intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tree-pretty-print.h"
28 #include "gimple-pretty-print.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-ssa-live.h"
33 #include "toplev.h"
34 #include "debug.h"
35 #include "flags.h"
36
37 #ifdef ENABLE_CHECKING
38 static void verify_live_on_entry (tree_live_info_p);
39 #endif
40
41
42 /* VARMAP maintains a mapping from SSA version number to real variables.
43
44 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
45 only member of it's own partition. Coalescing will attempt to group any
46 ssa_names which occur in a copy or in a PHI node into the same partition.
47
48 At the end of out-of-ssa, each partition becomes a "real" variable and is
49 rewritten as a compiler variable.
50
51 The var_map data structure is used to manage these partitions. It allows
52 partitions to be combined, and determines which partition belongs to what
53 ssa_name or variable, and vice versa. */
54
55
56 /* This routine will initialize the basevar fields of MAP. */
57
58 static void
59 var_map_base_init (var_map map)
60 {
61 int x, num_part, num;
62 tree var;
63 var_ann_t ann;
64
65 num = 0;
66 num_part = num_var_partitions (map);
67
68 /* If a base table already exists, clear it, otherwise create it. */
69 if (map->partition_to_base_index != NULL)
70 {
71 free (map->partition_to_base_index);
72 VEC_truncate (tree, map->basevars, 0);
73 }
74 else
75 map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
76
77 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
78
79 /* Build the base variable list, and point partitions at their bases. */
80 for (x = 0; x < num_part; x++)
81 {
82 var = partition_to_var (map, x);
83 if (TREE_CODE (var) == SSA_NAME)
84 var = SSA_NAME_VAR (var);
85 ann = var_ann (var);
86 /* If base variable hasn't been seen, set it up. */
87 if (!ann->base_var_processed)
88 {
89 ann->base_var_processed = 1;
90 VAR_ANN_BASE_INDEX (ann) = num++;
91 VEC_safe_push (tree, heap, map->basevars, var);
92 }
93 map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
94 }
95
96 map->num_basevars = num;
97
98 /* Now clear the processed bit. */
99 for (x = 0; x < num; x++)
100 {
101 var = VEC_index (tree, map->basevars, x);
102 var_ann (var)->base_var_processed = 0;
103 }
104
105 #ifdef ENABLE_CHECKING
106 for (x = 0; x < num_part; x++)
107 {
108 tree var2;
109 var = SSA_NAME_VAR (partition_to_var (map, x));
110 var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
111 gcc_assert (var == var2);
112 }
113 #endif
114 }
115
116
117 /* Remove the base table in MAP. */
118
119 static void
120 var_map_base_fini (var_map map)
121 {
122 /* Free the basevar info if it is present. */
123 if (map->partition_to_base_index != NULL)
124 {
125 VEC_free (tree, heap, map->basevars);
126 free (map->partition_to_base_index);
127 map->partition_to_base_index = NULL;
128 map->num_basevars = 0;
129 }
130 }
131 /* Create a variable partition map of SIZE, initialize and return it. */
132
133 var_map
134 init_var_map (int size)
135 {
136 var_map map;
137
138 map = (var_map) xmalloc (sizeof (struct _var_map));
139 map->var_partition = partition_new (size);
140
141 map->partition_to_view = NULL;
142 map->view_to_partition = NULL;
143 map->num_partitions = size;
144 map->partition_size = size;
145 map->num_basevars = 0;
146 map->partition_to_base_index = NULL;
147 map->basevars = NULL;
148 return map;
149 }
150
151
152 /* Free memory associated with MAP. */
153
154 void
155 delete_var_map (var_map map)
156 {
157 var_map_base_fini (map);
158 partition_delete (map->var_partition);
159 if (map->partition_to_view)
160 free (map->partition_to_view);
161 if (map->view_to_partition)
162 free (map->view_to_partition);
163 free (map);
164 }
165
166
167 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
168 Returns the partition which represents the new partition. If the two
169 partitions cannot be combined, NO_PARTITION is returned. */
170
171 int
172 var_union (var_map map, tree var1, tree var2)
173 {
174 int p1, p2, p3;
175
176 gcc_assert (TREE_CODE (var1) == SSA_NAME);
177 gcc_assert (TREE_CODE (var2) == SSA_NAME);
178
179 /* This is independent of partition_to_view. If partition_to_view is
180 on, then whichever one of these partitions is absorbed will never have a
181 dereference into the partition_to_view array any more. */
182
183 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
184 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
185
186 gcc_assert (p1 != NO_PARTITION);
187 gcc_assert (p2 != NO_PARTITION);
188
189 if (p1 == p2)
190 p3 = p1;
191 else
192 p3 = partition_union (map->var_partition, p1, p2);
193
194 if (map->partition_to_view)
195 p3 = map->partition_to_view[p3];
196
197 return p3;
198 }
199
200
201 /* Compress the partition numbers in MAP such that they fall in the range
202 0..(num_partitions-1) instead of wherever they turned out during
203 the partitioning exercise. This removes any references to unused
204 partitions, thereby allowing bitmaps and other vectors to be much
205 denser.
206
207 This is implemented such that compaction doesn't affect partitioning.
208 Ie., once partitions are created and possibly merged, running one
209 or more different kind of compaction will not affect the partitions
210 themselves. Their index might change, but all the same variables will
211 still be members of the same partition group. This allows work on reduced
212 sets, and no loss of information when a larger set is later desired.
213
214 In particular, coalescing can work on partitions which have 2 or more
215 definitions, and then 'recompact' later to include all the single
216 definitions for assignment to program variables. */
217
218
219 /* Set MAP back to the initial state of having no partition view. Return a
220 bitmap which has a bit set for each partition number which is in use in the
221 varmap. */
222
223 static bitmap
224 partition_view_init (var_map map)
225 {
226 bitmap used;
227 int tmp;
228 unsigned int x;
229
230 used = BITMAP_ALLOC (NULL);
231
232 /* Already in a view? Abandon the old one. */
233 if (map->partition_to_view)
234 {
235 free (map->partition_to_view);
236 map->partition_to_view = NULL;
237 }
238 if (map->view_to_partition)
239 {
240 free (map->view_to_partition);
241 map->view_to_partition = NULL;
242 }
243
244 /* Find out which partitions are actually referenced. */
245 for (x = 0; x < map->partition_size; x++)
246 {
247 tmp = partition_find (map->var_partition, x);
248 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
249 && (!has_zero_uses (ssa_name (tmp))
250 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
251 bitmap_set_bit (used, tmp);
252 }
253
254 map->num_partitions = map->partition_size;
255 return used;
256 }
257
258
259 /* This routine will finalize the view data for MAP based on the partitions
260 set in SELECTED. This is either the same bitmap returned from
261 partition_view_init, or a trimmed down version if some of those partitions
262 were not desired in this view. SELECTED is freed before returning. */
263
264 static void
265 partition_view_fini (var_map map, bitmap selected)
266 {
267 bitmap_iterator bi;
268 unsigned count, i, x, limit;
269
270 gcc_assert (selected);
271
272 count = bitmap_count_bits (selected);
273 limit = map->partition_size;
274
275 /* If its a one-to-one ratio, we don't need any view compaction. */
276 if (count < limit)
277 {
278 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
279 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
280 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
281
282 i = 0;
283 /* Give each selected partition an index. */
284 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
285 {
286 map->partition_to_view[x] = i;
287 map->view_to_partition[i] = x;
288 i++;
289 }
290 gcc_assert (i == count);
291 map->num_partitions = i;
292 }
293
294 BITMAP_FREE (selected);
295 }
296
297
298 /* Create a partition view which includes all the used partitions in MAP. If
299 WANT_BASES is true, create the base variable map as well. */
300
301 extern void
302 partition_view_normal (var_map map, bool want_bases)
303 {
304 bitmap used;
305
306 used = partition_view_init (map);
307 partition_view_fini (map, used);
308
309 if (want_bases)
310 var_map_base_init (map);
311 else
312 var_map_base_fini (map);
313 }
314
315
316 /* Create a partition view in MAP which includes just partitions which occur in
317 the bitmap ONLY. If WANT_BASES is true, create the base variable map
318 as well. */
319
320 extern void
321 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
322 {
323 bitmap used;
324 bitmap new_partitions = BITMAP_ALLOC (NULL);
325 unsigned x, p;
326 bitmap_iterator bi;
327
328 used = partition_view_init (map);
329 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
330 {
331 p = partition_find (map->var_partition, x);
332 gcc_assert (bitmap_bit_p (used, p));
333 bitmap_set_bit (new_partitions, p);
334 }
335 partition_view_fini (map, new_partitions);
336
337 BITMAP_FREE (used);
338 if (want_bases)
339 var_map_base_init (map);
340 else
341 var_map_base_fini (map);
342 }
343
344
345 static inline void mark_all_vars_used (tree *, void *data);
346
347 /* Helper function for mark_all_vars_used, called via walk_tree. */
348
349 static tree
350 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
351 {
352 tree t = *tp;
353 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
354 tree b;
355
356 if (TREE_CODE (t) == SSA_NAME)
357 t = SSA_NAME_VAR (t);
358
359 if (IS_EXPR_CODE_CLASS (c)
360 && (b = TREE_BLOCK (t)) != NULL)
361 TREE_USED (b) = true;
362
363 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
364 fields that do not contain vars. */
365 if (TREE_CODE (t) == TARGET_MEM_REF)
366 {
367 mark_all_vars_used (&TMR_SYMBOL (t), data);
368 mark_all_vars_used (&TMR_BASE (t), data);
369 mark_all_vars_used (&TMR_INDEX (t), data);
370 *walk_subtrees = 0;
371 return NULL;
372 }
373
374 /* Only need to mark VAR_DECLS; parameters and return results are not
375 eliminated as unused. */
376 if (TREE_CODE (t) == VAR_DECL)
377 {
378 if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
379 {
380 bitmap_clear_bit ((bitmap) data, DECL_UID (t));
381 mark_all_vars_used (&DECL_INITIAL (t), data);
382 }
383 set_is_used (t);
384 }
385
386 if (IS_TYPE_OR_DECL_P (t))
387 *walk_subtrees = 0;
388
389 return NULL;
390 }
391
392 /* Mark the scope block SCOPE and its subblocks unused when they can be
393 possibly eliminated if dead. */
394
395 static void
396 mark_scope_block_unused (tree scope)
397 {
398 tree t;
399 TREE_USED (scope) = false;
400 if (!(*debug_hooks->ignore_block) (scope))
401 TREE_USED (scope) = true;
402 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
403 mark_scope_block_unused (t);
404 }
405
406 /* Look if the block is dead (by possibly eliminating its dead subblocks)
407 and return true if so.
408 Block is declared dead if:
409 1) No statements are associated with it.
410 2) Declares no live variables
411 3) All subblocks are dead
412 or there is precisely one subblocks and the block
413 has same abstract origin as outer block and declares
414 no variables, so it is pure wrapper.
415 When we are not outputting full debug info, we also eliminate dead variables
416 out of scope blocks to let them to be recycled by GGC and to save copying work
417 done by the inliner. */
418
419 static bool
420 remove_unused_scope_block_p (tree scope)
421 {
422 tree *t, *next;
423 bool unused = !TREE_USED (scope);
424 var_ann_t ann;
425 int nsubblocks = 0;
426
427 for (t = &BLOCK_VARS (scope); *t; t = next)
428 {
429 next = &TREE_CHAIN (*t);
430
431 /* Debug info of nested function refers to the block of the
432 function. We might stil call it even if all statements
433 of function it was nested into was elliminated.
434
435 TODO: We can actually look into cgraph to see if function
436 will be output to file. */
437 if (TREE_CODE (*t) == FUNCTION_DECL)
438 unused = false;
439
440 /* If a decl has a value expr, we need to instantiate it
441 regardless of debug info generation, to avoid codegen
442 differences in memory overlap tests. update_equiv_regs() may
443 indirectly call validate_equiv_mem() to test whether a
444 SET_DEST overlaps with others, and if the value expr changes
445 by virtual register instantiation, we may get end up with
446 different results. */
447 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
448 unused = false;
449
450 /* Remove everything we don't generate debug info for. */
451 else if (DECL_IGNORED_P (*t))
452 {
453 *t = TREE_CHAIN (*t);
454 next = t;
455 }
456
457 /* When we are outputting debug info, we usually want to output
458 info about optimized-out variables in the scope blocks.
459 Exception are the scope blocks not containing any instructions
460 at all so user can't get into the scopes at first place. */
461 else if ((ann = var_ann (*t)) != NULL
462 && ann->used)
463 unused = false;
464
465 /* When we are not doing full debug info, we however can keep around
466 only the used variables for cfgexpand's memory packing saving quite
467 a lot of memory.
468
469 For sake of -g3, we keep around those vars but we don't count this as
470 use of block, so innermost block with no used vars and no instructions
471 can be considered dead. We only want to keep around blocks user can
472 breakpoint into and ask about value of optimized out variables.
473
474 Similarly we need to keep around types at least until all variables of
475 all nested blocks are gone. We track no information on whether given
476 type is used or not. */
477
478 else if (debug_info_level == DINFO_LEVEL_NORMAL
479 || debug_info_level == DINFO_LEVEL_VERBOSE)
480 ;
481 else
482 {
483 *t = TREE_CHAIN (*t);
484 next = t;
485 }
486 }
487
488 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
489 if (remove_unused_scope_block_p (*t))
490 {
491 if (BLOCK_SUBBLOCKS (*t))
492 {
493 tree next = BLOCK_CHAIN (*t);
494 tree supercontext = BLOCK_SUPERCONTEXT (*t);
495
496 *t = BLOCK_SUBBLOCKS (*t);
497 while (BLOCK_CHAIN (*t))
498 {
499 BLOCK_SUPERCONTEXT (*t) = supercontext;
500 t = &BLOCK_CHAIN (*t);
501 }
502 BLOCK_CHAIN (*t) = next;
503 BLOCK_SUPERCONTEXT (*t) = supercontext;
504 t = &BLOCK_CHAIN (*t);
505 nsubblocks ++;
506 }
507 else
508 *t = BLOCK_CHAIN (*t);
509 }
510 else
511 {
512 t = &BLOCK_CHAIN (*t);
513 nsubblocks ++;
514 }
515
516
517 if (!unused)
518 ;
519 /* Outer scope is always used. */
520 else if (!BLOCK_SUPERCONTEXT (scope)
521 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
522 unused = false;
523 /* Innermost blocks with no live variables nor statements can be always
524 eliminated. */
525 else if (!nsubblocks)
526 ;
527 /* For terse debug info we can eliminate info on unused variables. */
528 else if (debug_info_level == DINFO_LEVEL_NONE
529 || debug_info_level == DINFO_LEVEL_TERSE)
530 {
531 /* Even for -g0/-g1 don't prune outer scopes from artificial
532 functions, otherwise diagnostics using tree_nonartificial_location
533 will not be emitted properly. */
534 if (inlined_function_outer_scope_p (scope))
535 {
536 tree ao = scope;
537
538 while (ao
539 && TREE_CODE (ao) == BLOCK
540 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
541 ao = BLOCK_ABSTRACT_ORIGIN (ao);
542 if (ao
543 && TREE_CODE (ao) == FUNCTION_DECL
544 && DECL_DECLARED_INLINE_P (ao)
545 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
546 unused = false;
547 }
548 }
549 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
550 unused = false;
551 /* See if this block is important for representation of inlined function.
552 Inlined functions are always represented by block with
553 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
554 set... */
555 else if (inlined_function_outer_scope_p (scope))
556 unused = false;
557 else
558 /* Verfify that only blocks with source location set
559 are entry points to the inlined functions. */
560 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
561
562 TREE_USED (scope) = !unused;
563 return unused;
564 }
565
566 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
567 eliminated during the tree->rtl conversion process. */
568
569 static inline void
570 mark_all_vars_used (tree *expr_p, void *data)
571 {
572 walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
573 }
574
575
576 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
577 indentation level and FLAGS is as in print_generic_expr. */
578
579 static void
580 dump_scope_block (FILE *file, int indent, tree scope, int flags)
581 {
582 tree var, t;
583 unsigned int i;
584
585 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
586 TREE_USED (scope) ? "" : " (unused)",
587 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
588 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
589 {
590 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
591 fprintf (file, " %s:%i", s.file, s.line);
592 }
593 if (BLOCK_ABSTRACT_ORIGIN (scope))
594 {
595 tree origin = block_ultimate_origin (scope);
596 if (origin)
597 {
598 fprintf (file, " Originating from :");
599 if (DECL_P (origin))
600 print_generic_decl (file, origin, flags);
601 else
602 fprintf (file, "#%i", BLOCK_NUMBER (origin));
603 }
604 }
605 fprintf (file, " \n");
606 for (var = BLOCK_VARS (scope); var; var = TREE_CHAIN (var))
607 {
608 bool used = false;
609 var_ann_t ann;
610
611 if ((ann = var_ann (var))
612 && ann->used)
613 used = true;
614
615 fprintf (file, "%*s",indent, "");
616 print_generic_decl (file, var, flags);
617 fprintf (file, "%s\n", used ? "" : " (unused)");
618 }
619 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
620 {
621 fprintf (file, "%*s",indent, "");
622 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
623 flags);
624 fprintf (file, " (nonlocalized)\n");
625 }
626 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
627 dump_scope_block (file, indent + 2, t, flags);
628 fprintf (file, "\n%*s}\n",indent, "");
629 }
630
631 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
632 is as in print_generic_expr. */
633
634 DEBUG_FUNCTION void
635 debug_scope_block (tree scope, int flags)
636 {
637 dump_scope_block (stderr, 0, scope, flags);
638 }
639
640
641 /* Dump the tree of lexical scopes of current_function_decl to FILE.
642 FLAGS is as in print_generic_expr. */
643
644 void
645 dump_scope_blocks (FILE *file, int flags)
646 {
647 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
648 }
649
650
651 /* Dump the tree of lexical scopes of current_function_decl to stderr.
652 FLAGS is as in print_generic_expr. */
653
654 DEBUG_FUNCTION void
655 debug_scope_blocks (int flags)
656 {
657 dump_scope_blocks (stderr, flags);
658 }
659
660 /* Remove local variables that are not referenced in the IL. */
661
662 void
663 remove_unused_locals (void)
664 {
665 basic_block bb;
666 tree t, *cell;
667 referenced_var_iterator rvi;
668 var_ann_t ann;
669 bitmap global_unused_vars = NULL;
670
671 /* Removing declarations from lexical blocks when not optimizing is
672 not only a waste of time, it actually causes differences in stack
673 layout. */
674 if (!optimize)
675 return;
676
677 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
678
679 /* Assume all locals are unused. */
680 FOR_EACH_REFERENCED_VAR (t, rvi)
681 var_ann (t)->used = false;
682
683 /* Walk the CFG marking all referenced symbols. */
684 FOR_EACH_BB (bb)
685 {
686 gimple_stmt_iterator gsi;
687 size_t i;
688 edge_iterator ei;
689 edge e;
690
691 /* Walk the statements. */
692 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
693 {
694 gimple stmt = gsi_stmt (gsi);
695 tree b = gimple_block (stmt);
696
697 if (is_gimple_debug (stmt))
698 continue;
699
700 if (b)
701 TREE_USED (b) = true;
702
703 for (i = 0; i < gimple_num_ops (stmt); i++)
704 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
705 }
706
707 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
708 {
709 use_operand_p arg_p;
710 ssa_op_iter i;
711 tree def;
712 gimple phi = gsi_stmt (gsi);
713
714 /* No point processing globals. */
715 if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
716 continue;
717
718 def = gimple_phi_result (phi);
719 mark_all_vars_used (&def, NULL);
720
721 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
722 {
723 tree arg = USE_FROM_PTR (arg_p);
724 mark_all_vars_used (&arg, NULL);
725 }
726 }
727
728 FOR_EACH_EDGE (e, ei, bb->succs)
729 if (e->goto_locus)
730 TREE_USED (e->goto_block) = true;
731 }
732
733 cfun->has_local_explicit_reg_vars = false;
734
735 /* Remove unmarked local vars from local_decls. */
736 for (cell = &cfun->local_decls; *cell; )
737 {
738 tree var = TREE_VALUE (*cell);
739
740 if (TREE_CODE (var) != FUNCTION_DECL
741 && (!(ann = var_ann (var))
742 || !ann->used))
743 {
744 if (is_global_var (var))
745 {
746 if (global_unused_vars == NULL)
747 global_unused_vars = BITMAP_ALLOC (NULL);
748 bitmap_set_bit (global_unused_vars, DECL_UID (var));
749 }
750 else
751 {
752 *cell = TREE_CHAIN (*cell);
753 continue;
754 }
755 }
756 else if (TREE_CODE (var) == VAR_DECL
757 && DECL_HARD_REGISTER (var)
758 && !is_global_var (var))
759 cfun->has_local_explicit_reg_vars = true;
760 cell = &TREE_CHAIN (*cell);
761 }
762
763 /* Remove unmarked global vars from local_decls. */
764 if (global_unused_vars != NULL)
765 {
766 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
767 {
768 tree var = TREE_VALUE (t);
769
770 if (TREE_CODE (var) == VAR_DECL
771 && is_global_var (var)
772 && (ann = var_ann (var)) != NULL
773 && ann->used)
774 mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
775 }
776
777 for (cell = &cfun->local_decls; *cell; )
778 {
779 tree var = TREE_VALUE (*cell);
780
781 if (TREE_CODE (var) == VAR_DECL
782 && is_global_var (var)
783 && bitmap_bit_p (global_unused_vars, DECL_UID (var)))
784 *cell = TREE_CHAIN (*cell);
785 else
786 cell = &TREE_CHAIN (*cell);
787 }
788 BITMAP_FREE (global_unused_vars);
789 }
790
791 /* Remove unused variables from REFERENCED_VARs. As a special
792 exception keep the variables that are believed to be aliased.
793 Those can't be easily removed from the alias sets and operand
794 caches. They will be removed shortly after the next may_alias
795 pass is performed. */
796 FOR_EACH_REFERENCED_VAR (t, rvi)
797 if (!is_global_var (t)
798 && TREE_CODE (t) != PARM_DECL
799 && TREE_CODE (t) != RESULT_DECL
800 && !(ann = var_ann (t))->used
801 && !ann->is_heapvar
802 && !TREE_ADDRESSABLE (t))
803 remove_referenced_var (t);
804 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
805 if (dump_file && (dump_flags & TDF_DETAILS))
806 {
807 fprintf (dump_file, "Scope blocks after cleanups:\n");
808 dump_scope_blocks (dump_file, dump_flags);
809 }
810 }
811
812
813 /* Allocate and return a new live range information object base on MAP. */
814
815 static tree_live_info_p
816 new_tree_live_info (var_map map)
817 {
818 tree_live_info_p live;
819 unsigned x;
820
821 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
822 live->map = map;
823 live->num_blocks = last_basic_block;
824
825 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
826 for (x = 0; x < (unsigned)last_basic_block; x++)
827 live->livein[x] = BITMAP_ALLOC (NULL);
828
829 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
830 for (x = 0; x < (unsigned)last_basic_block; x++)
831 live->liveout[x] = BITMAP_ALLOC (NULL);
832
833 live->work_stack = XNEWVEC (int, last_basic_block);
834 live->stack_top = live->work_stack;
835
836 live->global = BITMAP_ALLOC (NULL);
837 return live;
838 }
839
840
841 /* Free storage for live range info object LIVE. */
842
843 void
844 delete_tree_live_info (tree_live_info_p live)
845 {
846 int x;
847
848 BITMAP_FREE (live->global);
849 free (live->work_stack);
850
851 for (x = live->num_blocks - 1; x >= 0; x--)
852 BITMAP_FREE (live->liveout[x]);
853 free (live->liveout);
854
855 for (x = live->num_blocks - 1; x >= 0; x--)
856 BITMAP_FREE (live->livein[x]);
857 free (live->livein);
858
859 free (live);
860 }
861
862
863 /* Visit basic block BB and propagate any required live on entry bits from
864 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
865 TMP is a temporary work bitmap which is passed in to avoid reallocating
866 it each time. */
867
868 static void
869 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
870 bitmap tmp)
871 {
872 edge e;
873 bool change;
874 edge_iterator ei;
875 basic_block pred_bb;
876 bitmap loe;
877 gcc_assert (!TEST_BIT (visited, bb->index));
878
879 SET_BIT (visited, bb->index);
880 loe = live_on_entry (live, bb);
881
882 FOR_EACH_EDGE (e, ei, bb->preds)
883 {
884 pred_bb = e->src;
885 if (pred_bb == ENTRY_BLOCK_PTR)
886 continue;
887 /* TMP is variables live-on-entry from BB that aren't defined in the
888 predecessor block. This should be the live on entry vars to pred.
889 Note that liveout is the DEFs in a block while live on entry is
890 being calculated. */
891 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
892
893 /* Add these bits to live-on-entry for the pred. if there are any
894 changes, and pred_bb has been visited already, add it to the
895 revisit stack. */
896 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
897 if (TEST_BIT (visited, pred_bb->index) && change)
898 {
899 RESET_BIT (visited, pred_bb->index);
900 *(live->stack_top)++ = pred_bb->index;
901 }
902 }
903 }
904
905
906 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
907 of all the variables. */
908
909 static void
910 live_worklist (tree_live_info_p live)
911 {
912 unsigned b;
913 basic_block bb;
914 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
915 bitmap tmp = BITMAP_ALLOC (NULL);
916
917 sbitmap_zero (visited);
918
919 /* Visit all the blocks in reverse order and propagate live on entry values
920 into the predecessors blocks. */
921 FOR_EACH_BB_REVERSE (bb)
922 loe_visit_block (live, bb, visited, tmp);
923
924 /* Process any blocks which require further iteration. */
925 while (live->stack_top != live->work_stack)
926 {
927 b = *--(live->stack_top);
928 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
929 }
930
931 BITMAP_FREE (tmp);
932 sbitmap_free (visited);
933 }
934
935
936 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
937 links. Set the live on entry fields in LIVE. Def's are marked temporarily
938 in the liveout vector. */
939
940 static void
941 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
942 {
943 int p;
944 gimple stmt;
945 use_operand_p use;
946 basic_block def_bb = NULL;
947 imm_use_iterator imm_iter;
948 bool global = false;
949
950 p = var_to_partition (live->map, ssa_name);
951 if (p == NO_PARTITION)
952 return;
953
954 stmt = SSA_NAME_DEF_STMT (ssa_name);
955 if (stmt)
956 {
957 def_bb = gimple_bb (stmt);
958 /* Mark defs in liveout bitmap temporarily. */
959 if (def_bb)
960 bitmap_set_bit (live->liveout[def_bb->index], p);
961 }
962 else
963 def_bb = ENTRY_BLOCK_PTR;
964
965 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
966 add it to the list of live on entry blocks. */
967 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
968 {
969 gimple use_stmt = USE_STMT (use);
970 basic_block add_block = NULL;
971
972 if (gimple_code (use_stmt) == GIMPLE_PHI)
973 {
974 /* Uses in PHI's are considered to be live at exit of the SRC block
975 as this is where a copy would be inserted. Check to see if it is
976 defined in that block, or whether its live on entry. */
977 int index = PHI_ARG_INDEX_FROM_USE (use);
978 edge e = gimple_phi_arg_edge (use_stmt, index);
979 if (e->src != ENTRY_BLOCK_PTR)
980 {
981 if (e->src != def_bb)
982 add_block = e->src;
983 }
984 }
985 else if (is_gimple_debug (use_stmt))
986 continue;
987 else
988 {
989 /* If its not defined in this block, its live on entry. */
990 basic_block use_bb = gimple_bb (use_stmt);
991 if (use_bb != def_bb)
992 add_block = use_bb;
993 }
994
995 /* If there was a live on entry use, set the bit. */
996 if (add_block)
997 {
998 global = true;
999 bitmap_set_bit (live->livein[add_block->index], p);
1000 }
1001 }
1002
1003 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1004 on entry blocks between the def and all the uses. */
1005 if (global)
1006 bitmap_set_bit (live->global, p);
1007 }
1008
1009
1010 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1011
1012 void
1013 calculate_live_on_exit (tree_live_info_p liveinfo)
1014 {
1015 basic_block bb;
1016 edge e;
1017 edge_iterator ei;
1018
1019 /* live on entry calculations used liveout vectors for defs, clear them. */
1020 FOR_EACH_BB (bb)
1021 bitmap_clear (liveinfo->liveout[bb->index]);
1022
1023 /* Set all the live-on-exit bits for uses in PHIs. */
1024 FOR_EACH_BB (bb)
1025 {
1026 gimple_stmt_iterator gsi;
1027 size_t i;
1028
1029 /* Mark the PHI arguments which are live on exit to the pred block. */
1030 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1031 {
1032 gimple phi = gsi_stmt (gsi);
1033 for (i = 0; i < gimple_phi_num_args (phi); i++)
1034 {
1035 tree t = PHI_ARG_DEF (phi, i);
1036 int p;
1037
1038 if (TREE_CODE (t) != SSA_NAME)
1039 continue;
1040
1041 p = var_to_partition (liveinfo->map, t);
1042 if (p == NO_PARTITION)
1043 continue;
1044 e = gimple_phi_arg_edge (phi, i);
1045 if (e->src != ENTRY_BLOCK_PTR)
1046 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1047 }
1048 }
1049
1050 /* Add each successors live on entry to this bock live on exit. */
1051 FOR_EACH_EDGE (e, ei, bb->succs)
1052 if (e->dest != EXIT_BLOCK_PTR)
1053 bitmap_ior_into (liveinfo->liveout[bb->index],
1054 live_on_entry (liveinfo, e->dest));
1055 }
1056 }
1057
1058
1059 /* Given partition map MAP, calculate all the live on entry bitmaps for
1060 each partition. Return a new live info object. */
1061
1062 tree_live_info_p
1063 calculate_live_ranges (var_map map)
1064 {
1065 tree var;
1066 unsigned i;
1067 tree_live_info_p live;
1068
1069 live = new_tree_live_info (map);
1070 for (i = 0; i < num_var_partitions (map); i++)
1071 {
1072 var = partition_to_var (map, i);
1073 if (var != NULL_TREE)
1074 set_var_live_on_entry (var, live);
1075 }
1076
1077 live_worklist (live);
1078
1079 #ifdef ENABLE_CHECKING
1080 verify_live_on_entry (live);
1081 #endif
1082
1083 calculate_live_on_exit (live);
1084 return live;
1085 }
1086
1087
1088 /* Output partition map MAP to file F. */
1089
1090 void
1091 dump_var_map (FILE *f, var_map map)
1092 {
1093 int t;
1094 unsigned x, y;
1095 int p;
1096
1097 fprintf (f, "\nPartition map \n\n");
1098
1099 for (x = 0; x < map->num_partitions; x++)
1100 {
1101 if (map->view_to_partition != NULL)
1102 p = map->view_to_partition[x];
1103 else
1104 p = x;
1105
1106 if (ssa_name (p) == NULL_TREE)
1107 continue;
1108
1109 t = 0;
1110 for (y = 1; y < num_ssa_names; y++)
1111 {
1112 p = partition_find (map->var_partition, y);
1113 if (map->partition_to_view)
1114 p = map->partition_to_view[p];
1115 if (p == (int)x)
1116 {
1117 if (t++ == 0)
1118 {
1119 fprintf(f, "Partition %d (", x);
1120 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1121 fprintf (f, " - ");
1122 }
1123 fprintf (f, "%d ", y);
1124 }
1125 }
1126 if (t != 0)
1127 fprintf (f, ")\n");
1128 }
1129 fprintf (f, "\n");
1130 }
1131
1132
1133 /* Output live range info LIVE to file F, controlled by FLAG. */
1134
1135 void
1136 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1137 {
1138 basic_block bb;
1139 unsigned i;
1140 var_map map = live->map;
1141 bitmap_iterator bi;
1142
1143 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1144 {
1145 FOR_EACH_BB (bb)
1146 {
1147 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1148 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1149 {
1150 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1151 fprintf (f, " ");
1152 }
1153 fprintf (f, "\n");
1154 }
1155 }
1156
1157 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1158 {
1159 FOR_EACH_BB (bb)
1160 {
1161 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1162 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1163 {
1164 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1165 fprintf (f, " ");
1166 }
1167 fprintf (f, "\n");
1168 }
1169 }
1170 }
1171
1172
1173 #ifdef ENABLE_CHECKING
1174 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1175
1176 void
1177 register_ssa_partition_check (tree ssa_var)
1178 {
1179 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1180 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1181 {
1182 fprintf (stderr, "Illegally registering a virtual SSA name :");
1183 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1184 fprintf (stderr, " in the SSA->Normal phase.\n");
1185 internal_error ("SSA corruption");
1186 }
1187 }
1188
1189
1190 /* Verify that the info in LIVE matches the current cfg. */
1191
1192 static void
1193 verify_live_on_entry (tree_live_info_p live)
1194 {
1195 unsigned i;
1196 tree var;
1197 gimple stmt;
1198 basic_block bb;
1199 edge e;
1200 int num;
1201 edge_iterator ei;
1202 var_map map = live->map;
1203
1204 /* Check for live on entry partitions and report those with a DEF in
1205 the program. This will typically mean an optimization has done
1206 something wrong. */
1207 bb = ENTRY_BLOCK_PTR;
1208 num = 0;
1209 FOR_EACH_EDGE (e, ei, bb->succs)
1210 {
1211 int entry_block = e->dest->index;
1212 if (e->dest == EXIT_BLOCK_PTR)
1213 continue;
1214 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1215 {
1216 basic_block tmp;
1217 tree d;
1218 bitmap loe;
1219 var = partition_to_var (map, i);
1220 stmt = SSA_NAME_DEF_STMT (var);
1221 tmp = gimple_bb (stmt);
1222 d = gimple_default_def (cfun, SSA_NAME_VAR (var));
1223
1224 loe = live_on_entry (live, e->dest);
1225 if (loe && bitmap_bit_p (loe, i))
1226 {
1227 if (!gimple_nop_p (stmt))
1228 {
1229 num++;
1230 print_generic_expr (stderr, var, TDF_SLIM);
1231 fprintf (stderr, " is defined ");
1232 if (tmp)
1233 fprintf (stderr, " in BB%d, ", tmp->index);
1234 fprintf (stderr, "by:\n");
1235 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1236 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1237 entry_block);
1238 fprintf (stderr, " So it appears to have multiple defs.\n");
1239 }
1240 else
1241 {
1242 if (d != var)
1243 {
1244 num++;
1245 print_generic_expr (stderr, var, TDF_SLIM);
1246 fprintf (stderr, " is live-on-entry to BB%d ",
1247 entry_block);
1248 if (d)
1249 {
1250 fprintf (stderr, " but is not the default def of ");
1251 print_generic_expr (stderr, d, TDF_SLIM);
1252 fprintf (stderr, "\n");
1253 }
1254 else
1255 fprintf (stderr, " and there is no default def.\n");
1256 }
1257 }
1258 }
1259 else
1260 if (d == var)
1261 {
1262 /* The only way this var shouldn't be marked live on entry is
1263 if it occurs in a PHI argument of the block. */
1264 size_t z;
1265 bool ok = false;
1266 gimple_stmt_iterator gsi;
1267 for (gsi = gsi_start_phis (e->dest);
1268 !gsi_end_p (gsi) && !ok;
1269 gsi_next (&gsi))
1270 {
1271 gimple phi = gsi_stmt (gsi);
1272 for (z = 0; z < gimple_phi_num_args (phi); z++)
1273 if (var == gimple_phi_arg_def (phi, z))
1274 {
1275 ok = true;
1276 break;
1277 }
1278 }
1279 if (ok)
1280 continue;
1281 num++;
1282 print_generic_expr (stderr, var, TDF_SLIM);
1283 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1284 entry_block);
1285 fprintf (stderr, "but it is a default def so it should be.\n");
1286 }
1287 }
1288 }
1289 gcc_assert (num <= 0);
1290 }
1291 #endif