanup_tree_cfg when it is safe to do so. It is not safe to
3043 clean things up here since removal of edges and such can trigger
3044 the removal of PHI nodes, which in turn can release SSA_NAMEs to
3045 the manager.
3046
3047 That's all fine and good, except that once SSA_NAMEs are released
3048 to the manager, we must not call create_ssa_name until all references
3049 to released SSA_NAMEs have been eliminated.
3050
3051 All references to the deleted SSA_NAMEs can not be eliminated until
3052 we remove unreachable blocks.
3053
3054 We can not remove unreachable blocks until after we have completed
3055 any queued jump threading.
3056
3057 We can not complete any queued jump threads until we have taken
3058 appropriate variables out of SSA form. Taking variables out of
3059 SSA form can call create_ssa_name and thus we lose.
3060
3061 Ultimately I suspect we're going to need to change the interface
3062 into the SSA_NAME manager. */
3063
3064 if (ann->modified)
3065 {
3066 tree val = NULL;
3067
3068 if (TREE_CODE (stmt) == COND_EXPR)
3069 val = COND_EXPR_COND (stmt);
3070 else if (TREE_CODE (stmt) == SWITCH_EXPR)
3071 val = SWITCH_COND (stmt);
3072
3073 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
3074 cfg_altered = true;
3075
3076 /* If we simplified a statement in such a way as to be shown that it
3077 cannot trap, update the eh information and the cfg to match. */
3078 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
3079 {
3080 bitmap_set_bit (need_eh_cleanup, bb->index);
3081 if (dump_file && (dump_flags & TDF_DETAILS))
3082 fprintf (dump_file, " Flagged to clear EH edges.\n");
3083 }
3084 }
3085
3086 if (may_have_exposed_new_symbols)
3087 VEC_safe_push (tree, heap, stmts_to_rescan, bsi_stmt (si));
3088 }
3089
3090 /* Replace the RHS of STMT with NEW_RHS. If RHS can be found in the
3091 available expression hashtable, then return the LHS from the hash
3092 table.
3093
3094 If INSERT is true, then we also update the available expression
3095 hash table to account for the changes made to STMT. */
3096
3097 static tree
3098 update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
3099 {
3100 tree cached_lhs = NULL;
3101
3102 /* Remove the old entry from the hash table. */
3103 if (insert)
3104 {
3105 struct expr_hash_elt element;
3106
3107 initialize_hash_element (stmt, NULL, &element);
3108 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
3109 }
3110
3111 /* Now update the RHS of the assignment. */
3112 TREE_OPERAND (stmt, 1) = new_rhs;
3113
3114 /* Now lookup the updated statement in the hash table. */
3115 cached_lhs = lookup_avail_expr (stmt, insert);
3116
3117 /* We have now called lookup_avail_expr twice with two different
3118 versions of this same statement, once in optimize_stmt, once here.
3119
3120 We know the call in optimize_stmt did not find an existing entry
3121 in the hash table, so a new entry was created. At the same time
3122 this statement was pushed onto the AVAIL_EXPRS_STACK vector.
3123
3124 If this call failed to find an existing entry on the hash table,
3125 then the new version of this statement was entered into the
3126 hash table. And this statement was pushed onto BLOCK_AVAIL_EXPR
3127 for the second time. So there are two copies on BLOCK_AVAIL_EXPRs
3128
3129 If this call succeeded, we still have one copy of this statement
3130 on the BLOCK_AVAIL_EXPRs vector.
3131
3132 For both cases, we need to pop the most recent entry off the
3133 BLOCK_AVAIL_EXPRs vector. For the case where we never found this
3134 statement in the hash tables, that will leave precisely one
3135 copy of this statement on BLOCK_AVAIL_EXPRs. For the case where
3136 we found a copy of this statement in the second hash table lookup
3137 we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs. */
3138 if (insert)
3139 VEC_pop (tree, avail_exprs_stack);
3140
3141 /* And make sure we record the fact that we modified this
3142 statement. */
3143 mark_stmt_modified (stmt);
3144
3145 return cached_lhs;
3146 }
3147
3148 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. If
3149 found, return its LHS. Otherwise insert STMT in the table and return
3150 NULL_TREE.
3151
3152 Also, when an expression is first inserted in the AVAIL_EXPRS table, it
3153 is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
3154 can be removed when we finish processing this block and its children.
3155
3156 NOTE: This function assumes that STMT is a MODIFY_EXPR node that
3157 contains no CALL_EXPR on its RHS and makes no volatile nor
3158 aliased references. */
3159
3160 static tree
3161 lookup_avail_expr (tree stmt, bool insert)
3162 {
3163 void **slot;
3164 tree lhs;
3165 tree temp;
3166 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
3167
3168 lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;
3169
3170 initialize_hash_element (stmt, lhs, element);
3171
3172 /* Don't bother remembering constant assignments and copy operations.
3173 Constants and copy operations are handled by the constant/copy propagator
3174 in optimize_stmt. */
3175 if (TREE_CODE (element->rhs) == SSA_NAME
3176 || is_gimple_min_invariant (element->rhs))
3177 {
3178 free (element);
3179 return NULL_TREE;
3180 }
3181
3182 /* If this is an equality test against zero, see if we have recorded a
3183 nonzero value for the variable in question. */
3184 if ((TREE_CODE (element->rhs) == EQ_EXPR
3185 || TREE_CODE (element->rhs) == NE_EXPR)
3186 && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
3187 && integer_zerop (TREE_OPERAND (element->rhs, 1)))
3188 {
3189 int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));
3190
3191 if (bitmap_bit_p (nonzero_vars, indx))
3192 {
3193 tree t = element->rhs;
3194 free (element);
3195
3196 if (TREE_CODE (t) == EQ_EXPR)
3197 return boolean_false_node;
3198 else
3199 return boolean_true_node;
3200 }
3201 }
3202
3203 /* Finally try to find the expression in the main expression hash table. */
3204 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
3205 (insert ? INSERT : NO_INSERT));
3206 if (slot == NULL)
3207 {
3208 free (element);
3209 return NULL_TREE;
3210 }
3211
3212 if (*slot == NULL)
3213 {
3214 *slot = (void *) element;
3215 VEC_safe_push (tree, heap, avail_exprs_stack,
3216 stmt ? stmt : element->rhs);
3217 return NULL_TREE;
3218 }
3219
3220 /* Extract the LHS of the assignment so that it can be used as the current
3221 definition of another variable. */
3222 lhs = ((struct expr_hash_elt *)*slot)->lhs;
3223
3224 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
3225 use the value from the const_and_copies table. */
3226 if (TREE_CODE (lhs) == SSA_NAME)
3227 {
3228 temp = SSA_NAME_VALUE (lhs);
3229 if (temp && TREE_CODE (temp) != VALUE_HANDLE)
3230 lhs = temp;
3231 }
3232
3233 free (element);
3234 return lhs;
3235 }
3236
3237 /* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
3238 range of values that result in the conditional having a true value.
3239
3240 Return true if we are successful in extracting a range from COND and
3241 false if we are unsuccessful. */
3242
3243 static bool
3244 extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
3245 {
3246 tree op1 = TREE_OPERAND (cond, 1);
3247 tree high, low, type;
3248 int inverted;
3249
3250 type = TREE_TYPE (op1);
3251
3252 /* Experiments have shown that it's rarely, if ever useful to
3253 record ranges for enumerations. Presumably this is due to
3254 the fact that they're rarely used directly. They are typically
3255 cast into an integer type and used that way. */
3256 if (TREE_CODE (type) != INTEGER_TYPE
3257 /* We don't know how to deal with types with variable bounds. */
3258 || TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
3259 || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST)
3260 return 0;
3261
3262 switch (TREE_CODE (cond))
3263 {
3264 case EQ_EXPR:
3265 high = low = op1;
3266 inverted = 0;
3267 break;
3268
3269 case NE_EXPR:
3270 high = low = op1;
3271 inverted = 1;
3272 break;
3273
3274 case GE_EXPR:
3275 low = op1;
3276 high = TYPE_MAX_VALUE (type);
3277 inverted = 0;
3278 break;
3279
3280 case GT_EXPR:
3281 high = TYPE_MAX_VALUE (type);
3282 if (!tree_int_cst_lt (op1, high))
3283 return 0;
3284 low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
3285 inverted = 0;
3286 break;
3287
3288 case LE_EXPR:
3289 high = op1;
3290 low = TYPE_MIN_VALUE (type);
3291 inverted = 0;
3292 break;
3293
3294 case LT_EXPR:
3295 low = TYPE_MIN_VALUE (type);
3296 if (!tree_int_cst_lt (low, op1))
3297 return 0;
3298 high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
3299 inverted = 0;
3300 break;
3301
3302 default:
3303 return 0;
3304 }
3305
3306 *hi_p = high;
3307 *lo_p = low;
3308 *inverted_p = inverted;
3309 return 1;
3310 }
3311
3312 /* Record a range created by COND for basic block BB. */
3313
3314 static void
3315 record_range (tree cond, basic_block bb)
3316 {
3317 enum tree_code code = TREE_CODE (cond);
3318
3319 /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
3320 They rarely allow for meaningful range optimizations and significantly
3321 complicate the implementation. */
3322 if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
3323 || code == GE_EXPR || code == EQ_EXPR)
3324 && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
3325 {
3326 struct vrp_hash_elt *vrp_hash_elt;
3327 struct vrp_element *element;
3328 VEC(vrp_element_p,heap) **vrp_records_p;
3329 void **slot;
3330
3331
3332 vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
3333 vrp_hash_elt->var = TREE_OPERAND (cond, 0);
3334 vrp_hash_elt->records = NULL;
3335 slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);
3336
3337 if (*slot == NULL)
3338 *slot = (void *) vrp_hash_elt;
3339 else
3340 vrp_free (vrp_hash_elt);
3341
3342 vrp_hash_elt = (struct vrp_hash_elt *) *slot;
3343 vrp_records_p = &vrp_hash_elt->records;
3344
3345 element = ggc_alloc (sizeof (struct vrp_element));
3346 element->low = NULL;
3347 element->high = NULL;
3348 element->cond = cond;
3349 element->bb = bb;
3350
3351 VEC_safe_push (vrp_element_p, heap, *vrp_records_p, element);
3352 VEC_safe_push (tree, heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
3353 }
3354 }
3355
3356 /* Hashing and equality functions for VRP_DATA.
3357
3358 Since this hash table is addressed by SSA_NAMEs, we can hash on
3359 their version number and equality can be determined with a
3360 pointer comparison. */
3361
3362 static hashval_t
3363 vrp_hash (const void *p)
3364 {
3365 tree var = ((struct vrp_hash_elt *)p)->var;
3366
3367 return SSA_NAME_VERSION (var);
3368 }
3369
3370 static int
3371 vrp_eq (const void *p1, const void *p2)
3372 {
3373 tree var1 = ((struct vrp_hash_elt *)p1)->var;
3374 tree var2 = ((struct vrp_hash_elt *)p2)->var;
3375
3376 return var1 == var2;
3377 }
3378
3379 /* Hashing and equality functions for AVAIL_EXPRS. The table stores
3380 MODIFY_EXPR statements. We compute a value number for expressions using
3381 the code of the expression and the SSA numbers of its operands. */
3382
3383 static hashval_t
3384 avail_expr_hash (const void *p)
3385 {
3386 tree stmt = ((struct expr_hash_elt *)p)->stmt;
3387 tree rhs = ((struct expr_hash_elt *)p)->rhs;
3388 tree vuse;
3389 ssa_op_iter iter;
3390 hashval_t val = 0;
3391
3392 /* iterative_hash_expr knows how to deal with any expression and
3393 deals with commutative operators as well, so just use it instead
3394 of duplicating such complexities here. */
3395 val = iterative_hash_expr (rhs, val);
3396
3397 /* If the hash table entry is not associated with a statement, then we
3398 can just hash the expression and not worry about virtual operands
3399 and such. */
3400 if (!stmt || !stmt_ann (stmt))
3401 return val;
3402
3403 /* Add the SSA version numbers of every vuse operand. This is important
3404 because compound variables like arrays are not renamed in the
3405 operands. Rather, the rename is done on the virtual variable
3406 representing all the elements of the array. */
3407 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, iter, SSA_OP_VUSE)
3408 val = iterative_hash_expr (vuse, val);
3409
3410 return val;
3411 }
3412
3413 static hashval_t
3414 real_avail_expr_hash (const void *p)
3415 {
3416 return ((const struct expr_hash_elt *)p)->hash;
3417 }
3418
3419 static int
3420 avail_expr_eq (const void *p1, const void *p2)
3421 {
3422 tree stmt1 = ((struct expr_hash_elt *)p1)->stmt;
3423 tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
3424 tree stmt2 = ((struct expr_hash_elt *)p2)->stmt;
3425 tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;
3426
3427 /* If they are the same physical expression, return true. */
3428 if (rhs1 == rhs2 && stmt1 == stmt2)
3429 return true;
3430
3431 /* If their codes are not equal, then quit now. */
3432 if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
3433 return false;
3434
3435 /* In case of a collision, both RHS have to be identical and have the
3436 same VUSE operands. */
3437 if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
3438 || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
3439 && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
3440 {
3441 bool ret = compare_ssa_operands_equal (stmt1, stmt2, SSA_OP_VUSE);
3442 gcc_assert (!ret || ((struct expr_hash_elt *)p1)->hash
3443 == ((struct expr_hash_elt *)p2)->hash);
3444 return ret;
3445 }
3446
3447 return false;
3448 }