unwind-dw2-fde-glibc.c (_Unwind_IteratePhdrCallback): Move pc_low and pc_high declara...
[gcc.git] / gcc / tree-ssa-ifcombine.c
1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "timevar.h"
28 #include "diagnostic.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32
33 /* This pass combines COND_EXPRs to simplify control flow. It
34 currently recognizes bit tests and comparisons in chains that
35 represent logical and or logical or of two COND_EXPRs.
36
37 It does so by walking basic blocks in a approximate reverse
38 post-dominator order and trying to match CFG patterns that
39 represent logical and or logical or of two COND_EXPRs.
40 Transformations are done if the COND_EXPR conditions match
41 either
42
43 1. two single bit tests X & (1 << Yn) (for logical and)
44
45 2. two bit tests X & Yn (for logical or)
46
47 3. two comparisons X OPn Y (for logical or)
48
49 To simplify this pass, removing basic blocks and dead code
50 is left to CFG cleanup and DCE. */
51
52
53 /* Recognize a if-then-else CFG pattern starting to match with the
54 COND_BB basic-block containing the COND_EXPR. The recognized
55 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
56 *THEN_BB and/or *ELSE_BB are already set, they are required to
57 match the then and else basic-blocks to make the pattern match.
58 Returns true if the pattern matched, false otherwise. */
59
60 static bool
61 recognize_if_then_else (basic_block cond_bb,
62 basic_block *then_bb, basic_block *else_bb)
63 {
64 edge t, e;
65
66 if (EDGE_COUNT (cond_bb->succs) != 2)
67 return false;
68
69 /* Find the then/else edges. */
70 t = EDGE_SUCC (cond_bb, 0);
71 e = EDGE_SUCC (cond_bb, 1);
72 if (!(t->flags & EDGE_TRUE_VALUE))
73 {
74 edge tmp = t;
75 t = e;
76 e = tmp;
77 }
78 if (!(t->flags & EDGE_TRUE_VALUE)
79 || !(e->flags & EDGE_FALSE_VALUE))
80 return false;
81
82 /* Check if the edge destinations point to the required block. */
83 if (*then_bb
84 && t->dest != *then_bb)
85 return false;
86 if (*else_bb
87 && e->dest != *else_bb)
88 return false;
89
90 if (!*then_bb)
91 *then_bb = t->dest;
92 if (!*else_bb)
93 *else_bb = e->dest;
94
95 return true;
96 }
97
98 /* Verify if the basic block BB does not have side-effects. Return
99 true in this case, else false. */
100
101 static bool
102 bb_no_side_effects_p (basic_block bb)
103 {
104 gimple_stmt_iterator gsi;
105
106 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
107 {
108 gimple stmt = gsi_stmt (gsi);
109
110 if (gimple_has_volatile_ops (stmt)
111 || gimple_vuse (stmt))
112 return false;
113 }
114
115 return true;
116 }
117
118 /* Verify if all PHI node arguments in DEST for edges from BB1 or
119 BB2 to DEST are the same. This makes the CFG merge point
120 free from side-effects. Return true in this case, else false. */
121
122 static bool
123 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
124 {
125 edge e1 = find_edge (bb1, dest);
126 edge e2 = find_edge (bb2, dest);
127 gimple_stmt_iterator gsi;
128 gimple phi;
129
130 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
131 {
132 phi = gsi_stmt (gsi);
133 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
134 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
135 return false;
136 }
137
138 return true;
139 }
140
141 /* Return the best representative SSA name for CANDIDATE which is used
142 in a bit test. */
143
144 static tree
145 get_name_for_bit_test (tree candidate)
146 {
147 /* Skip single-use names in favor of using the name from a
148 non-widening conversion definition. */
149 if (TREE_CODE (candidate) == SSA_NAME
150 && has_single_use (candidate))
151 {
152 gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
153 if (is_gimple_assign (def_stmt)
154 && gimple_assign_cast_p (def_stmt))
155 {
156 if (TYPE_PRECISION (TREE_TYPE (candidate))
157 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
158 return gimple_assign_rhs1 (def_stmt);
159 }
160 }
161
162 return candidate;
163 }
164
165 /* Helpers for recognize_single_bit_test defined mainly for source code
166 formating. */
167
168 static int
169 operand_precision (tree t)
170 {
171 return TYPE_PRECISION (TREE_TYPE (t));
172 }
173
174 static bool
175 integral_operand_p (tree t)
176 {
177 return INTEGRAL_TYPE_P (TREE_TYPE (t));
178 }
179
180 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
181 statements. Store the name being tested in *NAME and the bit
182 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
183 Returns true if the pattern matched, false otherwise. */
184
185 static bool
186 recognize_single_bit_test (gimple cond, tree *name, tree *bit)
187 {
188 gimple stmt;
189
190 /* Get at the definition of the result of the bit test. */
191 if (gimple_cond_code (cond) != NE_EXPR
192 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
193 || !integer_zerop (gimple_cond_rhs (cond)))
194 return false;
195 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
196 if (!is_gimple_assign (stmt))
197 return false;
198
199 /* Look at which bit is tested. One form to recognize is
200 D.1985_5 = state_3(D) >> control1_4(D);
201 D.1986_6 = (int) D.1985_5;
202 D.1987_7 = op0 & 1;
203 if (D.1987_7 != 0) */
204 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
205 && integer_onep (gimple_assign_rhs2 (stmt))
206 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
207 {
208 tree orig_name = gimple_assign_rhs1 (stmt);
209
210 /* Look through copies and conversions to eventually
211 find the stmt that computes the shift. */
212 stmt = SSA_NAME_DEF_STMT (orig_name);
213
214 while (is_gimple_assign (stmt)
215 && (gimple_assign_ssa_name_copy_p (stmt)
216 || (gimple_assign_cast_p (stmt)
217 && integral_operand_p (gimple_assign_lhs (stmt))
218 && integral_operand_p (gimple_assign_rhs1 (stmt))
219 && (operand_precision (gimple_assign_lhs (stmt))
220 <= operand_precision (gimple_assign_rhs1 (stmt))))))
221 {
222 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
223 }
224
225 /* If we found such, decompose it. */
226 if (is_gimple_assign (stmt)
227 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
228 {
229 /* op0 & (1 << op1) */
230 *bit = gimple_assign_rhs2 (stmt);
231 *name = gimple_assign_rhs1 (stmt);
232 }
233 else
234 {
235 /* t & 1 */
236 *bit = integer_zero_node;
237 *name = get_name_for_bit_test (orig_name);
238 }
239
240 return true;
241 }
242
243 /* Another form is
244 D.1987_7 = op0 & (1 << CST)
245 if (D.1987_7 != 0) */
246 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
247 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
248 && integer_pow2p (gimple_assign_rhs2 (stmt)))
249 {
250 *name = gimple_assign_rhs1 (stmt);
251 *bit = build_int_cst (integer_type_node,
252 tree_log2 (gimple_assign_rhs2 (stmt)));
253 return true;
254 }
255
256 /* Another form is
257 D.1986_6 = 1 << control1_4(D)
258 D.1987_7 = op0 & D.1986_6
259 if (D.1987_7 != 0) */
260 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
261 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
262 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
263 {
264 gimple tmp;
265
266 /* Both arguments of the BIT_AND_EXPR can be the single-bit
267 specifying expression. */
268 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
269 if (is_gimple_assign (tmp)
270 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
271 && integer_onep (gimple_assign_rhs1 (tmp)))
272 {
273 *name = gimple_assign_rhs2 (stmt);
274 *bit = gimple_assign_rhs2 (tmp);
275 return true;
276 }
277
278 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
279 if (is_gimple_assign (tmp)
280 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
281 && integer_onep (gimple_assign_rhs1 (tmp)))
282 {
283 *name = gimple_assign_rhs1 (stmt);
284 *bit = gimple_assign_rhs2 (tmp);
285 return true;
286 }
287 }
288
289 return false;
290 }
291
292 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
293 statements. Store the name being tested in *NAME and the bits
294 in *BITS. The COND_EXPR computes *NAME & *BITS.
295 Returns true if the pattern matched, false otherwise. */
296
297 static bool
298 recognize_bits_test (gimple cond, tree *name, tree *bits)
299 {
300 gimple stmt;
301
302 /* Get at the definition of the result of the bit test. */
303 if (gimple_cond_code (cond) != NE_EXPR
304 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
305 || !integer_zerop (gimple_cond_rhs (cond)))
306 return false;
307 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
308 if (!is_gimple_assign (stmt)
309 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
310 return false;
311
312 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
313 *bits = gimple_assign_rhs2 (stmt);
314
315 return true;
316 }
317
318 /* If-convert on a and pattern with a common else block. The inner
319 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
320 Returns true if the edges to the common else basic-block were merged. */
321
322 static bool
323 ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
324 {
325 gimple_stmt_iterator gsi;
326 gimple inner_cond, outer_cond;
327 tree name1, name2, bit1, bit2;
328
329 inner_cond = last_stmt (inner_cond_bb);
330 if (!inner_cond
331 || gimple_code (inner_cond) != GIMPLE_COND)
332 return false;
333
334 outer_cond = last_stmt (outer_cond_bb);
335 if (!outer_cond
336 || gimple_code (outer_cond) != GIMPLE_COND)
337 return false;
338
339 /* See if we test a single bit of the same name in both tests. In
340 that case remove the outer test, merging both else edges,
341 and change the inner one to test for
342 name & (bit1 | bit2) == (bit1 | bit2). */
343 if (recognize_single_bit_test (inner_cond, &name1, &bit1)
344 && recognize_single_bit_test (outer_cond, &name2, &bit2)
345 && name1 == name2)
346 {
347 tree t, t2;
348
349 /* Do it. */
350 gsi = gsi_for_stmt (inner_cond);
351 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
352 build_int_cst (TREE_TYPE (name1), 1), bit1);
353 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
354 build_int_cst (TREE_TYPE (name1), 1), bit2);
355 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
356 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
357 true, GSI_SAME_STMT);
358 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
359 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
360 true, GSI_SAME_STMT);
361 t = fold_build2 (EQ_EXPR, boolean_type_node, t2, t);
362 gimple_cond_set_condition_from_tree (inner_cond, t);
363 update_stmt (inner_cond);
364
365 /* Leave CFG optimization to cfg_cleanup. */
366 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
367 update_stmt (outer_cond);
368
369 if (dump_file)
370 {
371 fprintf (dump_file, "optimizing double bit test to ");
372 print_generic_expr (dump_file, name1, 0);
373 fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
374 print_generic_expr (dump_file, bit1, 0);
375 fprintf (dump_file, ") | (1 << ");
376 print_generic_expr (dump_file, bit2, 0);
377 fprintf (dump_file, ")\n");
378 }
379
380 return true;
381 }
382
383 /* See if we have two comparisons that we can merge into one. */
384 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
385 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
386 && operand_equal_p (gimple_cond_lhs (inner_cond),
387 gimple_cond_lhs (outer_cond), 0)
388 && operand_equal_p (gimple_cond_rhs (inner_cond),
389 gimple_cond_rhs (outer_cond), 0))
390 {
391 enum tree_code code1 = gimple_cond_code (inner_cond);
392 enum tree_code code2 = gimple_cond_code (outer_cond);
393 tree t;
394
395 if (!(t = combine_comparisons (TRUTH_ANDIF_EXPR, code1, code2,
396 boolean_type_node,
397 gimple_cond_lhs (outer_cond),
398 gimple_cond_rhs (outer_cond))))
399 return false;
400 t = canonicalize_cond_expr_cond (t);
401 if (!t)
402 return false;
403 gimple_cond_set_condition_from_tree (inner_cond, t);
404 update_stmt (inner_cond);
405
406 /* Leave CFG optimization to cfg_cleanup. */
407 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
408 update_stmt (outer_cond);
409
410 if (dump_file)
411 {
412 fprintf (dump_file, "optimizing two comparisons to ");
413 print_generic_expr (dump_file, t, 0);
414 fprintf (dump_file, "\n");
415 }
416
417 return true;
418 }
419
420 return false;
421 }
422
423 /* If-convert on a or pattern with a common then block. The inner
424 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
425 Returns true, if the edges leading to the common then basic-block
426 were merged. */
427
428 static bool
429 ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
430 {
431 gimple inner_cond, outer_cond;
432 tree name1, name2, bits1, bits2;
433
434 inner_cond = last_stmt (inner_cond_bb);
435 if (!inner_cond
436 || gimple_code (inner_cond) != GIMPLE_COND)
437 return false;
438
439 outer_cond = last_stmt (outer_cond_bb);
440 if (!outer_cond
441 || gimple_code (outer_cond) != GIMPLE_COND)
442 return false;
443
444 /* See if we have two bit tests of the same name in both tests.
445 In that case remove the outer test and change the inner one to
446 test for name & (bits1 | bits2) != 0. */
447 if (recognize_bits_test (inner_cond, &name1, &bits1)
448 && recognize_bits_test (outer_cond, &name2, &bits2))
449 {
450 gimple_stmt_iterator gsi;
451 tree t;
452
453 /* Find the common name which is bit-tested. */
454 if (name1 == name2)
455 ;
456 else if (bits1 == bits2)
457 {
458 t = name2;
459 name2 = bits2;
460 bits2 = t;
461 t = name1;
462 name1 = bits1;
463 bits1 = t;
464 }
465 else if (name1 == bits2)
466 {
467 t = name2;
468 name2 = bits2;
469 bits2 = t;
470 }
471 else if (bits1 == name2)
472 {
473 t = name1;
474 name1 = bits1;
475 bits1 = t;
476 }
477 else
478 return false;
479
480 /* As we strip non-widening conversions in finding a common
481 name that is tested make sure to end up with an integral
482 type for building the bit operations. */
483 if (TYPE_PRECISION (TREE_TYPE (bits1))
484 >= TYPE_PRECISION (TREE_TYPE (bits2)))
485 {
486 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
487 name1 = fold_convert (TREE_TYPE (bits1), name1);
488 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
489 bits2 = fold_convert (TREE_TYPE (bits1), bits2);
490 }
491 else
492 {
493 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
494 name1 = fold_convert (TREE_TYPE (bits2), name1);
495 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
496 bits1 = fold_convert (TREE_TYPE (bits2), bits1);
497 }
498
499 /* Do it. */
500 gsi = gsi_for_stmt (inner_cond);
501 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
502 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
503 true, GSI_SAME_STMT);
504 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
505 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
506 true, GSI_SAME_STMT);
507 t = fold_build2 (NE_EXPR, boolean_type_node, t,
508 build_int_cst (TREE_TYPE (t), 0));
509 gimple_cond_set_condition_from_tree (inner_cond, t);
510 update_stmt (inner_cond);
511
512 /* Leave CFG optimization to cfg_cleanup. */
513 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
514 update_stmt (outer_cond);
515
516 if (dump_file)
517 {
518 fprintf (dump_file, "optimizing bits or bits test to ");
519 print_generic_expr (dump_file, name1, 0);
520 fprintf (dump_file, " & T != 0\nwith temporary T = ");
521 print_generic_expr (dump_file, bits1, 0);
522 fprintf (dump_file, " | ");
523 print_generic_expr (dump_file, bits2, 0);
524 fprintf (dump_file, "\n");
525 }
526
527 return true;
528 }
529
530 /* See if we have two comparisons that we can merge into one.
531 This happens for C++ operator overloading where for example
532 GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
533 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
534 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
535 && operand_equal_p (gimple_cond_lhs (inner_cond),
536 gimple_cond_lhs (outer_cond), 0)
537 && operand_equal_p (gimple_cond_rhs (inner_cond),
538 gimple_cond_rhs (outer_cond), 0))
539 {
540 enum tree_code code1 = gimple_cond_code (inner_cond);
541 enum tree_code code2 = gimple_cond_code (outer_cond);
542 tree t;
543
544 if (!(t = combine_comparisons (TRUTH_ORIF_EXPR, code1, code2,
545 boolean_type_node,
546 gimple_cond_lhs (outer_cond),
547 gimple_cond_rhs (outer_cond))))
548 return false;
549 t = canonicalize_cond_expr_cond (t);
550 if (!t)
551 return false;
552 gimple_cond_set_condition_from_tree (inner_cond, t);
553 update_stmt (inner_cond);
554
555 /* Leave CFG optimization to cfg_cleanup. */
556 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
557 update_stmt (outer_cond);
558
559 if (dump_file)
560 {
561 fprintf (dump_file, "optimizing two comparisons to ");
562 print_generic_expr (dump_file, t, 0);
563 fprintf (dump_file, "\n");
564 }
565
566 return true;
567 }
568
569 return false;
570 }
571
572 /* Recognize a CFG pattern and dispatch to the appropriate
573 if-conversion helper. We start with BB as the innermost
574 worker basic-block. Returns true if a transformation was done. */
575
576 static bool
577 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
578 {
579 basic_block then_bb = NULL, else_bb = NULL;
580
581 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
582 return false;
583
584 /* Recognize && and || of two conditions with a common
585 then/else block which entry edges we can merge. That is:
586 if (a || b)
587 ;
588 and
589 if (a && b)
590 ;
591 This requires a single predecessor of the inner cond_bb. */
592 if (single_pred_p (inner_cond_bb))
593 {
594 basic_block outer_cond_bb = single_pred (inner_cond_bb);
595
596 /* The && form is characterized by a common else_bb with
597 the two edges leading to it mergable. The latter is
598 guaranteed by matching PHI arguments in the else_bb and
599 the inner cond_bb having no side-effects. */
600 if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
601 && same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
602 && bb_no_side_effects_p (inner_cond_bb))
603 {
604 /* We have
605 <outer_cond_bb>
606 if (q) goto inner_cond_bb; else goto else_bb;
607 <inner_cond_bb>
608 if (p) goto ...; else goto else_bb;
609 ...
610 <else_bb>
611 ...
612 */
613 return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
614 }
615
616 /* The || form is characterized by a common then_bb with the
617 two edges leading to it mergable. The latter is guaranteed
618 by matching PHI arguments in the then_bb and the inner cond_bb
619 having no side-effects. */
620 if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
621 && same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
622 && bb_no_side_effects_p (inner_cond_bb))
623 {
624 /* We have
625 <outer_cond_bb>
626 if (q) goto then_bb; else goto inner_cond_bb;
627 <inner_cond_bb>
628 if (q) goto then_bb; else goto ...;
629 <then_bb>
630 ...
631 */
632 return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
633 }
634 }
635
636 return false;
637 }
638
639 /* Main entry for the tree if-conversion pass. */
640
641 static unsigned int
642 tree_ssa_ifcombine (void)
643 {
644 basic_block *bbs;
645 bool cfg_changed = false;
646 int i;
647
648 bbs = blocks_in_phiopt_order ();
649
650 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
651 {
652 basic_block bb = bbs[i];
653 gimple stmt = last_stmt (bb);
654
655 if (stmt
656 && gimple_code (stmt) == GIMPLE_COND)
657 cfg_changed |= tree_ssa_ifcombine_bb (bb);
658 }
659
660 free (bbs);
661
662 return cfg_changed ? TODO_cleanup_cfg : 0;
663 }
664
665 static bool
666 gate_ifcombine (void)
667 {
668 return 1;
669 }
670
671 struct gimple_opt_pass pass_tree_ifcombine =
672 {
673 {
674 GIMPLE_PASS,
675 "ifcombine", /* name */
676 gate_ifcombine, /* gate */
677 tree_ssa_ifcombine, /* execute */
678 NULL, /* sub */
679 NULL, /* next */
680 0, /* static_pass_number */
681 TV_TREE_IFCOMBINE, /* tv_id */
682 PROP_cfg | PROP_ssa, /* properties_required */
683 0, /* properties_provided */
684 0, /* properties_destroyed */
685 0, /* todo_flags_start */
686 TODO_dump_func
687 | TODO_ggc_collect
688 | TODO_update_ssa
689 | TODO_verify_ssa /* todo_flags_finish */
690 }
691 };