re PR c/40435 (Revision 148442 caused many regressions on trunk)
[gcc.git] / gcc / tree-ssa-ifcombine.c
1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "timevar.h"
28 #include "diagnostic.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32
33 /* This pass combines COND_EXPRs to simplify control flow. It
34 currently recognizes bit tests and comparisons in chains that
35 represent logical and or logical or of two COND_EXPRs.
36
37 It does so by walking basic blocks in a approximate reverse
38 post-dominator order and trying to match CFG patterns that
39 represent logical and or logical or of two COND_EXPRs.
40 Transformations are done if the COND_EXPR conditions match
41 either
42
43 1. two single bit tests X & (1 << Yn) (for logical and)
44
45 2. two bit tests X & Yn (for logical or)
46
47 3. two comparisons X OPn Y (for logical or)
48
49 To simplify this pass, removing basic blocks and dead code
50 is left to CFG cleanup and DCE. */
51
52
53 /* Recognize a if-then-else CFG pattern starting to match with the
54 COND_BB basic-block containing the COND_EXPR. The recognized
55 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
56 *THEN_BB and/or *ELSE_BB are already set, they are required to
57 match the then and else basic-blocks to make the pattern match.
58 Returns true if the pattern matched, false otherwise. */
59
60 static bool
61 recognize_if_then_else (basic_block cond_bb,
62 basic_block *then_bb, basic_block *else_bb)
63 {
64 edge t, e;
65
66 if (EDGE_COUNT (cond_bb->succs) != 2)
67 return false;
68
69 /* Find the then/else edges. */
70 t = EDGE_SUCC (cond_bb, 0);
71 e = EDGE_SUCC (cond_bb, 1);
72 if (!(t->flags & EDGE_TRUE_VALUE))
73 {
74 edge tmp = t;
75 t = e;
76 e = tmp;
77 }
78 if (!(t->flags & EDGE_TRUE_VALUE)
79 || !(e->flags & EDGE_FALSE_VALUE))
80 return false;
81
82 /* Check if the edge destinations point to the required block. */
83 if (*then_bb
84 && t->dest != *then_bb)
85 return false;
86 if (*else_bb
87 && e->dest != *else_bb)
88 return false;
89
90 if (!*then_bb)
91 *then_bb = t->dest;
92 if (!*else_bb)
93 *else_bb = e->dest;
94
95 return true;
96 }
97
98 /* Verify if the basic block BB does not have side-effects. Return
99 true in this case, else false. */
100
101 static bool
102 bb_no_side_effects_p (basic_block bb)
103 {
104 gimple_stmt_iterator gsi;
105
106 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
107 {
108 gimple stmt = gsi_stmt (gsi);
109
110 if (gimple_has_volatile_ops (stmt)
111 || gimple_vuse (stmt))
112 return false;
113 }
114
115 return true;
116 }
117
118 /* Verify if all PHI node arguments in DEST for edges from BB1 or
119 BB2 to DEST are the same. This makes the CFG merge point
120 free from side-effects. Return true in this case, else false. */
121
122 static bool
123 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
124 {
125 edge e1 = find_edge (bb1, dest);
126 edge e2 = find_edge (bb2, dest);
127 gimple_stmt_iterator gsi;
128 gimple phi;
129
130 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
131 {
132 phi = gsi_stmt (gsi);
133 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
134 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
135 return false;
136 }
137
138 return true;
139 }
140
141 /* Return the best representative SSA name for CANDIDATE which is used
142 in a bit test. */
143
144 static tree
145 get_name_for_bit_test (tree candidate)
146 {
147 /* Skip single-use names in favor of using the name from a
148 non-widening conversion definition. */
149 if (TREE_CODE (candidate) == SSA_NAME
150 && has_single_use (candidate))
151 {
152 gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
153 if (is_gimple_assign (def_stmt)
154 && gimple_assign_cast_p (def_stmt))
155 {
156 if (TYPE_PRECISION (TREE_TYPE (candidate))
157 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
158 return gimple_assign_rhs1 (def_stmt);
159 }
160 }
161
162 return candidate;
163 }
164
165 /* Helpers for recognize_single_bit_test defined mainly for source code
166 formating. */
167
168 static int
169 operand_precision (tree t)
170 {
171 return TYPE_PRECISION (TREE_TYPE (t));
172 }
173
174 static bool
175 integral_operand_p (tree t)
176 {
177 return INTEGRAL_TYPE_P (TREE_TYPE (t));
178 }
179
180 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
181 statements. Store the name being tested in *NAME and the bit
182 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
183 Returns true if the pattern matched, false otherwise. */
184
185 static bool
186 recognize_single_bit_test (gimple cond, tree *name, tree *bit)
187 {
188 gimple stmt;
189
190 /* Get at the definition of the result of the bit test. */
191 if (gimple_cond_code (cond) != NE_EXPR
192 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
193 || !integer_zerop (gimple_cond_rhs (cond)))
194 return false;
195 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
196 if (!is_gimple_assign (stmt))
197 return false;
198
199 /* Look at which bit is tested. One form to recognize is
200 D.1985_5 = state_3(D) >> control1_4(D);
201 D.1986_6 = (int) D.1985_5;
202 D.1987_7 = op0 & 1;
203 if (D.1987_7 != 0) */
204 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
205 && integer_onep (gimple_assign_rhs2 (stmt))
206 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
207 {
208 tree orig_name = gimple_assign_rhs1 (stmt);
209
210 /* Look through copies and conversions to eventually
211 find the stmt that computes the shift. */
212 stmt = SSA_NAME_DEF_STMT (orig_name);
213
214 while (is_gimple_assign (stmt)
215 && (gimple_assign_ssa_name_copy_p (stmt)
216 || (gimple_assign_cast_p (stmt)
217 && integral_operand_p (gimple_assign_lhs (stmt))
218 && integral_operand_p (gimple_assign_rhs1 (stmt))
219 && (operand_precision (gimple_assign_lhs (stmt))
220 <= operand_precision (gimple_assign_rhs1 (stmt))))))
221 {
222 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
223 }
224
225 /* If we found such, decompose it. */
226 if (is_gimple_assign (stmt)
227 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
228 {
229 /* op0 & (1 << op1) */
230 *bit = gimple_assign_rhs2 (stmt);
231 *name = gimple_assign_rhs1 (stmt);
232 }
233 else
234 {
235 /* t & 1 */
236 *bit = integer_zero_node;
237 *name = get_name_for_bit_test (orig_name);
238 }
239
240 return true;
241 }
242
243 /* Another form is
244 D.1987_7 = op0 & (1 << CST)
245 if (D.1987_7 != 0) */
246 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
247 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
248 && integer_pow2p (gimple_assign_rhs2 (stmt)))
249 {
250 *name = gimple_assign_rhs1 (stmt);
251 *bit = build_int_cst (integer_type_node,
252 tree_log2 (gimple_assign_rhs2 (stmt)));
253 return true;
254 }
255
256 /* Another form is
257 D.1986_6 = 1 << control1_4(D)
258 D.1987_7 = op0 & D.1986_6
259 if (D.1987_7 != 0) */
260 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
261 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
262 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
263 {
264 gimple tmp;
265
266 /* Both arguments of the BIT_AND_EXPR can be the single-bit
267 specifying expression. */
268 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
269 if (is_gimple_assign (tmp)
270 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
271 && integer_onep (gimple_assign_rhs1 (tmp)))
272 {
273 *name = gimple_assign_rhs2 (stmt);
274 *bit = gimple_assign_rhs2 (tmp);
275 return true;
276 }
277
278 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
279 if (is_gimple_assign (tmp)
280 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
281 && integer_onep (gimple_assign_rhs1 (tmp)))
282 {
283 *name = gimple_assign_rhs1 (stmt);
284 *bit = gimple_assign_rhs2 (tmp);
285 return true;
286 }
287 }
288
289 return false;
290 }
291
292 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
293 statements. Store the name being tested in *NAME and the bits
294 in *BITS. The COND_EXPR computes *NAME & *BITS.
295 Returns true if the pattern matched, false otherwise. */
296
297 static bool
298 recognize_bits_test (gimple cond, tree *name, tree *bits)
299 {
300 gimple stmt;
301
302 /* Get at the definition of the result of the bit test. */
303 if (gimple_cond_code (cond) != NE_EXPR
304 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
305 || !integer_zerop (gimple_cond_rhs (cond)))
306 return false;
307 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
308 if (!is_gimple_assign (stmt)
309 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
310 return false;
311
312 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
313 *bits = gimple_assign_rhs2 (stmt);
314
315 return true;
316 }
317
318 /* If-convert on a and pattern with a common else block. The inner
319 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
320 Returns true if the edges to the common else basic-block were merged. */
321
322 static bool
323 ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
324 {
325 gimple_stmt_iterator gsi;
326 gimple inner_cond, outer_cond;
327 tree name1, name2, bit1, bit2;
328
329 inner_cond = last_stmt (inner_cond_bb);
330 if (!inner_cond
331 || gimple_code (inner_cond) != GIMPLE_COND)
332 return false;
333
334 outer_cond = last_stmt (outer_cond_bb);
335 if (!outer_cond
336 || gimple_code (outer_cond) != GIMPLE_COND)
337 return false;
338
339 /* See if we test a single bit of the same name in both tests. In
340 that case remove the outer test, merging both else edges,
341 and change the inner one to test for
342 name & (bit1 | bit2) == (bit1 | bit2). */
343 if (recognize_single_bit_test (inner_cond, &name1, &bit1)
344 && recognize_single_bit_test (outer_cond, &name2, &bit2)
345 && name1 == name2)
346 {
347 tree t, t2;
348
349 /* Do it. */
350 gsi = gsi_for_stmt (inner_cond);
351 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
352 build_int_cst (TREE_TYPE (name1), 1), bit1);
353 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
354 build_int_cst (TREE_TYPE (name1), 1), bit2);
355 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
356 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
357 true, GSI_SAME_STMT);
358 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
359 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
360 true, GSI_SAME_STMT);
361 t = fold_build2 (EQ_EXPR, boolean_type_node, t2, t);
362 gimple_cond_set_condition_from_tree (inner_cond, t);
363 update_stmt (inner_cond);
364
365 /* Leave CFG optimization to cfg_cleanup. */
366 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
367 update_stmt (outer_cond);
368
369 if (dump_file)
370 {
371 fprintf (dump_file, "optimizing double bit test to ");
372 print_generic_expr (dump_file, name1, 0);
373 fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
374 print_generic_expr (dump_file, bit1, 0);
375 fprintf (dump_file, ") | (1 << ");
376 print_generic_expr (dump_file, bit2, 0);
377 fprintf (dump_file, ")\n");
378 }
379
380 return true;
381 }
382
383 /* See if we have two comparisons that we can merge into one. */
384 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
385 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
386 && operand_equal_p (gimple_cond_lhs (inner_cond),
387 gimple_cond_lhs (outer_cond), 0)
388 && operand_equal_p (gimple_cond_rhs (inner_cond),
389 gimple_cond_rhs (outer_cond), 0))
390 {
391 enum tree_code code1 = gimple_cond_code (inner_cond);
392 enum tree_code code2 = gimple_cond_code (outer_cond);
393 tree t;
394
395 if (!(t = combine_comparisons (UNKNOWN_LOCATION,
396 TRUTH_ANDIF_EXPR, code1, code2,
397 boolean_type_node,
398 gimple_cond_lhs (outer_cond),
399 gimple_cond_rhs (outer_cond))))
400 return false;
401 t = canonicalize_cond_expr_cond (t);
402 if (!t)
403 return false;
404 gimple_cond_set_condition_from_tree (inner_cond, t);
405 update_stmt (inner_cond);
406
407 /* Leave CFG optimization to cfg_cleanup. */
408 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
409 update_stmt (outer_cond);
410
411 if (dump_file)
412 {
413 fprintf (dump_file, "optimizing two comparisons to ");
414 print_generic_expr (dump_file, t, 0);
415 fprintf (dump_file, "\n");
416 }
417
418 return true;
419 }
420
421 return false;
422 }
423
424 /* If-convert on a or pattern with a common then block. The inner
425 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
426 Returns true, if the edges leading to the common then basic-block
427 were merged. */
428
429 static bool
430 ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
431 {
432 gimple inner_cond, outer_cond;
433 tree name1, name2, bits1, bits2;
434
435 inner_cond = last_stmt (inner_cond_bb);
436 if (!inner_cond
437 || gimple_code (inner_cond) != GIMPLE_COND)
438 return false;
439
440 outer_cond = last_stmt (outer_cond_bb);
441 if (!outer_cond
442 || gimple_code (outer_cond) != GIMPLE_COND)
443 return false;
444
445 /* See if we have two bit tests of the same name in both tests.
446 In that case remove the outer test and change the inner one to
447 test for name & (bits1 | bits2) != 0. */
448 if (recognize_bits_test (inner_cond, &name1, &bits1)
449 && recognize_bits_test (outer_cond, &name2, &bits2))
450 {
451 gimple_stmt_iterator gsi;
452 tree t;
453
454 /* Find the common name which is bit-tested. */
455 if (name1 == name2)
456 ;
457 else if (bits1 == bits2)
458 {
459 t = name2;
460 name2 = bits2;
461 bits2 = t;
462 t = name1;
463 name1 = bits1;
464 bits1 = t;
465 }
466 else if (name1 == bits2)
467 {
468 t = name2;
469 name2 = bits2;
470 bits2 = t;
471 }
472 else if (bits1 == name2)
473 {
474 t = name1;
475 name1 = bits1;
476 bits1 = t;
477 }
478 else
479 return false;
480
481 /* As we strip non-widening conversions in finding a common
482 name that is tested make sure to end up with an integral
483 type for building the bit operations. */
484 if (TYPE_PRECISION (TREE_TYPE (bits1))
485 >= TYPE_PRECISION (TREE_TYPE (bits2)))
486 {
487 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
488 name1 = fold_convert (TREE_TYPE (bits1), name1);
489 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
490 bits2 = fold_convert (TREE_TYPE (bits1), bits2);
491 }
492 else
493 {
494 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
495 name1 = fold_convert (TREE_TYPE (bits2), name1);
496 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
497 bits1 = fold_convert (TREE_TYPE (bits2), bits1);
498 }
499
500 /* Do it. */
501 gsi = gsi_for_stmt (inner_cond);
502 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
503 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
504 true, GSI_SAME_STMT);
505 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
506 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
507 true, GSI_SAME_STMT);
508 t = fold_build2 (NE_EXPR, boolean_type_node, t,
509 build_int_cst (TREE_TYPE (t), 0));
510 gimple_cond_set_condition_from_tree (inner_cond, t);
511 update_stmt (inner_cond);
512
513 /* Leave CFG optimization to cfg_cleanup. */
514 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
515 update_stmt (outer_cond);
516
517 if (dump_file)
518 {
519 fprintf (dump_file, "optimizing bits or bits test to ");
520 print_generic_expr (dump_file, name1, 0);
521 fprintf (dump_file, " & T != 0\nwith temporary T = ");
522 print_generic_expr (dump_file, bits1, 0);
523 fprintf (dump_file, " | ");
524 print_generic_expr (dump_file, bits2, 0);
525 fprintf (dump_file, "\n");
526 }
527
528 return true;
529 }
530
531 /* See if we have two comparisons that we can merge into one.
532 This happens for C++ operator overloading where for example
533 GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
534 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
535 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
536 && operand_equal_p (gimple_cond_lhs (inner_cond),
537 gimple_cond_lhs (outer_cond), 0)
538 && operand_equal_p (gimple_cond_rhs (inner_cond),
539 gimple_cond_rhs (outer_cond), 0))
540 {
541 enum tree_code code1 = gimple_cond_code (inner_cond);
542 enum tree_code code2 = gimple_cond_code (outer_cond);
543 tree t;
544
545 if (!(t = combine_comparisons (UNKNOWN_LOCATION,
546 TRUTH_ORIF_EXPR, code1, code2,
547 boolean_type_node,
548 gimple_cond_lhs (outer_cond),
549 gimple_cond_rhs (outer_cond))))
550 return false;
551 t = canonicalize_cond_expr_cond (t);
552 if (!t)
553 return false;
554 gimple_cond_set_condition_from_tree (inner_cond, t);
555 update_stmt (inner_cond);
556
557 /* Leave CFG optimization to cfg_cleanup. */
558 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
559 update_stmt (outer_cond);
560
561 if (dump_file)
562 {
563 fprintf (dump_file, "optimizing two comparisons to ");
564 print_generic_expr (dump_file, t, 0);
565 fprintf (dump_file, "\n");
566 }
567
568 return true;
569 }
570
571 return false;
572 }
573
574 /* Recognize a CFG pattern and dispatch to the appropriate
575 if-conversion helper. We start with BB as the innermost
576 worker basic-block. Returns true if a transformation was done. */
577
578 static bool
579 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
580 {
581 basic_block then_bb = NULL, else_bb = NULL;
582
583 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
584 return false;
585
586 /* Recognize && and || of two conditions with a common
587 then/else block which entry edges we can merge. That is:
588 if (a || b)
589 ;
590 and
591 if (a && b)
592 ;
593 This requires a single predecessor of the inner cond_bb. */
594 if (single_pred_p (inner_cond_bb))
595 {
596 basic_block outer_cond_bb = single_pred (inner_cond_bb);
597
598 /* The && form is characterized by a common else_bb with
599 the two edges leading to it mergable. The latter is
600 guaranteed by matching PHI arguments in the else_bb and
601 the inner cond_bb having no side-effects. */
602 if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
603 && same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
604 && bb_no_side_effects_p (inner_cond_bb))
605 {
606 /* We have
607 <outer_cond_bb>
608 if (q) goto inner_cond_bb; else goto else_bb;
609 <inner_cond_bb>
610 if (p) goto ...; else goto else_bb;
611 ...
612 <else_bb>
613 ...
614 */
615 return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
616 }
617
618 /* The || form is characterized by a common then_bb with the
619 two edges leading to it mergable. The latter is guaranteed
620 by matching PHI arguments in the then_bb and the inner cond_bb
621 having no side-effects. */
622 if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
623 && same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
624 && bb_no_side_effects_p (inner_cond_bb))
625 {
626 /* We have
627 <outer_cond_bb>
628 if (q) goto then_bb; else goto inner_cond_bb;
629 <inner_cond_bb>
630 if (q) goto then_bb; else goto ...;
631 <then_bb>
632 ...
633 */
634 return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
635 }
636 }
637
638 return false;
639 }
640
641 /* Main entry for the tree if-conversion pass. */
642
643 static unsigned int
644 tree_ssa_ifcombine (void)
645 {
646 basic_block *bbs;
647 bool cfg_changed = false;
648 int i;
649
650 bbs = blocks_in_phiopt_order ();
651
652 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
653 {
654 basic_block bb = bbs[i];
655 gimple stmt = last_stmt (bb);
656
657 if (stmt
658 && gimple_code (stmt) == GIMPLE_COND)
659 cfg_changed |= tree_ssa_ifcombine_bb (bb);
660 }
661
662 free (bbs);
663
664 return cfg_changed ? TODO_cleanup_cfg : 0;
665 }
666
667 static bool
668 gate_ifcombine (void)
669 {
670 return 1;
671 }
672
673 struct gimple_opt_pass pass_tree_ifcombine =
674 {
675 {
676 GIMPLE_PASS,
677 "ifcombine", /* name */
678 gate_ifcombine, /* gate */
679 tree_ssa_ifcombine, /* execute */
680 NULL, /* sub */
681 NULL, /* next */
682 0, /* static_pass_number */
683 TV_TREE_IFCOMBINE, /* tv_id */
684 PROP_cfg | PROP_ssa, /* properties_required */
685 0, /* properties_provided */
686 0, /* properties_destroyed */
687 0, /* todo_flags_start */
688 TODO_dump_func
689 | TODO_ggc_collect
690 | TODO_update_ssa
691 | TODO_verify_ssa /* todo_flags_finish */
692 }
693 };