558d50d75c7006a341f4d19302c0ffeb8c999fd4
[gcc.git] / gcc / tree-ssa-dse.c
1 /* Dead store elimination
2 Copyright (C) 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "errors.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "basic-block.h"
31 #include "timevar.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-pass.h"
35 #include "tree-dump.h"
36 #include "domwalk.h"
37 #include "flags.h"
38
39 /* This file implements dead store elimination.
40
41 A dead store is a store into a memory location which will later be
42 overwritten by another store without any intervening loads. In this
43 case the earlier store can be deleted.
44
45 In our SSA + virtual operand world we use immediate uses of virtual
46 operands to detect dead stores. If a store's virtual definition
47 is used precisely once by a later store to the same location which
48 post dominates the first store, then the first store is dead.
49
50 The single use of the store's virtual definition ensures that
51 there are no intervening aliased loads and the requirement that
52 the second load post dominate the first ensures that if the earlier
53 store executes, then the later stores will execute before the function
54 exits.
55
56 It may help to think of this as first moving the earlier store to
57 the point immediately before the later store. Again, the single
58 use of the virtual definition and the post-dominance relationship
59 ensure that such movement would be safe. Clearly if there are
60 back to back stores, then the second is redundant.
61
62 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
63 may also help in understanding this code since it discusses the
64 relationship between dead store and redundant load elimination. In
65 fact, they are the same transformation applied to different views of
66 the CFG. */
67
68
69 struct dse_global_data
70 {
71 /* This is the global bitmap for store statements.
72
73 Each statement has a unique ID. When we encounter a store statement
74 that we want to record, set the bit corresponding to the statement's
75 unique ID in this bitmap. */
76 bitmap stores;
77 };
78
79 /* We allocate a bitmap-per-block for stores which are encountered
80 during the scan of that block. This allows us to restore the
81 global bitmap of stores when we finish processing a block. */
82 struct dse_block_local_data
83 {
84 bitmap stores;
85 };
86
87 static bool gate_dse (void);
88 static void tree_ssa_dse (void);
89 static void dse_initialize_block_local_data (struct dom_walk_data *,
90 basic_block,
91 bool);
92 static void dse_optimize_stmt (struct dom_walk_data *,
93 basic_block,
94 block_stmt_iterator);
95 static void dse_record_phis (struct dom_walk_data *, basic_block);
96 static void dse_finalize_block (struct dom_walk_data *, basic_block);
97 static void fix_phi_uses (tree, tree);
98 static void fix_stmt_v_may_defs (tree, tree);
99 static void record_voperand_set (bitmap, bitmap *, unsigned int);
100
101 /* Function indicating whether we ought to include information for 'var'
102 when calculating immediate uses. For this pass we only want use
103 information for virtual variables. */
104
105 static bool
106 need_imm_uses_for (tree var)
107 {
108 return !is_gimple_reg (var);
109 }
110
111
112 /* Replace uses in PHI which match V_MAY_DEF_RESULTs in STMT with the
113 corresponding V_MAY_DEF_OP in STMT. */
114
115 static void
116 fix_phi_uses (tree phi, tree stmt)
117 {
118 stmt_ann_t ann = stmt_ann (stmt);
119 v_may_def_optype v_may_defs;
120 unsigned int i;
121 int j;
122
123 get_stmt_operands (stmt);
124 v_may_defs = V_MAY_DEF_OPS (ann);
125
126 /* Walk each V_MAY_DEF in STMT. */
127 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
128 {
129 tree v_may_def = V_MAY_DEF_RESULT (v_may_defs, i);
130
131 /* Find any uses in the PHI which match V_MAY_DEF and replace
132 them with the appropriate V_MAY_DEF_OP. */
133 for (j = 0; j < PHI_NUM_ARGS (phi); j++)
134 if (v_may_def == PHI_ARG_DEF (phi, j))
135 SET_PHI_ARG_DEF (phi, j, V_MAY_DEF_OP (v_may_defs, i));
136 }
137 }
138
139 /* Replace the V_MAY_DEF_OPs in STMT1 which match V_MAY_DEF_RESULTs
140 in STMT2 with the appropriate V_MAY_DEF_OPs from STMT2. */
141
142 static void
143 fix_stmt_v_may_defs (tree stmt1, tree stmt2)
144 {
145 stmt_ann_t ann1 = stmt_ann (stmt1);
146 stmt_ann_t ann2 = stmt_ann (stmt2);
147 v_may_def_optype v_may_defs1;
148 v_may_def_optype v_may_defs2;
149 unsigned int i, j;
150
151 get_stmt_operands (stmt1);
152 get_stmt_operands (stmt2);
153 v_may_defs1 = V_MAY_DEF_OPS (ann1);
154 v_may_defs2 = V_MAY_DEF_OPS (ann2);
155
156 /* Walk each V_MAY_DEF_OP in stmt1. */
157 for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs1); i++)
158 {
159 tree v_may_def1 = V_MAY_DEF_OP (v_may_defs1, i);
160
161 /* Find the appropriate V_MAY_DEF_RESULT in STMT2. */
162 for (j = 0; j < NUM_V_MAY_DEFS (v_may_defs2); j++)
163 {
164 if (v_may_def1 == V_MAY_DEF_RESULT (v_may_defs2, j))
165 {
166 /* Update. */
167 SET_V_MAY_DEF_OP (v_may_defs1, i, V_MAY_DEF_OP (v_may_defs2, j));
168 break;
169 }
170 }
171
172 #ifdef ENABLE_CHECKING
173 /* If we did not find a corresponding V_MAY_DEF_RESULT, then something
174 has gone terribly wrong. */
175 if (j == NUM_V_MAY_DEFS (v_may_defs2))
176 abort ();
177 #endif
178
179 }
180 }
181
182
183 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
184 static void
185 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
186 {
187 /* Lazily allocate the bitmap. Note that we do not get a notification
188 when the block local data structures die, so we allocate the local
189 bitmap backed by the GC system. */
190 if (*local == NULL)
191 *local = BITMAP_GGC_ALLOC ();
192
193 /* Set the bit in the local and global bitmaps. */
194 bitmap_set_bit (*local, uid);
195 bitmap_set_bit (global, uid);
196 }
197 /* Initialize block local data structures. */
198
199 static void
200 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
201 basic_block bb ATTRIBUTE_UNUSED,
202 bool recycled)
203 {
204 struct dse_block_local_data *bd
205 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
206
207 /* If we are given a recycled block local data structure, ensure any
208 bitmap associated with the block is cleared. */
209 if (recycled)
210 {
211 if (bd->stores)
212 bitmap_clear (bd->stores);
213 }
214 }
215
216 /* Attempt to eliminate dead stores in the statement referenced by BSI.
217
218 A dead store is a store into a memory location which will later be
219 overwritten by another store without any intervening loads. In this
220 case the earlier store can be deleted.
221
222 In our SSA + virtual operand world we use immediate uses of virtual
223 operands to detect dead stores. If a store's virtual definition
224 is used precisely once by a later store to the same location which
225 post dominates the first store, then the first store is dead. */
226
227 static void
228 dse_optimize_stmt (struct dom_walk_data *walk_data,
229 basic_block bb ATTRIBUTE_UNUSED,
230 block_stmt_iterator bsi)
231 {
232 struct dse_block_local_data *bd
233 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
234 struct dse_global_data *dse_gd = walk_data->global_data;
235 tree stmt = bsi_stmt (bsi);
236 stmt_ann_t ann = stmt_ann (stmt);
237 v_may_def_optype v_may_defs;
238
239 get_stmt_operands (stmt);
240 v_may_defs = V_MAY_DEF_OPS (ann);
241
242 /* If this statement has no virtual uses, then there is nothing
243 to do. */
244 if (NUM_V_MAY_DEFS (v_may_defs) == 0)
245 return;
246
247 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
248 not also a function call, then record it into our table. */
249 if (get_call_expr_in (stmt))
250 return;
251 if (TREE_CODE (stmt) == MODIFY_EXPR)
252 {
253 dataflow_t df = get_immediate_uses (stmt);
254 unsigned int num_uses = num_immediate_uses (df);
255 tree use;
256 tree skipped_phi;
257
258
259 /* If there are no uses then there is nothing left to do. */
260 if (num_uses == 0)
261 {
262 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
263 return;
264 }
265
266 use = immediate_use (df, 0);
267 skipped_phi = NULL;
268
269 /* Skip through any PHI nodes we have already seen if the PHI
270 represents the only use of this store.
271
272 Note this does not handle the case where the store has
273 multiple V_MAY_DEFs which all reach a set of PHI nodes in the
274 same block. */
275 while (num_uses == 1
276 && TREE_CODE (use) == PHI_NODE
277 && bitmap_bit_p (dse_gd->stores, stmt_ann (use)->uid))
278 {
279 /* Record the first PHI we skip so that we can fix its
280 uses if we find that STMT is a dead store. */
281 if (!skipped_phi)
282 skipped_phi = use;
283
284 /* Skip past this PHI and loop again in case we had a PHI
285 chain. */
286 df = get_immediate_uses (use);
287 num_uses = num_immediate_uses (df);
288 use = immediate_use (df, 0);
289 }
290
291 /* If we have precisely one immediate use at this point, then we may
292 have found redundant store. */
293 if (num_uses == 1
294 && bitmap_bit_p (dse_gd->stores, stmt_ann (use)->uid)
295 && operand_equal_p (TREE_OPERAND (stmt, 0),
296 TREE_OPERAND (use, 0), 0))
297 {
298 /* We need to fix the operands if either the first PHI we
299 skipped, or the store which we are not deleting if we did
300 not skip any PHIs. */
301 if (skipped_phi)
302 fix_phi_uses (skipped_phi, stmt);
303 else
304 fix_stmt_v_may_defs (use, stmt);
305
306 if (dump_file && (dump_flags & TDF_DETAILS))
307 {
308 fprintf (dump_file, " Deleted dead store '");
309 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
310 fprintf (dump_file, "'\n");
311 }
312
313 /* Any immediate uses which reference STMT need to instead
314 reference the new consumer, either SKIPPED_PHI or USE.
315 This allows us to cascade dead stores. */
316 redirect_immediate_uses (stmt, skipped_phi ? skipped_phi : use);
317
318 /* Finally remove the dead store. */
319 bsi_remove (&bsi);
320 }
321
322 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
323 }
324 }
325
326 /* Record that we have seen the PHIs at the start of BB which correspond
327 to virtual operands. */
328 static void
329 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
330 {
331 struct dse_block_local_data *bd
332 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
333 struct dse_global_data *dse_gd = walk_data->global_data;
334 tree phi;
335
336 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
337 if (need_imm_uses_for (PHI_RESULT (phi)))
338 record_voperand_set (dse_gd->stores,
339 &bd->stores,
340 get_stmt_ann (phi)->uid);
341 }
342
343 static void
344 dse_finalize_block (struct dom_walk_data *walk_data,
345 basic_block bb ATTRIBUTE_UNUSED)
346 {
347 struct dse_block_local_data *bd
348 = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
349 struct dse_global_data *dse_gd = walk_data->global_data;
350 bitmap stores = dse_gd->stores;
351 unsigned int i;
352
353 /* Unwind the stores noted in this basic block. */
354 if (bd->stores)
355 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bitmap_clear_bit (stores, i););
356 }
357
358 static void
359 tree_ssa_dse (void)
360 {
361 struct dom_walk_data walk_data;
362 struct dse_global_data dse_gd;
363 unsigned int uid = 0;
364 basic_block bb;
365
366 /* Create a UID for each statement in the function. Ordering of the
367 UIDs is not important for this pass. */
368 FOR_EACH_BB (bb)
369 {
370 block_stmt_iterator bsi;
371 tree phi;
372
373 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
374 stmt_ann (bsi_stmt (bsi))->uid = uid++;
375
376 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
377 stmt_ann (phi)->uid = uid++;
378 }
379
380 /* We might consider making this a property of each pass so that it
381 can be [re]computed on an as-needed basis. Particularly since
382 this pass could be seen as an extension of DCE which needs post
383 dominators. */
384 calculate_dominance_info (CDI_POST_DOMINATORS);
385
386 /* We also need immediate use information for virtual operands. */
387 compute_immediate_uses (TDFA_USE_VOPS, need_imm_uses_for);
388
389 /* Dead store elimination is fundamentally a walk of the post-dominator
390 tree and a backwards walk of statements within each block. */
391 walk_data.walk_stmts_backward = true;
392 walk_data.dom_direction = CDI_POST_DOMINATORS;
393 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
394 walk_data.before_dom_children_before_stmts = NULL;
395 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
396 walk_data.before_dom_children_after_stmts = dse_record_phis;
397 walk_data.after_dom_children_before_stmts = NULL;
398 walk_data.after_dom_children_walk_stmts = NULL;
399 walk_data.after_dom_children_after_stmts = dse_finalize_block;
400
401 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
402
403 /* This is the main hash table for the dead store elimination pass. */
404 dse_gd.stores = BITMAP_XMALLOC ();
405 walk_data.global_data = &dse_gd;
406
407 /* Initialize the dominator walker. */
408 init_walk_dominator_tree (&walk_data);
409
410 /* Recursively walk the dominator tree. */
411 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
412
413 /* Finalize the dominator walker. */
414 fini_walk_dominator_tree (&walk_data);
415
416 /* Release the main bitmap. */
417 BITMAP_XFREE (dse_gd.stores);
418
419 /* Free dataflow information. It's probably out of date now anyway. */
420 free_df ();
421
422 /* For now, just wipe the post-dominator information. */
423 free_dominance_info (CDI_POST_DOMINATORS);
424 }
425
426 static bool
427 gate_dse (void)
428 {
429 return flag_tree_dse != 0;
430 }
431
432 struct tree_opt_pass pass_dse = {
433 "dse", /* name */
434 gate_dse, /* gate */
435 tree_ssa_dse, /* execute */
436 NULL, /* sub */
437 NULL, /* next */
438 0, /* static_pass_number */
439 TV_TREE_DSE, /* tv_id */
440 PROP_cfg | PROP_ssa
441 | PROP_alias, /* properties_required */
442 0, /* properties_provided */
443 0, /* properties_destroyed */
444 0, /* todo_flags_start */
445 TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */
446 | TODO_verify_ssa,
447 0 /* letter */
448 };