re PR ipa/65610 (Compare debug failure with -g3 -fsanitize=undefined -fno-sanitize...
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "gimple-pretty-print.h"
38 #include "bitmap.h"
39 #include "sbitmap.h"
40 #include "predict.h"
41 #include "hard-reg-set.h"
42 #include "function.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-expr.h"
49 #include "is-a.h"
50 #include "gimple.h"
51 #include "gimple-iterator.h"
52 #include "gimple-ssa.h"
53 #include "tree-phinodes.h"
54 #include "ssa-iterators.h"
55 #include "stringpool.h"
56 #include "tree-ssanames.h"
57 #include "hashtab.h"
58 #include "rtl.h"
59 #include "flags.h"
60 #include "statistics.h"
61 #include "real.h"
62 #include "fixed-value.h"
63 #include "insn-config.h"
64 #include "expmed.h"
65 #include "dojump.h"
66 #include "explow.h"
67 #include "calls.h"
68 #include "emit-rtl.h"
69 #include "varasm.h"
70 #include "stmt.h"
71 #include "expr.h"
72 #include "tree-dfa.h"
73 #include "timevar.h"
74 #include "dumpfile.h"
75 #include "tree-ssa-live.h"
76 #include "diagnostic-core.h"
77 #include "debug.h"
78 #include "tree-ssa.h"
79 #include "lto-streamer.h"
80 #include "ipa-ref.h"
81 #include "cgraph.h"
82 #include "ipa-utils.h"
83
84 #ifdef ENABLE_CHECKING
85 static void verify_live_on_entry (tree_live_info_p);
86 #endif
87
88
89 /* VARMAP maintains a mapping from SSA version number to real variables.
90
91 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
92 only member of it's own partition. Coalescing will attempt to group any
93 ssa_names which occur in a copy or in a PHI node into the same partition.
94
95 At the end of out-of-ssa, each partition becomes a "real" variable and is
96 rewritten as a compiler variable.
97
98 The var_map data structure is used to manage these partitions. It allows
99 partitions to be combined, and determines which partition belongs to what
100 ssa_name or variable, and vice versa. */
101
102
103 /* Hashtable helpers. */
104
105 struct tree_int_map_hasher : typed_noop_remove <tree_int_map>
106 {
107 typedef tree_int_map value_type;
108 typedef tree_int_map compare_type;
109 static inline hashval_t hash (const value_type *);
110 static inline bool equal (const value_type *, const compare_type *);
111 };
112
113 inline hashval_t
114 tree_int_map_hasher::hash (const value_type *v)
115 {
116 return tree_map_base_hash (v);
117 }
118
119 inline bool
120 tree_int_map_hasher::equal (const value_type *v, const compare_type *c)
121 {
122 return tree_int_map_eq (v, c);
123 }
124
125
126 /* This routine will initialize the basevar fields of MAP. */
127
128 static void
129 var_map_base_init (var_map map)
130 {
131 int x, num_part;
132 tree var;
133 struct tree_int_map *m, *mapstorage;
134
135 num_part = num_var_partitions (map);
136 hash_table<tree_int_map_hasher> tree_to_index (num_part);
137 /* We can have at most num_part entries in the hash tables, so it's
138 enough to allocate so many map elements once, saving some malloc
139 calls. */
140 mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
141
142 /* If a base table already exists, clear it, otherwise create it. */
143 free (map->partition_to_base_index);
144 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
145
146 /* Build the base variable list, and point partitions at their bases. */
147 for (x = 0; x < num_part; x++)
148 {
149 struct tree_int_map **slot;
150 unsigned baseindex;
151 var = partition_to_var (map, x);
152 if (SSA_NAME_VAR (var)
153 && (!VAR_P (SSA_NAME_VAR (var))
154 || !DECL_IGNORED_P (SSA_NAME_VAR (var))))
155 m->base.from = SSA_NAME_VAR (var);
156 else
157 /* This restricts what anonymous SSA names we can coalesce
158 as it restricts the sets we compute conflicts for.
159 Using TREE_TYPE to generate sets is the easies as
160 type equivalency also holds for SSA names with the same
161 underlying decl.
162
163 Check gimple_can_coalesce_p when changing this code. */
164 m->base.from = (TYPE_CANONICAL (TREE_TYPE (var))
165 ? TYPE_CANONICAL (TREE_TYPE (var))
166 : TREE_TYPE (var));
167 /* If base variable hasn't been seen, set it up. */
168 slot = tree_to_index.find_slot (m, INSERT);
169 if (!*slot)
170 {
171 baseindex = m - mapstorage;
172 m->to = baseindex;
173 *slot = m;
174 m++;
175 }
176 else
177 baseindex = (*slot)->to;
178 map->partition_to_base_index[x] = baseindex;
179 }
180
181 map->num_basevars = m - mapstorage;
182
183 free (mapstorage);
184 }
185
186
187 /* Remove the base table in MAP. */
188
189 static void
190 var_map_base_fini (var_map map)
191 {
192 /* Free the basevar info if it is present. */
193 if (map->partition_to_base_index != NULL)
194 {
195 free (map->partition_to_base_index);
196 map->partition_to_base_index = NULL;
197 map->num_basevars = 0;
198 }
199 }
200 /* Create a variable partition map of SIZE, initialize and return it. */
201
202 var_map
203 init_var_map (int size)
204 {
205 var_map map;
206
207 map = (var_map) xmalloc (sizeof (struct _var_map));
208 map->var_partition = partition_new (size);
209
210 map->partition_to_view = NULL;
211 map->view_to_partition = NULL;
212 map->num_partitions = size;
213 map->partition_size = size;
214 map->num_basevars = 0;
215 map->partition_to_base_index = NULL;
216 return map;
217 }
218
219
220 /* Free memory associated with MAP. */
221
222 void
223 delete_var_map (var_map map)
224 {
225 var_map_base_fini (map);
226 partition_delete (map->var_partition);
227 free (map->partition_to_view);
228 free (map->view_to_partition);
229 free (map);
230 }
231
232
233 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
234 Returns the partition which represents the new partition. If the two
235 partitions cannot be combined, NO_PARTITION is returned. */
236
237 int
238 var_union (var_map map, tree var1, tree var2)
239 {
240 int p1, p2, p3;
241
242 gcc_assert (TREE_CODE (var1) == SSA_NAME);
243 gcc_assert (TREE_CODE (var2) == SSA_NAME);
244
245 /* This is independent of partition_to_view. If partition_to_view is
246 on, then whichever one of these partitions is absorbed will never have a
247 dereference into the partition_to_view array any more. */
248
249 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
250 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
251
252 gcc_assert (p1 != NO_PARTITION);
253 gcc_assert (p2 != NO_PARTITION);
254
255 if (p1 == p2)
256 p3 = p1;
257 else
258 p3 = partition_union (map->var_partition, p1, p2);
259
260 if (map->partition_to_view)
261 p3 = map->partition_to_view[p3];
262
263 return p3;
264 }
265
266
267 /* Compress the partition numbers in MAP such that they fall in the range
268 0..(num_partitions-1) instead of wherever they turned out during
269 the partitioning exercise. This removes any references to unused
270 partitions, thereby allowing bitmaps and other vectors to be much
271 denser.
272
273 This is implemented such that compaction doesn't affect partitioning.
274 Ie., once partitions are created and possibly merged, running one
275 or more different kind of compaction will not affect the partitions
276 themselves. Their index might change, but all the same variables will
277 still be members of the same partition group. This allows work on reduced
278 sets, and no loss of information when a larger set is later desired.
279
280 In particular, coalescing can work on partitions which have 2 or more
281 definitions, and then 'recompact' later to include all the single
282 definitions for assignment to program variables. */
283
284
285 /* Set MAP back to the initial state of having no partition view. Return a
286 bitmap which has a bit set for each partition number which is in use in the
287 varmap. */
288
289 static bitmap
290 partition_view_init (var_map map)
291 {
292 bitmap used;
293 int tmp;
294 unsigned int x;
295
296 used = BITMAP_ALLOC (NULL);
297
298 /* Already in a view? Abandon the old one. */
299 if (map->partition_to_view)
300 {
301 free (map->partition_to_view);
302 map->partition_to_view = NULL;
303 }
304 if (map->view_to_partition)
305 {
306 free (map->view_to_partition);
307 map->view_to_partition = NULL;
308 }
309
310 /* Find out which partitions are actually referenced. */
311 for (x = 0; x < map->partition_size; x++)
312 {
313 tmp = partition_find (map->var_partition, x);
314 if (ssa_name (tmp) != NULL_TREE && !virtual_operand_p (ssa_name (tmp))
315 && (!has_zero_uses (ssa_name (tmp))
316 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
317 bitmap_set_bit (used, tmp);
318 }
319
320 map->num_partitions = map->partition_size;
321 return used;
322 }
323
324
325 /* This routine will finalize the view data for MAP based on the partitions
326 set in SELECTED. This is either the same bitmap returned from
327 partition_view_init, or a trimmed down version if some of those partitions
328 were not desired in this view. SELECTED is freed before returning. */
329
330 static void
331 partition_view_fini (var_map map, bitmap selected)
332 {
333 bitmap_iterator bi;
334 unsigned count, i, x, limit;
335
336 gcc_assert (selected);
337
338 count = bitmap_count_bits (selected);
339 limit = map->partition_size;
340
341 /* If its a one-to-one ratio, we don't need any view compaction. */
342 if (count < limit)
343 {
344 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
345 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
346 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
347
348 i = 0;
349 /* Give each selected partition an index. */
350 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
351 {
352 map->partition_to_view[x] = i;
353 map->view_to_partition[i] = x;
354 i++;
355 }
356 gcc_assert (i == count);
357 map->num_partitions = i;
358 }
359
360 BITMAP_FREE (selected);
361 }
362
363
364 /* Create a partition view which includes all the used partitions in MAP. If
365 WANT_BASES is true, create the base variable map as well. */
366
367 void
368 partition_view_normal (var_map map, bool want_bases)
369 {
370 bitmap used;
371
372 used = partition_view_init (map);
373 partition_view_fini (map, used);
374
375 if (want_bases)
376 var_map_base_init (map);
377 else
378 var_map_base_fini (map);
379 }
380
381
382 /* Create a partition view in MAP which includes just partitions which occur in
383 the bitmap ONLY. If WANT_BASES is true, create the base variable map
384 as well. */
385
386 void
387 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
388 {
389 bitmap used;
390 bitmap new_partitions = BITMAP_ALLOC (NULL);
391 unsigned x, p;
392 bitmap_iterator bi;
393
394 used = partition_view_init (map);
395 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
396 {
397 p = partition_find (map->var_partition, x);
398 gcc_assert (bitmap_bit_p (used, p));
399 bitmap_set_bit (new_partitions, p);
400 }
401 partition_view_fini (map, new_partitions);
402
403 if (want_bases)
404 var_map_base_init (map);
405 else
406 var_map_base_fini (map);
407 }
408
409
410 static bitmap usedvars;
411
412 /* Mark VAR as used, so that it'll be preserved during rtl expansion.
413 Returns true if VAR wasn't marked before. */
414
415 static inline bool
416 set_is_used (tree var)
417 {
418 return bitmap_set_bit (usedvars, DECL_UID (var));
419 }
420
421 /* Return true if VAR is marked as used. */
422
423 static inline bool
424 is_used_p (tree var)
425 {
426 return bitmap_bit_p (usedvars, DECL_UID (var));
427 }
428
429 static inline void mark_all_vars_used (tree *);
430
431 /* Helper function for mark_all_vars_used, called via walk_tree. */
432
433 static tree
434 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
435 {
436 tree t = *tp;
437 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
438 tree b;
439
440 if (TREE_CODE (t) == SSA_NAME)
441 {
442 *walk_subtrees = 0;
443 t = SSA_NAME_VAR (t);
444 if (!t)
445 return NULL;
446 }
447
448 if (IS_EXPR_CODE_CLASS (c)
449 && (b = TREE_BLOCK (t)) != NULL)
450 TREE_USED (b) = true;
451
452 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
453 fields do not contain vars. */
454 if (TREE_CODE (t) == TARGET_MEM_REF)
455 {
456 mark_all_vars_used (&TMR_BASE (t));
457 mark_all_vars_used (&TMR_INDEX (t));
458 mark_all_vars_used (&TMR_INDEX2 (t));
459 *walk_subtrees = 0;
460 return NULL;
461 }
462
463 /* Only need to mark VAR_DECLS; parameters and return results are not
464 eliminated as unused. */
465 if (TREE_CODE (t) == VAR_DECL)
466 {
467 /* When a global var becomes used for the first time also walk its
468 initializer (non global ones don't have any). */
469 if (set_is_used (t) && is_global_var (t)
470 && DECL_CONTEXT (t) == current_function_decl)
471 mark_all_vars_used (&DECL_INITIAL (t));
472 }
473 /* remove_unused_scope_block_p requires information about labels
474 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
475 else if (TREE_CODE (t) == LABEL_DECL)
476 /* Although the TREE_USED values that the frontend uses would be
477 acceptable (albeit slightly over-conservative) for our purposes,
478 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
479 must re-compute it here. */
480 TREE_USED (t) = 1;
481
482 if (IS_TYPE_OR_DECL_P (t))
483 *walk_subtrees = 0;
484
485 return NULL;
486 }
487
488 /* Mark the scope block SCOPE and its subblocks unused when they can be
489 possibly eliminated if dead. */
490
491 static void
492 mark_scope_block_unused (tree scope)
493 {
494 tree t;
495 TREE_USED (scope) = false;
496 if (!(*debug_hooks->ignore_block) (scope))
497 TREE_USED (scope) = true;
498 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
499 mark_scope_block_unused (t);
500 }
501
502 /* Look if the block is dead (by possibly eliminating its dead subblocks)
503 and return true if so.
504 Block is declared dead if:
505 1) No statements are associated with it.
506 2) Declares no live variables
507 3) All subblocks are dead
508 or there is precisely one subblocks and the block
509 has same abstract origin as outer block and declares
510 no variables, so it is pure wrapper.
511 When we are not outputting full debug info, we also eliminate dead variables
512 out of scope blocks to let them to be recycled by GGC and to save copying work
513 done by the inliner. */
514
515 static bool
516 remove_unused_scope_block_p (tree scope, bool in_ctor_dtor_block)
517 {
518 tree *t, *next;
519 bool unused = !TREE_USED (scope);
520 int nsubblocks = 0;
521
522 /* For ipa-polymorphic-call.c purposes, preserve blocks:
523 1) with BLOCK_ABSTRACT_ORIGIN of a ctor/dtor or their clones */
524 if (inlined_polymorphic_ctor_dtor_block_p (scope, true))
525 {
526 in_ctor_dtor_block = true;
527 unused = false;
528 }
529 /* 2) inside such blocks, the outermost block with BLOCK_ABSTRACT_ORIGIN
530 being a FUNCTION_DECL. */
531 else if (in_ctor_dtor_block
532 && BLOCK_ABSTRACT_ORIGIN (scope)
533 && TREE_CODE (BLOCK_ABSTRACT_ORIGIN (scope)) == FUNCTION_DECL)
534 {
535 in_ctor_dtor_block = false;
536 unused = false;
537 }
538
539 for (t = &BLOCK_VARS (scope); *t; t = next)
540 {
541 next = &DECL_CHAIN (*t);
542
543 /* Debug info of nested function refers to the block of the
544 function. We might stil call it even if all statements
545 of function it was nested into was elliminated.
546
547 TODO: We can actually look into cgraph to see if function
548 will be output to file. */
549 if (TREE_CODE (*t) == FUNCTION_DECL)
550 unused = false;
551
552 /* If a decl has a value expr, we need to instantiate it
553 regardless of debug info generation, to avoid codegen
554 differences in memory overlap tests. update_equiv_regs() may
555 indirectly call validate_equiv_mem() to test whether a
556 SET_DEST overlaps with others, and if the value expr changes
557 by virtual register instantiation, we may get end up with
558 different results. */
559 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
560 unused = false;
561
562 /* Remove everything we don't generate debug info for. */
563 else if (DECL_IGNORED_P (*t))
564 {
565 *t = DECL_CHAIN (*t);
566 next = t;
567 }
568
569 /* When we are outputting debug info, we usually want to output
570 info about optimized-out variables in the scope blocks.
571 Exception are the scope blocks not containing any instructions
572 at all so user can't get into the scopes at first place. */
573 else if (is_used_p (*t))
574 unused = false;
575 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
576 /* For labels that are still used in the IL, the decision to
577 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
578 risk having different ordering in debug vs. non-debug builds
579 during inlining or versioning.
580 A label appearing here (we have already checked DECL_IGNORED_P)
581 should not be used in the IL unless it has been explicitly used
582 before, so we use TREE_USED as an approximation. */
583 /* In principle, we should do the same here as for the debug case
584 below, however, when debugging, there might be additional nested
585 levels that keep an upper level with a label live, so we have to
586 force this block to be considered used, too. */
587 unused = false;
588
589 /* When we are not doing full debug info, we however can keep around
590 only the used variables for cfgexpand's memory packing saving quite
591 a lot of memory.
592
593 For sake of -g3, we keep around those vars but we don't count this as
594 use of block, so innermost block with no used vars and no instructions
595 can be considered dead. We only want to keep around blocks user can
596 breakpoint into and ask about value of optimized out variables.
597
598 Similarly we need to keep around types at least until all
599 variables of all nested blocks are gone. We track no
600 information on whether given type is used or not, so we have
601 to keep them even when not emitting debug information,
602 otherwise we may end up remapping variables and their (local)
603 types in different orders depending on whether debug
604 information is being generated. */
605
606 else if (TREE_CODE (*t) == TYPE_DECL
607 || debug_info_level == DINFO_LEVEL_NORMAL
608 || debug_info_level == DINFO_LEVEL_VERBOSE)
609 ;
610 else
611 {
612 *t = DECL_CHAIN (*t);
613 next = t;
614 }
615 }
616
617 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
618 if (remove_unused_scope_block_p (*t, in_ctor_dtor_block))
619 {
620 if (BLOCK_SUBBLOCKS (*t))
621 {
622 tree next = BLOCK_CHAIN (*t);
623 tree supercontext = BLOCK_SUPERCONTEXT (*t);
624
625 *t = BLOCK_SUBBLOCKS (*t);
626 while (BLOCK_CHAIN (*t))
627 {
628 BLOCK_SUPERCONTEXT (*t) = supercontext;
629 t = &BLOCK_CHAIN (*t);
630 }
631 BLOCK_CHAIN (*t) = next;
632 BLOCK_SUPERCONTEXT (*t) = supercontext;
633 t = &BLOCK_CHAIN (*t);
634 nsubblocks ++;
635 }
636 else
637 *t = BLOCK_CHAIN (*t);
638 }
639 else
640 {
641 t = &BLOCK_CHAIN (*t);
642 nsubblocks ++;
643 }
644
645
646 if (!unused)
647 ;
648 /* Outer scope is always used. */
649 else if (!BLOCK_SUPERCONTEXT (scope)
650 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
651 unused = false;
652 /* Innermost blocks with no live variables nor statements can be always
653 eliminated. */
654 else if (!nsubblocks)
655 ;
656 /* When not generating debug info we can eliminate info on unused
657 variables. */
658 else if (!flag_auto_profile && debug_info_level == DINFO_LEVEL_NONE)
659 {
660 /* Even for -g0 don't prune outer scopes from artificial
661 functions, otherwise diagnostics using tree_nonartificial_location
662 will not be emitted properly. */
663 if (inlined_function_outer_scope_p (scope))
664 {
665 tree ao = scope;
666
667 while (ao
668 && TREE_CODE (ao) == BLOCK
669 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
670 ao = BLOCK_ABSTRACT_ORIGIN (ao);
671 if (ao
672 && TREE_CODE (ao) == FUNCTION_DECL
673 && DECL_DECLARED_INLINE_P (ao)
674 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
675 unused = false;
676 }
677 }
678 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
679 unused = false;
680 /* See if this block is important for representation of inlined function.
681 Inlined functions are always represented by block with
682 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
683 set... */
684 else if (inlined_function_outer_scope_p (scope))
685 unused = false;
686 else
687 /* Verfify that only blocks with source location set
688 are entry points to the inlined functions. */
689 gcc_assert (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope))
690 == UNKNOWN_LOCATION);
691
692 TREE_USED (scope) = !unused;
693 return unused;
694 }
695
696 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
697 eliminated during the tree->rtl conversion process. */
698
699 static inline void
700 mark_all_vars_used (tree *expr_p)
701 {
702 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
703 }
704
705 /* Helper function for clear_unused_block_pointer, called via walk_tree. */
706
707 static tree
708 clear_unused_block_pointer_1 (tree *tp, int *, void *)
709 {
710 if (EXPR_P (*tp) && TREE_BLOCK (*tp)
711 && !TREE_USED (TREE_BLOCK (*tp)))
712 TREE_SET_BLOCK (*tp, NULL);
713 return NULL_TREE;
714 }
715
716 /* Set all block pointer in debug or clobber stmt to NULL if the block
717 is unused, so that they will not be streamed out. */
718
719 static void
720 clear_unused_block_pointer (void)
721 {
722 basic_block bb;
723 gimple_stmt_iterator gsi;
724
725 FOR_EACH_BB_FN (bb, cfun)
726 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
727 {
728 unsigned i;
729 tree b;
730 gimple stmt = gsi_stmt (gsi);
731
732 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
733 continue;
734 b = gimple_block (stmt);
735 if (b && !TREE_USED (b))
736 gimple_set_block (stmt, NULL);
737 for (i = 0; i < gimple_num_ops (stmt); i++)
738 walk_tree (gimple_op_ptr (stmt, i), clear_unused_block_pointer_1,
739 NULL, NULL);
740 }
741 }
742
743 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
744 indentation level and FLAGS is as in print_generic_expr. */
745
746 static void
747 dump_scope_block (FILE *file, int indent, tree scope, int flags)
748 {
749 tree var, t;
750 unsigned int i;
751
752 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
753 TREE_USED (scope) ? "" : " (unused)",
754 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
755 if (LOCATION_LOCUS (BLOCK_SOURCE_LOCATION (scope)) != UNKNOWN_LOCATION)
756 {
757 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
758 fprintf (file, " %s:%i", s.file, s.line);
759 }
760 if (BLOCK_ABSTRACT_ORIGIN (scope))
761 {
762 tree origin = block_ultimate_origin (scope);
763 if (origin)
764 {
765 fprintf (file, " Originating from :");
766 if (DECL_P (origin))
767 print_generic_decl (file, origin, flags);
768 else
769 fprintf (file, "#%i", BLOCK_NUMBER (origin));
770 }
771 }
772 fprintf (file, " \n");
773 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
774 {
775 fprintf (file, "%*s", indent, "");
776 print_generic_decl (file, var, flags);
777 fprintf (file, "\n");
778 }
779 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
780 {
781 fprintf (file, "%*s",indent, "");
782 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
783 flags);
784 fprintf (file, " (nonlocalized)\n");
785 }
786 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
787 dump_scope_block (file, indent + 2, t, flags);
788 fprintf (file, "\n%*s}\n",indent, "");
789 }
790
791 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
792 is as in print_generic_expr. */
793
794 DEBUG_FUNCTION void
795 debug_scope_block (tree scope, int flags)
796 {
797 dump_scope_block (stderr, 0, scope, flags);
798 }
799
800
801 /* Dump the tree of lexical scopes of current_function_decl to FILE.
802 FLAGS is as in print_generic_expr. */
803
804 void
805 dump_scope_blocks (FILE *file, int flags)
806 {
807 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
808 }
809
810
811 /* Dump the tree of lexical scopes of current_function_decl to stderr.
812 FLAGS is as in print_generic_expr. */
813
814 DEBUG_FUNCTION void
815 debug_scope_blocks (int flags)
816 {
817 dump_scope_blocks (stderr, flags);
818 }
819
820 /* Remove local variables that are not referenced in the IL. */
821
822 void
823 remove_unused_locals (void)
824 {
825 basic_block bb;
826 tree var;
827 unsigned srcidx, dstidx, num;
828 bool have_local_clobbers = false;
829
830 /* Removing declarations from lexical blocks when not optimizing is
831 not only a waste of time, it actually causes differences in stack
832 layout. */
833 if (!optimize)
834 return;
835
836 timevar_push (TV_REMOVE_UNUSED);
837
838 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
839
840 usedvars = BITMAP_ALLOC (NULL);
841
842 /* Walk the CFG marking all referenced symbols. */
843 FOR_EACH_BB_FN (bb, cfun)
844 {
845 gimple_stmt_iterator gsi;
846 size_t i;
847 edge_iterator ei;
848 edge e;
849
850 /* Walk the statements. */
851 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
852 {
853 gimple stmt = gsi_stmt (gsi);
854 tree b = gimple_block (stmt);
855
856 if (is_gimple_debug (stmt))
857 continue;
858
859 if (gimple_clobber_p (stmt))
860 {
861 have_local_clobbers = true;
862 continue;
863 }
864
865 if (b)
866 TREE_USED (b) = true;
867
868 for (i = 0; i < gimple_num_ops (stmt); i++)
869 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
870 }
871
872 for (gphi_iterator gpi = gsi_start_phis (bb);
873 !gsi_end_p (gpi);
874 gsi_next (&gpi))
875 {
876 use_operand_p arg_p;
877 ssa_op_iter i;
878 tree def;
879 gphi *phi = gpi.phi ();
880
881 if (virtual_operand_p (gimple_phi_result (phi)))
882 continue;
883
884 def = gimple_phi_result (phi);
885 mark_all_vars_used (&def);
886
887 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
888 {
889 tree arg = USE_FROM_PTR (arg_p);
890 int index = PHI_ARG_INDEX_FROM_USE (arg_p);
891 tree block =
892 LOCATION_BLOCK (gimple_phi_arg_location (phi, index));
893 if (block != NULL)
894 TREE_USED (block) = true;
895 mark_all_vars_used (&arg);
896 }
897 }
898
899 FOR_EACH_EDGE (e, ei, bb->succs)
900 if (LOCATION_BLOCK (e->goto_locus) != NULL)
901 TREE_USED (LOCATION_BLOCK (e->goto_locus)) = true;
902 }
903
904 /* We do a two-pass approach about the out-of-scope clobbers. We want
905 to remove them if they are the only references to a local variable,
906 but we want to retain them when there's any other. So the first pass
907 ignores them, and the second pass (if there were any) tries to remove
908 them. */
909 if (have_local_clobbers)
910 FOR_EACH_BB_FN (bb, cfun)
911 {
912 gimple_stmt_iterator gsi;
913
914 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
915 {
916 gimple stmt = gsi_stmt (gsi);
917 tree b = gimple_block (stmt);
918
919 if (gimple_clobber_p (stmt))
920 {
921 tree lhs = gimple_assign_lhs (stmt);
922 tree base = get_base_address (lhs);
923 /* Remove clobbers referencing unused vars, or clobbers
924 with MEM_REF lhs referencing uninitialized pointers. */
925 if ((TREE_CODE (base) == VAR_DECL && !is_used_p (base))
926 || (TREE_CODE (lhs) == MEM_REF
927 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
928 && SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0))
929 && (TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (lhs, 0)))
930 != PARM_DECL)))
931 {
932 unlink_stmt_vdef (stmt);
933 gsi_remove (&gsi, true);
934 release_defs (stmt);
935 continue;
936 }
937 if (b)
938 TREE_USED (b) = true;
939 }
940 gsi_next (&gsi);
941 }
942 }
943
944 cfun->has_local_explicit_reg_vars = false;
945
946 /* Remove unmarked local and global vars from local_decls. */
947 num = vec_safe_length (cfun->local_decls);
948 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
949 {
950 var = (*cfun->local_decls)[srcidx];
951 if (TREE_CODE (var) == VAR_DECL)
952 {
953 if (!is_used_p (var))
954 {
955 tree def;
956 if (cfun->nonlocal_goto_save_area
957 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
958 cfun->nonlocal_goto_save_area = NULL;
959 /* Release any default def associated with var. */
960 if ((def = ssa_default_def (cfun, var)) != NULL_TREE)
961 {
962 set_ssa_default_def (cfun, var, NULL_TREE);
963 release_ssa_name (def);
964 }
965 continue;
966 }
967 }
968 if (TREE_CODE (var) == VAR_DECL
969 && DECL_HARD_REGISTER (var)
970 && !is_global_var (var))
971 cfun->has_local_explicit_reg_vars = true;
972
973 if (srcidx != dstidx)
974 (*cfun->local_decls)[dstidx] = var;
975 dstidx++;
976 }
977 if (dstidx != num)
978 {
979 statistics_counter_event (cfun, "unused VAR_DECLs removed", num - dstidx);
980 cfun->local_decls->truncate (dstidx);
981 }
982
983 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl), false);
984 clear_unused_block_pointer ();
985
986 BITMAP_FREE (usedvars);
987
988 if (dump_file && (dump_flags & TDF_DETAILS))
989 {
990 fprintf (dump_file, "Scope blocks after cleanups:\n");
991 dump_scope_blocks (dump_file, dump_flags);
992 }
993
994 timevar_pop (TV_REMOVE_UNUSED);
995 }
996
997 /* Allocate and return a new live range information object base on MAP. */
998
999 static tree_live_info_p
1000 new_tree_live_info (var_map map)
1001 {
1002 tree_live_info_p live;
1003 basic_block bb;
1004
1005 live = XNEW (struct tree_live_info_d);
1006 live->map = map;
1007 live->num_blocks = last_basic_block_for_fn (cfun);
1008
1009 bitmap_obstack_initialize (&live->livein_obstack);
1010 bitmap_obstack_initialize (&live->liveout_obstack);
1011 live->livein = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
1012 FOR_EACH_BB_FN (bb, cfun)
1013 bitmap_initialize (&live->livein[bb->index], &live->livein_obstack);
1014
1015 live->liveout = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
1016 FOR_EACH_BB_FN (bb, cfun)
1017 bitmap_initialize (&live->liveout[bb->index], &live->liveout_obstack);
1018
1019 live->work_stack = XNEWVEC (int, last_basic_block_for_fn (cfun));
1020 live->stack_top = live->work_stack;
1021
1022 live->global = BITMAP_ALLOC (NULL);
1023 return live;
1024 }
1025
1026
1027 /* Free storage for live range info object LIVE. */
1028
1029 void
1030 delete_tree_live_info (tree_live_info_p live)
1031 {
1032 if (live->livein)
1033 {
1034 bitmap_obstack_release (&live->livein_obstack);
1035 free (live->livein);
1036 }
1037 if (live->liveout)
1038 {
1039 bitmap_obstack_release (&live->liveout_obstack);
1040 free (live->liveout);
1041 }
1042 BITMAP_FREE (live->global);
1043 free (live->work_stack);
1044 free (live);
1045 }
1046
1047
1048 /* Visit basic block BB and propagate any required live on entry bits from
1049 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
1050 TMP is a temporary work bitmap which is passed in to avoid reallocating
1051 it each time. */
1052
1053 static void
1054 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited)
1055 {
1056 edge e;
1057 bool change;
1058 edge_iterator ei;
1059 basic_block pred_bb;
1060 bitmap loe;
1061
1062 gcc_checking_assert (!bitmap_bit_p (visited, bb->index));
1063 bitmap_set_bit (visited, bb->index);
1064
1065 loe = live_on_entry (live, bb);
1066
1067 FOR_EACH_EDGE (e, ei, bb->preds)
1068 {
1069 pred_bb = e->src;
1070 if (pred_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1071 continue;
1072 /* Variables live-on-entry from BB that aren't defined in the
1073 predecessor block. This should be the live on entry vars to pred.
1074 Note that liveout is the DEFs in a block while live on entry is
1075 being calculated.
1076 Add these bits to live-on-entry for the pred. if there are any
1077 changes, and pred_bb has been visited already, add it to the
1078 revisit stack. */
1079 change = bitmap_ior_and_compl_into (live_on_entry (live, pred_bb),
1080 loe, &live->liveout[pred_bb->index]);
1081 if (change
1082 && bitmap_bit_p (visited, pred_bb->index))
1083 {
1084 bitmap_clear_bit (visited, pred_bb->index);
1085 *(live->stack_top)++ = pred_bb->index;
1086 }
1087 }
1088 }
1089
1090
1091 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
1092 of all the variables. */
1093
1094 static void
1095 live_worklist (tree_live_info_p live)
1096 {
1097 unsigned b;
1098 basic_block bb;
1099 sbitmap visited = sbitmap_alloc (last_basic_block_for_fn (cfun) + 1);
1100
1101 bitmap_clear (visited);
1102
1103 /* Visit all the blocks in reverse order and propagate live on entry values
1104 into the predecessors blocks. */
1105 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1106 loe_visit_block (live, bb, visited);
1107
1108 /* Process any blocks which require further iteration. */
1109 while (live->stack_top != live->work_stack)
1110 {
1111 b = *--(live->stack_top);
1112 loe_visit_block (live, BASIC_BLOCK_FOR_FN (cfun, b), visited);
1113 }
1114
1115 sbitmap_free (visited);
1116 }
1117
1118
1119 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
1120 links. Set the live on entry fields in LIVE. Def's are marked temporarily
1121 in the liveout vector. */
1122
1123 static void
1124 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
1125 {
1126 int p;
1127 gimple stmt;
1128 use_operand_p use;
1129 basic_block def_bb = NULL;
1130 imm_use_iterator imm_iter;
1131 bool global = false;
1132
1133 p = var_to_partition (live->map, ssa_name);
1134 if (p == NO_PARTITION)
1135 return;
1136
1137 stmt = SSA_NAME_DEF_STMT (ssa_name);
1138 if (stmt)
1139 {
1140 def_bb = gimple_bb (stmt);
1141 /* Mark defs in liveout bitmap temporarily. */
1142 if (def_bb)
1143 bitmap_set_bit (&live->liveout[def_bb->index], p);
1144 }
1145 else
1146 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1147
1148 /* An undefined local variable does not need to be very alive. */
1149 if (ssa_undefined_value_p (ssa_name, false))
1150 return;
1151
1152 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
1153 add it to the list of live on entry blocks. */
1154 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
1155 {
1156 gimple use_stmt = USE_STMT (use);
1157 basic_block add_block = NULL;
1158
1159 if (gimple_code (use_stmt) == GIMPLE_PHI)
1160 {
1161 /* Uses in PHI's are considered to be live at exit of the SRC block
1162 as this is where a copy would be inserted. Check to see if it is
1163 defined in that block, or whether its live on entry. */
1164 int index = PHI_ARG_INDEX_FROM_USE (use);
1165 edge e = gimple_phi_arg_edge (as_a <gphi *> (use_stmt), index);
1166 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1167 {
1168 if (e->src != def_bb)
1169 add_block = e->src;
1170 }
1171 }
1172 else if (is_gimple_debug (use_stmt))
1173 continue;
1174 else
1175 {
1176 /* If its not defined in this block, its live on entry. */
1177 basic_block use_bb = gimple_bb (use_stmt);
1178 if (use_bb != def_bb)
1179 add_block = use_bb;
1180 }
1181
1182 /* If there was a live on entry use, set the bit. */
1183 if (add_block)
1184 {
1185 global = true;
1186 bitmap_set_bit (&live->livein[add_block->index], p);
1187 }
1188 }
1189
1190 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1191 on entry blocks between the def and all the uses. */
1192 if (global)
1193 bitmap_set_bit (live->global, p);
1194 }
1195
1196
1197 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1198
1199 static void
1200 calculate_live_on_exit (tree_live_info_p liveinfo)
1201 {
1202 basic_block bb;
1203 edge e;
1204 edge_iterator ei;
1205
1206 /* live on entry calculations used liveout vectors for defs, clear them. */
1207 FOR_EACH_BB_FN (bb, cfun)
1208 bitmap_clear (&liveinfo->liveout[bb->index]);
1209
1210 /* Set all the live-on-exit bits for uses in PHIs. */
1211 FOR_EACH_BB_FN (bb, cfun)
1212 {
1213 gphi_iterator gsi;
1214 size_t i;
1215
1216 /* Mark the PHI arguments which are live on exit to the pred block. */
1217 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1218 {
1219 gphi *phi = gsi.phi ();
1220 for (i = 0; i < gimple_phi_num_args (phi); i++)
1221 {
1222 tree t = PHI_ARG_DEF (phi, i);
1223 int p;
1224
1225 if (TREE_CODE (t) != SSA_NAME)
1226 continue;
1227
1228 p = var_to_partition (liveinfo->map, t);
1229 if (p == NO_PARTITION)
1230 continue;
1231 e = gimple_phi_arg_edge (phi, i);
1232 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1233 bitmap_set_bit (&liveinfo->liveout[e->src->index], p);
1234 }
1235 }
1236
1237 /* Add each successors live on entry to this bock live on exit. */
1238 FOR_EACH_EDGE (e, ei, bb->succs)
1239 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1240 bitmap_ior_into (&liveinfo->liveout[bb->index],
1241 live_on_entry (liveinfo, e->dest));
1242 }
1243 }
1244
1245
1246 /* Given partition map MAP, calculate all the live on entry bitmaps for
1247 each partition. Return a new live info object. */
1248
1249 tree_live_info_p
1250 calculate_live_ranges (var_map map, bool want_livein)
1251 {
1252 tree var;
1253 unsigned i;
1254 tree_live_info_p live;
1255
1256 live = new_tree_live_info (map);
1257 for (i = 0; i < num_var_partitions (map); i++)
1258 {
1259 var = partition_to_var (map, i);
1260 if (var != NULL_TREE)
1261 set_var_live_on_entry (var, live);
1262 }
1263
1264 live_worklist (live);
1265
1266 #ifdef ENABLE_CHECKING
1267 verify_live_on_entry (live);
1268 #endif
1269
1270 calculate_live_on_exit (live);
1271
1272 if (!want_livein)
1273 {
1274 bitmap_obstack_release (&live->livein_obstack);
1275 free (live->livein);
1276 live->livein = NULL;
1277 }
1278
1279 return live;
1280 }
1281
1282
1283 /* Output partition map MAP to file F. */
1284
1285 void
1286 dump_var_map (FILE *f, var_map map)
1287 {
1288 int t;
1289 unsigned x, y;
1290 int p;
1291
1292 fprintf (f, "\nPartition map \n\n");
1293
1294 for (x = 0; x < map->num_partitions; x++)
1295 {
1296 if (map->view_to_partition != NULL)
1297 p = map->view_to_partition[x];
1298 else
1299 p = x;
1300
1301 if (ssa_name (p) == NULL_TREE
1302 || virtual_operand_p (ssa_name (p)))
1303 continue;
1304
1305 t = 0;
1306 for (y = 1; y < num_ssa_names; y++)
1307 {
1308 p = partition_find (map->var_partition, y);
1309 if (map->partition_to_view)
1310 p = map->partition_to_view[p];
1311 if (p == (int)x)
1312 {
1313 if (t++ == 0)
1314 {
1315 fprintf (f, "Partition %d (", x);
1316 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1317 fprintf (f, " - ");
1318 }
1319 fprintf (f, "%d ", y);
1320 }
1321 }
1322 if (t != 0)
1323 fprintf (f, ")\n");
1324 }
1325 fprintf (f, "\n");
1326 }
1327
1328
1329 /* Generic dump for the above. */
1330
1331 DEBUG_FUNCTION void
1332 debug (_var_map &ref)
1333 {
1334 dump_var_map (stderr, &ref);
1335 }
1336
1337 DEBUG_FUNCTION void
1338 debug (_var_map *ptr)
1339 {
1340 if (ptr)
1341 debug (*ptr);
1342 else
1343 fprintf (stderr, "<nil>\n");
1344 }
1345
1346
1347 /* Output live range info LIVE to file F, controlled by FLAG. */
1348
1349 void
1350 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1351 {
1352 basic_block bb;
1353 unsigned i;
1354 var_map map = live->map;
1355 bitmap_iterator bi;
1356
1357 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1358 {
1359 FOR_EACH_BB_FN (bb, cfun)
1360 {
1361 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1362 EXECUTE_IF_SET_IN_BITMAP (&live->livein[bb->index], 0, i, bi)
1363 {
1364 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1365 fprintf (f, " ");
1366 }
1367 fprintf (f, "\n");
1368 }
1369 }
1370
1371 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1372 {
1373 FOR_EACH_BB_FN (bb, cfun)
1374 {
1375 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1376 EXECUTE_IF_SET_IN_BITMAP (&live->liveout[bb->index], 0, i, bi)
1377 {
1378 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1379 fprintf (f, " ");
1380 }
1381 fprintf (f, "\n");
1382 }
1383 }
1384 }
1385
1386
1387 /* Generic dump for the above. */
1388
1389 DEBUG_FUNCTION void
1390 debug (tree_live_info_d &ref)
1391 {
1392 dump_live_info (stderr, &ref, 0);
1393 }
1394
1395 DEBUG_FUNCTION void
1396 debug (tree_live_info_d *ptr)
1397 {
1398 if (ptr)
1399 debug (*ptr);
1400 else
1401 fprintf (stderr, "<nil>\n");
1402 }
1403
1404
1405 #ifdef ENABLE_CHECKING
1406 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1407
1408 void
1409 register_ssa_partition_check (tree ssa_var)
1410 {
1411 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1412 if (virtual_operand_p (ssa_var))
1413 {
1414 fprintf (stderr, "Illegally registering a virtual SSA name :");
1415 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1416 fprintf (stderr, " in the SSA->Normal phase.\n");
1417 internal_error ("SSA corruption");
1418 }
1419 }
1420
1421
1422 /* Verify that the info in LIVE matches the current cfg. */
1423
1424 static void
1425 verify_live_on_entry (tree_live_info_p live)
1426 {
1427 unsigned i;
1428 tree var;
1429 gimple stmt;
1430 basic_block bb;
1431 edge e;
1432 int num;
1433 edge_iterator ei;
1434 var_map map = live->map;
1435
1436 /* Check for live on entry partitions and report those with a DEF in
1437 the program. This will typically mean an optimization has done
1438 something wrong. */
1439 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1440 num = 0;
1441 FOR_EACH_EDGE (e, ei, bb->succs)
1442 {
1443 int entry_block = e->dest->index;
1444 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1445 continue;
1446 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1447 {
1448 basic_block tmp;
1449 tree d = NULL_TREE;
1450 bitmap loe;
1451 var = partition_to_var (map, i);
1452 stmt = SSA_NAME_DEF_STMT (var);
1453 tmp = gimple_bb (stmt);
1454 if (SSA_NAME_VAR (var))
1455 d = ssa_default_def (cfun, SSA_NAME_VAR (var));
1456
1457 loe = live_on_entry (live, e->dest);
1458 if (loe && bitmap_bit_p (loe, i))
1459 {
1460 if (!gimple_nop_p (stmt))
1461 {
1462 num++;
1463 print_generic_expr (stderr, var, TDF_SLIM);
1464 fprintf (stderr, " is defined ");
1465 if (tmp)
1466 fprintf (stderr, " in BB%d, ", tmp->index);
1467 fprintf (stderr, "by:\n");
1468 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1469 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1470 entry_block);
1471 fprintf (stderr, " So it appears to have multiple defs.\n");
1472 }
1473 else
1474 {
1475 if (d != var)
1476 {
1477 num++;
1478 print_generic_expr (stderr, var, TDF_SLIM);
1479 fprintf (stderr, " is live-on-entry to BB%d ",
1480 entry_block);
1481 if (d)
1482 {
1483 fprintf (stderr, " but is not the default def of ");
1484 print_generic_expr (stderr, d, TDF_SLIM);
1485 fprintf (stderr, "\n");
1486 }
1487 else
1488 fprintf (stderr, " and there is no default def.\n");
1489 }
1490 }
1491 }
1492 else
1493 if (d == var)
1494 {
1495 /* An undefined local variable does not need to be very
1496 alive. */
1497 if (ssa_undefined_value_p (var, false))
1498 continue;
1499
1500 /* The only way this var shouldn't be marked live on entry is
1501 if it occurs in a PHI argument of the block. */
1502 size_t z;
1503 bool ok = false;
1504 gphi_iterator gsi;
1505 for (gsi = gsi_start_phis (e->dest);
1506 !gsi_end_p (gsi) && !ok;
1507 gsi_next (&gsi))
1508 {
1509 gphi *phi = gsi.phi ();
1510 for (z = 0; z < gimple_phi_num_args (phi); z++)
1511 if (var == gimple_phi_arg_def (phi, z))
1512 {
1513 ok = true;
1514 break;
1515 }
1516 }
1517 if (ok)
1518 continue;
1519 num++;
1520 print_generic_expr (stderr, var, TDF_SLIM);
1521 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1522 entry_block);
1523 fprintf (stderr, "but it is a default def so it should be.\n");
1524 }
1525 }
1526 }
1527 gcc_assert (num <= 0);
1528 }
1529 #endif