tree-into-ssa.c (rewrite_stmt): Remove clobbers for variables we rewrite into SSA...
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "gimple-pretty-print.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "timevar.h"
31 #include "dumpfile.h"
32 #include "tree-ssa-live.h"
33 #include "diagnostic-core.h"
34 #include "debug.h"
35 #include "flags.h"
36 #include "gimple.h"
37
38 #ifdef ENABLE_CHECKING
39 static void verify_live_on_entry (tree_live_info_p);
40 #endif
41
42
43 /* VARMAP maintains a mapping from SSA version number to real variables.
44
45 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
46 only member of it's own partition. Coalescing will attempt to group any
47 ssa_names which occur in a copy or in a PHI node into the same partition.
48
49 At the end of out-of-ssa, each partition becomes a "real" variable and is
50 rewritten as a compiler variable.
51
52 The var_map data structure is used to manage these partitions. It allows
53 partitions to be combined, and determines which partition belongs to what
54 ssa_name or variable, and vice versa. */
55
56
57 /* This routine will initialize the basevar fields of MAP. */
58
59 static void
60 var_map_base_init (var_map map)
61 {
62 int x, num_part;
63 tree var;
64 htab_t decl_to_index;
65 struct tree_int_map *m, *mapstorage;
66
67 num_part = num_var_partitions (map);
68 decl_to_index = htab_create (num_part, tree_decl_map_hash,
69 tree_int_map_eq, NULL);
70 /* We can have at most num_part entries in the hash tables, so it's
71 enough to allocate so many map elements once, saving some malloc
72 calls. */
73 mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
74
75 /* If a base table already exists, clear it, otherwise create it. */
76 free (map->partition_to_base_index);
77 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
78
79 /* Build the base variable list, and point partitions at their bases. */
80 for (x = 0; x < num_part; x++)
81 {
82 struct tree_int_map **slot;
83 unsigned baseindex;
84 var = partition_to_var (map, x);
85 var = SSA_NAME_VAR (var);
86 /* If base variable hasn't been seen, set it up. */
87 m->base.from = var;
88 slot = (struct tree_int_map **) htab_find_slot (decl_to_index, m, INSERT);
89 if (!*slot)
90 {
91 baseindex = m - mapstorage;
92 m->to = baseindex;
93 *slot = m;
94 m++;
95 }
96 else
97 baseindex = (*slot)->to;
98 map->partition_to_base_index[x] = baseindex;
99 }
100
101 map->num_basevars = m - mapstorage;
102
103 free (mapstorage);
104 htab_delete (decl_to_index);
105 }
106
107
108 /* Remove the base table in MAP. */
109
110 static void
111 var_map_base_fini (var_map map)
112 {
113 /* Free the basevar info if it is present. */
114 if (map->partition_to_base_index != NULL)
115 {
116 free (map->partition_to_base_index);
117 map->partition_to_base_index = NULL;
118 map->num_basevars = 0;
119 }
120 }
121 /* Create a variable partition map of SIZE, initialize and return it. */
122
123 var_map
124 init_var_map (int size)
125 {
126 var_map map;
127
128 map = (var_map) xmalloc (sizeof (struct _var_map));
129 map->var_partition = partition_new (size);
130
131 map->partition_to_view = NULL;
132 map->view_to_partition = NULL;
133 map->num_partitions = size;
134 map->partition_size = size;
135 map->num_basevars = 0;
136 map->partition_to_base_index = NULL;
137 return map;
138 }
139
140
141 /* Free memory associated with MAP. */
142
143 void
144 delete_var_map (var_map map)
145 {
146 var_map_base_fini (map);
147 partition_delete (map->var_partition);
148 free (map->partition_to_view);
149 free (map->view_to_partition);
150 free (map);
151 }
152
153
154 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
155 Returns the partition which represents the new partition. If the two
156 partitions cannot be combined, NO_PARTITION is returned. */
157
158 int
159 var_union (var_map map, tree var1, tree var2)
160 {
161 int p1, p2, p3;
162
163 gcc_assert (TREE_CODE (var1) == SSA_NAME);
164 gcc_assert (TREE_CODE (var2) == SSA_NAME);
165
166 /* This is independent of partition_to_view. If partition_to_view is
167 on, then whichever one of these partitions is absorbed will never have a
168 dereference into the partition_to_view array any more. */
169
170 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
171 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
172
173 gcc_assert (p1 != NO_PARTITION);
174 gcc_assert (p2 != NO_PARTITION);
175
176 if (p1 == p2)
177 p3 = p1;
178 else
179 p3 = partition_union (map->var_partition, p1, p2);
180
181 if (map->partition_to_view)
182 p3 = map->partition_to_view[p3];
183
184 return p3;
185 }
186
187
188 /* Compress the partition numbers in MAP such that they fall in the range
189 0..(num_partitions-1) instead of wherever they turned out during
190 the partitioning exercise. This removes any references to unused
191 partitions, thereby allowing bitmaps and other vectors to be much
192 denser.
193
194 This is implemented such that compaction doesn't affect partitioning.
195 Ie., once partitions are created and possibly merged, running one
196 or more different kind of compaction will not affect the partitions
197 themselves. Their index might change, but all the same variables will
198 still be members of the same partition group. This allows work on reduced
199 sets, and no loss of information when a larger set is later desired.
200
201 In particular, coalescing can work on partitions which have 2 or more
202 definitions, and then 'recompact' later to include all the single
203 definitions for assignment to program variables. */
204
205
206 /* Set MAP back to the initial state of having no partition view. Return a
207 bitmap which has a bit set for each partition number which is in use in the
208 varmap. */
209
210 static bitmap
211 partition_view_init (var_map map)
212 {
213 bitmap used;
214 int tmp;
215 unsigned int x;
216
217 used = BITMAP_ALLOC (NULL);
218
219 /* Already in a view? Abandon the old one. */
220 if (map->partition_to_view)
221 {
222 free (map->partition_to_view);
223 map->partition_to_view = NULL;
224 }
225 if (map->view_to_partition)
226 {
227 free (map->view_to_partition);
228 map->view_to_partition = NULL;
229 }
230
231 /* Find out which partitions are actually referenced. */
232 for (x = 0; x < map->partition_size; x++)
233 {
234 tmp = partition_find (map->var_partition, x);
235 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
236 && (!has_zero_uses (ssa_name (tmp))
237 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
238 bitmap_set_bit (used, tmp);
239 }
240
241 map->num_partitions = map->partition_size;
242 return used;
243 }
244
245
246 /* This routine will finalize the view data for MAP based on the partitions
247 set in SELECTED. This is either the same bitmap returned from
248 partition_view_init, or a trimmed down version if some of those partitions
249 were not desired in this view. SELECTED is freed before returning. */
250
251 static void
252 partition_view_fini (var_map map, bitmap selected)
253 {
254 bitmap_iterator bi;
255 unsigned count, i, x, limit;
256
257 gcc_assert (selected);
258
259 count = bitmap_count_bits (selected);
260 limit = map->partition_size;
261
262 /* If its a one-to-one ratio, we don't need any view compaction. */
263 if (count < limit)
264 {
265 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
266 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
267 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
268
269 i = 0;
270 /* Give each selected partition an index. */
271 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
272 {
273 map->partition_to_view[x] = i;
274 map->view_to_partition[i] = x;
275 i++;
276 }
277 gcc_assert (i == count);
278 map->num_partitions = i;
279 }
280
281 BITMAP_FREE (selected);
282 }
283
284
285 /* Create a partition view which includes all the used partitions in MAP. If
286 WANT_BASES is true, create the base variable map as well. */
287
288 extern void
289 partition_view_normal (var_map map, bool want_bases)
290 {
291 bitmap used;
292
293 used = partition_view_init (map);
294 partition_view_fini (map, used);
295
296 if (want_bases)
297 var_map_base_init (map);
298 else
299 var_map_base_fini (map);
300 }
301
302
303 /* Create a partition view in MAP which includes just partitions which occur in
304 the bitmap ONLY. If WANT_BASES is true, create the base variable map
305 as well. */
306
307 extern void
308 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
309 {
310 bitmap used;
311 bitmap new_partitions = BITMAP_ALLOC (NULL);
312 unsigned x, p;
313 bitmap_iterator bi;
314
315 used = partition_view_init (map);
316 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
317 {
318 p = partition_find (map->var_partition, x);
319 gcc_assert (bitmap_bit_p (used, p));
320 bitmap_set_bit (new_partitions, p);
321 }
322 partition_view_fini (map, new_partitions);
323
324 BITMAP_FREE (used);
325 if (want_bases)
326 var_map_base_init (map);
327 else
328 var_map_base_fini (map);
329 }
330
331
332 static bitmap usedvars;
333
334 /* Mark VAR as used, so that it'll be preserved during rtl expansion.
335 Returns true if VAR wasn't marked before. */
336
337 static inline bool
338 set_is_used (tree var)
339 {
340 return bitmap_set_bit (usedvars, DECL_UID (var));
341 }
342
343 /* Return true if VAR is marked as used. */
344
345 static inline bool
346 is_used_p (tree var)
347 {
348 return bitmap_bit_p (usedvars, DECL_UID (var));
349 }
350
351 static inline void mark_all_vars_used (tree *);
352
353 /* Helper function for mark_all_vars_used, called via walk_tree. */
354
355 static tree
356 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
357 {
358 tree t = *tp;
359 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
360 tree b;
361
362 if (TREE_CODE (t) == SSA_NAME)
363 t = SSA_NAME_VAR (t);
364
365 if (IS_EXPR_CODE_CLASS (c)
366 && (b = TREE_BLOCK (t)) != NULL)
367 TREE_USED (b) = true;
368
369 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
370 fields do not contain vars. */
371 if (TREE_CODE (t) == TARGET_MEM_REF)
372 {
373 mark_all_vars_used (&TMR_BASE (t));
374 mark_all_vars_used (&TMR_INDEX (t));
375 mark_all_vars_used (&TMR_INDEX2 (t));
376 *walk_subtrees = 0;
377 return NULL;
378 }
379
380 /* Only need to mark VAR_DECLS; parameters and return results are not
381 eliminated as unused. */
382 if (TREE_CODE (t) == VAR_DECL)
383 {
384 /* When a global var becomes used for the first time also walk its
385 initializer (non global ones don't have any). */
386 if (set_is_used (t) && is_global_var (t))
387 mark_all_vars_used (&DECL_INITIAL (t));
388 }
389 /* remove_unused_scope_block_p requires information about labels
390 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
391 else if (TREE_CODE (t) == LABEL_DECL)
392 /* Although the TREE_USED values that the frontend uses would be
393 acceptable (albeit slightly over-conservative) for our purposes,
394 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
395 must re-compute it here. */
396 TREE_USED (t) = 1;
397
398 if (IS_TYPE_OR_DECL_P (t))
399 *walk_subtrees = 0;
400
401 return NULL;
402 }
403
404 /* Mark the scope block SCOPE and its subblocks unused when they can be
405 possibly eliminated if dead. */
406
407 static void
408 mark_scope_block_unused (tree scope)
409 {
410 tree t;
411 TREE_USED (scope) = false;
412 if (!(*debug_hooks->ignore_block) (scope))
413 TREE_USED (scope) = true;
414 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
415 mark_scope_block_unused (t);
416 }
417
418 /* Look if the block is dead (by possibly eliminating its dead subblocks)
419 and return true if so.
420 Block is declared dead if:
421 1) No statements are associated with it.
422 2) Declares no live variables
423 3) All subblocks are dead
424 or there is precisely one subblocks and the block
425 has same abstract origin as outer block and declares
426 no variables, so it is pure wrapper.
427 When we are not outputting full debug info, we also eliminate dead variables
428 out of scope blocks to let them to be recycled by GGC and to save copying work
429 done by the inliner. */
430
431 static bool
432 remove_unused_scope_block_p (tree scope)
433 {
434 tree *t, *next;
435 bool unused = !TREE_USED (scope);
436 int nsubblocks = 0;
437
438 for (t = &BLOCK_VARS (scope); *t; t = next)
439 {
440 next = &DECL_CHAIN (*t);
441
442 /* Debug info of nested function refers to the block of the
443 function. We might stil call it even if all statements
444 of function it was nested into was elliminated.
445
446 TODO: We can actually look into cgraph to see if function
447 will be output to file. */
448 if (TREE_CODE (*t) == FUNCTION_DECL)
449 unused = false;
450
451 /* If a decl has a value expr, we need to instantiate it
452 regardless of debug info generation, to avoid codegen
453 differences in memory overlap tests. update_equiv_regs() may
454 indirectly call validate_equiv_mem() to test whether a
455 SET_DEST overlaps with others, and if the value expr changes
456 by virtual register instantiation, we may get end up with
457 different results. */
458 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
459 unused = false;
460
461 /* Remove everything we don't generate debug info for. */
462 else if (DECL_IGNORED_P (*t))
463 {
464 *t = DECL_CHAIN (*t);
465 next = t;
466 }
467
468 /* When we are outputting debug info, we usually want to output
469 info about optimized-out variables in the scope blocks.
470 Exception are the scope blocks not containing any instructions
471 at all so user can't get into the scopes at first place. */
472 else if (is_used_p (*t))
473 unused = false;
474 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
475 /* For labels that are still used in the IL, the decision to
476 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
477 risk having different ordering in debug vs. non-debug builds
478 during inlining or versioning.
479 A label appearing here (we have already checked DECL_IGNORED_P)
480 should not be used in the IL unless it has been explicitly used
481 before, so we use TREE_USED as an approximation. */
482 /* In principle, we should do the same here as for the debug case
483 below, however, when debugging, there might be additional nested
484 levels that keep an upper level with a label live, so we have to
485 force this block to be considered used, too. */
486 unused = false;
487
488 /* When we are not doing full debug info, we however can keep around
489 only the used variables for cfgexpand's memory packing saving quite
490 a lot of memory.
491
492 For sake of -g3, we keep around those vars but we don't count this as
493 use of block, so innermost block with no used vars and no instructions
494 can be considered dead. We only want to keep around blocks user can
495 breakpoint into and ask about value of optimized out variables.
496
497 Similarly we need to keep around types at least until all
498 variables of all nested blocks are gone. We track no
499 information on whether given type is used or not, so we have
500 to keep them even when not emitting debug information,
501 otherwise we may end up remapping variables and their (local)
502 types in different orders depending on whether debug
503 information is being generated. */
504
505 else if (TREE_CODE (*t) == TYPE_DECL
506 || debug_info_level == DINFO_LEVEL_NORMAL
507 || debug_info_level == DINFO_LEVEL_VERBOSE)
508 ;
509 else
510 {
511 *t = DECL_CHAIN (*t);
512 next = t;
513 }
514 }
515
516 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
517 if (remove_unused_scope_block_p (*t))
518 {
519 if (BLOCK_SUBBLOCKS (*t))
520 {
521 tree next = BLOCK_CHAIN (*t);
522 tree supercontext = BLOCK_SUPERCONTEXT (*t);
523
524 *t = BLOCK_SUBBLOCKS (*t);
525 while (BLOCK_CHAIN (*t))
526 {
527 BLOCK_SUPERCONTEXT (*t) = supercontext;
528 t = &BLOCK_CHAIN (*t);
529 }
530 BLOCK_CHAIN (*t) = next;
531 BLOCK_SUPERCONTEXT (*t) = supercontext;
532 t = &BLOCK_CHAIN (*t);
533 nsubblocks ++;
534 }
535 else
536 *t = BLOCK_CHAIN (*t);
537 }
538 else
539 {
540 t = &BLOCK_CHAIN (*t);
541 nsubblocks ++;
542 }
543
544
545 if (!unused)
546 ;
547 /* Outer scope is always used. */
548 else if (!BLOCK_SUPERCONTEXT (scope)
549 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
550 unused = false;
551 /* Innermost blocks with no live variables nor statements can be always
552 eliminated. */
553 else if (!nsubblocks)
554 ;
555 /* For terse debug info we can eliminate info on unused variables. */
556 else if (debug_info_level == DINFO_LEVEL_NONE
557 || debug_info_level == DINFO_LEVEL_TERSE)
558 {
559 /* Even for -g0/-g1 don't prune outer scopes from artificial
560 functions, otherwise diagnostics using tree_nonartificial_location
561 will not be emitted properly. */
562 if (inlined_function_outer_scope_p (scope))
563 {
564 tree ao = scope;
565
566 while (ao
567 && TREE_CODE (ao) == BLOCK
568 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
569 ao = BLOCK_ABSTRACT_ORIGIN (ao);
570 if (ao
571 && TREE_CODE (ao) == FUNCTION_DECL
572 && DECL_DECLARED_INLINE_P (ao)
573 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
574 unused = false;
575 }
576 }
577 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
578 unused = false;
579 /* See if this block is important for representation of inlined function.
580 Inlined functions are always represented by block with
581 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
582 set... */
583 else if (inlined_function_outer_scope_p (scope))
584 unused = false;
585 else
586 /* Verfify that only blocks with source location set
587 are entry points to the inlined functions. */
588 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
589
590 TREE_USED (scope) = !unused;
591 return unused;
592 }
593
594 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
595 eliminated during the tree->rtl conversion process. */
596
597 static inline void
598 mark_all_vars_used (tree *expr_p)
599 {
600 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
601 }
602
603
604 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
605 indentation level and FLAGS is as in print_generic_expr. */
606
607 static void
608 dump_scope_block (FILE *file, int indent, tree scope, int flags)
609 {
610 tree var, t;
611 unsigned int i;
612
613 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
614 TREE_USED (scope) ? "" : " (unused)",
615 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
616 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
617 {
618 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
619 fprintf (file, " %s:%i", s.file, s.line);
620 }
621 if (BLOCK_ABSTRACT_ORIGIN (scope))
622 {
623 tree origin = block_ultimate_origin (scope);
624 if (origin)
625 {
626 fprintf (file, " Originating from :");
627 if (DECL_P (origin))
628 print_generic_decl (file, origin, flags);
629 else
630 fprintf (file, "#%i", BLOCK_NUMBER (origin));
631 }
632 }
633 fprintf (file, " \n");
634 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
635 {
636 fprintf (file, "%*s", indent, "");
637 print_generic_decl (file, var, flags);
638 fprintf (file, "\n");
639 }
640 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
641 {
642 fprintf (file, "%*s",indent, "");
643 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
644 flags);
645 fprintf (file, " (nonlocalized)\n");
646 }
647 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
648 dump_scope_block (file, indent + 2, t, flags);
649 fprintf (file, "\n%*s}\n",indent, "");
650 }
651
652 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
653 is as in print_generic_expr. */
654
655 DEBUG_FUNCTION void
656 debug_scope_block (tree scope, int flags)
657 {
658 dump_scope_block (stderr, 0, scope, flags);
659 }
660
661
662 /* Dump the tree of lexical scopes of current_function_decl to FILE.
663 FLAGS is as in print_generic_expr. */
664
665 void
666 dump_scope_blocks (FILE *file, int flags)
667 {
668 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
669 }
670
671
672 /* Dump the tree of lexical scopes of current_function_decl to stderr.
673 FLAGS is as in print_generic_expr. */
674
675 DEBUG_FUNCTION void
676 debug_scope_blocks (int flags)
677 {
678 dump_scope_blocks (stderr, flags);
679 }
680
681 /* Remove local variables that are not referenced in the IL. */
682
683 void
684 remove_unused_locals (void)
685 {
686 basic_block bb;
687 tree var;
688 unsigned srcidx, dstidx, num;
689 bool have_local_clobbers = false;
690
691 /* Removing declarations from lexical blocks when not optimizing is
692 not only a waste of time, it actually causes differences in stack
693 layout. */
694 if (!optimize)
695 return;
696
697 timevar_push (TV_REMOVE_UNUSED);
698
699 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
700
701 usedvars = BITMAP_ALLOC (NULL);
702
703 /* Walk the CFG marking all referenced symbols. */
704 FOR_EACH_BB (bb)
705 {
706 gimple_stmt_iterator gsi;
707 size_t i;
708 edge_iterator ei;
709 edge e;
710
711 /* Walk the statements. */
712 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
713 {
714 gimple stmt = gsi_stmt (gsi);
715 tree b = gimple_block (stmt);
716
717 if (is_gimple_debug (stmt))
718 continue;
719
720 if (gimple_clobber_p (stmt))
721 {
722 have_local_clobbers = true;
723 continue;
724 }
725
726 if (b)
727 TREE_USED (b) = true;
728
729 for (i = 0; i < gimple_num_ops (stmt); i++)
730 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
731 }
732
733 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
734 {
735 use_operand_p arg_p;
736 ssa_op_iter i;
737 tree def;
738 gimple phi = gsi_stmt (gsi);
739
740 if (!is_gimple_reg (gimple_phi_result (phi)))
741 continue;
742
743 def = gimple_phi_result (phi);
744 mark_all_vars_used (&def);
745
746 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
747 {
748 tree arg = USE_FROM_PTR (arg_p);
749 mark_all_vars_used (&arg);
750 }
751 }
752
753 FOR_EACH_EDGE (e, ei, bb->succs)
754 if (e->goto_locus)
755 TREE_USED (e->goto_block) = true;
756 }
757
758 /* We do a two-pass approach about the out-of-scope clobbers. We want
759 to remove them if they are the only references to a local variable,
760 but we want to retain them when there's any other. So the first pass
761 ignores them, and the second pass (if there were any) tries to remove
762 them. */
763 if (have_local_clobbers)
764 FOR_EACH_BB (bb)
765 {
766 gimple_stmt_iterator gsi;
767
768 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
769 {
770 gimple stmt = gsi_stmt (gsi);
771 tree b = gimple_block (stmt);
772
773 if (gimple_clobber_p (stmt))
774 {
775 tree lhs = gimple_assign_lhs (stmt);
776 if (TREE_CODE (lhs) == VAR_DECL && !is_used_p (lhs))
777 {
778 unlink_stmt_vdef (stmt);
779 gsi_remove (&gsi, true);
780 release_defs (stmt);
781 continue;
782 }
783 if (b)
784 TREE_USED (b) = true;
785 }
786 gsi_next (&gsi);
787 }
788 }
789
790 cfun->has_local_explicit_reg_vars = false;
791
792 /* Remove unmarked local and global vars from local_decls. */
793 num = VEC_length (tree, cfun->local_decls);
794 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
795 {
796 var = VEC_index (tree, cfun->local_decls, srcidx);
797 if (TREE_CODE (var) == VAR_DECL)
798 {
799 if (!is_used_p (var))
800 {
801 if (cfun->nonlocal_goto_save_area
802 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
803 cfun->nonlocal_goto_save_area = NULL;
804 continue;
805 }
806 }
807 if (TREE_CODE (var) == VAR_DECL
808 && DECL_HARD_REGISTER (var)
809 && !is_global_var (var))
810 cfun->has_local_explicit_reg_vars = true;
811
812 if (srcidx != dstidx)
813 VEC_replace (tree, cfun->local_decls, dstidx, var);
814 dstidx++;
815 }
816 if (dstidx != num)
817 VEC_truncate (tree, cfun->local_decls, dstidx);
818
819 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
820
821 BITMAP_FREE (usedvars);
822
823 if (dump_file && (dump_flags & TDF_DETAILS))
824 {
825 fprintf (dump_file, "Scope blocks after cleanups:\n");
826 dump_scope_blocks (dump_file, dump_flags);
827 }
828
829 timevar_pop (TV_REMOVE_UNUSED);
830 }
831
832
833 /* Allocate and return a new live range information object base on MAP. */
834
835 static tree_live_info_p
836 new_tree_live_info (var_map map)
837 {
838 tree_live_info_p live;
839 unsigned x;
840
841 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
842 live->map = map;
843 live->num_blocks = last_basic_block;
844
845 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
846 for (x = 0; x < (unsigned)last_basic_block; x++)
847 live->livein[x] = BITMAP_ALLOC (NULL);
848
849 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
850 for (x = 0; x < (unsigned)last_basic_block; x++)
851 live->liveout[x] = BITMAP_ALLOC (NULL);
852
853 live->work_stack = XNEWVEC (int, last_basic_block);
854 live->stack_top = live->work_stack;
855
856 live->global = BITMAP_ALLOC (NULL);
857 return live;
858 }
859
860
861 /* Free storage for live range info object LIVE. */
862
863 void
864 delete_tree_live_info (tree_live_info_p live)
865 {
866 int x;
867
868 BITMAP_FREE (live->global);
869 free (live->work_stack);
870
871 for (x = live->num_blocks - 1; x >= 0; x--)
872 BITMAP_FREE (live->liveout[x]);
873 free (live->liveout);
874
875 for (x = live->num_blocks - 1; x >= 0; x--)
876 BITMAP_FREE (live->livein[x]);
877 free (live->livein);
878
879 free (live);
880 }
881
882
883 /* Visit basic block BB and propagate any required live on entry bits from
884 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
885 TMP is a temporary work bitmap which is passed in to avoid reallocating
886 it each time. */
887
888 static void
889 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
890 bitmap tmp)
891 {
892 edge e;
893 bool change;
894 edge_iterator ei;
895 basic_block pred_bb;
896 bitmap loe;
897 gcc_assert (!TEST_BIT (visited, bb->index));
898
899 SET_BIT (visited, bb->index);
900 loe = live_on_entry (live, bb);
901
902 FOR_EACH_EDGE (e, ei, bb->preds)
903 {
904 pred_bb = e->src;
905 if (pred_bb == ENTRY_BLOCK_PTR)
906 continue;
907 /* TMP is variables live-on-entry from BB that aren't defined in the
908 predecessor block. This should be the live on entry vars to pred.
909 Note that liveout is the DEFs in a block while live on entry is
910 being calculated. */
911 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
912
913 /* Add these bits to live-on-entry for the pred. if there are any
914 changes, and pred_bb has been visited already, add it to the
915 revisit stack. */
916 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
917 if (TEST_BIT (visited, pred_bb->index) && change)
918 {
919 RESET_BIT (visited, pred_bb->index);
920 *(live->stack_top)++ = pred_bb->index;
921 }
922 }
923 }
924
925
926 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
927 of all the variables. */
928
929 static void
930 live_worklist (tree_live_info_p live)
931 {
932 unsigned b;
933 basic_block bb;
934 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
935 bitmap tmp = BITMAP_ALLOC (NULL);
936
937 sbitmap_zero (visited);
938
939 /* Visit all the blocks in reverse order and propagate live on entry values
940 into the predecessors blocks. */
941 FOR_EACH_BB_REVERSE (bb)
942 loe_visit_block (live, bb, visited, tmp);
943
944 /* Process any blocks which require further iteration. */
945 while (live->stack_top != live->work_stack)
946 {
947 b = *--(live->stack_top);
948 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
949 }
950
951 BITMAP_FREE (tmp);
952 sbitmap_free (visited);
953 }
954
955
956 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
957 links. Set the live on entry fields in LIVE. Def's are marked temporarily
958 in the liveout vector. */
959
960 static void
961 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
962 {
963 int p;
964 gimple stmt;
965 use_operand_p use;
966 basic_block def_bb = NULL;
967 imm_use_iterator imm_iter;
968 bool global = false;
969
970 p = var_to_partition (live->map, ssa_name);
971 if (p == NO_PARTITION)
972 return;
973
974 stmt = SSA_NAME_DEF_STMT (ssa_name);
975 if (stmt)
976 {
977 def_bb = gimple_bb (stmt);
978 /* Mark defs in liveout bitmap temporarily. */
979 if (def_bb)
980 bitmap_set_bit (live->liveout[def_bb->index], p);
981 }
982 else
983 def_bb = ENTRY_BLOCK_PTR;
984
985 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
986 add it to the list of live on entry blocks. */
987 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
988 {
989 gimple use_stmt = USE_STMT (use);
990 basic_block add_block = NULL;
991
992 if (gimple_code (use_stmt) == GIMPLE_PHI)
993 {
994 /* Uses in PHI's are considered to be live at exit of the SRC block
995 as this is where a copy would be inserted. Check to see if it is
996 defined in that block, or whether its live on entry. */
997 int index = PHI_ARG_INDEX_FROM_USE (use);
998 edge e = gimple_phi_arg_edge (use_stmt, index);
999 if (e->src != ENTRY_BLOCK_PTR)
1000 {
1001 if (e->src != def_bb)
1002 add_block = e->src;
1003 }
1004 }
1005 else if (is_gimple_debug (use_stmt))
1006 continue;
1007 else
1008 {
1009 /* If its not defined in this block, its live on entry. */
1010 basic_block use_bb = gimple_bb (use_stmt);
1011 if (use_bb != def_bb)
1012 add_block = use_bb;
1013 }
1014
1015 /* If there was a live on entry use, set the bit. */
1016 if (add_block)
1017 {
1018 global = true;
1019 bitmap_set_bit (live->livein[add_block->index], p);
1020 }
1021 }
1022
1023 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1024 on entry blocks between the def and all the uses. */
1025 if (global)
1026 bitmap_set_bit (live->global, p);
1027 }
1028
1029
1030 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1031
1032 void
1033 calculate_live_on_exit (tree_live_info_p liveinfo)
1034 {
1035 basic_block bb;
1036 edge e;
1037 edge_iterator ei;
1038
1039 /* live on entry calculations used liveout vectors for defs, clear them. */
1040 FOR_EACH_BB (bb)
1041 bitmap_clear (liveinfo->liveout[bb->index]);
1042
1043 /* Set all the live-on-exit bits for uses in PHIs. */
1044 FOR_EACH_BB (bb)
1045 {
1046 gimple_stmt_iterator gsi;
1047 size_t i;
1048
1049 /* Mark the PHI arguments which are live on exit to the pred block. */
1050 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1051 {
1052 gimple phi = gsi_stmt (gsi);
1053 for (i = 0; i < gimple_phi_num_args (phi); i++)
1054 {
1055 tree t = PHI_ARG_DEF (phi, i);
1056 int p;
1057
1058 if (TREE_CODE (t) != SSA_NAME)
1059 continue;
1060
1061 p = var_to_partition (liveinfo->map, t);
1062 if (p == NO_PARTITION)
1063 continue;
1064 e = gimple_phi_arg_edge (phi, i);
1065 if (e->src != ENTRY_BLOCK_PTR)
1066 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1067 }
1068 }
1069
1070 /* Add each successors live on entry to this bock live on exit. */
1071 FOR_EACH_EDGE (e, ei, bb->succs)
1072 if (e->dest != EXIT_BLOCK_PTR)
1073 bitmap_ior_into (liveinfo->liveout[bb->index],
1074 live_on_entry (liveinfo, e->dest));
1075 }
1076 }
1077
1078
1079 /* Given partition map MAP, calculate all the live on entry bitmaps for
1080 each partition. Return a new live info object. */
1081
1082 tree_live_info_p
1083 calculate_live_ranges (var_map map)
1084 {
1085 tree var;
1086 unsigned i;
1087 tree_live_info_p live;
1088
1089 live = new_tree_live_info (map);
1090 for (i = 0; i < num_var_partitions (map); i++)
1091 {
1092 var = partition_to_var (map, i);
1093 if (var != NULL_TREE)
1094 set_var_live_on_entry (var, live);
1095 }
1096
1097 live_worklist (live);
1098
1099 #ifdef ENABLE_CHECKING
1100 verify_live_on_entry (live);
1101 #endif
1102
1103 calculate_live_on_exit (live);
1104 return live;
1105 }
1106
1107
1108 /* Output partition map MAP to file F. */
1109
1110 void
1111 dump_var_map (FILE *f, var_map map)
1112 {
1113 int t;
1114 unsigned x, y;
1115 int p;
1116
1117 fprintf (f, "\nPartition map \n\n");
1118
1119 for (x = 0; x < map->num_partitions; x++)
1120 {
1121 if (map->view_to_partition != NULL)
1122 p = map->view_to_partition[x];
1123 else
1124 p = x;
1125
1126 if (ssa_name (p) == NULL_TREE)
1127 continue;
1128
1129 t = 0;
1130 for (y = 1; y < num_ssa_names; y++)
1131 {
1132 p = partition_find (map->var_partition, y);
1133 if (map->partition_to_view)
1134 p = map->partition_to_view[p];
1135 if (p == (int)x)
1136 {
1137 if (t++ == 0)
1138 {
1139 fprintf(f, "Partition %d (", x);
1140 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1141 fprintf (f, " - ");
1142 }
1143 fprintf (f, "%d ", y);
1144 }
1145 }
1146 if (t != 0)
1147 fprintf (f, ")\n");
1148 }
1149 fprintf (f, "\n");
1150 }
1151
1152
1153 /* Output live range info LIVE to file F, controlled by FLAG. */
1154
1155 void
1156 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1157 {
1158 basic_block bb;
1159 unsigned i;
1160 var_map map = live->map;
1161 bitmap_iterator bi;
1162
1163 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1164 {
1165 FOR_EACH_BB (bb)
1166 {
1167 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1168 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1169 {
1170 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1171 fprintf (f, " ");
1172 }
1173 fprintf (f, "\n");
1174 }
1175 }
1176
1177 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1178 {
1179 FOR_EACH_BB (bb)
1180 {
1181 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1182 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1183 {
1184 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1185 fprintf (f, " ");
1186 }
1187 fprintf (f, "\n");
1188 }
1189 }
1190 }
1191
1192 #ifdef ENABLE_CHECKING
1193 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1194
1195 void
1196 register_ssa_partition_check (tree ssa_var)
1197 {
1198 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1199 if (!is_gimple_reg (ssa_var))
1200 {
1201 fprintf (stderr, "Illegally registering a virtual SSA name :");
1202 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1203 fprintf (stderr, " in the SSA->Normal phase.\n");
1204 internal_error ("SSA corruption");
1205 }
1206 }
1207
1208
1209 /* Verify that the info in LIVE matches the current cfg. */
1210
1211 static void
1212 verify_live_on_entry (tree_live_info_p live)
1213 {
1214 unsigned i;
1215 tree var;
1216 gimple stmt;
1217 basic_block bb;
1218 edge e;
1219 int num;
1220 edge_iterator ei;
1221 var_map map = live->map;
1222
1223 /* Check for live on entry partitions and report those with a DEF in
1224 the program. This will typically mean an optimization has done
1225 something wrong. */
1226 bb = ENTRY_BLOCK_PTR;
1227 num = 0;
1228 FOR_EACH_EDGE (e, ei, bb->succs)
1229 {
1230 int entry_block = e->dest->index;
1231 if (e->dest == EXIT_BLOCK_PTR)
1232 continue;
1233 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1234 {
1235 basic_block tmp;
1236 tree d;
1237 bitmap loe;
1238 var = partition_to_var (map, i);
1239 stmt = SSA_NAME_DEF_STMT (var);
1240 tmp = gimple_bb (stmt);
1241 d = ssa_default_def (cfun, SSA_NAME_VAR (var));
1242
1243 loe = live_on_entry (live, e->dest);
1244 if (loe && bitmap_bit_p (loe, i))
1245 {
1246 if (!gimple_nop_p (stmt))
1247 {
1248 num++;
1249 print_generic_expr (stderr, var, TDF_SLIM);
1250 fprintf (stderr, " is defined ");
1251 if (tmp)
1252 fprintf (stderr, " in BB%d, ", tmp->index);
1253 fprintf (stderr, "by:\n");
1254 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1255 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1256 entry_block);
1257 fprintf (stderr, " So it appears to have multiple defs.\n");
1258 }
1259 else
1260 {
1261 if (d != var)
1262 {
1263 num++;
1264 print_generic_expr (stderr, var, TDF_SLIM);
1265 fprintf (stderr, " is live-on-entry to BB%d ",
1266 entry_block);
1267 if (d)
1268 {
1269 fprintf (stderr, " but is not the default def of ");
1270 print_generic_expr (stderr, d, TDF_SLIM);
1271 fprintf (stderr, "\n");
1272 }
1273 else
1274 fprintf (stderr, " and there is no default def.\n");
1275 }
1276 }
1277 }
1278 else
1279 if (d == var)
1280 {
1281 /* The only way this var shouldn't be marked live on entry is
1282 if it occurs in a PHI argument of the block. */
1283 size_t z;
1284 bool ok = false;
1285 gimple_stmt_iterator gsi;
1286 for (gsi = gsi_start_phis (e->dest);
1287 !gsi_end_p (gsi) && !ok;
1288 gsi_next (&gsi))
1289 {
1290 gimple phi = gsi_stmt (gsi);
1291 for (z = 0; z < gimple_phi_num_args (phi); z++)
1292 if (var == gimple_phi_arg_def (phi, z))
1293 {
1294 ok = true;
1295 break;
1296 }
1297 }
1298 if (ok)
1299 continue;
1300 num++;
1301 print_generic_expr (stderr, var, TDF_SLIM);
1302 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1303 entry_block);
1304 fprintf (stderr, "but it is a default def so it should be.\n");
1305 }
1306 }
1307 }
1308 gcc_assert (num <= 0);
1309 }
1310 #endif