(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation,
3 Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "diagnostic.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "tree-ssa-live.h"
32 #include "toplev.h"
33 #include "debug.h"
34 #include "flags.h"
35
36 #ifdef ENABLE_CHECKING
37 static void verify_live_on_entry (tree_live_info_p);
38 #endif
39
40
41 /* VARMAP maintains a mapping from SSA version number to real variables.
42
43 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
44 only member of it's own partition. Coalescing will attempt to group any
45 ssa_names which occur in a copy or in a PHI node into the same partition.
46
47 At the end of out-of-ssa, each partition becomes a "real" variable and is
48 rewritten as a compiler variable.
49
50 The var_map data structure is used to manage these partitions. It allows
51 partitions to be combined, and determines which partition belongs to what
52 ssa_name or variable, and vice versa. */
53
54
55 /* This routine will initialize the basevar fields of MAP. */
56
57 static void
58 var_map_base_init (var_map map)
59 {
60 int x, num_part, num;
61 tree var;
62 var_ann_t ann;
63
64 num = 0;
65 num_part = num_var_partitions (map);
66
67 /* If a base table already exists, clear it, otherwise create it. */
68 if (map->partition_to_base_index != NULL)
69 {
70 free (map->partition_to_base_index);
71 VEC_truncate (tree, map->basevars, 0);
72 }
73 else
74 map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
75
76 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
77
78 /* Build the base variable list, and point partitions at their bases. */
79 for (x = 0; x < num_part; x++)
80 {
81 var = partition_to_var (map, x);
82 if (TREE_CODE (var) == SSA_NAME)
83 var = SSA_NAME_VAR (var);
84 ann = var_ann (var);
85 /* If base variable hasn't been seen, set it up. */
86 if (!ann->base_var_processed)
87 {
88 ann->base_var_processed = 1;
89 VAR_ANN_BASE_INDEX (ann) = num++;
90 VEC_safe_push (tree, heap, map->basevars, var);
91 }
92 map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
93 }
94
95 map->num_basevars = num;
96
97 /* Now clear the processed bit. */
98 for (x = 0; x < num; x++)
99 {
100 var = VEC_index (tree, map->basevars, x);
101 var_ann (var)->base_var_processed = 0;
102 }
103
104 #ifdef ENABLE_CHECKING
105 for (x = 0; x < num_part; x++)
106 {
107 tree var2;
108 var = SSA_NAME_VAR (partition_to_var (map, x));
109 var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
110 gcc_assert (var == var2);
111 }
112 #endif
113 }
114
115
116 /* Remove the base table in MAP. */
117
118 static void
119 var_map_base_fini (var_map map)
120 {
121 /* Free the basevar info if it is present. */
122 if (map->partition_to_base_index != NULL)
123 {
124 VEC_free (tree, heap, map->basevars);
125 free (map->partition_to_base_index);
126 map->partition_to_base_index = NULL;
127 map->num_basevars = 0;
128 }
129 }
130 /* Create a variable partition map of SIZE, initialize and return it. */
131
132 var_map
133 init_var_map (int size)
134 {
135 var_map map;
136
137 map = (var_map) xmalloc (sizeof (struct _var_map));
138 map->var_partition = partition_new (size);
139
140 map->partition_to_view = NULL;
141 map->view_to_partition = NULL;
142 map->num_partitions = size;
143 map->partition_size = size;
144 map->num_basevars = 0;
145 map->partition_to_base_index = NULL;
146 map->basevars = NULL;
147 return map;
148 }
149
150
151 /* Free memory associated with MAP. */
152
153 void
154 delete_var_map (var_map map)
155 {
156 var_map_base_fini (map);
157 partition_delete (map->var_partition);
158 if (map->partition_to_view)
159 free (map->partition_to_view);
160 if (map->view_to_partition)
161 free (map->view_to_partition);
162 free (map);
163 }
164
165
166 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
167 Returns the partition which represents the new partition. If the two
168 partitions cannot be combined, NO_PARTITION is returned. */
169
170 int
171 var_union (var_map map, tree var1, tree var2)
172 {
173 int p1, p2, p3;
174
175 gcc_assert (TREE_CODE (var1) == SSA_NAME);
176 gcc_assert (TREE_CODE (var2) == SSA_NAME);
177
178 /* This is independent of partition_to_view. If partition_to_view is
179 on, then whichever one of these partitions is absorbed will never have a
180 dereference into the partition_to_view array any more. */
181
182 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
183 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
184
185 gcc_assert (p1 != NO_PARTITION);
186 gcc_assert (p2 != NO_PARTITION);
187
188 if (p1 == p2)
189 p3 = p1;
190 else
191 p3 = partition_union (map->var_partition, p1, p2);
192
193 if (map->partition_to_view)
194 p3 = map->partition_to_view[p3];
195
196 return p3;
197 }
198
199
200 /* Compress the partition numbers in MAP such that they fall in the range
201 0..(num_partitions-1) instead of wherever they turned out during
202 the partitioning exercise. This removes any references to unused
203 partitions, thereby allowing bitmaps and other vectors to be much
204 denser.
205
206 This is implemented such that compaction doesn't affect partitioning.
207 Ie., once partitions are created and possibly merged, running one
208 or more different kind of compaction will not affect the partitions
209 themselves. Their index might change, but all the same variables will
210 still be members of the same partition group. This allows work on reduced
211 sets, and no loss of information when a larger set is later desired.
212
213 In particular, coalescing can work on partitions which have 2 or more
214 definitions, and then 'recompact' later to include all the single
215 definitions for assignment to program variables. */
216
217
218 /* Set MAP back to the initial state of having no partition view. Return a
219 bitmap which has a bit set for each partition number which is in use in the
220 varmap. */
221
222 static bitmap
223 partition_view_init (var_map map)
224 {
225 bitmap used;
226 int tmp;
227 unsigned int x;
228
229 used = BITMAP_ALLOC (NULL);
230
231 /* Already in a view? Abandon the old one. */
232 if (map->partition_to_view)
233 {
234 free (map->partition_to_view);
235 map->partition_to_view = NULL;
236 }
237 if (map->view_to_partition)
238 {
239 free (map->view_to_partition);
240 map->view_to_partition = NULL;
241 }
242
243 /* Find out which partitions are actually referenced. */
244 for (x = 0; x < map->partition_size; x++)
245 {
246 tmp = partition_find (map->var_partition, x);
247 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
248 && (!has_zero_uses (ssa_name (tmp))
249 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
250 bitmap_set_bit (used, tmp);
251 }
252
253 map->num_partitions = map->partition_size;
254 return used;
255 }
256
257
258 /* This routine will finalize the view data for MAP based on the partitions
259 set in SELECTED. This is either the same bitmap returned from
260 partition_view_init, or a trimmed down version if some of those partitions
261 were not desired in this view. SELECTED is freed before returning. */
262
263 static void
264 partition_view_fini (var_map map, bitmap selected)
265 {
266 bitmap_iterator bi;
267 unsigned count, i, x, limit;
268
269 gcc_assert (selected);
270
271 count = bitmap_count_bits (selected);
272 limit = map->partition_size;
273
274 /* If its a one-to-one ratio, we don't need any view compaction. */
275 if (count < limit)
276 {
277 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
278 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
279 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
280
281 i = 0;
282 /* Give each selected partition an index. */
283 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
284 {
285 map->partition_to_view[x] = i;
286 map->view_to_partition[i] = x;
287 i++;
288 }
289 gcc_assert (i == count);
290 map->num_partitions = i;
291 }
292
293 BITMAP_FREE (selected);
294 }
295
296
297 /* Create a partition view which includes all the used partitions in MAP. If
298 WANT_BASES is true, create the base variable map as well. */
299
300 extern void
301 partition_view_normal (var_map map, bool want_bases)
302 {
303 bitmap used;
304
305 used = partition_view_init (map);
306 partition_view_fini (map, used);
307
308 if (want_bases)
309 var_map_base_init (map);
310 else
311 var_map_base_fini (map);
312 }
313
314
315 /* Create a partition view in MAP which includes just partitions which occur in
316 the bitmap ONLY. If WANT_BASES is true, create the base variable map
317 as well. */
318
319 extern void
320 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
321 {
322 bitmap used;
323 bitmap new_partitions = BITMAP_ALLOC (NULL);
324 unsigned x, p;
325 bitmap_iterator bi;
326
327 used = partition_view_init (map);
328 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
329 {
330 p = partition_find (map->var_partition, x);
331 gcc_assert (bitmap_bit_p (used, p));
332 bitmap_set_bit (new_partitions, p);
333 }
334 partition_view_fini (map, new_partitions);
335
336 BITMAP_FREE (used);
337 if (want_bases)
338 var_map_base_init (map);
339 else
340 var_map_base_fini (map);
341 }
342
343
344 static inline void mark_all_vars_used (tree *, void *data);
345
346 /* Helper function for mark_all_vars_used, called via walk_tree. */
347
348 static tree
349 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
350 {
351 tree t = *tp;
352 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
353 tree b;
354
355 if (TREE_CODE (t) == SSA_NAME)
356 t = SSA_NAME_VAR (t);
357
358 if (IS_EXPR_CODE_CLASS (c)
359 && (b = TREE_BLOCK (t)) != NULL)
360 TREE_USED (b) = true;
361
362 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
363 fields that do not contain vars. */
364 if (TREE_CODE (t) == TARGET_MEM_REF)
365 {
366 mark_all_vars_used (&TMR_SYMBOL (t), data);
367 mark_all_vars_used (&TMR_BASE (t), data);
368 mark_all_vars_used (&TMR_INDEX (t), data);
369 *walk_subtrees = 0;
370 return NULL;
371 }
372
373 /* Only need to mark VAR_DECLS; parameters and return results are not
374 eliminated as unused. */
375 if (TREE_CODE (t) == VAR_DECL)
376 {
377 if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
378 {
379 bitmap_clear_bit ((bitmap) data, DECL_UID (t));
380 mark_all_vars_used (&DECL_INITIAL (t), data);
381 }
382 set_is_used (t);
383 }
384
385 if (IS_TYPE_OR_DECL_P (t))
386 *walk_subtrees = 0;
387
388 return NULL;
389 }
390
391 /* Mark the scope block SCOPE and its subblocks unused when they can be
392 possibly eliminated if dead. */
393
394 static void
395 mark_scope_block_unused (tree scope)
396 {
397 tree t;
398 TREE_USED (scope) = false;
399 if (!(*debug_hooks->ignore_block) (scope))
400 TREE_USED (scope) = true;
401 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
402 mark_scope_block_unused (t);
403 }
404
405 /* Look if the block is dead (by possibly eliminating its dead subblocks)
406 and return true if so.
407 Block is declared dead if:
408 1) No statements are associated with it.
409 2) Declares no live variables
410 3) All subblocks are dead
411 or there is precisely one subblocks and the block
412 has same abstract origin as outer block and declares
413 no variables, so it is pure wrapper.
414 When we are not outputting full debug info, we also eliminate dead variables
415 out of scope blocks to let them to be recycled by GGC and to save copying work
416 done by the inliner. */
417
418 static bool
419 remove_unused_scope_block_p (tree scope)
420 {
421 tree *t, *next;
422 bool unused = !TREE_USED (scope);
423 var_ann_t ann;
424 int nsubblocks = 0;
425
426 for (t = &BLOCK_VARS (scope); *t; t = next)
427 {
428 next = &TREE_CHAIN (*t);
429
430 /* Debug info of nested function refers to the block of the
431 function. We might stil call it even if all statements
432 of function it was nested into was elliminated.
433
434 TODO: We can actually look into cgraph to see if function
435 will be output to file. */
436 if (TREE_CODE (*t) == FUNCTION_DECL)
437 unused = false;
438 /* Remove everything we don't generate debug info for. */
439 else if (DECL_IGNORED_P (*t))
440 {
441 *t = TREE_CHAIN (*t);
442 next = t;
443 }
444
445 /* When we are outputting debug info, we usually want to output
446 info about optimized-out variables in the scope blocks.
447 Exception are the scope blocks not containing any instructions
448 at all so user can't get into the scopes at first place. */
449 else if ((ann = var_ann (*t)) != NULL
450 && ann->used)
451 unused = false;
452
453 /* When we are not doing full debug info, we however can keep around
454 only the used variables for cfgexpand's memory packing saving quite
455 a lot of memory.
456
457 For sake of -g3, we keep around those vars but we don't count this as
458 use of block, so innermost block with no used vars and no instructions
459 can be considered dead. We only want to keep around blocks user can
460 breakpoint into and ask about value of optimized out variables.
461
462 Similarly we need to keep around types at least until all variables of
463 all nested blocks are gone. We track no information on whether given
464 type is used or not. */
465
466 else if (debug_info_level == DINFO_LEVEL_NORMAL
467 || debug_info_level == DINFO_LEVEL_VERBOSE
468 /* Removing declarations before inlining is going to affect
469 DECL_UID that in turn is going to affect hashtables and
470 code generation. */
471 || !cfun->after_inlining)
472 ;
473 else
474 {
475 *t = TREE_CHAIN (*t);
476 next = t;
477 }
478 }
479
480 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
481 if (remove_unused_scope_block_p (*t))
482 {
483 if (BLOCK_SUBBLOCKS (*t))
484 {
485 tree next = BLOCK_CHAIN (*t);
486 tree supercontext = BLOCK_SUPERCONTEXT (*t);
487
488 *t = BLOCK_SUBBLOCKS (*t);
489 while (BLOCK_CHAIN (*t))
490 {
491 BLOCK_SUPERCONTEXT (*t) = supercontext;
492 t = &BLOCK_CHAIN (*t);
493 }
494 BLOCK_CHAIN (*t) = next;
495 BLOCK_SUPERCONTEXT (*t) = supercontext;
496 t = &BLOCK_CHAIN (*t);
497 nsubblocks ++;
498 }
499 else
500 *t = BLOCK_CHAIN (*t);
501 }
502 else
503 {
504 t = &BLOCK_CHAIN (*t);
505 nsubblocks ++;
506 }
507
508
509 if (!unused)
510 ;
511 /* Outer scope is always used. */
512 else if (!BLOCK_SUPERCONTEXT (scope)
513 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
514 unused = false;
515 /* Innermost blocks with no live variables nor statements can be always
516 eliminated. */
517 else if (!nsubblocks)
518 ;
519 /* If there are live subblocks and we still have some unused variables
520 or types declared, we must keep them.
521 Before inliing we must not depend on debug info verbosity to keep
522 DECL_UIDs stable. */
523 else if (!cfun->after_inlining && BLOCK_VARS (scope))
524 unused = false;
525 /* For terse debug info we can eliminate info on unused variables. */
526 else if (debug_info_level == DINFO_LEVEL_NONE
527 || debug_info_level == DINFO_LEVEL_TERSE)
528 ;
529 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
530 unused = false;
531 /* See if this block is important for representation of inlined function.
532 Inlined functions are always represented by block with
533 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
534 set... */
535 else if (inlined_function_outer_scope_p (scope))
536 unused = false;
537 else
538 /* Verfify that only blocks with source location set
539 are entry points to the inlined functions. */
540 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
541
542 TREE_USED (scope) = !unused;
543 return unused;
544 }
545
546 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
547 eliminated during the tree->rtl conversion process. */
548
549 static inline void
550 mark_all_vars_used (tree *expr_p, void *data)
551 {
552 walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
553 }
554
555 /* Dump scope blocks. */
556
557 static void
558 dump_scope_block (FILE *file, int indent, tree scope, int flags)
559 {
560 tree var, t;
561 unsigned int i;
562
563 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
564 TREE_USED (scope) ? "" : " (unused)",
565 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
566 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
567 {
568 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
569 fprintf (file, " %s:%i", s.file, s.line);
570 }
571 if (BLOCK_ABSTRACT_ORIGIN (scope))
572 {
573 tree origin = block_ultimate_origin (scope);
574 if (origin)
575 {
576 fprintf (file, " Originating from :");
577 if (DECL_P (origin))
578 print_generic_decl (file, origin, flags);
579 else
580 fprintf (file, "#%i", BLOCK_NUMBER (origin));
581 }
582 }
583 fprintf (file, " \n");
584 for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
585 {
586 bool used = false;
587 var_ann_t ann;
588
589 if ((ann = var_ann (var))
590 && ann->used)
591 used = true;
592
593 fprintf (file, "%*s",indent, "");
594 print_generic_decl (file, var, flags);
595 fprintf (file, "%s\n", used ? "" : " (unused)");
596 }
597 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
598 {
599 fprintf (file, "%*s",indent, "");
600 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
601 flags);
602 fprintf (file, " (nonlocalized)\n");
603 }
604 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
605 dump_scope_block (file, indent + 2, t, flags);
606 fprintf (file, "\n%*s}\n",indent, "");
607 }
608
609 void
610 dump_scope_blocks (FILE *file, int flags)
611 {
612 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
613 }
614
615 /* Remove local variables that are not referenced in the IL. */
616
617 void
618 remove_unused_locals (void)
619 {
620 basic_block bb;
621 tree t, *cell;
622 referenced_var_iterator rvi;
623 var_ann_t ann;
624 bitmap global_unused_vars = NULL;
625
626 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
627
628 /* Assume all locals are unused. */
629 FOR_EACH_REFERENCED_VAR (t, rvi)
630 var_ann (t)->used = false;
631
632 /* Walk the CFG marking all referenced symbols. */
633 FOR_EACH_BB (bb)
634 {
635 gimple_stmt_iterator gsi;
636 size_t i;
637 edge_iterator ei;
638 edge e;
639
640 /* Walk the statements. */
641 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 gimple stmt = gsi_stmt (gsi);
644 tree b = gimple_block (stmt);
645
646 if (b)
647 TREE_USED (b) = true;
648
649 for (i = 0; i < gimple_num_ops (stmt); i++)
650 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
651 }
652
653 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
654 {
655 use_operand_p arg_p;
656 ssa_op_iter i;
657 tree def;
658 gimple phi = gsi_stmt (gsi);
659
660 /* No point processing globals. */
661 if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
662 continue;
663
664 def = gimple_phi_result (phi);
665 mark_all_vars_used (&def, NULL);
666
667 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
668 {
669 tree arg = USE_FROM_PTR (arg_p);
670 mark_all_vars_used (&arg, NULL);
671 }
672 }
673
674 FOR_EACH_EDGE (e, ei, bb->succs)
675 if (e->goto_locus)
676 TREE_USED (e->goto_block) = true;
677 }
678
679 cfun->has_local_explicit_reg_vars = false;
680
681 /* Remove unmarked local vars from local_decls. */
682 for (cell = &cfun->local_decls; *cell; )
683 {
684 tree var = TREE_VALUE (*cell);
685
686 if (TREE_CODE (var) != FUNCTION_DECL
687 && (!(ann = var_ann (var))
688 || !ann->used)
689 && (optimize || DECL_ARTIFICIAL (var)))
690 {
691 if (is_global_var (var))
692 {
693 if (global_unused_vars == NULL)
694 global_unused_vars = BITMAP_ALLOC (NULL);
695 bitmap_set_bit (global_unused_vars, DECL_UID (var));
696 }
697 else
698 {
699 *cell = TREE_CHAIN (*cell);
700 continue;
701 }
702 }
703 else if (TREE_CODE (var) == VAR_DECL
704 && DECL_HARD_REGISTER (var)
705 && !is_global_var (var))
706 cfun->has_local_explicit_reg_vars = true;
707 cell = &TREE_CHAIN (*cell);
708 }
709
710 /* Remove unmarked global vars from local_decls. */
711 if (global_unused_vars != NULL)
712 {
713 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
714 {
715 tree var = TREE_VALUE (t);
716
717 if (TREE_CODE (var) == VAR_DECL
718 && is_global_var (var)
719 && (ann = var_ann (var)) != NULL
720 && ann->used)
721 mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
722 }
723
724 for (cell = &cfun->local_decls; *cell; )
725 {
726 tree var = TREE_VALUE (*cell);
727
728 if (TREE_CODE (var) == VAR_DECL
729 && is_global_var (var)
730 && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
731 *cell = TREE_CHAIN (*cell);
732 else
733 cell = &TREE_CHAIN (*cell);
734 }
735 BITMAP_FREE (global_unused_vars);
736 }
737
738 /* Remove unused variables from REFERENCED_VARs. As a special
739 exception keep the variables that are believed to be aliased.
740 Those can't be easily removed from the alias sets and operand
741 caches. They will be removed shortly after the next may_alias
742 pass is performed. */
743 FOR_EACH_REFERENCED_VAR (t, rvi)
744 if (!is_global_var (t)
745 && TREE_CODE (t) != PARM_DECL
746 && TREE_CODE (t) != RESULT_DECL
747 && !(ann = var_ann (t))->used
748 && !TREE_ADDRESSABLE (t)
749 && (optimize || DECL_ARTIFICIAL (t)))
750 remove_referenced_var (t);
751 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
752 if (dump_file && (dump_flags & TDF_DETAILS))
753 {
754 fprintf (dump_file, "Scope blocks after cleanups:\n");
755 dump_scope_blocks (dump_file, dump_flags);
756 }
757 }
758
759
760 /* Allocate and return a new live range information object base on MAP. */
761
762 static tree_live_info_p
763 new_tree_live_info (var_map map)
764 {
765 tree_live_info_p live;
766 unsigned x;
767
768 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
769 live->map = map;
770 live->num_blocks = last_basic_block;
771
772 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
773 for (x = 0; x < (unsigned)last_basic_block; x++)
774 live->livein[x] = BITMAP_ALLOC (NULL);
775
776 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
777 for (x = 0; x < (unsigned)last_basic_block; x++)
778 live->liveout[x] = BITMAP_ALLOC (NULL);
779
780 live->work_stack = XNEWVEC (int, last_basic_block);
781 live->stack_top = live->work_stack;
782
783 live->global = BITMAP_ALLOC (NULL);
784 return live;
785 }
786
787
788 /* Free storage for live range info object LIVE. */
789
790 void
791 delete_tree_live_info (tree_live_info_p live)
792 {
793 int x;
794
795 BITMAP_FREE (live->global);
796 free (live->work_stack);
797
798 for (x = live->num_blocks - 1; x >= 0; x--)
799 BITMAP_FREE (live->liveout[x]);
800 free (live->liveout);
801
802 for (x = live->num_blocks - 1; x >= 0; x--)
803 BITMAP_FREE (live->livein[x]);
804 free (live->livein);
805
806 free (live);
807 }
808
809
810 /* Visit basic block BB and propagate any required live on entry bits from
811 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
812 TMP is a temporary work bitmap which is passed in to avoid reallocating
813 it each time. */
814
815 static void
816 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
817 bitmap tmp)
818 {
819 edge e;
820 bool change;
821 edge_iterator ei;
822 basic_block pred_bb;
823 bitmap loe;
824 gcc_assert (!TEST_BIT (visited, bb->index));
825
826 SET_BIT (visited, bb->index);
827 loe = live_on_entry (live, bb);
828
829 FOR_EACH_EDGE (e, ei, bb->preds)
830 {
831 pred_bb = e->src;
832 if (pred_bb == ENTRY_BLOCK_PTR)
833 continue;
834 /* TMP is variables live-on-entry from BB that aren't defined in the
835 predecessor block. This should be the live on entry vars to pred.
836 Note that liveout is the DEFs in a block while live on entry is
837 being calculated. */
838 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
839
840 /* Add these bits to live-on-entry for the pred. if there are any
841 changes, and pred_bb has been visited already, add it to the
842 revisit stack. */
843 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
844 if (TEST_BIT (visited, pred_bb->index) && change)
845 {
846 RESET_BIT (visited, pred_bb->index);
847 *(live->stack_top)++ = pred_bb->index;
848 }
849 }
850 }
851
852
853 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
854 of all the variables. */
855
856 static void
857 live_worklist (tree_live_info_p live)
858 {
859 unsigned b;
860 basic_block bb;
861 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
862 bitmap tmp = BITMAP_ALLOC (NULL);
863
864 sbitmap_zero (visited);
865
866 /* Visit all the blocks in reverse order and propagate live on entry values
867 into the predecessors blocks. */
868 FOR_EACH_BB_REVERSE (bb)
869 loe_visit_block (live, bb, visited, tmp);
870
871 /* Process any blocks which require further iteration. */
872 while (live->stack_top != live->work_stack)
873 {
874 b = *--(live->stack_top);
875 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
876 }
877
878 BITMAP_FREE (tmp);
879 sbitmap_free (visited);
880 }
881
882
883 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
884 links. Set the live on entry fields in LIVE. Def's are marked temporarily
885 in the liveout vector. */
886
887 static void
888 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
889 {
890 int p;
891 gimple stmt;
892 use_operand_p use;
893 basic_block def_bb = NULL;
894 imm_use_iterator imm_iter;
895 bool global = false;
896
897 p = var_to_partition (live->map, ssa_name);
898 if (p == NO_PARTITION)
899 return;
900
901 stmt = SSA_NAME_DEF_STMT (ssa_name);
902 if (stmt)
903 {
904 def_bb = gimple_bb (stmt);
905 /* Mark defs in liveout bitmap temporarily. */
906 if (def_bb)
907 bitmap_set_bit (live->liveout[def_bb->index], p);
908 }
909 else
910 def_bb = ENTRY_BLOCK_PTR;
911
912 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
913 add it to the list of live on entry blocks. */
914 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
915 {
916 gimple use_stmt = USE_STMT (use);
917 basic_block add_block = NULL;
918
919 if (gimple_code (use_stmt) == GIMPLE_PHI)
920 {
921 /* Uses in PHI's are considered to be live at exit of the SRC block
922 as this is where a copy would be inserted. Check to see if it is
923 defined in that block, or whether its live on entry. */
924 int index = PHI_ARG_INDEX_FROM_USE (use);
925 edge e = gimple_phi_arg_edge (use_stmt, index);
926 if (e->src != ENTRY_BLOCK_PTR)
927 {
928 if (e->src != def_bb)
929 add_block = e->src;
930 }
931 }
932 else
933 {
934 /* If its not defined in this block, its live on entry. */
935 basic_block use_bb = gimple_bb (use_stmt);
936 if (use_bb != def_bb)
937 add_block = use_bb;
938 }
939
940 /* If there was a live on entry use, set the bit. */
941 if (add_block)
942 {
943 global = true;
944 bitmap_set_bit (live->livein[add_block->index], p);
945 }
946 }
947
948 /* If SSA_NAME is live on entry to at least one block, fill in all the live
949 on entry blocks between the def and all the uses. */
950 if (global)
951 bitmap_set_bit (live->global, p);
952 }
953
954
955 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
956
957 void
958 calculate_live_on_exit (tree_live_info_p liveinfo)
959 {
960 basic_block bb;
961 edge e;
962 edge_iterator ei;
963
964 /* live on entry calculations used liveout vectors for defs, clear them. */
965 FOR_EACH_BB (bb)
966 bitmap_clear (liveinfo->liveout[bb->index]);
967
968 /* Set all the live-on-exit bits for uses in PHIs. */
969 FOR_EACH_BB (bb)
970 {
971 gimple_stmt_iterator gsi;
972 size_t i;
973
974 /* Mark the PHI arguments which are live on exit to the pred block. */
975 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
976 {
977 gimple phi = gsi_stmt (gsi);
978 for (i = 0; i < gimple_phi_num_args (phi); i++)
979 {
980 tree t = PHI_ARG_DEF (phi, i);
981 int p;
982
983 if (TREE_CODE (t) != SSA_NAME)
984 continue;
985
986 p = var_to_partition (liveinfo->map, t);
987 if (p == NO_PARTITION)
988 continue;
989 e = gimple_phi_arg_edge (phi, i);
990 if (e->src != ENTRY_BLOCK_PTR)
991 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
992 }
993 }
994
995 /* Add each successors live on entry to this bock live on exit. */
996 FOR_EACH_EDGE (e, ei, bb->succs)
997 if (e->dest != EXIT_BLOCK_PTR)
998 bitmap_ior_into (liveinfo->liveout[bb->index],
999 live_on_entry (liveinfo, e->dest));
1000 }
1001 }
1002
1003
1004 /* Given partition map MAP, calculate all the live on entry bitmaps for
1005 each partition. Return a new live info object. */
1006
1007 tree_live_info_p
1008 calculate_live_ranges (var_map map)
1009 {
1010 tree var;
1011 unsigned i;
1012 tree_live_info_p live;
1013
1014 live = new_tree_live_info (map);
1015 for (i = 0; i < num_var_partitions (map); i++)
1016 {
1017 var = partition_to_var (map, i);
1018 if (var != NULL_TREE)
1019 set_var_live_on_entry (var, live);
1020 }
1021
1022 live_worklist (live);
1023
1024 #ifdef ENABLE_CHECKING
1025 verify_live_on_entry (live);
1026 #endif
1027
1028 calculate_live_on_exit (live);
1029 return live;
1030 }
1031
1032
1033 /* Output partition map MAP to file F. */
1034
1035 void
1036 dump_var_map (FILE *f, var_map map)
1037 {
1038 int t;
1039 unsigned x, y;
1040 int p;
1041
1042 fprintf (f, "\nPartition map \n\n");
1043
1044 for (x = 0; x < map->num_partitions; x++)
1045 {
1046 if (map->view_to_partition != NULL)
1047 p = map->view_to_partition[x];
1048 else
1049 p = x;
1050
1051 if (ssa_name (p) == NULL_TREE)
1052 continue;
1053
1054 t = 0;
1055 for (y = 1; y < num_ssa_names; y++)
1056 {
1057 p = partition_find (map->var_partition, y);
1058 if (map->partition_to_view)
1059 p = map->partition_to_view[p];
1060 if (p == (int)x)
1061 {
1062 if (t++ == 0)
1063 {
1064 fprintf(f, "Partition %d (", x);
1065 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1066 fprintf (f, " - ");
1067 }
1068 fprintf (f, "%d ", y);
1069 }
1070 }
1071 if (t != 0)
1072 fprintf (f, ")\n");
1073 }
1074 fprintf (f, "\n");
1075 }
1076
1077
1078 /* Output live range info LIVE to file F, controlled by FLAG. */
1079
1080 void
1081 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1082 {
1083 basic_block bb;
1084 unsigned i;
1085 var_map map = live->map;
1086 bitmap_iterator bi;
1087
1088 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1089 {
1090 FOR_EACH_BB (bb)
1091 {
1092 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1093 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1094 {
1095 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1096 fprintf (f, " ");
1097 }
1098 fprintf (f, "\n");
1099 }
1100 }
1101
1102 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1103 {
1104 FOR_EACH_BB (bb)
1105 {
1106 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1107 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1108 {
1109 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1110 fprintf (f, " ");
1111 }
1112 fprintf (f, "\n");
1113 }
1114 }
1115 }
1116
1117
1118 #ifdef ENABLE_CHECKING
1119 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1120
1121 void
1122 register_ssa_partition_check (tree ssa_var)
1123 {
1124 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1125 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1126 {
1127 fprintf (stderr, "Illegally registering a virtual SSA name :");
1128 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1129 fprintf (stderr, " in the SSA->Normal phase.\n");
1130 internal_error ("SSA corruption");
1131 }
1132 }
1133
1134
1135 /* Verify that the info in LIVE matches the current cfg. */
1136
1137 static void
1138 verify_live_on_entry (tree_live_info_p live)
1139 {
1140 unsigned i;
1141 tree var;
1142 gimple stmt;
1143 basic_block bb;
1144 edge e;
1145 int num;
1146 edge_iterator ei;
1147 var_map map = live->map;
1148
1149 /* Check for live on entry partitions and report those with a DEF in
1150 the program. This will typically mean an optimization has done
1151 something wrong. */
1152 bb = ENTRY_BLOCK_PTR;
1153 num = 0;
1154 FOR_EACH_EDGE (e, ei, bb->succs)
1155 {
1156 int entry_block = e->dest->index;
1157 if (e->dest == EXIT_BLOCK_PTR)
1158 continue;
1159 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1160 {
1161 basic_block tmp;
1162 tree d;
1163 bitmap loe;
1164 var = partition_to_var (map, i);
1165 stmt = SSA_NAME_DEF_STMT (var);
1166 tmp = gimple_bb (stmt);
1167 d = gimple_default_def (cfun, SSA_NAME_VAR (var));
1168
1169 loe = live_on_entry (live, e->dest);
1170 if (loe && bitmap_bit_p (loe, i))
1171 {
1172 if (!gimple_nop_p (stmt))
1173 {
1174 num++;
1175 print_generic_expr (stderr, var, TDF_SLIM);
1176 fprintf (stderr, " is defined ");
1177 if (tmp)
1178 fprintf (stderr, " in BB%d, ", tmp->index);
1179 fprintf (stderr, "by:\n");
1180 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1181 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1182 entry_block);
1183 fprintf (stderr, " So it appears to have multiple defs.\n");
1184 }
1185 else
1186 {
1187 if (d != var)
1188 {
1189 num++;
1190 print_generic_expr (stderr, var, TDF_SLIM);
1191 fprintf (stderr, " is live-on-entry to BB%d ",
1192 entry_block);
1193 if (d)
1194 {
1195 fprintf (stderr, " but is not the default def of ");
1196 print_generic_expr (stderr, d, TDF_SLIM);
1197 fprintf (stderr, "\n");
1198 }
1199 else
1200 fprintf (stderr, " and there is no default def.\n");
1201 }
1202 }
1203 }
1204 else
1205 if (d == var)
1206 {
1207 /* The only way this var shouldn't be marked live on entry is
1208 if it occurs in a PHI argument of the block. */
1209 size_t z;
1210 bool ok = false;
1211 gimple_stmt_iterator gsi;
1212 for (gsi = gsi_start_phis (e->dest);
1213 !gsi_end_p (gsi) && !ok;
1214 gsi_next (&gsi))
1215 {
1216 gimple phi = gsi_stmt (gsi);
1217 for (z = 0; z < gimple_phi_num_args (phi); z++)
1218 if (var == gimple_phi_arg_def (phi, z))
1219 {
1220 ok = true;
1221 break;
1222 }
1223 }
1224 if (ok)
1225 continue;
1226 num++;
1227 print_generic_expr (stderr, var, TDF_SLIM);
1228 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1229 entry_block);
1230 fprintf (stderr, "but it is a default def so it should be.\n");
1231 }
1232 }
1233 }
1234 gcc_assert (num <= 0);
1235 }
1236 #endif