tree-dfa.c (set_ssa_default_def): Clear the SSA_NAME_DEFAULT_DEF bit of the old name...
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "gimple-pretty-print.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "timevar.h"
31 #include "dumpfile.h"
32 #include "tree-ssa-live.h"
33 #include "diagnostic-core.h"
34 #include "debug.h"
35 #include "flags.h"
36 #include "gimple.h"
37
38 #ifdef ENABLE_CHECKING
39 static void verify_live_on_entry (tree_live_info_p);
40 #endif
41
42
43 /* VARMAP maintains a mapping from SSA version number to real variables.
44
45 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
46 only member of it's own partition. Coalescing will attempt to group any
47 ssa_names which occur in a copy or in a PHI node into the same partition.
48
49 At the end of out-of-ssa, each partition becomes a "real" variable and is
50 rewritten as a compiler variable.
51
52 The var_map data structure is used to manage these partitions. It allows
53 partitions to be combined, and determines which partition belongs to what
54 ssa_name or variable, and vice versa. */
55
56
57 /* This routine will initialize the basevar fields of MAP. */
58
59 static void
60 var_map_base_init (var_map map)
61 {
62 int x, num_part;
63 tree var;
64 htab_t decl_to_index;
65 struct tree_int_map *m, *mapstorage;
66
67 num_part = num_var_partitions (map);
68 decl_to_index = htab_create (num_part, tree_decl_map_hash,
69 tree_int_map_eq, NULL);
70 /* We can have at most num_part entries in the hash tables, so it's
71 enough to allocate so many map elements once, saving some malloc
72 calls. */
73 mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
74
75 /* If a base table already exists, clear it, otherwise create it. */
76 free (map->partition_to_base_index);
77 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
78
79 /* Build the base variable list, and point partitions at their bases. */
80 for (x = 0; x < num_part; x++)
81 {
82 struct tree_int_map **slot;
83 unsigned baseindex;
84 var = partition_to_var (map, x);
85 var = SSA_NAME_VAR (var);
86 /* If base variable hasn't been seen, set it up. */
87 m->base.from = var;
88 slot = (struct tree_int_map **) htab_find_slot (decl_to_index, m, INSERT);
89 if (!*slot)
90 {
91 baseindex = m - mapstorage;
92 m->to = baseindex;
93 *slot = m;
94 m++;
95 }
96 else
97 baseindex = (*slot)->to;
98 map->partition_to_base_index[x] = baseindex;
99 }
100
101 map->num_basevars = m - mapstorage;
102
103 free (mapstorage);
104 htab_delete (decl_to_index);
105 }
106
107
108 /* Remove the base table in MAP. */
109
110 static void
111 var_map_base_fini (var_map map)
112 {
113 /* Free the basevar info if it is present. */
114 if (map->partition_to_base_index != NULL)
115 {
116 free (map->partition_to_base_index);
117 map->partition_to_base_index = NULL;
118 map->num_basevars = 0;
119 }
120 }
121 /* Create a variable partition map of SIZE, initialize and return it. */
122
123 var_map
124 init_var_map (int size)
125 {
126 var_map map;
127
128 map = (var_map) xmalloc (sizeof (struct _var_map));
129 map->var_partition = partition_new (size);
130
131 map->partition_to_view = NULL;
132 map->view_to_partition = NULL;
133 map->num_partitions = size;
134 map->partition_size = size;
135 map->num_basevars = 0;
136 map->partition_to_base_index = NULL;
137 return map;
138 }
139
140
141 /* Free memory associated with MAP. */
142
143 void
144 delete_var_map (var_map map)
145 {
146 var_map_base_fini (map);
147 partition_delete (map->var_partition);
148 free (map->partition_to_view);
149 free (map->view_to_partition);
150 free (map);
151 }
152
153
154 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
155 Returns the partition which represents the new partition. If the two
156 partitions cannot be combined, NO_PARTITION is returned. */
157
158 int
159 var_union (var_map map, tree var1, tree var2)
160 {
161 int p1, p2, p3;
162
163 gcc_assert (TREE_CODE (var1) == SSA_NAME);
164 gcc_assert (TREE_CODE (var2) == SSA_NAME);
165
166 /* This is independent of partition_to_view. If partition_to_view is
167 on, then whichever one of these partitions is absorbed will never have a
168 dereference into the partition_to_view array any more. */
169
170 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
171 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
172
173 gcc_assert (p1 != NO_PARTITION);
174 gcc_assert (p2 != NO_PARTITION);
175
176 if (p1 == p2)
177 p3 = p1;
178 else
179 p3 = partition_union (map->var_partition, p1, p2);
180
181 if (map->partition_to_view)
182 p3 = map->partition_to_view[p3];
183
184 return p3;
185 }
186
187
188 /* Compress the partition numbers in MAP such that they fall in the range
189 0..(num_partitions-1) instead of wherever they turned out during
190 the partitioning exercise. This removes any references to unused
191 partitions, thereby allowing bitmaps and other vectors to be much
192 denser.
193
194 This is implemented such that compaction doesn't affect partitioning.
195 Ie., once partitions are created and possibly merged, running one
196 or more different kind of compaction will not affect the partitions
197 themselves. Their index might change, but all the same variables will
198 still be members of the same partition group. This allows work on reduced
199 sets, and no loss of information when a larger set is later desired.
200
201 In particular, coalescing can work on partitions which have 2 or more
202 definitions, and then 'recompact' later to include all the single
203 definitions for assignment to program variables. */
204
205
206 /* Set MAP back to the initial state of having no partition view. Return a
207 bitmap which has a bit set for each partition number which is in use in the
208 varmap. */
209
210 static bitmap
211 partition_view_init (var_map map)
212 {
213 bitmap used;
214 int tmp;
215 unsigned int x;
216
217 used = BITMAP_ALLOC (NULL);
218
219 /* Already in a view? Abandon the old one. */
220 if (map->partition_to_view)
221 {
222 free (map->partition_to_view);
223 map->partition_to_view = NULL;
224 }
225 if (map->view_to_partition)
226 {
227 free (map->view_to_partition);
228 map->view_to_partition = NULL;
229 }
230
231 /* Find out which partitions are actually referenced. */
232 for (x = 0; x < map->partition_size; x++)
233 {
234 tmp = partition_find (map->var_partition, x);
235 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
236 && (!has_zero_uses (ssa_name (tmp))
237 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
238 bitmap_set_bit (used, tmp);
239 }
240
241 map->num_partitions = map->partition_size;
242 return used;
243 }
244
245
246 /* This routine will finalize the view data for MAP based on the partitions
247 set in SELECTED. This is either the same bitmap returned from
248 partition_view_init, or a trimmed down version if some of those partitions
249 were not desired in this view. SELECTED is freed before returning. */
250
251 static void
252 partition_view_fini (var_map map, bitmap selected)
253 {
254 bitmap_iterator bi;
255 unsigned count, i, x, limit;
256
257 gcc_assert (selected);
258
259 count = bitmap_count_bits (selected);
260 limit = map->partition_size;
261
262 /* If its a one-to-one ratio, we don't need any view compaction. */
263 if (count < limit)
264 {
265 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
266 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
267 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
268
269 i = 0;
270 /* Give each selected partition an index. */
271 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
272 {
273 map->partition_to_view[x] = i;
274 map->view_to_partition[i] = x;
275 i++;
276 }
277 gcc_assert (i == count);
278 map->num_partitions = i;
279 }
280
281 BITMAP_FREE (selected);
282 }
283
284
285 /* Create a partition view which includes all the used partitions in MAP. If
286 WANT_BASES is true, create the base variable map as well. */
287
288 extern void
289 partition_view_normal (var_map map, bool want_bases)
290 {
291 bitmap used;
292
293 used = partition_view_init (map);
294 partition_view_fini (map, used);
295
296 if (want_bases)
297 var_map_base_init (map);
298 else
299 var_map_base_fini (map);
300 }
301
302
303 /* Create a partition view in MAP which includes just partitions which occur in
304 the bitmap ONLY. If WANT_BASES is true, create the base variable map
305 as well. */
306
307 extern void
308 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
309 {
310 bitmap used;
311 bitmap new_partitions = BITMAP_ALLOC (NULL);
312 unsigned x, p;
313 bitmap_iterator bi;
314
315 used = partition_view_init (map);
316 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
317 {
318 p = partition_find (map->var_partition, x);
319 gcc_assert (bitmap_bit_p (used, p));
320 bitmap_set_bit (new_partitions, p);
321 }
322 partition_view_fini (map, new_partitions);
323
324 BITMAP_FREE (used);
325 if (want_bases)
326 var_map_base_init (map);
327 else
328 var_map_base_fini (map);
329 }
330
331
332 static bitmap usedvars;
333
334 /* Mark VAR as used, so that it'll be preserved during rtl expansion.
335 Returns true if VAR wasn't marked before. */
336
337 static inline bool
338 set_is_used (tree var)
339 {
340 return bitmap_set_bit (usedvars, DECL_UID (var));
341 }
342
343 /* Return true if VAR is marked as used. */
344
345 static inline bool
346 is_used_p (tree var)
347 {
348 return bitmap_bit_p (usedvars, DECL_UID (var));
349 }
350
351 static inline void mark_all_vars_used (tree *);
352
353 /* Helper function for mark_all_vars_used, called via walk_tree. */
354
355 static tree
356 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
357 {
358 tree t = *tp;
359 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
360 tree b;
361
362 if (TREE_CODE (t) == SSA_NAME)
363 t = SSA_NAME_VAR (t);
364
365 if (IS_EXPR_CODE_CLASS (c)
366 && (b = TREE_BLOCK (t)) != NULL)
367 TREE_USED (b) = true;
368
369 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
370 fields do not contain vars. */
371 if (TREE_CODE (t) == TARGET_MEM_REF)
372 {
373 mark_all_vars_used (&TMR_BASE (t));
374 mark_all_vars_used (&TMR_INDEX (t));
375 mark_all_vars_used (&TMR_INDEX2 (t));
376 *walk_subtrees = 0;
377 return NULL;
378 }
379
380 /* Only need to mark VAR_DECLS; parameters and return results are not
381 eliminated as unused. */
382 if (TREE_CODE (t) == VAR_DECL)
383 {
384 /* When a global var becomes used for the first time also walk its
385 initializer (non global ones don't have any). */
386 if (set_is_used (t) && is_global_var (t))
387 mark_all_vars_used (&DECL_INITIAL (t));
388 }
389 /* remove_unused_scope_block_p requires information about labels
390 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
391 else if (TREE_CODE (t) == LABEL_DECL)
392 /* Although the TREE_USED values that the frontend uses would be
393 acceptable (albeit slightly over-conservative) for our purposes,
394 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
395 must re-compute it here. */
396 TREE_USED (t) = 1;
397
398 if (IS_TYPE_OR_DECL_P (t))
399 *walk_subtrees = 0;
400
401 return NULL;
402 }
403
404 /* Mark the scope block SCOPE and its subblocks unused when they can be
405 possibly eliminated if dead. */
406
407 static void
408 mark_scope_block_unused (tree scope)
409 {
410 tree t;
411 TREE_USED (scope) = false;
412 if (!(*debug_hooks->ignore_block) (scope))
413 TREE_USED (scope) = true;
414 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
415 mark_scope_block_unused (t);
416 }
417
418 /* Look if the block is dead (by possibly eliminating its dead subblocks)
419 and return true if so.
420 Block is declared dead if:
421 1) No statements are associated with it.
422 2) Declares no live variables
423 3) All subblocks are dead
424 or there is precisely one subblocks and the block
425 has same abstract origin as outer block and declares
426 no variables, so it is pure wrapper.
427 When we are not outputting full debug info, we also eliminate dead variables
428 out of scope blocks to let them to be recycled by GGC and to save copying work
429 done by the inliner. */
430
431 static bool
432 remove_unused_scope_block_p (tree scope)
433 {
434 tree *t, *next;
435 bool unused = !TREE_USED (scope);
436 int nsubblocks = 0;
437
438 for (t = &BLOCK_VARS (scope); *t; t = next)
439 {
440 next = &DECL_CHAIN (*t);
441
442 /* Debug info of nested function refers to the block of the
443 function. We might stil call it even if all statements
444 of function it was nested into was elliminated.
445
446 TODO: We can actually look into cgraph to see if function
447 will be output to file. */
448 if (TREE_CODE (*t) == FUNCTION_DECL)
449 unused = false;
450
451 /* If a decl has a value expr, we need to instantiate it
452 regardless of debug info generation, to avoid codegen
453 differences in memory overlap tests. update_equiv_regs() may
454 indirectly call validate_equiv_mem() to test whether a
455 SET_DEST overlaps with others, and if the value expr changes
456 by virtual register instantiation, we may get end up with
457 different results. */
458 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
459 unused = false;
460
461 /* Remove everything we don't generate debug info for. */
462 else if (DECL_IGNORED_P (*t))
463 {
464 *t = DECL_CHAIN (*t);
465 next = t;
466 }
467
468 /* When we are outputting debug info, we usually want to output
469 info about optimized-out variables in the scope blocks.
470 Exception are the scope blocks not containing any instructions
471 at all so user can't get into the scopes at first place. */
472 else if (is_used_p (*t))
473 unused = false;
474 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
475 /* For labels that are still used in the IL, the decision to
476 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
477 risk having different ordering in debug vs. non-debug builds
478 during inlining or versioning.
479 A label appearing here (we have already checked DECL_IGNORED_P)
480 should not be used in the IL unless it has been explicitly used
481 before, so we use TREE_USED as an approximation. */
482 /* In principle, we should do the same here as for the debug case
483 below, however, when debugging, there might be additional nested
484 levels that keep an upper level with a label live, so we have to
485 force this block to be considered used, too. */
486 unused = false;
487
488 /* When we are not doing full debug info, we however can keep around
489 only the used variables for cfgexpand's memory packing saving quite
490 a lot of memory.
491
492 For sake of -g3, we keep around those vars but we don't count this as
493 use of block, so innermost block with no used vars and no instructions
494 can be considered dead. We only want to keep around blocks user can
495 breakpoint into and ask about value of optimized out variables.
496
497 Similarly we need to keep around types at least until all
498 variables of all nested blocks are gone. We track no
499 information on whether given type is used or not, so we have
500 to keep them even when not emitting debug information,
501 otherwise we may end up remapping variables and their (local)
502 types in different orders depending on whether debug
503 information is being generated. */
504
505 else if (TREE_CODE (*t) == TYPE_DECL
506 || debug_info_level == DINFO_LEVEL_NORMAL
507 || debug_info_level == DINFO_LEVEL_VERBOSE)
508 ;
509 else
510 {
511 *t = DECL_CHAIN (*t);
512 next = t;
513 }
514 }
515
516 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
517 if (remove_unused_scope_block_p (*t))
518 {
519 if (BLOCK_SUBBLOCKS (*t))
520 {
521 tree next = BLOCK_CHAIN (*t);
522 tree supercontext = BLOCK_SUPERCONTEXT (*t);
523
524 *t = BLOCK_SUBBLOCKS (*t);
525 while (BLOCK_CHAIN (*t))
526 {
527 BLOCK_SUPERCONTEXT (*t) = supercontext;
528 t = &BLOCK_CHAIN (*t);
529 }
530 BLOCK_CHAIN (*t) = next;
531 BLOCK_SUPERCONTEXT (*t) = supercontext;
532 t = &BLOCK_CHAIN (*t);
533 nsubblocks ++;
534 }
535 else
536 *t = BLOCK_CHAIN (*t);
537 }
538 else
539 {
540 t = &BLOCK_CHAIN (*t);
541 nsubblocks ++;
542 }
543
544
545 if (!unused)
546 ;
547 /* Outer scope is always used. */
548 else if (!BLOCK_SUPERCONTEXT (scope)
549 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
550 unused = false;
551 /* Innermost blocks with no live variables nor statements can be always
552 eliminated. */
553 else if (!nsubblocks)
554 ;
555 /* For terse debug info we can eliminate info on unused variables. */
556 else if (debug_info_level == DINFO_LEVEL_NONE
557 || debug_info_level == DINFO_LEVEL_TERSE)
558 {
559 /* Even for -g0/-g1 don't prune outer scopes from artificial
560 functions, otherwise diagnostics using tree_nonartificial_location
561 will not be emitted properly. */
562 if (inlined_function_outer_scope_p (scope))
563 {
564 tree ao = scope;
565
566 while (ao
567 && TREE_CODE (ao) == BLOCK
568 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
569 ao = BLOCK_ABSTRACT_ORIGIN (ao);
570 if (ao
571 && TREE_CODE (ao) == FUNCTION_DECL
572 && DECL_DECLARED_INLINE_P (ao)
573 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
574 unused = false;
575 }
576 }
577 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
578 unused = false;
579 /* See if this block is important for representation of inlined function.
580 Inlined functions are always represented by block with
581 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
582 set... */
583 else if (inlined_function_outer_scope_p (scope))
584 unused = false;
585 else
586 /* Verfify that only blocks with source location set
587 are entry points to the inlined functions. */
588 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
589
590 TREE_USED (scope) = !unused;
591 return unused;
592 }
593
594 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
595 eliminated during the tree->rtl conversion process. */
596
597 static inline void
598 mark_all_vars_used (tree *expr_p)
599 {
600 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
601 }
602
603
604 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
605 indentation level and FLAGS is as in print_generic_expr. */
606
607 static void
608 dump_scope_block (FILE *file, int indent, tree scope, int flags)
609 {
610 tree var, t;
611 unsigned int i;
612
613 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
614 TREE_USED (scope) ? "" : " (unused)",
615 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
616 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
617 {
618 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
619 fprintf (file, " %s:%i", s.file, s.line);
620 }
621 if (BLOCK_ABSTRACT_ORIGIN (scope))
622 {
623 tree origin = block_ultimate_origin (scope);
624 if (origin)
625 {
626 fprintf (file, " Originating from :");
627 if (DECL_P (origin))
628 print_generic_decl (file, origin, flags);
629 else
630 fprintf (file, "#%i", BLOCK_NUMBER (origin));
631 }
632 }
633 fprintf (file, " \n");
634 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
635 {
636 fprintf (file, "%*s", indent, "");
637 print_generic_decl (file, var, flags);
638 fprintf (file, "\n");
639 }
640 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
641 {
642 fprintf (file, "%*s",indent, "");
643 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
644 flags);
645 fprintf (file, " (nonlocalized)\n");
646 }
647 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
648 dump_scope_block (file, indent + 2, t, flags);
649 fprintf (file, "\n%*s}\n",indent, "");
650 }
651
652 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
653 is as in print_generic_expr. */
654
655 DEBUG_FUNCTION void
656 debug_scope_block (tree scope, int flags)
657 {
658 dump_scope_block (stderr, 0, scope, flags);
659 }
660
661
662 /* Dump the tree of lexical scopes of current_function_decl to FILE.
663 FLAGS is as in print_generic_expr. */
664
665 void
666 dump_scope_blocks (FILE *file, int flags)
667 {
668 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
669 }
670
671
672 /* Dump the tree of lexical scopes of current_function_decl to stderr.
673 FLAGS is as in print_generic_expr. */
674
675 DEBUG_FUNCTION void
676 debug_scope_blocks (int flags)
677 {
678 dump_scope_blocks (stderr, flags);
679 }
680
681 /* Remove local variables that are not referenced in the IL. */
682
683 void
684 remove_unused_locals (void)
685 {
686 basic_block bb;
687 tree var;
688 unsigned srcidx, dstidx, num;
689 bool have_local_clobbers = false;
690
691 /* Removing declarations from lexical blocks when not optimizing is
692 not only a waste of time, it actually causes differences in stack
693 layout. */
694 if (!optimize)
695 return;
696
697 timevar_push (TV_REMOVE_UNUSED);
698
699 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
700
701 usedvars = BITMAP_ALLOC (NULL);
702
703 /* Walk the CFG marking all referenced symbols. */
704 FOR_EACH_BB (bb)
705 {
706 gimple_stmt_iterator gsi;
707 size_t i;
708 edge_iterator ei;
709 edge e;
710
711 /* Walk the statements. */
712 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
713 {
714 gimple stmt = gsi_stmt (gsi);
715 tree b = gimple_block (stmt);
716
717 if (is_gimple_debug (stmt))
718 continue;
719
720 if (gimple_clobber_p (stmt))
721 {
722 have_local_clobbers = true;
723 continue;
724 }
725
726 if (b)
727 TREE_USED (b) = true;
728
729 for (i = 0; i < gimple_num_ops (stmt); i++)
730 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
731 }
732
733 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
734 {
735 use_operand_p arg_p;
736 ssa_op_iter i;
737 tree def;
738 gimple phi = gsi_stmt (gsi);
739
740 if (!is_gimple_reg (gimple_phi_result (phi)))
741 continue;
742
743 def = gimple_phi_result (phi);
744 mark_all_vars_used (&def);
745
746 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
747 {
748 tree arg = USE_FROM_PTR (arg_p);
749 mark_all_vars_used (&arg);
750 }
751 }
752
753 FOR_EACH_EDGE (e, ei, bb->succs)
754 if (e->goto_locus)
755 TREE_USED (e->goto_block) = true;
756 }
757
758 /* We do a two-pass approach about the out-of-scope clobbers. We want
759 to remove them if they are the only references to a local variable,
760 but we want to retain them when there's any other. So the first pass
761 ignores them, and the second pass (if there were any) tries to remove
762 them. */
763 if (have_local_clobbers)
764 FOR_EACH_BB (bb)
765 {
766 gimple_stmt_iterator gsi;
767
768 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
769 {
770 gimple stmt = gsi_stmt (gsi);
771 tree b = gimple_block (stmt);
772
773 if (gimple_clobber_p (stmt))
774 {
775 tree lhs = gimple_assign_lhs (stmt);
776 if (TREE_CODE (lhs) == VAR_DECL && !is_used_p (lhs))
777 {
778 unlink_stmt_vdef (stmt);
779 gsi_remove (&gsi, true);
780 release_defs (stmt);
781 continue;
782 }
783 if (b)
784 TREE_USED (b) = true;
785 }
786 gsi_next (&gsi);
787 }
788 }
789
790 cfun->has_local_explicit_reg_vars = false;
791
792 /* Remove unmarked local and global vars from local_decls. */
793 num = VEC_length (tree, cfun->local_decls);
794 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
795 {
796 var = VEC_index (tree, cfun->local_decls, srcidx);
797 if (TREE_CODE (var) == VAR_DECL)
798 {
799 if (!is_used_p (var))
800 {
801 tree def;
802 if (cfun->nonlocal_goto_save_area
803 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
804 cfun->nonlocal_goto_save_area = NULL;
805 /* Release any default def associated with var. */
806 if ((def = ssa_default_def (cfun, var)) != NULL_TREE)
807 {
808 set_ssa_default_def (cfun, var, NULL_TREE);
809 release_ssa_name (def);
810 }
811 continue;
812 }
813 }
814 if (TREE_CODE (var) == VAR_DECL
815 && DECL_HARD_REGISTER (var)
816 && !is_global_var (var))
817 cfun->has_local_explicit_reg_vars = true;
818
819 if (srcidx != dstidx)
820 VEC_replace (tree, cfun->local_decls, dstidx, var);
821 dstidx++;
822 }
823 if (dstidx != num)
824 VEC_truncate (tree, cfun->local_decls, dstidx);
825
826 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
827
828 BITMAP_FREE (usedvars);
829
830 if (dump_file && (dump_flags & TDF_DETAILS))
831 {
832 fprintf (dump_file, "Scope blocks after cleanups:\n");
833 dump_scope_blocks (dump_file, dump_flags);
834 }
835
836 timevar_pop (TV_REMOVE_UNUSED);
837 }
838
839
840 /* Allocate and return a new live range information object base on MAP. */
841
842 static tree_live_info_p
843 new_tree_live_info (var_map map)
844 {
845 tree_live_info_p live;
846 unsigned x;
847
848 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
849 live->map = map;
850 live->num_blocks = last_basic_block;
851
852 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
853 for (x = 0; x < (unsigned)last_basic_block; x++)
854 live->livein[x] = BITMAP_ALLOC (NULL);
855
856 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
857 for (x = 0; x < (unsigned)last_basic_block; x++)
858 live->liveout[x] = BITMAP_ALLOC (NULL);
859
860 live->work_stack = XNEWVEC (int, last_basic_block);
861 live->stack_top = live->work_stack;
862
863 live->global = BITMAP_ALLOC (NULL);
864 return live;
865 }
866
867
868 /* Free storage for live range info object LIVE. */
869
870 void
871 delete_tree_live_info (tree_live_info_p live)
872 {
873 int x;
874
875 BITMAP_FREE (live->global);
876 free (live->work_stack);
877
878 for (x = live->num_blocks - 1; x >= 0; x--)
879 BITMAP_FREE (live->liveout[x]);
880 free (live->liveout);
881
882 for (x = live->num_blocks - 1; x >= 0; x--)
883 BITMAP_FREE (live->livein[x]);
884 free (live->livein);
885
886 free (live);
887 }
888
889
890 /* Visit basic block BB and propagate any required live on entry bits from
891 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
892 TMP is a temporary work bitmap which is passed in to avoid reallocating
893 it each time. */
894
895 static void
896 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
897 bitmap tmp)
898 {
899 edge e;
900 bool change;
901 edge_iterator ei;
902 basic_block pred_bb;
903 bitmap loe;
904 gcc_assert (!TEST_BIT (visited, bb->index));
905
906 SET_BIT (visited, bb->index);
907 loe = live_on_entry (live, bb);
908
909 FOR_EACH_EDGE (e, ei, bb->preds)
910 {
911 pred_bb = e->src;
912 if (pred_bb == ENTRY_BLOCK_PTR)
913 continue;
914 /* TMP is variables live-on-entry from BB that aren't defined in the
915 predecessor block. This should be the live on entry vars to pred.
916 Note that liveout is the DEFs in a block while live on entry is
917 being calculated. */
918 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
919
920 /* Add these bits to live-on-entry for the pred. if there are any
921 changes, and pred_bb has been visited already, add it to the
922 revisit stack. */
923 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
924 if (TEST_BIT (visited, pred_bb->index) && change)
925 {
926 RESET_BIT (visited, pred_bb->index);
927 *(live->stack_top)++ = pred_bb->index;
928 }
929 }
930 }
931
932
933 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
934 of all the variables. */
935
936 static void
937 live_worklist (tree_live_info_p live)
938 {
939 unsigned b;
940 basic_block bb;
941 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
942 bitmap tmp = BITMAP_ALLOC (NULL);
943
944 sbitmap_zero (visited);
945
946 /* Visit all the blocks in reverse order and propagate live on entry values
947 into the predecessors blocks. */
948 FOR_EACH_BB_REVERSE (bb)
949 loe_visit_block (live, bb, visited, tmp);
950
951 /* Process any blocks which require further iteration. */
952 while (live->stack_top != live->work_stack)
953 {
954 b = *--(live->stack_top);
955 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
956 }
957
958 BITMAP_FREE (tmp);
959 sbitmap_free (visited);
960 }
961
962
963 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
964 links. Set the live on entry fields in LIVE. Def's are marked temporarily
965 in the liveout vector. */
966
967 static void
968 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
969 {
970 int p;
971 gimple stmt;
972 use_operand_p use;
973 basic_block def_bb = NULL;
974 imm_use_iterator imm_iter;
975 bool global = false;
976
977 p = var_to_partition (live->map, ssa_name);
978 if (p == NO_PARTITION)
979 return;
980
981 stmt = SSA_NAME_DEF_STMT (ssa_name);
982 if (stmt)
983 {
984 def_bb = gimple_bb (stmt);
985 /* Mark defs in liveout bitmap temporarily. */
986 if (def_bb)
987 bitmap_set_bit (live->liveout[def_bb->index], p);
988 }
989 else
990 def_bb = ENTRY_BLOCK_PTR;
991
992 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
993 add it to the list of live on entry blocks. */
994 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
995 {
996 gimple use_stmt = USE_STMT (use);
997 basic_block add_block = NULL;
998
999 if (gimple_code (use_stmt) == GIMPLE_PHI)
1000 {
1001 /* Uses in PHI's are considered to be live at exit of the SRC block
1002 as this is where a copy would be inserted. Check to see if it is
1003 defined in that block, or whether its live on entry. */
1004 int index = PHI_ARG_INDEX_FROM_USE (use);
1005 edge e = gimple_phi_arg_edge (use_stmt, index);
1006 if (e->src != ENTRY_BLOCK_PTR)
1007 {
1008 if (e->src != def_bb)
1009 add_block = e->src;
1010 }
1011 }
1012 else if (is_gimple_debug (use_stmt))
1013 continue;
1014 else
1015 {
1016 /* If its not defined in this block, its live on entry. */
1017 basic_block use_bb = gimple_bb (use_stmt);
1018 if (use_bb != def_bb)
1019 add_block = use_bb;
1020 }
1021
1022 /* If there was a live on entry use, set the bit. */
1023 if (add_block)
1024 {
1025 global = true;
1026 bitmap_set_bit (live->livein[add_block->index], p);
1027 }
1028 }
1029
1030 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1031 on entry blocks between the def and all the uses. */
1032 if (global)
1033 bitmap_set_bit (live->global, p);
1034 }
1035
1036
1037 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1038
1039 void
1040 calculate_live_on_exit (tree_live_info_p liveinfo)
1041 {
1042 basic_block bb;
1043 edge e;
1044 edge_iterator ei;
1045
1046 /* live on entry calculations used liveout vectors for defs, clear them. */
1047 FOR_EACH_BB (bb)
1048 bitmap_clear (liveinfo->liveout[bb->index]);
1049
1050 /* Set all the live-on-exit bits for uses in PHIs. */
1051 FOR_EACH_BB (bb)
1052 {
1053 gimple_stmt_iterator gsi;
1054 size_t i;
1055
1056 /* Mark the PHI arguments which are live on exit to the pred block. */
1057 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1058 {
1059 gimple phi = gsi_stmt (gsi);
1060 for (i = 0; i < gimple_phi_num_args (phi); i++)
1061 {
1062 tree t = PHI_ARG_DEF (phi, i);
1063 int p;
1064
1065 if (TREE_CODE (t) != SSA_NAME)
1066 continue;
1067
1068 p = var_to_partition (liveinfo->map, t);
1069 if (p == NO_PARTITION)
1070 continue;
1071 e = gimple_phi_arg_edge (phi, i);
1072 if (e->src != ENTRY_BLOCK_PTR)
1073 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1074 }
1075 }
1076
1077 /* Add each successors live on entry to this bock live on exit. */
1078 FOR_EACH_EDGE (e, ei, bb->succs)
1079 if (e->dest != EXIT_BLOCK_PTR)
1080 bitmap_ior_into (liveinfo->liveout[bb->index],
1081 live_on_entry (liveinfo, e->dest));
1082 }
1083 }
1084
1085
1086 /* Given partition map MAP, calculate all the live on entry bitmaps for
1087 each partition. Return a new live info object. */
1088
1089 tree_live_info_p
1090 calculate_live_ranges (var_map map)
1091 {
1092 tree var;
1093 unsigned i;
1094 tree_live_info_p live;
1095
1096 live = new_tree_live_info (map);
1097 for (i = 0; i < num_var_partitions (map); i++)
1098 {
1099 var = partition_to_var (map, i);
1100 if (var != NULL_TREE)
1101 set_var_live_on_entry (var, live);
1102 }
1103
1104 live_worklist (live);
1105
1106 #ifdef ENABLE_CHECKING
1107 verify_live_on_entry (live);
1108 #endif
1109
1110 calculate_live_on_exit (live);
1111 return live;
1112 }
1113
1114
1115 /* Output partition map MAP to file F. */
1116
1117 void
1118 dump_var_map (FILE *f, var_map map)
1119 {
1120 int t;
1121 unsigned x, y;
1122 int p;
1123
1124 fprintf (f, "\nPartition map \n\n");
1125
1126 for (x = 0; x < map->num_partitions; x++)
1127 {
1128 if (map->view_to_partition != NULL)
1129 p = map->view_to_partition[x];
1130 else
1131 p = x;
1132
1133 if (ssa_name (p) == NULL_TREE)
1134 continue;
1135
1136 t = 0;
1137 for (y = 1; y < num_ssa_names; y++)
1138 {
1139 p = partition_find (map->var_partition, y);
1140 if (map->partition_to_view)
1141 p = map->partition_to_view[p];
1142 if (p == (int)x)
1143 {
1144 if (t++ == 0)
1145 {
1146 fprintf(f, "Partition %d (", x);
1147 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1148 fprintf (f, " - ");
1149 }
1150 fprintf (f, "%d ", y);
1151 }
1152 }
1153 if (t != 0)
1154 fprintf (f, ")\n");
1155 }
1156 fprintf (f, "\n");
1157 }
1158
1159
1160 /* Output live range info LIVE to file F, controlled by FLAG. */
1161
1162 void
1163 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1164 {
1165 basic_block bb;
1166 unsigned i;
1167 var_map map = live->map;
1168 bitmap_iterator bi;
1169
1170 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1171 {
1172 FOR_EACH_BB (bb)
1173 {
1174 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1175 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1176 {
1177 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1178 fprintf (f, " ");
1179 }
1180 fprintf (f, "\n");
1181 }
1182 }
1183
1184 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1185 {
1186 FOR_EACH_BB (bb)
1187 {
1188 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1189 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1190 {
1191 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1192 fprintf (f, " ");
1193 }
1194 fprintf (f, "\n");
1195 }
1196 }
1197 }
1198
1199 #ifdef ENABLE_CHECKING
1200 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1201
1202 void
1203 register_ssa_partition_check (tree ssa_var)
1204 {
1205 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1206 if (!is_gimple_reg (ssa_var))
1207 {
1208 fprintf (stderr, "Illegally registering a virtual SSA name :");
1209 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1210 fprintf (stderr, " in the SSA->Normal phase.\n");
1211 internal_error ("SSA corruption");
1212 }
1213 }
1214
1215
1216 /* Verify that the info in LIVE matches the current cfg. */
1217
1218 static void
1219 verify_live_on_entry (tree_live_info_p live)
1220 {
1221 unsigned i;
1222 tree var;
1223 gimple stmt;
1224 basic_block bb;
1225 edge e;
1226 int num;
1227 edge_iterator ei;
1228 var_map map = live->map;
1229
1230 /* Check for live on entry partitions and report those with a DEF in
1231 the program. This will typically mean an optimization has done
1232 something wrong. */
1233 bb = ENTRY_BLOCK_PTR;
1234 num = 0;
1235 FOR_EACH_EDGE (e, ei, bb->succs)
1236 {
1237 int entry_block = e->dest->index;
1238 if (e->dest == EXIT_BLOCK_PTR)
1239 continue;
1240 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1241 {
1242 basic_block tmp;
1243 tree d;
1244 bitmap loe;
1245 var = partition_to_var (map, i);
1246 stmt = SSA_NAME_DEF_STMT (var);
1247 tmp = gimple_bb (stmt);
1248 d = ssa_default_def (cfun, SSA_NAME_VAR (var));
1249
1250 loe = live_on_entry (live, e->dest);
1251 if (loe && bitmap_bit_p (loe, i))
1252 {
1253 if (!gimple_nop_p (stmt))
1254 {
1255 num++;
1256 print_generic_expr (stderr, var, TDF_SLIM);
1257 fprintf (stderr, " is defined ");
1258 if (tmp)
1259 fprintf (stderr, " in BB%d, ", tmp->index);
1260 fprintf (stderr, "by:\n");
1261 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1262 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1263 entry_block);
1264 fprintf (stderr, " So it appears to have multiple defs.\n");
1265 }
1266 else
1267 {
1268 if (d != var)
1269 {
1270 num++;
1271 print_generic_expr (stderr, var, TDF_SLIM);
1272 fprintf (stderr, " is live-on-entry to BB%d ",
1273 entry_block);
1274 if (d)
1275 {
1276 fprintf (stderr, " but is not the default def of ");
1277 print_generic_expr (stderr, d, TDF_SLIM);
1278 fprintf (stderr, "\n");
1279 }
1280 else
1281 fprintf (stderr, " and there is no default def.\n");
1282 }
1283 }
1284 }
1285 else
1286 if (d == var)
1287 {
1288 /* The only way this var shouldn't be marked live on entry is
1289 if it occurs in a PHI argument of the block. */
1290 size_t z;
1291 bool ok = false;
1292 gimple_stmt_iterator gsi;
1293 for (gsi = gsi_start_phis (e->dest);
1294 !gsi_end_p (gsi) && !ok;
1295 gsi_next (&gsi))
1296 {
1297 gimple phi = gsi_stmt (gsi);
1298 for (z = 0; z < gimple_phi_num_args (phi); z++)
1299 if (var == gimple_phi_arg_def (phi, z))
1300 {
1301 ok = true;
1302 break;
1303 }
1304 }
1305 if (ok)
1306 continue;
1307 num++;
1308 print_generic_expr (stderr, var, TDF_SLIM);
1309 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1310 entry_block);
1311 fprintf (stderr, "but it is a default def so it should be.\n");
1312 }
1313 }
1314 }
1315 gcc_assert (num <= 0);
1316 }
1317 #endif