* tree-ssa-dom.c (thread_across_edge): Fix a comment typo.
[gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "errors.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "domwalk.h"
41 #include "real.h"
42 #include "tree-pass.h"
43 #include "tree-ssa-propagate.h"
44 #include "langhooks.h"
45
46 /* This file implements optimizations on the dominator tree. */
47
48
49 /* Structure for recording edge equivalences as well as any pending
50 edge redirections during the dominator optimizer.
51
52 Computing and storing the edge equivalences instead of creating
53 them on-demand can save significant amounts of time, particularly
54 for pathological cases involving switch statements.
55
56 These structures live for a single iteration of the dominator
57 optimizer in the edge's AUX field. At the end of an iteration we
58 free each of these structures and update the AUX field to point
59 to any requested redirection target (the code for updating the
60 CFG and SSA graph for edge redirection expects redirection edge
61 targets to be in the AUX field for each edge. */
62
63 struct edge_info
64 {
65 /* If this edge creates a simple equivalence, the LHS and RHS of
66 the equivalence will be stored here. */
67 tree lhs;
68 tree rhs;
69
70 /* Traversing an edge may also indicate one or more particular conditions
71 are true or false. The number of recorded conditions can vary, but
72 can be determined by the condition's code. So we have an array
73 and its maximum index rather than use a varray. */
74 tree *cond_equivalences;
75 unsigned int max_cond_equivalences;
76
77 /* If we can thread this edge this field records the new target. */
78 edge redirection_target;
79 };
80
81
82 /* Hash table with expressions made available during the renaming process.
83 When an assignment of the form X_i = EXPR is found, the statement is
84 stored in this table. If the same expression EXPR is later found on the
85 RHS of another statement, it is replaced with X_i (thus performing
86 global redundancy elimination). Similarly as we pass through conditionals
87 we record the conditional itself as having either a true or false value
88 in this table. */
89 static htab_t avail_exprs;
90
91 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
92 expressions it enters into the hash table along with a marker entry
93 (null). When we finish processing the block, we pop off entries and
94 remove the expressions from the global hash table until we hit the
95 marker. */
96 static VEC(tree_on_heap) *avail_exprs_stack;
97
98 /* Stack of trees used to restore the global currdefs to its original
99 state after completing optimization of a block and its dominator children.
100
101 An SSA_NAME indicates that the current definition of the underlying
102 variable should be set to the given SSA_NAME.
103
104 A _DECL node indicates that the underlying variable has no current
105 definition.
106
107 A NULL node is used to mark the last node associated with the
108 current block. */
109 static VEC(tree_on_heap) *block_defs_stack;
110
111 /* Stack of statements we need to rescan during finalization for newly
112 exposed variables.
113
114 Statement rescanning must occur after the current block's available
115 expressions are removed from AVAIL_EXPRS. Else we may change the
116 hash code for an expression and be unable to find/remove it from
117 AVAIL_EXPRS. */
118 static VEC(tree_on_heap) *stmts_to_rescan;
119
120 /* Structure for entries in the expression hash table.
121
122 This requires more memory for the hash table entries, but allows us
123 to avoid creating silly tree nodes and annotations for conditionals,
124 eliminates 2 global hash tables and two block local varrays.
125
126 It also allows us to reduce the number of hash table lookups we
127 have to perform in lookup_avail_expr and finally it allows us to
128 significantly reduce the number of calls into the hashing routine
129 itself. */
130
131 struct expr_hash_elt
132 {
133 /* The value (lhs) of this expression. */
134 tree lhs;
135
136 /* The expression (rhs) we want to record. */
137 tree rhs;
138
139 /* The annotation if this element corresponds to a statement. */
140 stmt_ann_t ann;
141
142 /* The hash value for RHS/ann. */
143 hashval_t hash;
144 };
145
146 /* Stack of dest,src pairs that need to be restored during finalization.
147
148 A NULL entry is used to mark the end of pairs which need to be
149 restored during finalization of this block. */
150 static VEC(tree_on_heap) *const_and_copies_stack;
151
152 /* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
153 know their exact value. */
154 static bitmap nonzero_vars;
155
156 /* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
157 when the current block is finalized.
158
159 A NULL entry is used to mark the end of names needing their
160 entry in NONZERO_VARS cleared during finalization of this block. */
161 static VEC(tree_on_heap) *nonzero_vars_stack;
162
163 /* Track whether or not we have changed the control flow graph. */
164 static bool cfg_altered;
165
166 /* Bitmap of blocks that have had EH statements cleaned. We should
167 remove their dead edges eventually. */
168 static bitmap need_eh_cleanup;
169
170 /* Statistics for dominator optimizations. */
171 struct opt_stats_d
172 {
173 long num_stmts;
174 long num_exprs_considered;
175 long num_re;
176 };
177
178 static struct opt_stats_d opt_stats;
179
180 /* Value range propagation record. Each time we encounter a conditional
181 of the form SSA_NAME COND CONST we create a new vrp_element to record
182 how the condition affects the possible values SSA_NAME may have.
183
184 Each record contains the condition tested (COND), and the the range of
185 values the variable may legitimately have if COND is true. Note the
186 range of values may be a smaller range than COND specifies if we have
187 recorded other ranges for this variable. Each record also contains the
188 block in which the range was recorded for invalidation purposes.
189
190 Note that the current known range is computed lazily. This allows us
191 to avoid the overhead of computing ranges which are never queried.
192
193 When we encounter a conditional, we look for records which constrain
194 the SSA_NAME used in the condition. In some cases those records allow
195 us to determine the condition's result at compile time. In other cases
196 they may allow us to simplify the condition.
197
198 We also use value ranges to do things like transform signed div/mod
199 operations into unsigned div/mod or to simplify ABS_EXPRs.
200
201 Simple experiments have shown these optimizations to not be all that
202 useful on switch statements (much to my surprise). So switch statement
203 optimizations are not performed.
204
205 Note carefully we do not propagate information through each statement
206 in the block. i.e., if we know variable X has a value defined of
207 [0, 25] and we encounter Y = X + 1, we do not track a value range
208 for Y (which would be [1, 26] if we cared). Similarly we do not
209 constrain values as we encounter narrowing typecasts, etc. */
210
211 struct vrp_element
212 {
213 /* The highest and lowest values the variable in COND may contain when
214 COND is true. Note this may not necessarily be the same values
215 tested by COND if the same variable was used in earlier conditionals.
216
217 Note this is computed lazily and thus can be NULL indicating that
218 the values have not been computed yet. */
219 tree low;
220 tree high;
221
222 /* The actual conditional we recorded. This is needed since we compute
223 ranges lazily. */
224 tree cond;
225
226 /* The basic block where this record was created. We use this to determine
227 when to remove records. */
228 basic_block bb;
229 };
230
231 /* A hash table holding value range records (VRP_ELEMENTs) for a given
232 SSA_NAME. We used to use a varray indexed by SSA_NAME_VERSION, but
233 that gets awful wasteful, particularly since the density objects
234 with useful information is very low. */
235 static htab_t vrp_data;
236
237 /* An entry in the VRP_DATA hash table. We record the variable and a
238 varray of VRP_ELEMENT records associated with that variable. */
239 struct vrp_hash_elt
240 {
241 tree var;
242 varray_type records;
243 };
244
245 /* Array of variables which have their values constrained by operations
246 in this basic block. We use this during finalization to know
247 which variables need their VRP data updated. */
248
249 /* Stack of SSA_NAMEs which had their values constrainted by operations
250 in this basic block. During finalization of this block we use this
251 list to determine which variables need their VRP data updated.
252
253 A NULL entry marks the end of the SSA_NAMEs associated with this block. */
254 static VEC(tree_on_heap) *vrp_variables_stack;
255
256 struct eq_expr_value
257 {
258 tree src;
259 tree dst;
260 };
261
262 /* Local functions. */
263 static void optimize_stmt (struct dom_walk_data *,
264 basic_block bb,
265 block_stmt_iterator);
266 static tree lookup_avail_expr (tree, bool);
267 static hashval_t vrp_hash (const void *);
268 static int vrp_eq (const void *, const void *);
269 static hashval_t avail_expr_hash (const void *);
270 static hashval_t real_avail_expr_hash (const void *);
271 static int avail_expr_eq (const void *, const void *);
272 static void htab_statistics (FILE *, htab_t);
273 static void record_cond (tree, tree);
274 static void record_const_or_copy (tree, tree);
275 static void record_equality (tree, tree);
276 static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
277 static tree simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *,
278 tree, int);
279 static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
280 static tree simplify_switch_and_lookup_avail_expr (tree, int);
281 static tree find_equivalent_equality_comparison (tree);
282 static void record_range (tree, basic_block);
283 static bool extract_range_from_cond (tree, tree *, tree *, int *);
284 static void record_equivalences_from_phis (basic_block);
285 static void record_equivalences_from_incoming_edge (basic_block);
286 static bool eliminate_redundant_computations (struct dom_walk_data *,
287 tree, stmt_ann_t);
288 static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
289 static void thread_across_edge (struct dom_walk_data *, edge);
290 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
291 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
292 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
293 static void remove_local_expressions_from_table (void);
294 static void restore_vars_to_original_value (void);
295 static void restore_currdefs_to_original_value (void);
296 static void register_definitions_for_stmt (tree);
297 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
298 static void restore_nonzero_vars_to_original_value (void);
299 static inline bool unsafe_associative_fp_binop (tree);
300
301 /* Local version of fold that doesn't introduce cruft. */
302
303 static tree
304 local_fold (tree t)
305 {
306 t = fold (t);
307
308 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
309 may have been added by fold, and "useless" type conversions that might
310 now be apparent due to propagation. */
311 STRIP_USELESS_TYPE_CONVERSION (t);
312
313 return t;
314 }
315
316 /* Allocate an EDGE_INFO for edge E and attach it to E.
317 Return the new EDGE_INFO structure. */
318
319 static struct edge_info *
320 allocate_edge_info (edge e)
321 {
322 struct edge_info *edge_info;
323
324 edge_info = xcalloc (1, sizeof (struct edge_info));
325
326 e->aux = edge_info;
327 return edge_info;
328 }
329
330 /* Free all EDGE_INFO structures associated with edges in the CFG.
331 If a particular edge can be threaded, copy the redirection
332 target from the EDGE_INFO structure into the edge's AUX field
333 as required by code to update the CFG and SSA graph for
334 jump threading. */
335
336 static void
337 free_all_edge_infos (void)
338 {
339 basic_block bb;
340 edge_iterator ei;
341 edge e;
342
343 FOR_EACH_BB (bb)
344 {
345 FOR_EACH_EDGE (e, ei, bb->preds)
346 {
347 struct edge_info *edge_info = e->aux;
348
349 if (edge_info)
350 {
351 e->aux = edge_info->redirection_target;
352 if (edge_info->cond_equivalences)
353 free (edge_info->cond_equivalences);
354 free (edge_info);
355 }
356 }
357 }
358 }
359
360 /* Jump threading, redundancy elimination and const/copy propagation.
361
362 This pass may expose new symbols that need to be renamed into SSA. For
363 every new symbol exposed, its corresponding bit will be set in
364 VARS_TO_RENAME. */
365
366 static void
367 tree_ssa_dominator_optimize (void)
368 {
369 struct dom_walk_data walk_data;
370 unsigned int i;
371
372 memset (&opt_stats, 0, sizeof (opt_stats));
373
374 for (i = 0; i < num_referenced_vars; i++)
375 var_ann (referenced_var (i))->current_def = NULL;
376
377 /* Mark loop edges so we avoid threading across loop boundaries.
378 This may result in transforming natural loop into irreducible
379 region. */
380 mark_dfs_back_edges ();
381
382 /* Create our hash tables. */
383 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
384 vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq, free);
385 avail_exprs_stack = VEC_alloc (tree_on_heap, 20);
386 block_defs_stack = VEC_alloc (tree_on_heap, 20);
387 const_and_copies_stack = VEC_alloc (tree_on_heap, 20);
388 nonzero_vars_stack = VEC_alloc (tree_on_heap, 20);
389 vrp_variables_stack = VEC_alloc (tree_on_heap, 20);
390 stmts_to_rescan = VEC_alloc (tree_on_heap, 20);
391 nonzero_vars = BITMAP_XMALLOC ();
392 need_eh_cleanup = BITMAP_XMALLOC ();
393
394 /* Setup callbacks for the generic dominator tree walker. */
395 walk_data.walk_stmts_backward = false;
396 walk_data.dom_direction = CDI_DOMINATORS;
397 walk_data.initialize_block_local_data = NULL;
398 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
399 walk_data.before_dom_children_walk_stmts = optimize_stmt;
400 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
401 walk_data.after_dom_children_before_stmts = NULL;
402 walk_data.after_dom_children_walk_stmts = NULL;
403 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
404 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
405 When we attach more stuff we'll need to fill this out with a real
406 structure. */
407 walk_data.global_data = NULL;
408 walk_data.block_local_data_size = 0;
409
410 /* Now initialize the dominator walker. */
411 init_walk_dominator_tree (&walk_data);
412
413 calculate_dominance_info (CDI_DOMINATORS);
414
415 /* If we prove certain blocks are unreachable, then we want to
416 repeat the dominator optimization process as PHI nodes may
417 have turned into copies which allows better propagation of
418 values. So we repeat until we do not identify any new unreachable
419 blocks. */
420 do
421 {
422 /* Optimize the dominator tree. */
423 cfg_altered = false;
424
425 /* Recursively walk the dominator tree optimizing statements. */
426 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
427
428 /* If we exposed any new variables, go ahead and put them into
429 SSA form now, before we handle jump threading. This simplifies
430 interactions between rewriting of _DECL nodes into SSA form
431 and rewriting SSA_NAME nodes into SSA form after block
432 duplication and CFG manipulation. */
433 if (!bitmap_empty_p (vars_to_rename))
434 {
435 rewrite_into_ssa (false);
436 bitmap_clear (vars_to_rename);
437 }
438
439 free_all_edge_infos ();
440
441 /* Thread jumps, creating duplicate blocks as needed. */
442 cfg_altered = thread_through_all_blocks ();
443
444 /* Removal of statements may make some EH edges dead. Purge
445 such edges from the CFG as needed. */
446 if (!bitmap_empty_p (need_eh_cleanup))
447 {
448 cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
449 bitmap_zero (need_eh_cleanup);
450 }
451
452 free_dominance_info (CDI_DOMINATORS);
453 cfg_altered = cleanup_tree_cfg ();
454 calculate_dominance_info (CDI_DOMINATORS);
455
456 rewrite_ssa_into_ssa ();
457
458 /* Reinitialize the various tables. */
459 bitmap_clear (nonzero_vars);
460 htab_empty (avail_exprs);
461 htab_empty (vrp_data);
462
463 for (i = 0; i < num_referenced_vars; i++)
464 var_ann (referenced_var (i))->current_def = NULL;
465 }
466 while (cfg_altered);
467
468 /* Debugging dumps. */
469 if (dump_file && (dump_flags & TDF_STATS))
470 dump_dominator_optimization_stats (dump_file);
471
472 /* We emptied the hash table earlier, now delete it completely. */
473 htab_delete (avail_exprs);
474 htab_delete (vrp_data);
475
476 /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
477 CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
478 of the do-while loop above. */
479
480 /* And finalize the dominator walker. */
481 fini_walk_dominator_tree (&walk_data);
482
483 /* Free nonzero_vars. */
484 BITMAP_XFREE (nonzero_vars);
485 BITMAP_XFREE (need_eh_cleanup);
486
487 /* Finally, remove everything except invariants in SSA_NAME_VALUE.
488
489 Long term we will be able to let everything in SSA_NAME_VALUE
490 persist. However, for now, we know this is the safe thing to
491 do. */
492 for (i = 0; i < num_ssa_names; i++)
493 {
494 tree name = ssa_name (i);
495 tree value;
496
497 if (!name)
498 continue;
499
500 value = SSA_NAME_VALUE (name);
501 if (value && !is_gimple_min_invariant (value))
502 SSA_NAME_VALUE (name) = NULL;
503 }
504
505 VEC_free (tree_on_heap, block_defs_stack);
506 VEC_free (tree_on_heap, avail_exprs_stack);
507 VEC_free (tree_on_heap, const_and_copies_stack);
508 VEC_free (tree_on_heap, nonzero_vars_stack);
509 VEC_free (tree_on_heap, vrp_variables_stack);
510 VEC_free (tree_on_heap, stmts_to_rescan);
511 }
512
513 static bool
514 gate_dominator (void)
515 {
516 return flag_tree_dom != 0;
517 }
518
519 struct tree_opt_pass pass_dominator =
520 {
521 "dom", /* name */
522 gate_dominator, /* gate */
523 tree_ssa_dominator_optimize, /* execute */
524 NULL, /* sub */
525 NULL, /* next */
526 0, /* static_pass_number */
527 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
528 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
529 0, /* properties_provided */
530 0, /* properties_destroyed */
531 0, /* todo_flags_start */
532 TODO_dump_func | TODO_rename_vars
533 | TODO_verify_ssa, /* todo_flags_finish */
534 0 /* letter */
535 };
536
537
538 /* We are exiting BB, see if the target block begins with a conditional
539 jump which has a known value when reached via BB. */
540
541 static void
542 thread_across_edge (struct dom_walk_data *walk_data, edge e)
543 {
544 block_stmt_iterator bsi;
545 tree stmt = NULL;
546 tree phi;
547
548 /* Each PHI creates a temporary equivalence, record them. */
549 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
550 {
551 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
552 tree dst = PHI_RESULT (phi);
553 record_const_or_copy (dst, src);
554 register_new_def (dst, &block_defs_stack);
555 }
556
557 for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
558 {
559 tree lhs, cached_lhs;
560
561 stmt = bsi_stmt (bsi);
562
563 /* Ignore empty statements and labels. */
564 if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
565 continue;
566
567 /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
568 value, then stop our search here. Ideally when we stop a
569 search we stop on a COND_EXPR or SWITCH_EXPR. */
570 if (TREE_CODE (stmt) != MODIFY_EXPR
571 || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
572 break;
573
574 /* At this point we have a statement which assigns an RHS to an
575 SSA_VAR on the LHS. We want to prove that the RHS is already
576 available and that its value is held in the current definition
577 of the LHS -- meaning that this assignment is a NOP when
578 reached via edge E. */
579 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
580 cached_lhs = TREE_OPERAND (stmt, 1);
581 else
582 cached_lhs = lookup_avail_expr (stmt, false);
583
584 lhs = TREE_OPERAND (stmt, 0);
585
586 /* This can happen if we thread around to the start of a loop. */
587 if (lhs == cached_lhs)
588 break;
589
590 /* If we did not find RHS in the hash table, then try again after
591 temporarily const/copy propagating the operands. */
592 if (!cached_lhs)
593 {
594 /* Copy the operands. */
595 stmt_ann_t ann = stmt_ann (stmt);
596 use_optype uses = USE_OPS (ann);
597 vuse_optype vuses = VUSE_OPS (ann);
598 tree *uses_copy = xcalloc (NUM_USES (uses), sizeof (tree));
599 tree *vuses_copy = xcalloc (NUM_VUSES (vuses), sizeof (tree));
600 unsigned int i;
601
602 /* Make a copy of the uses into USES_COPY, then cprop into
603 the use operands. */
604 for (i = 0; i < NUM_USES (uses); i++)
605 {
606 tree tmp = NULL;
607
608 uses_copy[i] = USE_OP (uses, i);
609 if (TREE_CODE (USE_OP (uses, i)) == SSA_NAME)
610 tmp = SSA_NAME_VALUE (USE_OP (uses, i));
611 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
612 SET_USE_OP (uses, i, tmp);
613 }
614
615 /* Similarly for virtual uses. */
616 for (i = 0; i < NUM_VUSES (vuses); i++)
617 {
618 tree tmp = NULL;
619
620 vuses_copy[i] = VUSE_OP (vuses, i);
621 if (TREE_CODE (VUSE_OP (vuses, i)) == SSA_NAME)
622 tmp = SSA_NAME_VALUE (VUSE_OP (vuses, i));
623 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
624 SET_VUSE_OP (vuses, i, tmp);
625 }
626
627 /* Try to lookup the new expression. */
628 cached_lhs = lookup_avail_expr (stmt, false);
629
630 /* Restore the statement's original uses/defs. */
631 for (i = 0; i < NUM_USES (uses); i++)
632 SET_USE_OP (uses, i, uses_copy[i]);
633
634 for (i = 0; i < NUM_VUSES (vuses); i++)
635 SET_VUSE_OP (vuses, i, vuses_copy[i]);
636
637 free (uses_copy);
638 free (vuses_copy);
639
640 /* If we still did not find the expression in the hash table,
641 then we can not ignore this statement. */
642 if (! cached_lhs)
643 break;
644 }
645
646 /* If the expression in the hash table was not assigned to an
647 SSA_NAME, then we can not ignore this statement. */
648 if (TREE_CODE (cached_lhs) != SSA_NAME)
649 break;
650
651 /* If we have different underlying variables, then we can not
652 ignore this statement. */
653 if (SSA_NAME_VAR (cached_lhs) != SSA_NAME_VAR (lhs))
654 break;
655
656 /* If CACHED_LHS does not represent the current value of the underlying
657 variable in CACHED_LHS/LHS, then we can not ignore this statement. */
658 if (var_ann (SSA_NAME_VAR (lhs))->current_def != cached_lhs)
659 break;
660
661 /* If we got here, then we can ignore this statement and continue
662 walking through the statements in the block looking for a threadable
663 COND_EXPR.
664
665 We want to record an equivalence lhs = cache_lhs so that if
666 the result of this statement is used later we can copy propagate
667 suitably. */
668 record_const_or_copy (lhs, cached_lhs);
669 register_new_def (lhs, &block_defs_stack);
670 }
671
672 /* If we stopped at a COND_EXPR or SWITCH_EXPR, then see if we know which
673 arm will be taken. */
674 if (stmt
675 && (TREE_CODE (stmt) == COND_EXPR
676 || TREE_CODE (stmt) == SWITCH_EXPR))
677 {
678 tree cond, cached_lhs;
679 edge e1;
680 edge_iterator ei;
681
682 /* Do not forward entry edges into the loop. In the case loop
683 has multiple entry edges we may end up in constructing irreducible
684 region.
685 ??? We may consider forwarding the edges in the case all incoming
686 edges forward to the same destination block. */
687 if (!e->flags & EDGE_DFS_BACK)
688 {
689 FOR_EACH_EDGE (e1, ei, e->dest->preds)
690 if (e1->flags & EDGE_DFS_BACK)
691 break;
692 if (e1)
693 return;
694 }
695
696 /* Now temporarily cprop the operands and try to find the resulting
697 expression in the hash tables. */
698 if (TREE_CODE (stmt) == COND_EXPR)
699 cond = COND_EXPR_COND (stmt);
700 else
701 cond = SWITCH_COND (stmt);
702
703 if (COMPARISON_CLASS_P (cond))
704 {
705 tree dummy_cond, op0, op1;
706 enum tree_code cond_code;
707
708 op0 = TREE_OPERAND (cond, 0);
709 op1 = TREE_OPERAND (cond, 1);
710 cond_code = TREE_CODE (cond);
711
712 /* Get the current value of both operands. */
713 if (TREE_CODE (op0) == SSA_NAME)
714 {
715 tree tmp = SSA_NAME_VALUE (op0);
716 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
717 op0 = tmp;
718 }
719
720 if (TREE_CODE (op1) == SSA_NAME)
721 {
722 tree tmp = SSA_NAME_VALUE (op1);
723 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
724 op1 = tmp;
725 }
726
727 /* Stuff the operator and operands into our dummy conditional
728 expression, creating the dummy conditional if necessary. */
729 dummy_cond = walk_data->global_data;
730 if (! dummy_cond)
731 {
732 dummy_cond = build (cond_code, boolean_type_node, op0, op1);
733 dummy_cond = build (COND_EXPR, void_type_node,
734 dummy_cond, NULL, NULL);
735 walk_data->global_data = dummy_cond;
736 }
737 else
738 {
739 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
740 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
741 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
742 }
743
744 /* If the conditional folds to an invariant, then we are done,
745 otherwise look it up in the hash tables. */
746 cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
747 if (! is_gimple_min_invariant (cached_lhs))
748 {
749 cached_lhs = lookup_avail_expr (dummy_cond, false);
750 if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
751 cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
752 NULL,
753 false);
754 }
755 }
756 /* We can have conditionals which just test the state of a
757 variable rather than use a relational operator. These are
758 simpler to handle. */
759 else if (TREE_CODE (cond) == SSA_NAME)
760 {
761 cached_lhs = cond;
762 cached_lhs = SSA_NAME_VALUE (cached_lhs);
763 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
764 cached_lhs = 0;
765 }
766 else
767 cached_lhs = lookup_avail_expr (stmt, false);
768
769 if (cached_lhs)
770 {
771 edge taken_edge = find_taken_edge (e->dest, cached_lhs);
772 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
773
774 if (dest == e->dest)
775 return;
776
777 /* If we have a known destination for the conditional, then
778 we can perform this optimization, which saves at least one
779 conditional jump each time it applies since we get to
780 bypass the conditional at our original destination. */
781 if (dest)
782 {
783 struct edge_info *edge_info;
784
785 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
786 e->count, taken_edge);
787 if (e->aux)
788 edge_info = e->aux;
789 else
790 edge_info = allocate_edge_info (e);
791 edge_info->redirection_target = taken_edge;
792 bb_ann (e->dest)->incoming_edge_threaded = true;
793 }
794 }
795 }
796 }
797
798
799 /* Initialize local stacks for this optimizer and record equivalences
800 upon entry to BB. Equivalences can come from the edge traversed to
801 reach BB or they may come from PHI nodes at the start of BB. */
802
803 static void
804 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
805 basic_block bb)
806 {
807 if (dump_file && (dump_flags & TDF_DETAILS))
808 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
809
810 /* Push a marker on the stacks of local information so that we know how
811 far to unwind when we finalize this block. */
812 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
813 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
814 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
815 VEC_safe_push (tree_on_heap, nonzero_vars_stack, NULL_TREE);
816 VEC_safe_push (tree_on_heap, vrp_variables_stack, NULL_TREE);
817
818 record_equivalences_from_incoming_edge (bb);
819
820 /* PHI nodes can create equivalences too. */
821 record_equivalences_from_phis (bb);
822 }
823
824 /* Given an expression EXPR (a relational expression or a statement),
825 initialize the hash table element pointed by by ELEMENT. */
826
827 static void
828 initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
829 {
830 /* Hash table elements may be based on conditional expressions or statements.
831
832 For the former case, we have no annotation and we want to hash the
833 conditional expression. In the latter case we have an annotation and
834 we want to record the expression the statement evaluates. */
835 if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
836 {
837 element->ann = NULL;
838 element->rhs = expr;
839 }
840 else if (TREE_CODE (expr) == COND_EXPR)
841 {
842 element->ann = stmt_ann (expr);
843 element->rhs = COND_EXPR_COND (expr);
844 }
845 else if (TREE_CODE (expr) == SWITCH_EXPR)
846 {
847 element->ann = stmt_ann (expr);
848 element->rhs = SWITCH_COND (expr);
849 }
850 else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
851 {
852 element->ann = stmt_ann (expr);
853 element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
854 }
855 else
856 {
857 element->ann = stmt_ann (expr);
858 element->rhs = TREE_OPERAND (expr, 1);
859 }
860
861 element->lhs = lhs;
862 element->hash = avail_expr_hash (element);
863 }
864
865 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
866 LIMIT entries left in LOCALs. */
867
868 static void
869 remove_local_expressions_from_table (void)
870 {
871 /* Remove all the expressions made available in this block. */
872 while (VEC_length (tree_on_heap, avail_exprs_stack) > 0)
873 {
874 struct expr_hash_elt element;
875 tree expr = VEC_pop (tree_on_heap, avail_exprs_stack);
876
877 if (expr == NULL_TREE)
878 break;
879
880 initialize_hash_element (expr, NULL, &element);
881 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
882 }
883 }
884
885 /* Use the SSA_NAMES in LOCALS to restore TABLE to its original
886 state, stopping when there are LIMIT entries left in LOCALs. */
887
888 static void
889 restore_nonzero_vars_to_original_value (void)
890 {
891 while (VEC_length (tree_on_heap, nonzero_vars_stack) > 0)
892 {
893 tree name = VEC_pop (tree_on_heap, nonzero_vars_stack);
894
895 if (name == NULL)
896 break;
897
898 bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
899 }
900 }
901
902 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
903 CONST_AND_COPIES to its original state, stopping when we hit a
904 NULL marker. */
905
906 static void
907 restore_vars_to_original_value (void)
908 {
909 while (VEC_length (tree_on_heap, const_and_copies_stack) > 0)
910 {
911 tree prev_value, dest;
912
913 dest = VEC_pop (tree_on_heap, const_and_copies_stack);
914
915 if (dest == NULL)
916 break;
917
918 prev_value = VEC_pop (tree_on_heap, const_and_copies_stack);
919 SSA_NAME_VALUE (dest) = prev_value;
920 }
921 }
922
923 /* Similar to restore_vars_to_original_value, except that it restores
924 CURRDEFS to its original value. */
925 static void
926 restore_currdefs_to_original_value (void)
927 {
928 /* Restore CURRDEFS to its original state. */
929 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
930 {
931 tree tmp = VEC_pop (tree_on_heap, block_defs_stack);
932 tree saved_def, var;
933
934 if (tmp == NULL_TREE)
935 break;
936
937 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
938 definition of its underlying variable. If we recorded anything
939 else, it must have been an _DECL node and its current reaching
940 definition must have been NULL. */
941 if (TREE_CODE (tmp) == SSA_NAME)
942 {
943 saved_def = tmp;
944 var = SSA_NAME_VAR (saved_def);
945 }
946 else
947 {
948 saved_def = NULL;
949 var = tmp;
950 }
951
952 var_ann (var)->current_def = saved_def;
953 }
954 }
955
956 /* We have finished processing the dominator children of BB, perform
957 any finalization actions in preparation for leaving this node in
958 the dominator tree. */
959
960 static void
961 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
962 {
963 tree last;
964
965 /* If we are at a leaf node in the dominator tree, see if we can thread
966 the edge from BB through its successor.
967
968 Do this before we remove entries from our equivalence tables. */
969 if (EDGE_COUNT (bb->succs) == 1
970 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
971 && (get_immediate_dominator (CDI_DOMINATORS, EDGE_SUCC (bb, 0)->dest) != bb
972 || phi_nodes (EDGE_SUCC (bb, 0)->dest)))
973
974 {
975 thread_across_edge (walk_data, EDGE_SUCC (bb, 0));
976 }
977 else if ((last = last_stmt (bb))
978 && TREE_CODE (last) == COND_EXPR
979 && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
980 || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
981 && EDGE_COUNT (bb->succs) == 2
982 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
983 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
984 {
985 edge true_edge, false_edge;
986
987 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
988
989 /* If the THEN arm is the end of a dominator tree or has PHI nodes,
990 then try to thread through its edge. */
991 if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
992 || phi_nodes (true_edge->dest))
993 {
994 struct edge_info *edge_info;
995 unsigned int i;
996
997 /* Push a marker onto the available expression stack so that we
998 unwind any expressions related to the TRUE arm before processing
999 the false arm below. */
1000 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
1001 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
1002 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
1003
1004 edge_info = true_edge->aux;
1005
1006 /* If we have info associated with this edge, record it into
1007 our equivalency tables. */
1008 if (edge_info)
1009 {
1010 tree *cond_equivalences = edge_info->cond_equivalences;
1011 tree lhs = edge_info->lhs;
1012 tree rhs = edge_info->rhs;
1013
1014 /* If we have a simple NAME = VALUE equivalency record it.
1015 Until the jump threading selection code improves, only
1016 do this if both the name and value are SSA_NAMEs with
1017 the same underlying variable to avoid missing threading
1018 opportunities. */
1019 if (lhs
1020 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME
1021 && TREE_CODE (edge_info->rhs) == SSA_NAME
1022 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs))
1023 record_const_or_copy (lhs, rhs);
1024
1025 /* If we have 0 = COND or 1 = COND equivalences, record them
1026 into our expression hash tables. */
1027 if (cond_equivalences)
1028 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1029 {
1030 tree expr = cond_equivalences[i];
1031 tree value = cond_equivalences[i + 1];
1032
1033 record_cond (expr, value);
1034 }
1035 }
1036
1037 /* Now thread the edge. */
1038 thread_across_edge (walk_data, true_edge);
1039
1040 /* And restore the various tables to their state before
1041 we threaded this edge. */
1042 remove_local_expressions_from_table ();
1043 restore_vars_to_original_value ();
1044 restore_currdefs_to_original_value ();
1045 }
1046
1047 /* Similarly for the ELSE arm. */
1048 if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
1049 || phi_nodes (false_edge->dest))
1050 {
1051 struct edge_info *edge_info;
1052 unsigned int i;
1053
1054 edge_info = false_edge->aux;
1055
1056 /* If we have info associated with this edge, record it into
1057 our equivalency tables. */
1058 if (edge_info)
1059 {
1060 tree *cond_equivalences = edge_info->cond_equivalences;
1061 tree lhs = edge_info->lhs;
1062 tree rhs = edge_info->rhs;
1063
1064 /* If we have a simple NAME = VALUE equivalency record it.
1065 Until the jump threading selection code improves, only
1066 do this if both the name and value are SSA_NAMEs with
1067 the same underlying variable to avoid missing threading
1068 opportunities. */
1069 if (lhs
1070 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1071 record_const_or_copy (lhs, rhs);
1072
1073 /* If we have 0 = COND or 1 = COND equivalences, record them
1074 into our expression hash tables. */
1075 if (cond_equivalences)
1076 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1077 {
1078 tree expr = cond_equivalences[i];
1079 tree value = cond_equivalences[i + 1];
1080
1081 record_cond (expr, value);
1082 }
1083 }
1084
1085 thread_across_edge (walk_data, false_edge);
1086
1087 /* No need to remove local expressions from our tables
1088 or restore vars to their original value as that will
1089 be done immediately below. */
1090 }
1091 }
1092
1093 remove_local_expressions_from_table ();
1094 restore_nonzero_vars_to_original_value ();
1095 restore_vars_to_original_value ();
1096 restore_currdefs_to_original_value ();
1097
1098 /* Remove VRP records associated with this basic block. They are no
1099 longer valid.
1100
1101 To be efficient, we note which variables have had their values
1102 constrained in this block. So walk over each variable in the
1103 VRP_VARIABLEs array. */
1104 while (VEC_length (tree_on_heap, vrp_variables_stack) > 0)
1105 {
1106 tree var = VEC_pop (tree_on_heap, vrp_variables_stack);
1107 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1108 void **slot;
1109
1110 /* Each variable has a stack of value range records. We want to
1111 invalidate those associated with our basic block. So we walk
1112 the array backwards popping off records associated with our
1113 block. Once we hit a record not associated with our block
1114 we are done. */
1115 varray_type var_vrp_records;
1116
1117 if (var == NULL)
1118 break;
1119
1120 vrp_hash_elt.var = var;
1121 vrp_hash_elt.records = NULL;
1122
1123 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
1124
1125 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
1126 var_vrp_records = vrp_hash_elt_p->records;
1127
1128 while (VARRAY_ACTIVE_SIZE (var_vrp_records) > 0)
1129 {
1130 struct vrp_element *element
1131 = (struct vrp_element *)VARRAY_TOP_GENERIC_PTR (var_vrp_records);
1132
1133 if (element->bb != bb)
1134 break;
1135
1136 VARRAY_POP (var_vrp_records);
1137 }
1138 }
1139
1140 /* If we queued any statements to rescan in this block, then
1141 go ahead and rescan them now. */
1142 while (VEC_length (tree_on_heap, stmts_to_rescan) > 0)
1143 {
1144 tree stmt = VEC_last (tree_on_heap, stmts_to_rescan);
1145 basic_block stmt_bb = bb_for_stmt (stmt);
1146
1147 if (stmt_bb != bb)
1148 break;
1149
1150 VEC_pop (tree_on_heap, stmts_to_rescan);
1151 mark_new_vars_to_rename (stmt, vars_to_rename);
1152 }
1153 }
1154
1155 /* PHI nodes can create equivalences too.
1156
1157 Ignoring any alternatives which are the same as the result, if
1158 all the alternatives are equal, then the PHI node creates an
1159 equivalence.
1160
1161 Additionally, if all the PHI alternatives are known to have a nonzero
1162 value, then the result of this PHI is known to have a nonzero value,
1163 even if we do not know its exact value. */
1164
1165 static void
1166 record_equivalences_from_phis (basic_block bb)
1167 {
1168 tree phi;
1169
1170 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1171 {
1172 tree lhs = PHI_RESULT (phi);
1173 tree rhs = NULL;
1174 int i;
1175
1176 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1177 {
1178 tree t = PHI_ARG_DEF (phi, i);
1179
1180 /* Ignore alternatives which are the same as our LHS. */
1181 if (operand_equal_for_phi_arg_p (lhs, t))
1182 continue;
1183
1184 /* If we have not processed an alternative yet, then set
1185 RHS to this alternative. */
1186 if (rhs == NULL)
1187 rhs = t;
1188 /* If we have processed an alternative (stored in RHS), then
1189 see if it is equal to this one. If it isn't, then stop
1190 the search. */
1191 else if (! operand_equal_for_phi_arg_p (rhs, t))
1192 break;
1193 }
1194
1195 /* If we had no interesting alternatives, then all the RHS alternatives
1196 must have been the same as LHS. */
1197 if (!rhs)
1198 rhs = lhs;
1199
1200 /* If we managed to iterate through each PHI alternative without
1201 breaking out of the loop, then we have a PHI which may create
1202 a useful equivalence. We do not need to record unwind data for
1203 this, since this is a true assignment and not an equivalence
1204 inferred from a comparison. All uses of this ssa name are dominated
1205 by this assignment, so unwinding just costs time and space. */
1206 if (i == PHI_NUM_ARGS (phi)
1207 && may_propagate_copy (lhs, rhs))
1208 SSA_NAME_VALUE (lhs) = rhs;
1209
1210 /* Now see if we know anything about the nonzero property for the
1211 result of this PHI. */
1212 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1213 {
1214 if (!PHI_ARG_NONZERO (phi, i))
1215 break;
1216 }
1217
1218 if (i == PHI_NUM_ARGS (phi))
1219 bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
1220
1221 register_new_def (lhs, &block_defs_stack);
1222 }
1223 }
1224
1225 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1226 return that edge. Otherwise return NULL. */
1227 static edge
1228 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1229 {
1230 edge retval = NULL;
1231 edge e;
1232 edge_iterator ei;
1233
1234 FOR_EACH_EDGE (e, ei, bb->preds)
1235 {
1236 /* A loop back edge can be identified by the destination of
1237 the edge dominating the source of the edge. */
1238 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1239 continue;
1240
1241 /* If we have already seen a non-loop edge, then we must have
1242 multiple incoming non-loop edges and thus we return NULL. */
1243 if (retval)
1244 return NULL;
1245
1246 /* This is the first non-loop incoming edge we have found. Record
1247 it. */
1248 retval = e;
1249 }
1250
1251 return retval;
1252 }
1253
1254 /* Record any equivalences created by the incoming edge to BB. If BB
1255 has more than one incoming edge, then no equivalence is created. */
1256
1257 static void
1258 record_equivalences_from_incoming_edge (basic_block bb)
1259 {
1260 edge e;
1261 basic_block parent;
1262 struct edge_info *edge_info;
1263
1264 /* If our parent block ended with a control statment, then we may be
1265 able to record some equivalences based on which outgoing edge from
1266 the parent was followed. */
1267 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1268
1269 e = single_incoming_edge_ignoring_loop_edges (bb);
1270
1271 /* If we had a single incoming edge from our parent block, then enter
1272 any data associated with the edge into our tables. */
1273 if (e && e->src == parent)
1274 {
1275 unsigned int i;
1276
1277 edge_info = e->aux;
1278
1279 if (edge_info)
1280 {
1281 tree lhs = edge_info->lhs;
1282 tree rhs = edge_info->rhs;
1283 tree *cond_equivalences = edge_info->cond_equivalences;
1284
1285 if (lhs)
1286 record_equality (lhs, rhs);
1287
1288 if (cond_equivalences)
1289 {
1290 bool recorded_range = false;
1291 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1292 {
1293 tree expr = cond_equivalences[i];
1294 tree value = cond_equivalences[i + 1];
1295
1296 record_cond (expr, value);
1297
1298 /* For the first true equivalence, record range
1299 information. We only do this for the first
1300 true equivalence as it should dominate any
1301 later true equivalences. */
1302 if (! recorded_range
1303 && COMPARISON_CLASS_P (expr)
1304 && value == boolean_true_node
1305 && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
1306 {
1307 record_range (expr, bb);
1308 recorded_range = true;
1309 }
1310 }
1311 }
1312 }
1313 }
1314 }
1315
1316 /* Dump SSA statistics on FILE. */
1317
1318 void
1319 dump_dominator_optimization_stats (FILE *file)
1320 {
1321 long n_exprs;
1322
1323 fprintf (file, "Total number of statements: %6ld\n\n",
1324 opt_stats.num_stmts);
1325 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1326 opt_stats.num_exprs_considered);
1327
1328 n_exprs = opt_stats.num_exprs_considered;
1329 if (n_exprs == 0)
1330 n_exprs = 1;
1331
1332 fprintf (file, " Redundant expressions eliminated: %6ld (%.0f%%)\n",
1333 opt_stats.num_re, PERCENT (opt_stats.num_re,
1334 n_exprs));
1335
1336 fprintf (file, "\nHash table statistics:\n");
1337
1338 fprintf (file, " avail_exprs: ");
1339 htab_statistics (file, avail_exprs);
1340 }
1341
1342
1343 /* Dump SSA statistics on stderr. */
1344
1345 void
1346 debug_dominator_optimization_stats (void)
1347 {
1348 dump_dominator_optimization_stats (stderr);
1349 }
1350
1351
1352 /* Dump statistics for the hash table HTAB. */
1353
1354 static void
1355 htab_statistics (FILE *file, htab_t htab)
1356 {
1357 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1358 (long) htab_size (htab),
1359 (long) htab_elements (htab),
1360 htab_collisions (htab));
1361 }
1362
1363 /* Record the fact that VAR has a nonzero value, though we may not know
1364 its exact value. Note that if VAR is already known to have a nonzero
1365 value, then we do nothing. */
1366
1367 static void
1368 record_var_is_nonzero (tree var)
1369 {
1370 int indx = SSA_NAME_VERSION (var);
1371
1372 if (bitmap_bit_p (nonzero_vars, indx))
1373 return;
1374
1375 /* Mark it in the global table. */
1376 bitmap_set_bit (nonzero_vars, indx);
1377
1378 /* Record this SSA_NAME so that we can reset the global table
1379 when we leave this block. */
1380 VEC_safe_push (tree_on_heap, nonzero_vars_stack, var);
1381 }
1382
1383 /* Enter a statement into the true/false expression hash table indicating
1384 that the condition COND has the value VALUE. */
1385
1386 static void
1387 record_cond (tree cond, tree value)
1388 {
1389 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
1390 void **slot;
1391
1392 initialize_hash_element (cond, value, element);
1393
1394 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1395 element->hash, true);
1396 if (*slot == NULL)
1397 {
1398 *slot = (void *) element;
1399 VEC_safe_push (tree_on_heap, avail_exprs_stack, cond);
1400 }
1401 else
1402 free (element);
1403 }
1404
1405 /* Build a new conditional using NEW_CODE, OP0 and OP1 and store
1406 the new conditional into *p, then store a boolean_true_node
1407 into the the *(p + 1). */
1408
1409 static void
1410 build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
1411 {
1412 *p = build2 (new_code, boolean_type_node, op0, op1);
1413 p++;
1414 *p = boolean_true_node;
1415 }
1416
1417 /* Record that COND is true and INVERTED is false into the edge information
1418 structure. Also record that any conditions dominated by COND are true
1419 as well.
1420
1421 For example, if a < b is true, then a <= b must also be true. */
1422
1423 static void
1424 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1425 {
1426 tree op0, op1;
1427
1428 if (!COMPARISON_CLASS_P (cond))
1429 return;
1430
1431 op0 = TREE_OPERAND (cond, 0);
1432 op1 = TREE_OPERAND (cond, 1);
1433
1434 switch (TREE_CODE (cond))
1435 {
1436 case LT_EXPR:
1437 case GT_EXPR:
1438 edge_info->max_cond_equivalences = 12;
1439 edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
1440 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1441 ? LE_EXPR : GE_EXPR),
1442 op0, op1, &edge_info->cond_equivalences[4]);
1443 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1444 &edge_info->cond_equivalences[6]);
1445 build_and_record_new_cond (NE_EXPR, op0, op1,
1446 &edge_info->cond_equivalences[8]);
1447 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1448 &edge_info->cond_equivalences[10]);
1449 break;
1450
1451 case GE_EXPR:
1452 case LE_EXPR:
1453 edge_info->max_cond_equivalences = 6;
1454 edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
1455 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1456 &edge_info->cond_equivalences[4]);
1457 break;
1458
1459 case EQ_EXPR:
1460 edge_info->max_cond_equivalences = 10;
1461 edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
1462 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1463 &edge_info->cond_equivalences[4]);
1464 build_and_record_new_cond (LE_EXPR, op0, op1,
1465 &edge_info->cond_equivalences[6]);
1466 build_and_record_new_cond (GE_EXPR, op0, op1,
1467 &edge_info->cond_equivalences[8]);
1468 break;
1469
1470 case UNORDERED_EXPR:
1471 edge_info->max_cond_equivalences = 16;
1472 edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
1473 build_and_record_new_cond (NE_EXPR, op0, op1,
1474 &edge_info->cond_equivalences[4]);
1475 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1476 &edge_info->cond_equivalences[6]);
1477 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1478 &edge_info->cond_equivalences[8]);
1479 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1480 &edge_info->cond_equivalences[10]);
1481 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1482 &edge_info->cond_equivalences[12]);
1483 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1484 &edge_info->cond_equivalences[14]);
1485 break;
1486
1487 case UNLT_EXPR:
1488 case UNGT_EXPR:
1489 edge_info->max_cond_equivalences = 8;
1490 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1491 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1492 ? UNLE_EXPR : UNGE_EXPR),
1493 op0, op1, &edge_info->cond_equivalences[4]);
1494 build_and_record_new_cond (NE_EXPR, op0, op1,
1495 &edge_info->cond_equivalences[6]);
1496 break;
1497
1498 case UNEQ_EXPR:
1499 edge_info->max_cond_equivalences = 8;
1500 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1501 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1502 &edge_info->cond_equivalences[4]);
1503 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1504 &edge_info->cond_equivalences[6]);
1505 break;
1506
1507 case LTGT_EXPR:
1508 edge_info->max_cond_equivalences = 8;
1509 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1510 build_and_record_new_cond (NE_EXPR, op0, op1,
1511 &edge_info->cond_equivalences[4]);
1512 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1513 &edge_info->cond_equivalences[6]);
1514 break;
1515
1516 default:
1517 edge_info->max_cond_equivalences = 4;
1518 edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
1519 break;
1520 }
1521
1522 /* Now store the original true and false conditions into the first
1523 two slots. */
1524 edge_info->cond_equivalences[0] = cond;
1525 edge_info->cond_equivalences[1] = boolean_true_node;
1526 edge_info->cond_equivalences[2] = inverted;
1527 edge_info->cond_equivalences[3] = boolean_false_node;
1528 }
1529
1530 /* A helper function for record_const_or_copy and record_equality.
1531 Do the work of recording the value and undo info. */
1532
1533 static void
1534 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1535 {
1536 SSA_NAME_VALUE (x) = y;
1537
1538 VEC_safe_push (tree_on_heap, const_and_copies_stack, prev_x);
1539 VEC_safe_push (tree_on_heap, const_and_copies_stack, x);
1540 }
1541
1542
1543 /* Return the loop depth of the basic block of the defining statement of X.
1544 This number should not be treated as absolutely correct because the loop
1545 information may not be completely up-to-date when dom runs. However, it
1546 will be relatively correct, and as more passes are taught to keep loop info
1547 up to date, the result will become more and more accurate. */
1548
1549 static int
1550 loop_depth_of_name (tree x)
1551 {
1552 tree defstmt;
1553 basic_block defbb;
1554
1555 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1556 if (TREE_CODE (x) != SSA_NAME)
1557 return 0;
1558
1559 /* Otherwise return the loop depth of the defining statement's bb.
1560 Note that there may not actually be a bb for this statement, if the
1561 ssa_name is live on entry. */
1562 defstmt = SSA_NAME_DEF_STMT (x);
1563 defbb = bb_for_stmt (defstmt);
1564 if (!defbb)
1565 return 0;
1566
1567 return defbb->loop_depth;
1568 }
1569
1570
1571 /* Record that X is equal to Y in const_and_copies. Record undo
1572 information in the block-local vector. */
1573
1574 static void
1575 record_const_or_copy (tree x, tree y)
1576 {
1577 tree prev_x = SSA_NAME_VALUE (x);
1578
1579 if (TREE_CODE (y) == SSA_NAME)
1580 {
1581 tree tmp = SSA_NAME_VALUE (y);
1582 if (tmp)
1583 y = tmp;
1584 }
1585
1586 record_const_or_copy_1 (x, y, prev_x);
1587 }
1588
1589 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1590 This constrains the cases in which we may treat this as assignment. */
1591
1592 static void
1593 record_equality (tree x, tree y)
1594 {
1595 tree prev_x = NULL, prev_y = NULL;
1596
1597 if (TREE_CODE (x) == SSA_NAME)
1598 prev_x = SSA_NAME_VALUE (x);
1599 if (TREE_CODE (y) == SSA_NAME)
1600 prev_y = SSA_NAME_VALUE (y);
1601
1602 /* If one of the previous values is invariant, or invariant in more loops
1603 (by depth), then use that.
1604 Otherwise it doesn't matter which value we choose, just so
1605 long as we canonicalize on one value. */
1606 if (TREE_INVARIANT (y))
1607 ;
1608 else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1609 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1610 else if (prev_x && TREE_INVARIANT (prev_x))
1611 x = y, y = prev_x, prev_x = prev_y;
1612 else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
1613 y = prev_y;
1614
1615 /* After the swapping, we must have one SSA_NAME. */
1616 if (TREE_CODE (x) != SSA_NAME)
1617 return;
1618
1619 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1620 variable compared against zero. If we're honoring signed zeros,
1621 then we cannot record this value unless we know that the value is
1622 nonzero. */
1623 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1624 && (TREE_CODE (y) != REAL_CST
1625 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1626 return;
1627
1628 record_const_or_copy_1 (x, y, prev_x);
1629 }
1630
1631 /* Return true, if it is ok to do folding of an associative expression.
1632 EXP is the tree for the associative expression. */
1633
1634 static inline bool
1635 unsafe_associative_fp_binop (tree exp)
1636 {
1637 enum tree_code code = TREE_CODE (exp);
1638 return !(!flag_unsafe_math_optimizations
1639 && (code == MULT_EXPR || code == PLUS_EXPR
1640 || code == MINUS_EXPR)
1641 && FLOAT_TYPE_P (TREE_TYPE (exp)));
1642 }
1643
1644 /* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
1645 hash tables. Try to simplify the RHS using whatever equivalences
1646 we may have recorded.
1647
1648 If we are able to simplify the RHS, then lookup the simplified form in
1649 the hash table and return the result. Otherwise return NULL. */
1650
1651 static tree
1652 simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *walk_data,
1653 tree stmt, int insert)
1654 {
1655 tree rhs = TREE_OPERAND (stmt, 1);
1656 enum tree_code rhs_code = TREE_CODE (rhs);
1657 tree result = NULL;
1658
1659 /* If we have lhs = ~x, look and see if we earlier had x = ~y.
1660 In which case we can change this statement to be lhs = y.
1661 Which can then be copy propagated.
1662
1663 Similarly for negation. */
1664 if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
1665 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1666 {
1667 /* Get the definition statement for our RHS. */
1668 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1669
1670 /* See if the RHS_DEF_STMT has the same form as our statement. */
1671 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
1672 && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
1673 {
1674 tree rhs_def_operand;
1675
1676 rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);
1677
1678 /* Verify that RHS_DEF_OPERAND is a suitable SSA variable. */
1679 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1680 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1681 result = update_rhs_and_lookup_avail_expr (stmt,
1682 rhs_def_operand,
1683 insert);
1684 }
1685 }
1686
1687 /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
1688 If OP is associative, create and fold (y OP C2) OP C1 which
1689 should result in (y OP C3), use that as the RHS for the
1690 assignment. Add minus to this, as we handle it specially below. */
1691 if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
1692 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
1693 && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
1694 {
1695 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1696
1697 /* See if the RHS_DEF_STMT has the same form as our statement. */
1698 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
1699 {
1700 tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
1701 enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);
1702
1703 if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
1704 || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
1705 || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
1706 {
1707 tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
1708 tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);
1709
1710 if (TREE_CODE (def_stmt_op0) == SSA_NAME
1711 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
1712 && is_gimple_min_invariant (def_stmt_op1))
1713 {
1714 tree outer_const = TREE_OPERAND (rhs, 1);
1715 tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
1716 tree t;
1717
1718 /* If we care about correct floating point results, then
1719 don't fold x + c1 - c2. Note that we need to take both
1720 the codes and the signs to figure this out. */
1721 if (FLOAT_TYPE_P (type)
1722 && !flag_unsafe_math_optimizations
1723 && (rhs_def_code == PLUS_EXPR
1724 || rhs_def_code == MINUS_EXPR))
1725 {
1726 bool neg = false;
1727
1728 neg ^= (rhs_code == MINUS_EXPR);
1729 neg ^= (rhs_def_code == MINUS_EXPR);
1730 neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
1731 neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));
1732
1733 if (neg)
1734 goto dont_fold_assoc;
1735 }
1736
1737 /* Ho hum. So fold will only operate on the outermost
1738 thingy that we give it, so we have to build the new
1739 expression in two pieces. This requires that we handle
1740 combinations of plus and minus. */
1741 if (rhs_def_code != rhs_code)
1742 {
1743 if (rhs_def_code == MINUS_EXPR)
1744 t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
1745 else
1746 t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
1747 rhs_code = PLUS_EXPR;
1748 }
1749 else if (rhs_def_code == MINUS_EXPR)
1750 t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
1751 else
1752 t = build (rhs_def_code, type, def_stmt_op1, outer_const);
1753 t = local_fold (t);
1754 t = build (rhs_code, type, def_stmt_op0, t);
1755 t = local_fold (t);
1756
1757 /* If the result is a suitable looking gimple expression,
1758 then use it instead of the original for STMT. */
1759 if (TREE_CODE (t) == SSA_NAME
1760 || (UNARY_CLASS_P (t)
1761 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1762 || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
1763 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
1764 && is_gimple_val (TREE_OPERAND (t, 1))))
1765 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1766 }
1767 }
1768 }
1769 dont_fold_assoc:;
1770 }
1771
1772 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
1773 and BIT_AND_EXPR respectively if the first operand is greater
1774 than zero and the second operand is an exact power of two. */
1775 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
1776 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
1777 && integer_pow2p (TREE_OPERAND (rhs, 1)))
1778 {
1779 tree val;
1780 tree op = TREE_OPERAND (rhs, 0);
1781
1782 if (TYPE_UNSIGNED (TREE_TYPE (op)))
1783 {
1784 val = integer_one_node;
1785 }
1786 else
1787 {
1788 tree dummy_cond = walk_data->global_data;
1789
1790 if (! dummy_cond)
1791 {
1792 dummy_cond = build (GT_EXPR, boolean_type_node,
1793 op, integer_zero_node);
1794 dummy_cond = build (COND_EXPR, void_type_node,
1795 dummy_cond, NULL, NULL);
1796 walk_data->global_data = dummy_cond;
1797 }
1798 else
1799 {
1800 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GT_EXPR);
1801 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1802 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1803 = integer_zero_node;
1804 }
1805 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1806 }
1807
1808 if (val && integer_onep (val))
1809 {
1810 tree t;
1811 tree op0 = TREE_OPERAND (rhs, 0);
1812 tree op1 = TREE_OPERAND (rhs, 1);
1813
1814 if (rhs_code == TRUNC_DIV_EXPR)
1815 t = build (RSHIFT_EXPR, TREE_TYPE (op0), op0,
1816 build_int_cst (NULL_TREE, tree_log2 (op1)));
1817 else
1818 t = build (BIT_AND_EXPR, TREE_TYPE (op0), op0,
1819 local_fold (build (MINUS_EXPR, TREE_TYPE (op1),
1820 op1, integer_one_node)));
1821
1822 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1823 }
1824 }
1825
1826 /* Transform ABS (X) into X or -X as appropriate. */
1827 if (rhs_code == ABS_EXPR
1828 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
1829 {
1830 tree val;
1831 tree op = TREE_OPERAND (rhs, 0);
1832 tree type = TREE_TYPE (op);
1833
1834 if (TYPE_UNSIGNED (type))
1835 {
1836 val = integer_zero_node;
1837 }
1838 else
1839 {
1840 tree dummy_cond = walk_data->global_data;
1841
1842 if (! dummy_cond)
1843 {
1844 dummy_cond = build (LE_EXPR, boolean_type_node,
1845 op, integer_zero_node);
1846 dummy_cond = build (COND_EXPR, void_type_node,
1847 dummy_cond, NULL, NULL);
1848 walk_data->global_data = dummy_cond;
1849 }
1850 else
1851 {
1852 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), LE_EXPR);
1853 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1854 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1855 = build_int_cst (type, 0);
1856 }
1857 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1858
1859 if (!val)
1860 {
1861 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GE_EXPR);
1862 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1863 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1864 = build_int_cst (type, 0);
1865
1866 val = simplify_cond_and_lookup_avail_expr (dummy_cond,
1867 NULL, false);
1868
1869 if (val)
1870 {
1871 if (integer_zerop (val))
1872 val = integer_one_node;
1873 else if (integer_onep (val))
1874 val = integer_zero_node;
1875 }
1876 }
1877 }
1878
1879 if (val
1880 && (integer_onep (val) || integer_zerop (val)))
1881 {
1882 tree t;
1883
1884 if (integer_onep (val))
1885 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
1886 else
1887 t = op;
1888
1889 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1890 }
1891 }
1892
1893 /* Optimize *"foo" into 'f'. This is done here rather than
1894 in fold to avoid problems with stuff like &*"foo". */
1895 if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
1896 {
1897 tree t = fold_read_from_constant_string (rhs);
1898
1899 if (t)
1900 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1901 }
1902
1903 return result;
1904 }
1905
1906 /* COND is a condition of the form:
1907
1908 x == const or x != const
1909
1910 Look back to x's defining statement and see if x is defined as
1911
1912 x = (type) y;
1913
1914 If const is unchanged if we convert it to type, then we can build
1915 the equivalent expression:
1916
1917
1918 y == const or y != const
1919
1920 Which may allow further optimizations.
1921
1922 Return the equivalent comparison or NULL if no such equivalent comparison
1923 was found. */
1924
1925 static tree
1926 find_equivalent_equality_comparison (tree cond)
1927 {
1928 tree op0 = TREE_OPERAND (cond, 0);
1929 tree op1 = TREE_OPERAND (cond, 1);
1930 tree def_stmt = SSA_NAME_DEF_STMT (op0);
1931
1932 /* OP0 might have been a parameter, so first make sure it
1933 was defined by a MODIFY_EXPR. */
1934 if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
1935 {
1936 tree def_rhs = TREE_OPERAND (def_stmt, 1);
1937
1938 /* Now make sure the RHS of the MODIFY_EXPR is a typecast. */
1939 if ((TREE_CODE (def_rhs) == NOP_EXPR
1940 || TREE_CODE (def_rhs) == CONVERT_EXPR)
1941 && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
1942 {
1943 tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
1944 tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
1945 tree new;
1946
1947 if (TYPE_PRECISION (def_rhs_inner_type)
1948 > TYPE_PRECISION (TREE_TYPE (def_rhs)))
1949 return NULL;
1950
1951 /* What we want to prove is that if we convert OP1 to
1952 the type of the object inside the NOP_EXPR that the
1953 result is still equivalent to SRC.
1954
1955 If that is true, the build and return new equivalent
1956 condition which uses the source of the typecast and the
1957 new constant (which has only changed its type). */
1958 new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
1959 new = local_fold (new);
1960 if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
1961 return build (TREE_CODE (cond), TREE_TYPE (cond),
1962 def_rhs_inner, new);
1963 }
1964 }
1965 return NULL;
1966 }
1967
1968 /* STMT is a COND_EXPR for which we could not trivially determine its
1969 result. This routine attempts to find equivalent forms of the
1970 condition which we may be able to optimize better. It also
1971 uses simple value range propagation to optimize conditionals. */
1972
1973 static tree
1974 simplify_cond_and_lookup_avail_expr (tree stmt,
1975 stmt_ann_t ann,
1976 int insert)
1977 {
1978 tree cond = COND_EXPR_COND (stmt);
1979
1980 if (COMPARISON_CLASS_P (cond))
1981 {
1982 tree op0 = TREE_OPERAND (cond, 0);
1983 tree op1 = TREE_OPERAND (cond, 1);
1984
1985 if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
1986 {
1987 int limit;
1988 tree low, high, cond_low, cond_high;
1989 int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
1990 varray_type vrp_records;
1991 struct vrp_element *element;
1992 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1993 void **slot;
1994
1995 /* First see if we have test of an SSA_NAME against a constant
1996 where the SSA_NAME is defined by an earlier typecast which
1997 is irrelevant when performing tests against the given
1998 constant. */
1999 if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2000 {
2001 tree new_cond = find_equivalent_equality_comparison (cond);
2002
2003 if (new_cond)
2004 {
2005 /* Update the statement to use the new equivalent
2006 condition. */
2007 COND_EXPR_COND (stmt) = new_cond;
2008
2009 /* If this is not a real stmt, ann will be NULL and we
2010 avoid processing the operands. */
2011 if (ann)
2012 modify_stmt (stmt);
2013
2014 /* Lookup the condition and return its known value if it
2015 exists. */
2016 new_cond = lookup_avail_expr (stmt, insert);
2017 if (new_cond)
2018 return new_cond;
2019
2020 /* The operands have changed, so update op0 and op1. */
2021 op0 = TREE_OPERAND (cond, 0);
2022 op1 = TREE_OPERAND (cond, 1);
2023 }
2024 }
2025
2026 /* Consult the value range records for this variable (if they exist)
2027 to see if we can eliminate or simplify this conditional.
2028
2029 Note two tests are necessary to determine no records exist.
2030 First we have to see if the virtual array exists, if it
2031 exists, then we have to check its active size.
2032
2033 Also note the vast majority of conditionals are not testing
2034 a variable which has had its range constrained by an earlier
2035 conditional. So this filter avoids a lot of unnecessary work. */
2036 vrp_hash_elt.var = op0;
2037 vrp_hash_elt.records = NULL;
2038 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
2039 if (slot == NULL)
2040 return NULL;
2041
2042 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
2043 vrp_records = vrp_hash_elt_p->records;
2044 if (vrp_records == NULL)
2045 return NULL;
2046
2047 limit = VARRAY_ACTIVE_SIZE (vrp_records);
2048
2049 /* If we have no value range records for this variable, or we are
2050 unable to extract a range for this condition, then there is
2051 nothing to do. */
2052 if (limit == 0
2053 || ! extract_range_from_cond (cond, &cond_high,
2054 &cond_low, &cond_inverted))
2055 return NULL;
2056
2057 /* We really want to avoid unnecessary computations of range
2058 info. So all ranges are computed lazily; this avoids a
2059 lot of unnecessary work. i.e., we record the conditional,
2060 but do not process how it constrains the variable's
2061 potential values until we know that processing the condition
2062 could be helpful.
2063
2064 However, we do not want to have to walk a potentially long
2065 list of ranges, nor do we want to compute a variable's
2066 range more than once for a given path.
2067
2068 Luckily, each time we encounter a conditional that can not
2069 be otherwise optimized we will end up here and we will
2070 compute the necessary range information for the variable
2071 used in this condition.
2072
2073 Thus you can conclude that there will never be more than one
2074 conditional associated with a variable which has not been
2075 processed. So we never need to merge more than one new
2076 conditional into the current range.
2077
2078 These properties also help us avoid unnecessary work. */
2079 element
2080 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records, limit - 1);
2081
2082 if (element->high && element->low)
2083 {
2084 /* The last element has been processed, so there is no range
2085 merging to do, we can simply use the high/low values
2086 recorded in the last element. */
2087 low = element->low;
2088 high = element->high;
2089 }
2090 else
2091 {
2092 tree tmp_high, tmp_low;
2093 int dummy;
2094
2095 /* The last element has not been processed. Process it now. */
2096 extract_range_from_cond (element->cond, &tmp_high,
2097 &tmp_low, &dummy);
2098
2099 /* If this is the only element, then no merging is necessary,
2100 the high/low values from extract_range_from_cond are all
2101 we need. */
2102 if (limit == 1)
2103 {
2104 low = tmp_low;
2105 high = tmp_high;
2106 }
2107 else
2108 {
2109 /* Get the high/low value from the previous element. */
2110 struct vrp_element *prev
2111 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records,
2112 limit - 2);
2113 low = prev->low;
2114 high = prev->high;
2115
2116 /* Merge in this element's range with the range from the
2117 previous element.
2118
2119 The low value for the merged range is the maximum of
2120 the previous low value and the low value of this record.
2121
2122 Similarly the high value for the merged range is the
2123 minimum of the previous high value and the high value of
2124 this record. */
2125 low = (tree_int_cst_compare (low, tmp_low) == 1
2126 ? low : tmp_low);
2127 high = (tree_int_cst_compare (high, tmp_high) == -1
2128 ? high : tmp_high);
2129 }
2130
2131 /* And record the computed range. */
2132 element->low = low;
2133 element->high = high;
2134
2135 }
2136
2137 /* After we have constrained this variable's potential values,
2138 we try to determine the result of the given conditional.
2139
2140 To simplify later tests, first determine if the current
2141 low value is the same low value as the conditional.
2142 Similarly for the current high value and the high value
2143 for the conditional. */
2144 lowequal = tree_int_cst_equal (low, cond_low);
2145 highequal = tree_int_cst_equal (high, cond_high);
2146
2147 if (lowequal && highequal)
2148 return (cond_inverted ? boolean_false_node : boolean_true_node);
2149
2150 /* To simplify the overlap/subset tests below we may want
2151 to swap the two ranges so that the larger of the two
2152 ranges occurs "first". */
2153 swapped = 0;
2154 if (tree_int_cst_compare (low, cond_low) == 1
2155 || (lowequal
2156 && tree_int_cst_compare (cond_high, high) == 1))
2157 {
2158 tree temp;
2159
2160 swapped = 1;
2161 temp = low;
2162 low = cond_low;
2163 cond_low = temp;
2164 temp = high;
2165 high = cond_high;
2166 cond_high = temp;
2167 }
2168
2169 /* Now determine if there is no overlap in the ranges
2170 or if the second range is a subset of the first range. */
2171 no_overlap = tree_int_cst_lt (high, cond_low);
2172 subset = tree_int_cst_compare (cond_high, high) != 1;
2173
2174 /* If there was no overlap in the ranges, then this conditional
2175 always has a false value (unless we had to invert this
2176 conditional, in which case it always has a true value). */
2177 if (no_overlap)
2178 return (cond_inverted ? boolean_true_node : boolean_false_node);
2179
2180 /* If the current range is a subset of the condition's range,
2181 then this conditional always has a true value (unless we
2182 had to invert this conditional, in which case it always
2183 has a true value). */
2184 if (subset && swapped)
2185 return (cond_inverted ? boolean_false_node : boolean_true_node);
2186
2187 /* We were unable to determine the result of the conditional.
2188 However, we may be able to simplify the conditional. First
2189 merge the ranges in the same manner as range merging above. */
2190 low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
2191 high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
2192
2193 /* If the range has converged to a single point, then turn this
2194 into an equality comparison. */
2195 if (TREE_CODE (cond) != EQ_EXPR
2196 && TREE_CODE (cond) != NE_EXPR
2197 && tree_int_cst_equal (low, high))
2198 {
2199 TREE_SET_CODE (cond, EQ_EXPR);
2200 TREE_OPERAND (cond, 1) = high;
2201 }
2202 }
2203 }
2204 return 0;
2205 }
2206
2207 /* STMT is a SWITCH_EXPR for which we could not trivially determine its
2208 result. This routine attempts to find equivalent forms of the
2209 condition which we may be able to optimize better. */
2210
2211 static tree
2212 simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
2213 {
2214 tree cond = SWITCH_COND (stmt);
2215 tree def, to, ti;
2216
2217 /* The optimization that we really care about is removing unnecessary
2218 casts. That will let us do much better in propagating the inferred
2219 constant at the switch target. */
2220 if (TREE_CODE (cond) == SSA_NAME)
2221 {
2222 def = SSA_NAME_DEF_STMT (cond);
2223 if (TREE_CODE (def) == MODIFY_EXPR)
2224 {
2225 def = TREE_OPERAND (def, 1);
2226 if (TREE_CODE (def) == NOP_EXPR)
2227 {
2228 int need_precision;
2229 bool fail;
2230
2231 def = TREE_OPERAND (def, 0);
2232
2233 #ifdef ENABLE_CHECKING
2234 /* ??? Why was Jeff testing this? We are gimple... */
2235 gcc_assert (is_gimple_val (def));
2236 #endif
2237
2238 to = TREE_TYPE (cond);
2239 ti = TREE_TYPE (def);
2240
2241 /* If we have an extension that preserves value, then we
2242 can copy the source value into the switch. */
2243
2244 need_precision = TYPE_PRECISION (ti);
2245 fail = false;
2246 if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
2247 fail = true;
2248 else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
2249 need_precision += 1;
2250 if (TYPE_PRECISION (to) < need_precision)
2251 fail = true;
2252
2253 if (!fail)
2254 {
2255 SWITCH_COND (stmt) = def;
2256 modify_stmt (stmt);
2257
2258 return lookup_avail_expr (stmt, insert);
2259 }
2260 }
2261 }
2262 }
2263
2264 return 0;
2265 }
2266
2267
2268 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2269 known value for that SSA_NAME (or NULL if no value is known).
2270
2271 NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
2272 even if we don't know their precise value.
2273
2274 Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
2275 nodes of the successors of BB. */
2276
2277 static void
2278 cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
2279 {
2280 edge e;
2281 edge_iterator ei;
2282
2283 /* This can get rather expensive if the implementation is naive in
2284 how it finds the phi alternative associated with a particular edge. */
2285 FOR_EACH_EDGE (e, ei, bb->succs)
2286 {
2287 tree phi;
2288 int indx;
2289
2290 /* If this is an abnormal edge, then we do not want to copy propagate
2291 into the PHI alternative associated with this edge. */
2292 if (e->flags & EDGE_ABNORMAL)
2293 continue;
2294
2295 phi = phi_nodes (e->dest);
2296 if (! phi)
2297 continue;
2298
2299 indx = e->dest_idx;
2300 for ( ; phi; phi = PHI_CHAIN (phi))
2301 {
2302 tree new;
2303 use_operand_p orig_p;
2304 tree orig;
2305
2306 /* The alternative may be associated with a constant, so verify
2307 it is an SSA_NAME before doing anything with it. */
2308 orig_p = PHI_ARG_DEF_PTR (phi, indx);
2309 orig = USE_FROM_PTR (orig_p);
2310 if (TREE_CODE (orig) != SSA_NAME)
2311 continue;
2312
2313 /* If the alternative is known to have a nonzero value, record
2314 that fact in the PHI node itself for future use. */
2315 if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
2316 PHI_ARG_NONZERO (phi, indx) = true;
2317
2318 /* If we have *ORIG_P in our constant/copy table, then replace
2319 ORIG_P with its value in our constant/copy table. */
2320 new = SSA_NAME_VALUE (orig);
2321 if (new
2322 && (TREE_CODE (new) == SSA_NAME
2323 || is_gimple_min_invariant (new))
2324 && may_propagate_copy (orig, new))
2325 {
2326 propagate_value (orig_p, new);
2327 }
2328 }
2329 }
2330 }
2331
2332 /* We have finished optimizing BB, record any information implied by
2333 taking a specific outgoing edge from BB. */
2334
2335 static void
2336 record_edge_info (basic_block bb)
2337 {
2338 block_stmt_iterator bsi = bsi_last (bb);
2339 struct edge_info *edge_info;
2340
2341 if (! bsi_end_p (bsi))
2342 {
2343 tree stmt = bsi_stmt (bsi);
2344
2345 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
2346 {
2347 tree cond = SWITCH_COND (stmt);
2348
2349 if (TREE_CODE (cond) == SSA_NAME)
2350 {
2351 tree labels = SWITCH_LABELS (stmt);
2352 int i, n_labels = TREE_VEC_LENGTH (labels);
2353 tree *info = xcalloc (n_basic_blocks, sizeof (tree));
2354 edge e;
2355 edge_iterator ei;
2356
2357 for (i = 0; i < n_labels; i++)
2358 {
2359 tree label = TREE_VEC_ELT (labels, i);
2360 basic_block target_bb = label_to_block (CASE_LABEL (label));
2361
2362 if (CASE_HIGH (label)
2363 || !CASE_LOW (label)
2364 || info[target_bb->index])
2365 info[target_bb->index] = error_mark_node;
2366 else
2367 info[target_bb->index] = label;
2368 }
2369
2370 FOR_EACH_EDGE (e, ei, bb->succs)
2371 {
2372 basic_block target_bb = e->dest;
2373 tree node = info[target_bb->index];
2374
2375 if (node != NULL && node != error_mark_node)
2376 {
2377 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
2378 edge_info = allocate_edge_info (e);
2379 edge_info->lhs = cond;
2380 edge_info->rhs = x;
2381 }
2382 }
2383 free (info);
2384 }
2385 }
2386
2387 /* A COND_EXPR may create equivalences too. */
2388 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2389 {
2390 tree cond = COND_EXPR_COND (stmt);
2391 edge true_edge;
2392 edge false_edge;
2393
2394 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2395
2396 /* If the conditional is a single variable 'X', record 'X = 1'
2397 for the true edge and 'X = 0' on the false edge. */
2398 if (SSA_VAR_P (cond))
2399 {
2400 struct edge_info *edge_info;
2401
2402 edge_info = allocate_edge_info (true_edge);
2403 edge_info->lhs = cond;
2404 edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));
2405
2406 edge_info = allocate_edge_info (false_edge);
2407 edge_info->lhs = cond;
2408 edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
2409 }
2410 /* Equality tests may create one or two equivalences. */
2411 else if (COMPARISON_CLASS_P (cond))
2412 {
2413 tree op0 = TREE_OPERAND (cond, 0);
2414 tree op1 = TREE_OPERAND (cond, 1);
2415
2416 /* Special case comparing booleans against a constant as we
2417 know the value of OP0 on both arms of the branch. i.e., we
2418 can record an equivalence for OP0 rather than COND. */
2419 if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2420 && TREE_CODE (op0) == SSA_NAME
2421 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
2422 && is_gimple_min_invariant (op1))
2423 {
2424 if (TREE_CODE (cond) == EQ_EXPR)
2425 {
2426 edge_info = allocate_edge_info (true_edge);
2427 edge_info->lhs = op0;
2428 edge_info->rhs = (integer_zerop (op1)
2429 ? boolean_false_node
2430 : boolean_true_node);
2431
2432 edge_info = allocate_edge_info (false_edge);
2433 edge_info->lhs = op0;
2434 edge_info->rhs = (integer_zerop (op1)
2435 ? boolean_true_node
2436 : boolean_false_node);
2437 }
2438 else
2439 {
2440 edge_info = allocate_edge_info (true_edge);
2441 edge_info->lhs = op0;
2442 edge_info->rhs = (integer_zerop (op1)
2443 ? boolean_true_node
2444 : boolean_false_node);
2445
2446 edge_info = allocate_edge_info (false_edge);
2447 edge_info->lhs = op0;
2448 edge_info->rhs = (integer_zerop (op1)
2449 ? boolean_false_node
2450 : boolean_true_node);
2451 }
2452 }
2453
2454 if (is_gimple_min_invariant (op0)
2455 && (TREE_CODE (op1) == SSA_NAME
2456 || is_gimple_min_invariant (op1)))
2457 {
2458 tree inverted = invert_truthvalue (cond);
2459 struct edge_info *edge_info;
2460
2461 edge_info = allocate_edge_info (true_edge);
2462 record_conditions (edge_info, cond, inverted);
2463
2464 if (TREE_CODE (cond) == EQ_EXPR)
2465 {
2466 edge_info->lhs = op1;
2467 edge_info->rhs = op0;
2468 }
2469
2470 edge_info = allocate_edge_info (false_edge);
2471 record_conditions (edge_info, inverted, cond);
2472
2473 if (TREE_CODE (cond) == NE_EXPR)
2474 {
2475 edge_info->lhs = op1;
2476 edge_info->rhs = op0;
2477 }
2478 }
2479
2480 if (TREE_CODE (op0) == SSA_NAME
2481 && (is_gimple_min_invariant (op1)
2482 || TREE_CODE (op1) == SSA_NAME))
2483 {
2484 tree inverted = invert_truthvalue (cond);
2485 struct edge_info *edge_info;
2486
2487 edge_info = allocate_edge_info (true_edge);
2488 record_conditions (edge_info, cond, inverted);
2489
2490 if (TREE_CODE (cond) == EQ_EXPR)
2491 {
2492 edge_info->lhs = op0;
2493 edge_info->rhs = op1;
2494 }
2495
2496 edge_info = allocate_edge_info (false_edge);
2497 record_conditions (edge_info, inverted, cond);
2498
2499 if (TREE_CODE (cond) == NE_EXPR)
2500 {
2501 edge_info->lhs = op0;
2502 edge_info->rhs = op1;
2503 }
2504 }
2505 }
2506
2507 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
2508 }
2509 }
2510 }
2511
2512 /* Propagate information from BB to its outgoing edges.
2513
2514 This can include equivalency information implied by control statements
2515 at the end of BB and const/copy propagation into PHIs in BB's
2516 successor blocks. */
2517
2518 static void
2519 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2520 basic_block bb)
2521 {
2522
2523 record_edge_info (bb);
2524 cprop_into_successor_phis (bb, nonzero_vars);
2525 }
2526
2527 /* Search for redundant computations in STMT. If any are found, then
2528 replace them with the variable holding the result of the computation.
2529
2530 If safe, record this expression into the available expression hash
2531 table. */
2532
2533 static bool
2534 eliminate_redundant_computations (struct dom_walk_data *walk_data,
2535 tree stmt, stmt_ann_t ann)
2536 {
2537 v_may_def_optype v_may_defs = V_MAY_DEF_OPS (ann);
2538 tree *expr_p, def = NULL_TREE;
2539 bool insert = true;
2540 tree cached_lhs;
2541 bool retval = false;
2542
2543 if (TREE_CODE (stmt) == MODIFY_EXPR)
2544 def = TREE_OPERAND (stmt, 0);
2545
2546 /* Certain expressions on the RHS can be optimized away, but can not
2547 themselves be entered into the hash tables. */
2548 if (ann->makes_aliased_stores
2549 || ! def
2550 || TREE_CODE (def) != SSA_NAME
2551 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2552 || NUM_V_MAY_DEFS (v_may_defs) != 0)
2553 insert = false;
2554
2555 /* Check if the expression has been computed before. */
2556 cached_lhs = lookup_avail_expr (stmt, insert);
2557
2558 /* If this is an assignment and the RHS was not in the hash table,
2559 then try to simplify the RHS and lookup the new RHS in the
2560 hash table. */
2561 if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
2562 cached_lhs = simplify_rhs_and_lookup_avail_expr (walk_data, stmt, insert);
2563 /* Similarly if this is a COND_EXPR and we did not find its
2564 expression in the hash table, simplify the condition and
2565 try again. */
2566 else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
2567 cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
2568 /* Similarly for a SWITCH_EXPR. */
2569 else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
2570 cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);
2571
2572 opt_stats.num_exprs_considered++;
2573
2574 /* Get a pointer to the expression we are trying to optimize. */
2575 if (TREE_CODE (stmt) == COND_EXPR)
2576 expr_p = &COND_EXPR_COND (stmt);
2577 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2578 expr_p = &SWITCH_COND (stmt);
2579 else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
2580 expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
2581 else
2582 expr_p = &TREE_OPERAND (stmt, 1);
2583
2584 /* It is safe to ignore types here since we have already done
2585 type checking in the hashing and equality routines. In fact
2586 type checking here merely gets in the way of constant
2587 propagation. Also, make sure that it is safe to propagate
2588 CACHED_LHS into *EXPR_P. */
2589 if (cached_lhs
2590 && (TREE_CODE (cached_lhs) != SSA_NAME
2591 || may_propagate_copy (*expr_p, cached_lhs)))
2592 {
2593 if (dump_file && (dump_flags & TDF_DETAILS))
2594 {
2595 fprintf (dump_file, " Replaced redundant expr '");
2596 print_generic_expr (dump_file, *expr_p, dump_flags);
2597 fprintf (dump_file, "' with '");
2598 print_generic_expr (dump_file, cached_lhs, dump_flags);
2599 fprintf (dump_file, "'\n");
2600 }
2601
2602 opt_stats.num_re++;
2603
2604 #if defined ENABLE_CHECKING
2605 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
2606 || is_gimple_min_invariant (cached_lhs));
2607 #endif
2608
2609 if (TREE_CODE (cached_lhs) == ADDR_EXPR
2610 || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
2611 && is_gimple_min_invariant (cached_lhs)))
2612 retval = true;
2613
2614 propagate_tree_value (expr_p, cached_lhs);
2615 modify_stmt (stmt);
2616 }
2617 return retval;
2618 }
2619
2620 /* STMT, a MODIFY_EXPR, may create certain equivalences, in either
2621 the available expressions table or the const_and_copies table.
2622 Detect and record those equivalences. */
2623
2624 static void
2625 record_equivalences_from_stmt (tree stmt,
2626 int may_optimize_p,
2627 stmt_ann_t ann)
2628 {
2629 tree lhs = TREE_OPERAND (stmt, 0);
2630 enum tree_code lhs_code = TREE_CODE (lhs);
2631 int i;
2632
2633 if (lhs_code == SSA_NAME)
2634 {
2635 tree rhs = TREE_OPERAND (stmt, 1);
2636
2637 /* Strip away any useless type conversions. */
2638 STRIP_USELESS_TYPE_CONVERSION (rhs);
2639
2640 /* If the RHS of the assignment is a constant or another variable that
2641 may be propagated, register it in the CONST_AND_COPIES table. We
2642 do not need to record unwind data for this, since this is a true
2643 assignment and not an equivalence inferred from a comparison. All
2644 uses of this ssa name are dominated by this assignment, so unwinding
2645 just costs time and space. */
2646 if (may_optimize_p
2647 && (TREE_CODE (rhs) == SSA_NAME
2648 || is_gimple_min_invariant (rhs)))
2649 SSA_NAME_VALUE (lhs) = rhs;
2650
2651 /* alloca never returns zero and the address of a non-weak symbol
2652 is never zero. NOP_EXPRs and CONVERT_EXPRs can be completely
2653 stripped as they do not affect this equivalence. */
2654 while (TREE_CODE (rhs) == NOP_EXPR
2655 || TREE_CODE (rhs) == CONVERT_EXPR)
2656 rhs = TREE_OPERAND (rhs, 0);
2657
2658 if (alloca_call_p (rhs)
2659 || (TREE_CODE (rhs) == ADDR_EXPR
2660 && DECL_P (TREE_OPERAND (rhs, 0))
2661 && ! DECL_WEAK (TREE_OPERAND (rhs, 0))))
2662 record_var_is_nonzero (lhs);
2663
2664 /* IOR of any value with a nonzero value will result in a nonzero
2665 value. Even if we do not know the exact result recording that
2666 the result is nonzero is worth the effort. */
2667 if (TREE_CODE (rhs) == BIT_IOR_EXPR
2668 && integer_nonzerop (TREE_OPERAND (rhs, 1)))
2669 record_var_is_nonzero (lhs);
2670 }
2671
2672 /* Look at both sides for pointer dereferences. If we find one, then
2673 the pointer must be nonnull and we can enter that equivalence into
2674 the hash tables. */
2675 if (flag_delete_null_pointer_checks)
2676 for (i = 0; i < 2; i++)
2677 {
2678 tree t = TREE_OPERAND (stmt, i);
2679
2680 /* Strip away any COMPONENT_REFs. */
2681 while (TREE_CODE (t) == COMPONENT_REF)
2682 t = TREE_OPERAND (t, 0);
2683
2684 /* Now see if this is a pointer dereference. */
2685 if (INDIRECT_REF_P (t))
2686 {
2687 tree op = TREE_OPERAND (t, 0);
2688
2689 /* If the pointer is a SSA variable, then enter new
2690 equivalences into the hash table. */
2691 while (TREE_CODE (op) == SSA_NAME)
2692 {
2693 tree def = SSA_NAME_DEF_STMT (op);
2694
2695 record_var_is_nonzero (op);
2696
2697 /* And walk up the USE-DEF chains noting other SSA_NAMEs
2698 which are known to have a nonzero value. */
2699 if (def
2700 && TREE_CODE (def) == MODIFY_EXPR
2701 && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
2702 op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
2703 else
2704 break;
2705 }
2706 }
2707 }
2708
2709 /* A memory store, even an aliased store, creates a useful
2710 equivalence. By exchanging the LHS and RHS, creating suitable
2711 vops and recording the result in the available expression table,
2712 we may be able to expose more redundant loads. */
2713 if (!ann->has_volatile_ops
2714 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
2715 || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
2716 && !is_gimple_reg (lhs))
2717 {
2718 tree rhs = TREE_OPERAND (stmt, 1);
2719 tree new;
2720
2721 /* FIXME: If the LHS of the assignment is a bitfield and the RHS
2722 is a constant, we need to adjust the constant to fit into the
2723 type of the LHS. If the LHS is a bitfield and the RHS is not
2724 a constant, then we can not record any equivalences for this
2725 statement since we would need to represent the widening or
2726 narrowing of RHS. This fixes gcc.c-torture/execute/921016-1.c
2727 and should not be necessary if GCC represented bitfields
2728 properly. */
2729 if (lhs_code == COMPONENT_REF
2730 && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
2731 {
2732 if (TREE_CONSTANT (rhs))
2733 rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
2734 else
2735 rhs = NULL;
2736
2737 /* If the value overflowed, then we can not use this equivalence. */
2738 if (rhs && ! is_gimple_min_invariant (rhs))
2739 rhs = NULL;
2740 }
2741
2742 if (rhs)
2743 {
2744 /* Build a new statement with the RHS and LHS exchanged. */
2745 new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);
2746
2747 create_ssa_artficial_load_stmt (&(ann->operands), new);
2748
2749 /* Finally enter the statement into the available expression
2750 table. */
2751 lookup_avail_expr (new, true);
2752 }
2753 }
2754 }
2755
2756 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2757 CONST_AND_COPIES. */
2758
2759 static bool
2760 cprop_operand (tree stmt, use_operand_p op_p)
2761 {
2762 bool may_have_exposed_new_symbols = false;
2763 tree val;
2764 tree op = USE_FROM_PTR (op_p);
2765
2766 /* If the operand has a known constant value or it is known to be a
2767 copy of some other variable, use the value or copy stored in
2768 CONST_AND_COPIES. */
2769 val = SSA_NAME_VALUE (op);
2770 if (val && TREE_CODE (val) != VALUE_HANDLE)
2771 {
2772 tree op_type, val_type;
2773
2774 /* Do not change the base variable in the virtual operand
2775 tables. That would make it impossible to reconstruct
2776 the renamed virtual operand if we later modify this
2777 statement. Also only allow the new value to be an SSA_NAME
2778 for propagation into virtual operands. */
2779 if (!is_gimple_reg (op)
2780 && (get_virtual_var (val) != get_virtual_var (op)
2781 || TREE_CODE (val) != SSA_NAME))
2782 return false;
2783
2784 /* Do not replace hard register operands in asm statements. */
2785 if (TREE_CODE (stmt) == ASM_EXPR
2786 && !may_propagate_copy_into_asm (op))
2787 return false;
2788
2789 /* Get the toplevel type of each operand. */
2790 op_type = TREE_TYPE (op);
2791 val_type = TREE_TYPE (val);
2792
2793 /* While both types are pointers, get the type of the object
2794 pointed to. */
2795 while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
2796 {
2797 op_type = TREE_TYPE (op_type);
2798 val_type = TREE_TYPE (val_type);
2799 }
2800
2801 /* Make sure underlying types match before propagating a constant by
2802 converting the constant to the proper type. Note that convert may
2803 return a non-gimple expression, in which case we ignore this
2804 propagation opportunity. */
2805 if (TREE_CODE (val) != SSA_NAME)
2806 {
2807 if (!lang_hooks.types_compatible_p (op_type, val_type))
2808 {
2809 val = fold_convert (TREE_TYPE (op), val);
2810 if (!is_gimple_min_invariant (val))
2811 return false;
2812 }
2813 }
2814
2815 /* Certain operands are not allowed to be copy propagated due
2816 to their interaction with exception handling and some GCC
2817 extensions. */
2818 else if (!may_propagate_copy (op, val))
2819 return false;
2820
2821 /* Dump details. */
2822 if (dump_file && (dump_flags & TDF_DETAILS))
2823 {
2824 fprintf (dump_file, " Replaced '");
2825 print_generic_expr (dump_file, op, dump_flags);
2826 fprintf (dump_file, "' with %s '",
2827 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2828 print_generic_expr (dump_file, val, dump_flags);
2829 fprintf (dump_file, "'\n");
2830 }
2831
2832 /* If VAL is an ADDR_EXPR or a constant of pointer type, note
2833 that we may have exposed a new symbol for SSA renaming. */
2834 if (TREE_CODE (val) == ADDR_EXPR
2835 || (POINTER_TYPE_P (TREE_TYPE (op))
2836 && is_gimple_min_invariant (val)))
2837 may_have_exposed_new_symbols = true;
2838
2839 propagate_value (op_p, val);
2840
2841 /* And note that we modified this statement. This is now
2842 safe, even if we changed virtual operands since we will
2843 rescan the statement and rewrite its operands again. */
2844 modify_stmt (stmt);
2845 }
2846 return may_have_exposed_new_symbols;
2847 }
2848
2849 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2850 known value for that SSA_NAME (or NULL if no value is known).
2851
2852 Propagate values from CONST_AND_COPIES into the uses, vuses and
2853 v_may_def_ops of STMT. */
2854
2855 static bool
2856 cprop_into_stmt (tree stmt)
2857 {
2858 bool may_have_exposed_new_symbols = false;
2859 use_operand_p op_p;
2860 ssa_op_iter iter;
2861 tree rhs;
2862
2863 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2864 {
2865 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2866 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
2867 }
2868
2869 if (may_have_exposed_new_symbols)
2870 {
2871 rhs = get_rhs (stmt);
2872 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2873 recompute_tree_invarant_for_addr_expr (rhs);
2874 }
2875
2876 return may_have_exposed_new_symbols;
2877 }
2878
2879
2880 /* Optimize the statement pointed by iterator SI.
2881
2882 We try to perform some simplistic global redundancy elimination and
2883 constant propagation:
2884
2885 1- To detect global redundancy, we keep track of expressions that have
2886 been computed in this block and its dominators. If we find that the
2887 same expression is computed more than once, we eliminate repeated
2888 computations by using the target of the first one.
2889
2890 2- Constant values and copy assignments. This is used to do very
2891 simplistic constant and copy propagation. When a constant or copy
2892 assignment is found, we map the value on the RHS of the assignment to
2893 the variable in the LHS in the CONST_AND_COPIES table. */
2894
2895 static void
2896 optimize_stmt (struct dom_walk_data *walk_data, basic_block bb,
2897 block_stmt_iterator si)
2898 {
2899 stmt_ann_t ann;
2900 tree stmt;
2901 bool may_optimize_p;
2902 bool may_have_exposed_new_symbols = false;
2903
2904 stmt = bsi_stmt (si);
2905
2906 get_stmt_operands (stmt);
2907 ann = stmt_ann (stmt);
2908 opt_stats.num_stmts++;
2909 may_have_exposed_new_symbols = false;
2910
2911 if (dump_file && (dump_flags & TDF_DETAILS))
2912 {
2913 fprintf (dump_file, "Optimizing statement ");
2914 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2915 }
2916
2917 /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs. */
2918 may_have_exposed_new_symbols = cprop_into_stmt (stmt);
2919
2920 /* If the statement has been modified with constant replacements,
2921 fold its RHS before checking for redundant computations. */
2922 if (ann->modified)
2923 {
2924 /* Try to fold the statement making sure that STMT is kept
2925 up to date. */
2926 if (fold_stmt (bsi_stmt_ptr (si)))
2927 {
2928 stmt = bsi_stmt (si);
2929 ann = stmt_ann (stmt);
2930
2931 if (dump_file && (dump_flags & TDF_DETAILS))
2932 {
2933 fprintf (dump_file, " Folded to: ");
2934 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2935 }
2936 }
2937
2938 /* Constant/copy propagation above may change the set of
2939 virtual operands associated with this statement. Folding
2940 may remove the need for some virtual operands.
2941
2942 Indicate we will need to rescan and rewrite the statement. */
2943 may_have_exposed_new_symbols = true;
2944 }
2945
2946 /* Check for redundant computations. Do this optimization only
2947 for assignments that have no volatile ops and conditionals. */
2948 may_optimize_p = (!ann->has_volatile_ops
2949 && ((TREE_CODE (stmt) == RETURN_EXPR
2950 && TREE_OPERAND (stmt, 0)
2951 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
2952 && ! (TREE_SIDE_EFFECTS
2953 (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
2954 || (TREE_CODE (stmt) == MODIFY_EXPR
2955 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
2956 || TREE_CODE (stmt) == COND_EXPR
2957 || TREE_CODE (stmt) == SWITCH_EXPR));
2958
2959 if (may_optimize_p)
2960 may_have_exposed_new_symbols
2961 |= eliminate_redundant_computations (walk_data, stmt, ann);
2962
2963 /* Record any additional equivalences created by this statement. */
2964 if (TREE_CODE (stmt) == MODIFY_EXPR)
2965 record_equivalences_from_stmt (stmt,
2966 may_optimize_p,
2967 ann);
2968
2969 register_definitions_for_stmt (stmt);
2970
2971 /* If STMT is a COND_EXPR and it was modified, then we may know
2972 where it goes. If that is the case, then mark the CFG as altered.
2973
2974 This will cause us to later call remove_unreachable_blocks and
2975 cleanup_tree_cfg when it is safe to do so. It is not safe to
2976 clean things up here since removal of edges and such can trigger
2977 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2978 the manager.
2979
2980 That's all fine and good, except that once SSA_NAMEs are released
2981 to the manager, we must not call create_ssa_name until all references
2982 to released SSA_NAMEs have been eliminated.
2983
2984 All references to the deleted SSA_NAMEs can not be eliminated until
2985 we remove unreachable blocks.
2986
2987 We can not remove unreachable blocks until after we have completed
2988 any queued jump threading.
2989
2990 We can not complete any queued jump threads until we have taken
2991 appropriate variables out of SSA form. Taking variables out of
2992 SSA form can call create_ssa_name and thus we lose.
2993
2994 Ultimately I suspect we're going to need to change the interface
2995 into the SSA_NAME manager. */
2996
2997 if (ann->modified)
2998 {
2999 tree val = NULL;
3000
3001 if (TREE_CODE (stmt) == COND_EXPR)
3002 val = COND_EXPR_COND (stmt);
3003 else if (TREE_CODE (stmt) == SWITCH_EXPR)
3004 val = SWITCH_COND (stmt);
3005
3006 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
3007 cfg_altered = true;
3008
3009 /* If we simplified a statement in such a way as to be shown that it
3010 cannot trap, update the eh information and the cfg to match. */
3011 if (maybe_clean_eh_stmt (stmt))
3012 {
3013 bitmap_set_bit (need_eh_cleanup, bb->index);
3014 if (dump_file && (dump_flags & TDF_DETAILS))
3015 fprintf (dump_file, " Flagged to clear EH edges.\n");
3016 }
3017 }
3018
3019 if (may_have_exposed_new_symbols)
3020 VEC_safe_push (tree_on_heap, stmts_to_rescan, bsi_stmt (si));
3021 }
3022
3023 /* Replace the RHS of STMT with NEW_RHS. If RHS can be found in the
3024 available expression hashtable, then return the LHS from the hash
3025 table.
3026
3027 If INSERT is true, then we also update the available expression
3028 hash table to account for the changes made to STMT. */
3029
3030 static tree
3031 update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
3032 {
3033 tree cached_lhs = NULL;
3034
3035 /* Remove the old entry from the hash table. */
3036 if (insert)
3037 {
3038 struct expr_hash_elt element;
3039
3040 initialize_hash_element (stmt, NULL, &element);
3041 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
3042 }
3043
3044 /* Now update the RHS of the assignment. */
3045 TREE_OPERAND (stmt, 1) = new_rhs;
3046
3047 /* Now lookup the updated statement in the hash table. */
3048 cached_lhs = lookup_avail_expr (stmt, insert);
3049
3050 /* We have now called lookup_avail_expr twice with two different
3051 versions of this same statement, once in optimize_stmt, once here.
3052
3053 We know the call in optimize_stmt did not find an existing entry
3054 in the hash table, so a new entry was created. At the same time
3055 this statement was pushed onto the AVAIL_EXPRS_STACK vector.
3056
3057 If this call failed to find an existing entry on the hash table,
3058 then the new version of this statement was entered into the
3059 hash table. And this statement was pushed onto BLOCK_AVAIL_EXPR
3060 for the second time. So there are two copies on BLOCK_AVAIL_EXPRs
3061
3062 If this call succeeded, we still have one copy of this statement
3063 on the BLOCK_AVAIL_EXPRs vector.
3064
3065 For both cases, we need to pop the most recent entry off the
3066 BLOCK_AVAIL_EXPRs vector. For the case where we never found this
3067 statement in the hash tables, that will leave precisely one
3068 copy of this statement on BLOCK_AVAIL_EXPRs. For the case where
3069 we found a copy of this statement in the second hash table lookup
3070 we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs. */
3071 if (insert)
3072 VEC_pop (tree_on_heap, avail_exprs_stack);
3073
3074 /* And make sure we record the fact that we modified this
3075 statement. */
3076 modify_stmt (stmt);
3077
3078 return cached_lhs;
3079 }
3080
3081 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. If
3082 found, return its LHS. Otherwise insert STMT in the table and return
3083 NULL_TREE.
3084
3085 Also, when an expression is first inserted in the AVAIL_EXPRS table, it
3086 is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
3087 can be removed when we finish processing this block and its children.
3088
3089 NOTE: This function assumes that STMT is a MODIFY_EXPR node that
3090 contains no CALL_EXPR on its RHS and makes no volatile nor
3091 aliased references. */
3092
3093 static tree
3094 lookup_avail_expr (tree stmt, bool insert)
3095 {
3096 void **slot;
3097 tree lhs;
3098 tree temp;
3099 struct expr_hash_elt *element = xcalloc (sizeof (struct expr_hash_elt), 1);
3100
3101 lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;
3102
3103 initialize_hash_element (stmt, lhs, element);
3104
3105 /* Don't bother remembering constant assignments and copy operations.
3106 Constants and copy operations are handled by the constant/copy propagator
3107 in optimize_stmt. */
3108 if (TREE_CODE (element->rhs) == SSA_NAME
3109 || is_gimple_min_invariant (element->rhs))
3110 {
3111 free (element);
3112 return NULL_TREE;
3113 }
3114
3115 /* If this is an equality test against zero, see if we have recorded a
3116 nonzero value for the variable in question. */
3117 if ((TREE_CODE (element->rhs) == EQ_EXPR
3118 || TREE_CODE (element->rhs) == NE_EXPR)
3119 && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
3120 && integer_zerop (TREE_OPERAND (element->rhs, 1)))
3121 {
3122 int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));
3123
3124 if (bitmap_bit_p (nonzero_vars, indx))
3125 {
3126 tree t = element->rhs;
3127 free (element);
3128
3129 if (TREE_CODE (t) == EQ_EXPR)
3130 return boolean_false_node;
3131 else
3132 return boolean_true_node;
3133 }
3134 }
3135
3136 /* Finally try to find the expression in the main expression hash table. */
3137 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
3138 (insert ? INSERT : NO_INSERT));
3139 if (slot == NULL)
3140 {
3141 free (element);
3142 return NULL_TREE;
3143 }
3144
3145 if (*slot == NULL)
3146 {
3147 *slot = (void *) element;
3148 VEC_safe_push (tree_on_heap, avail_exprs_stack,
3149 stmt ? stmt : element->rhs);
3150 return NULL_TREE;
3151 }
3152
3153 /* Extract the LHS of the assignment so that it can be used as the current
3154 definition of another variable. */
3155 lhs = ((struct expr_hash_elt *)*slot)->lhs;
3156
3157 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
3158 use the value from the const_and_copies table. */
3159 if (TREE_CODE (lhs) == SSA_NAME)
3160 {
3161 temp = SSA_NAME_VALUE (lhs);
3162 if (temp && TREE_CODE (temp) != VALUE_HANDLE)
3163 lhs = temp;
3164 }
3165
3166 free (element);
3167 return lhs;
3168 }
3169
3170 /* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
3171 range of values that result in the conditional having a true value.
3172
3173 Return true if we are successful in extracting a range from COND and
3174 false if we are unsuccessful. */
3175
3176 static bool
3177 extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
3178 {
3179 tree op1 = TREE_OPERAND (cond, 1);
3180 tree high, low, type;
3181 int inverted;
3182
3183 /* Experiments have shown that it's rarely, if ever useful to
3184 record ranges for enumerations. Presumably this is due to
3185 the fact that they're rarely used directly. They are typically
3186 cast into an integer type and used that way. */
3187 if (TREE_CODE (TREE_TYPE (op1)) != INTEGER_TYPE)
3188 return 0;
3189
3190 type = TREE_TYPE (op1);
3191
3192 switch (TREE_CODE (cond))
3193 {
3194 case EQ_EXPR:
3195 high = low = op1;
3196 inverted = 0;
3197 break;
3198
3199 case NE_EXPR:
3200 high = low = op1;
3201 inverted = 1;
3202 break;
3203
3204 case GE_EXPR:
3205 low = op1;
3206 high = TYPE_MAX_VALUE (type);
3207 inverted = 0;
3208 break;
3209
3210 case GT_EXPR:
3211 low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
3212 high = TYPE_MAX_VALUE (type);
3213 inverted = 0;
3214 break;
3215
3216 case LE_EXPR:
3217 high = op1;
3218 low = TYPE_MIN_VALUE (type);
3219 inverted = 0;
3220 break;
3221
3222 case LT_EXPR:
3223 high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
3224 low = TYPE_MIN_VALUE (type);
3225 inverted = 0;
3226 break;
3227
3228 default:
3229 return 0;
3230 }
3231
3232 *hi_p = high;
3233 *lo_p = low;
3234 *inverted_p = inverted;
3235 return 1;
3236 }
3237
3238 /* Record a range created by COND for basic block BB. */
3239
3240 static void
3241 record_range (tree cond, basic_block bb)
3242 {
3243 enum tree_code code = TREE_CODE (cond);
3244
3245 /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
3246 They rarely allow for meaningful range optimizations and significantly
3247 complicate the implementation. */
3248 if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
3249 || code == GE_EXPR || code == EQ_EXPR)
3250 && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
3251 {
3252 struct vrp_hash_elt *vrp_hash_elt;
3253 struct vrp_element *element;
3254 varray_type *vrp_records_p;
3255 void **slot;
3256
3257
3258 vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
3259 vrp_hash_elt->var = TREE_OPERAND (cond, 0);
3260 vrp_hash_elt->records = NULL;
3261 slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);
3262
3263 if (*slot == NULL)
3264 *slot = (void *) vrp_hash_elt;
3265 else
3266 free (vrp_hash_elt);
3267
3268 vrp_hash_elt = (struct vrp_hash_elt *) *slot;
3269 vrp_records_p = &vrp_hash_elt->records;
3270
3271 element = ggc_alloc (sizeof (struct vrp_element));
3272 element->low = NULL;
3273 element->high = NULL;
3274 element->cond = cond;
3275 element->bb = bb;
3276
3277 if (*vrp_records_p == NULL)
3278 VARRAY_GENERIC_PTR_INIT (*vrp_records_p, 2, "vrp records");
3279
3280 VARRAY_PUSH_GENERIC_PTR (*vrp_records_p, element);
3281 VEC_safe_push (tree_on_heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
3282 }
3283 }
3284
3285 /* Hashing and equality functions for VRP_DATA.
3286
3287 Since this hash table is addressed by SSA_NAMEs, we can hash on
3288 their version number and equality can be determined with a
3289 pointer comparison. */
3290
3291 static hashval_t
3292 vrp_hash (const void *p)
3293 {
3294 tree var = ((struct vrp_hash_elt *)p)->var;
3295
3296 return SSA_NAME_VERSION (var);
3297 }
3298
3299 static int
3300 vrp_eq (const void *p1, const void *p2)
3301 {
3302 tree var1 = ((struct vrp_hash_elt *)p1)->var;
3303 tree var2 = ((struct vrp_hash_elt *)p2)->var;
3304
3305 return var1 == var2;
3306 }
3307
3308 /* Hashing and equality functions for AVAIL_EXPRS. The table stores
3309 MODIFY_EXPR statements. We compute a value number for expressions using
3310 the code of the expression and the SSA numbers of its operands. */
3311
3312 static hashval_t
3313 avail_expr_hash (const void *p)
3314 {
3315 stmt_ann_t ann = ((struct expr_hash_elt *)p)->ann;
3316 tree rhs = ((struct expr_hash_elt *)p)->rhs;
3317 hashval_t val = 0;
3318 size_t i;
3319 vuse_optype vuses;
3320
3321 /* iterative_hash_expr knows how to deal with any expression and
3322 deals with commutative operators as well, so just use it instead
3323 of duplicating such complexities here. */
3324 val = iterative_hash_expr (rhs, val);
3325
3326 /* If the hash table entry is not associated with a statement, then we
3327 can just hash the expression and not worry about virtual operands
3328 and such. */
3329 if (!ann)
3330 return val;
3331
3332 /* Add the SSA version numbers of every vuse operand. This is important
3333 because compound variables like arrays are not renamed in the
3334 operands. Rather, the rename is done on the virtual variable
3335 representing all the elements of the array. */
3336 vuses = VUSE_OPS (ann);
3337 for (i = 0; i < NUM_VUSES (vuses); i++)
3338 val = iterative_hash_expr (VUSE_OP (vuses, i), val);
3339
3340 return val;
3341 }
3342
3343 static hashval_t
3344 real_avail_expr_hash (const void *p)
3345 {
3346 return ((const struct expr_hash_elt *)p)->hash;
3347 }
3348
3349 static int
3350 avail_expr_eq (const void *p1, const void *p2)
3351 {
3352 stmt_ann_t ann1 = ((struct expr_hash_elt *)p1)->ann;
3353 tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
3354 stmt_ann_t ann2 = ((struct expr_hash_elt *)p2)->ann;
3355 tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;
3356
3357 /* If they are the same physical expression, return true. */
3358 if (rhs1 == rhs2 && ann1 == ann2)
3359 return true;
3360
3361 /* If their codes are not equal, then quit now. */
3362 if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
3363 return false;
3364
3365 /* In case of a collision, both RHS have to be identical and have the
3366 same VUSE operands. */
3367 if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
3368 || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
3369 && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
3370 {
3371 vuse_optype ops1 = NULL;
3372 vuse_optype ops2 = NULL;
3373 size_t num_ops1 = 0;
3374 size_t num_ops2 = 0;
3375 size_t i;
3376
3377 if (ann1)
3378 {
3379 ops1 = VUSE_OPS (ann1);
3380 num_ops1 = NUM_VUSES (ops1);
3381 }
3382
3383 if (ann2)
3384 {
3385 ops2 = VUSE_OPS (ann2);
3386 num_ops2 = NUM_VUSES (ops2);
3387 }
3388
3389 /* If the number of virtual uses is different, then we consider
3390 them not equal. */
3391 if (num_ops1 != num_ops2)
3392 return false;
3393
3394 for (i = 0; i < num_ops1; i++)
3395 if (VUSE_OP (ops1, i) != VUSE_OP (ops2, i))
3396 return false;
3397
3398 gcc_assert (((struct expr_hash_elt *)p1)->hash
3399 == ((struct expr_hash_elt *)p2)->hash);
3400 return true;
3401 }
3402
3403 return false;
3404 }
3405
3406 /* Given STMT and a pointer to the block local definitions BLOCK_DEFS_P,
3407 register register all objects set by this statement into BLOCK_DEFS_P
3408 and CURRDEFS. */
3409
3410 static void
3411 register_definitions_for_stmt (tree stmt)
3412 {
3413 tree def;
3414 ssa_op_iter iter;
3415
3416 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
3417 {
3418
3419 /* FIXME: We shouldn't be registering new defs if the variable
3420 doesn't need to be renamed. */
3421 register_new_def (def, &block_defs_stack);
3422 }
3423 }
3424