tree-complex.c (init_parameter_lattice_values): Don't call var_ann.
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "gimple-pretty-print.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "timevar.h"
31 #include "dumpfile.h"
32 #include "tree-ssa-live.h"
33 #include "diagnostic-core.h"
34 #include "debug.h"
35 #include "flags.h"
36 #include "gimple.h"
37
38 #ifdef ENABLE_CHECKING
39 static void verify_live_on_entry (tree_live_info_p);
40 #endif
41
42
43 /* VARMAP maintains a mapping from SSA version number to real variables.
44
45 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
46 only member of it's own partition. Coalescing will attempt to group any
47 ssa_names which occur in a copy or in a PHI node into the same partition.
48
49 At the end of out-of-ssa, each partition becomes a "real" variable and is
50 rewritten as a compiler variable.
51
52 The var_map data structure is used to manage these partitions. It allows
53 partitions to be combined, and determines which partition belongs to what
54 ssa_name or variable, and vice versa. */
55
56
57 /* This routine will initialize the basevar fields of MAP. */
58
59 static void
60 var_map_base_init (var_map map)
61 {
62 int x, num_part;
63 tree var;
64 htab_t decl_to_index;
65 struct tree_int_map *m, *mapstorage;
66
67 num_part = num_var_partitions (map);
68 decl_to_index = htab_create (num_part, tree_decl_map_hash,
69 tree_int_map_eq, NULL);
70 /* We can have at most num_part entries in the hash tables, so it's
71 enough to allocate so many map elements once, saving some malloc
72 calls. */
73 mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
74
75 /* If a base table already exists, clear it, otherwise create it. */
76 free (map->partition_to_base_index);
77 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
78
79 /* Build the base variable list, and point partitions at their bases. */
80 for (x = 0; x < num_part; x++)
81 {
82 struct tree_int_map **slot;
83 unsigned baseindex;
84 var = partition_to_var (map, x);
85 var = SSA_NAME_VAR (var);
86 /* If base variable hasn't been seen, set it up. */
87 m->base.from = var;
88 slot = (struct tree_int_map **) htab_find_slot (decl_to_index, m, INSERT);
89 if (!*slot)
90 {
91 baseindex = m - mapstorage;
92 m->to = baseindex;
93 *slot = m;
94 m++;
95 }
96 else
97 baseindex = (*slot)->to;
98 map->partition_to_base_index[x] = baseindex;
99 }
100
101 map->num_basevars = m - mapstorage;
102
103 free (mapstorage);
104 htab_delete (decl_to_index);
105 }
106
107
108 /* Remove the base table in MAP. */
109
110 static void
111 var_map_base_fini (var_map map)
112 {
113 /* Free the basevar info if it is present. */
114 if (map->partition_to_base_index != NULL)
115 {
116 free (map->partition_to_base_index);
117 map->partition_to_base_index = NULL;
118 map->num_basevars = 0;
119 }
120 }
121 /* Create a variable partition map of SIZE, initialize and return it. */
122
123 var_map
124 init_var_map (int size)
125 {
126 var_map map;
127
128 map = (var_map) xmalloc (sizeof (struct _var_map));
129 map->var_partition = partition_new (size);
130
131 map->partition_to_view = NULL;
132 map->view_to_partition = NULL;
133 map->num_partitions = size;
134 map->partition_size = size;
135 map->num_basevars = 0;
136 map->partition_to_base_index = NULL;
137 return map;
138 }
139
140
141 /* Free memory associated with MAP. */
142
143 void
144 delete_var_map (var_map map)
145 {
146 var_map_base_fini (map);
147 partition_delete (map->var_partition);
148 free (map->partition_to_view);
149 free (map->view_to_partition);
150 free (map);
151 }
152
153
154 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
155 Returns the partition which represents the new partition. If the two
156 partitions cannot be combined, NO_PARTITION is returned. */
157
158 int
159 var_union (var_map map, tree var1, tree var2)
160 {
161 int p1, p2, p3;
162
163 gcc_assert (TREE_CODE (var1) == SSA_NAME);
164 gcc_assert (TREE_CODE (var2) == SSA_NAME);
165
166 /* This is independent of partition_to_view. If partition_to_view is
167 on, then whichever one of these partitions is absorbed will never have a
168 dereference into the partition_to_view array any more. */
169
170 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
171 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
172
173 gcc_assert (p1 != NO_PARTITION);
174 gcc_assert (p2 != NO_PARTITION);
175
176 if (p1 == p2)
177 p3 = p1;
178 else
179 p3 = partition_union (map->var_partition, p1, p2);
180
181 if (map->partition_to_view)
182 p3 = map->partition_to_view[p3];
183
184 return p3;
185 }
186
187
188 /* Compress the partition numbers in MAP such that they fall in the range
189 0..(num_partitions-1) instead of wherever they turned out during
190 the partitioning exercise. This removes any references to unused
191 partitions, thereby allowing bitmaps and other vectors to be much
192 denser.
193
194 This is implemented such that compaction doesn't affect partitioning.
195 Ie., once partitions are created and possibly merged, running one
196 or more different kind of compaction will not affect the partitions
197 themselves. Their index might change, but all the same variables will
198 still be members of the same partition group. This allows work on reduced
199 sets, and no loss of information when a larger set is later desired.
200
201 In particular, coalescing can work on partitions which have 2 or more
202 definitions, and then 'recompact' later to include all the single
203 definitions for assignment to program variables. */
204
205
206 /* Set MAP back to the initial state of having no partition view. Return a
207 bitmap which has a bit set for each partition number which is in use in the
208 varmap. */
209
210 static bitmap
211 partition_view_init (var_map map)
212 {
213 bitmap used;
214 int tmp;
215 unsigned int x;
216
217 used = BITMAP_ALLOC (NULL);
218
219 /* Already in a view? Abandon the old one. */
220 if (map->partition_to_view)
221 {
222 free (map->partition_to_view);
223 map->partition_to_view = NULL;
224 }
225 if (map->view_to_partition)
226 {
227 free (map->view_to_partition);
228 map->view_to_partition = NULL;
229 }
230
231 /* Find out which partitions are actually referenced. */
232 for (x = 0; x < map->partition_size; x++)
233 {
234 tmp = partition_find (map->var_partition, x);
235 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
236 && (!has_zero_uses (ssa_name (tmp))
237 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
238 bitmap_set_bit (used, tmp);
239 }
240
241 map->num_partitions = map->partition_size;
242 return used;
243 }
244
245
246 /* This routine will finalize the view data for MAP based on the partitions
247 set in SELECTED. This is either the same bitmap returned from
248 partition_view_init, or a trimmed down version if some of those partitions
249 were not desired in this view. SELECTED is freed before returning. */
250
251 static void
252 partition_view_fini (var_map map, bitmap selected)
253 {
254 bitmap_iterator bi;
255 unsigned count, i, x, limit;
256
257 gcc_assert (selected);
258
259 count = bitmap_count_bits (selected);
260 limit = map->partition_size;
261
262 /* If its a one-to-one ratio, we don't need any view compaction. */
263 if (count < limit)
264 {
265 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
266 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
267 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
268
269 i = 0;
270 /* Give each selected partition an index. */
271 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
272 {
273 map->partition_to_view[x] = i;
274 map->view_to_partition[i] = x;
275 i++;
276 }
277 gcc_assert (i == count);
278 map->num_partitions = i;
279 }
280
281 BITMAP_FREE (selected);
282 }
283
284
285 /* Create a partition view which includes all the used partitions in MAP. If
286 WANT_BASES is true, create the base variable map as well. */
287
288 extern void
289 partition_view_normal (var_map map, bool want_bases)
290 {
291 bitmap used;
292
293 used = partition_view_init (map);
294 partition_view_fini (map, used);
295
296 if (want_bases)
297 var_map_base_init (map);
298 else
299 var_map_base_fini (map);
300 }
301
302
303 /* Create a partition view in MAP which includes just partitions which occur in
304 the bitmap ONLY. If WANT_BASES is true, create the base variable map
305 as well. */
306
307 extern void
308 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
309 {
310 bitmap used;
311 bitmap new_partitions = BITMAP_ALLOC (NULL);
312 unsigned x, p;
313 bitmap_iterator bi;
314
315 used = partition_view_init (map);
316 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
317 {
318 p = partition_find (map->var_partition, x);
319 gcc_assert (bitmap_bit_p (used, p));
320 bitmap_set_bit (new_partitions, p);
321 }
322 partition_view_fini (map, new_partitions);
323
324 BITMAP_FREE (used);
325 if (want_bases)
326 var_map_base_init (map);
327 else
328 var_map_base_fini (map);
329 }
330
331
332 static bitmap usedvars;
333
334 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
335
336 static inline void
337 set_is_used (tree var)
338 {
339 bitmap_set_bit (usedvars, DECL_UID (var));
340 }
341
342 /* Return true if VAR is marked as used. */
343
344 static inline bool
345 is_used_p (tree var)
346 {
347 return bitmap_bit_p (usedvars, DECL_UID (var));
348 }
349
350 static inline void mark_all_vars_used (tree *, void *data);
351
352 /* Helper function for mark_all_vars_used, called via walk_tree. */
353
354 static tree
355 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
356 {
357 bitmap global_unused_vars = (bitmap)data;
358 tree t = *tp;
359 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
360 tree b;
361
362 if (TREE_CODE (t) == SSA_NAME)
363 t = SSA_NAME_VAR (t);
364
365 if (IS_EXPR_CODE_CLASS (c)
366 && (b = TREE_BLOCK (t)) != NULL)
367 TREE_USED (b) = true;
368
369 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
370 fields do not contain vars. */
371 if (TREE_CODE (t) == TARGET_MEM_REF)
372 {
373 mark_all_vars_used (&TMR_BASE (t), data);
374 mark_all_vars_used (&TMR_INDEX (t), data);
375 mark_all_vars_used (&TMR_INDEX2 (t), data);
376 *walk_subtrees = 0;
377 return NULL;
378 }
379
380 /* Only need to mark VAR_DECLS; parameters and return results are not
381 eliminated as unused. */
382 if (TREE_CODE (t) == VAR_DECL)
383 {
384 /* Global vars do not have a var-annotation so their use is tracked
385 with the global_unused_vars bitmap. Also walk their initializer
386 when they are first recognized as used. */
387 if (is_global_var (t))
388 {
389 if (bitmap_clear_bit (global_unused_vars, DECL_UID (t)))
390 mark_all_vars_used (&DECL_INITIAL (t), data);
391 }
392 else
393 set_is_used (t);
394 }
395 /* remove_unused_scope_block_p requires information about labels
396 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
397 else if (TREE_CODE (t) == LABEL_DECL)
398 /* Although the TREE_USED values that the frontend uses would be
399 acceptable (albeit slightly over-conservative) for our purposes,
400 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
401 must re-compute it here. */
402 TREE_USED (t) = 1;
403
404 if (IS_TYPE_OR_DECL_P (t))
405 *walk_subtrees = 0;
406
407 return NULL;
408 }
409
410 /* Mark the scope block SCOPE and its subblocks unused when they can be
411 possibly eliminated if dead. */
412
413 static void
414 mark_scope_block_unused (tree scope)
415 {
416 tree t;
417 TREE_USED (scope) = false;
418 if (!(*debug_hooks->ignore_block) (scope))
419 TREE_USED (scope) = true;
420 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
421 mark_scope_block_unused (t);
422 }
423
424 /* Look if the block is dead (by possibly eliminating its dead subblocks)
425 and return true if so.
426 Block is declared dead if:
427 1) No statements are associated with it.
428 2) Declares no live variables
429 3) All subblocks are dead
430 or there is precisely one subblocks and the block
431 has same abstract origin as outer block and declares
432 no variables, so it is pure wrapper.
433 When we are not outputting full debug info, we also eliminate dead variables
434 out of scope blocks to let them to be recycled by GGC and to save copying work
435 done by the inliner. */
436
437 static bool
438 remove_unused_scope_block_p (tree scope, bitmap global_unused_vars)
439 {
440 tree *t, *next;
441 bool unused = !TREE_USED (scope);
442 int nsubblocks = 0;
443
444 for (t = &BLOCK_VARS (scope); *t; t = next)
445 {
446 next = &DECL_CHAIN (*t);
447
448 /* Debug info of nested function refers to the block of the
449 function. We might stil call it even if all statements
450 of function it was nested into was elliminated.
451
452 TODO: We can actually look into cgraph to see if function
453 will be output to file. */
454 if (TREE_CODE (*t) == FUNCTION_DECL)
455 unused = false;
456
457 /* If a decl has a value expr, we need to instantiate it
458 regardless of debug info generation, to avoid codegen
459 differences in memory overlap tests. update_equiv_regs() may
460 indirectly call validate_equiv_mem() to test whether a
461 SET_DEST overlaps with others, and if the value expr changes
462 by virtual register instantiation, we may get end up with
463 different results. */
464 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
465 unused = false;
466
467 /* Remove everything we don't generate debug info for. */
468 else if (DECL_IGNORED_P (*t))
469 {
470 *t = DECL_CHAIN (*t);
471 next = t;
472 }
473
474 /* When we are outputting debug info, we usually want to output
475 info about optimized-out variables in the scope blocks.
476 Exception are the scope blocks not containing any instructions
477 at all so user can't get into the scopes at first place. */
478 else if ((is_global_var (*t)
479 && !bitmap_bit_p (global_unused_vars, DECL_UID (*t)))
480 || is_used_p (*t))
481 unused = false;
482 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
483 /* For labels that are still used in the IL, the decision to
484 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
485 risk having different ordering in debug vs. non-debug builds
486 during inlining or versioning.
487 A label appearing here (we have already checked DECL_IGNORED_P)
488 should not be used in the IL unless it has been explicitly used
489 before, so we use TREE_USED as an approximation. */
490 /* In principle, we should do the same here as for the debug case
491 below, however, when debugging, there might be additional nested
492 levels that keep an upper level with a label live, so we have to
493 force this block to be considered used, too. */
494 unused = false;
495
496 /* When we are not doing full debug info, we however can keep around
497 only the used variables for cfgexpand's memory packing saving quite
498 a lot of memory.
499
500 For sake of -g3, we keep around those vars but we don't count this as
501 use of block, so innermost block with no used vars and no instructions
502 can be considered dead. We only want to keep around blocks user can
503 breakpoint into and ask about value of optimized out variables.
504
505 Similarly we need to keep around types at least until all
506 variables of all nested blocks are gone. We track no
507 information on whether given type is used or not, so we have
508 to keep them even when not emitting debug information,
509 otherwise we may end up remapping variables and their (local)
510 types in different orders depending on whether debug
511 information is being generated. */
512
513 else if (TREE_CODE (*t) == TYPE_DECL
514 || debug_info_level == DINFO_LEVEL_NORMAL
515 || debug_info_level == DINFO_LEVEL_VERBOSE)
516 ;
517 else
518 {
519 *t = DECL_CHAIN (*t);
520 next = t;
521 }
522 }
523
524 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
525 if (remove_unused_scope_block_p (*t, global_unused_vars))
526 {
527 if (BLOCK_SUBBLOCKS (*t))
528 {
529 tree next = BLOCK_CHAIN (*t);
530 tree supercontext = BLOCK_SUPERCONTEXT (*t);
531
532 *t = BLOCK_SUBBLOCKS (*t);
533 while (BLOCK_CHAIN (*t))
534 {
535 BLOCK_SUPERCONTEXT (*t) = supercontext;
536 t = &BLOCK_CHAIN (*t);
537 }
538 BLOCK_CHAIN (*t) = next;
539 BLOCK_SUPERCONTEXT (*t) = supercontext;
540 t = &BLOCK_CHAIN (*t);
541 nsubblocks ++;
542 }
543 else
544 *t = BLOCK_CHAIN (*t);
545 }
546 else
547 {
548 t = &BLOCK_CHAIN (*t);
549 nsubblocks ++;
550 }
551
552
553 if (!unused)
554 ;
555 /* Outer scope is always used. */
556 else if (!BLOCK_SUPERCONTEXT (scope)
557 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
558 unused = false;
559 /* Innermost blocks with no live variables nor statements can be always
560 eliminated. */
561 else if (!nsubblocks)
562 ;
563 /* For terse debug info we can eliminate info on unused variables. */
564 else if (debug_info_level == DINFO_LEVEL_NONE
565 || debug_info_level == DINFO_LEVEL_TERSE)
566 {
567 /* Even for -g0/-g1 don't prune outer scopes from artificial
568 functions, otherwise diagnostics using tree_nonartificial_location
569 will not be emitted properly. */
570 if (inlined_function_outer_scope_p (scope))
571 {
572 tree ao = scope;
573
574 while (ao
575 && TREE_CODE (ao) == BLOCK
576 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
577 ao = BLOCK_ABSTRACT_ORIGIN (ao);
578 if (ao
579 && TREE_CODE (ao) == FUNCTION_DECL
580 && DECL_DECLARED_INLINE_P (ao)
581 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
582 unused = false;
583 }
584 }
585 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
586 unused = false;
587 /* See if this block is important for representation of inlined function.
588 Inlined functions are always represented by block with
589 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
590 set... */
591 else if (inlined_function_outer_scope_p (scope))
592 unused = false;
593 else
594 /* Verfify that only blocks with source location set
595 are entry points to the inlined functions. */
596 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
597
598 TREE_USED (scope) = !unused;
599 return unused;
600 }
601
602 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
603 eliminated during the tree->rtl conversion process. */
604
605 static inline void
606 mark_all_vars_used (tree *expr_p, void *data)
607 {
608 walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
609 }
610
611
612 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
613 indentation level and FLAGS is as in print_generic_expr. */
614
615 static void
616 dump_scope_block (FILE *file, int indent, tree scope, int flags)
617 {
618 tree var, t;
619 unsigned int i;
620
621 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
622 TREE_USED (scope) ? "" : " (unused)",
623 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
624 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
625 {
626 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
627 fprintf (file, " %s:%i", s.file, s.line);
628 }
629 if (BLOCK_ABSTRACT_ORIGIN (scope))
630 {
631 tree origin = block_ultimate_origin (scope);
632 if (origin)
633 {
634 fprintf (file, " Originating from :");
635 if (DECL_P (origin))
636 print_generic_decl (file, origin, flags);
637 else
638 fprintf (file, "#%i", BLOCK_NUMBER (origin));
639 }
640 }
641 fprintf (file, " \n");
642 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
643 {
644 fprintf (file, "%*s", indent, "");
645 print_generic_decl (file, var, flags);
646 fprintf (file, "\n");
647 }
648 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
649 {
650 fprintf (file, "%*s",indent, "");
651 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
652 flags);
653 fprintf (file, " (nonlocalized)\n");
654 }
655 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
656 dump_scope_block (file, indent + 2, t, flags);
657 fprintf (file, "\n%*s}\n",indent, "");
658 }
659
660 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
661 is as in print_generic_expr. */
662
663 DEBUG_FUNCTION void
664 debug_scope_block (tree scope, int flags)
665 {
666 dump_scope_block (stderr, 0, scope, flags);
667 }
668
669
670 /* Dump the tree of lexical scopes of current_function_decl to FILE.
671 FLAGS is as in print_generic_expr. */
672
673 void
674 dump_scope_blocks (FILE *file, int flags)
675 {
676 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
677 }
678
679
680 /* Dump the tree of lexical scopes of current_function_decl to stderr.
681 FLAGS is as in print_generic_expr. */
682
683 DEBUG_FUNCTION void
684 debug_scope_blocks (int flags)
685 {
686 dump_scope_blocks (stderr, flags);
687 }
688
689 /* Remove local variables that are not referenced in the IL. */
690
691 void
692 remove_unused_locals (void)
693 {
694 basic_block bb;
695 tree var, t;
696 referenced_var_iterator rvi;
697 bitmap global_unused_vars = NULL;
698 unsigned srcidx, dstidx, num, ix;
699 bool have_local_clobbers = false;
700
701 /* Removing declarations from lexical blocks when not optimizing is
702 not only a waste of time, it actually causes differences in stack
703 layout. */
704 if (!optimize)
705 return;
706
707 timevar_push (TV_REMOVE_UNUSED);
708
709 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
710
711 usedvars = BITMAP_ALLOC (NULL);
712
713 /* Assume all globals in local decls are unused. */
714 global_unused_vars = BITMAP_ALLOC (NULL);
715 FOR_EACH_LOCAL_DECL (cfun, ix, var)
716 if (TREE_CODE (var) == VAR_DECL
717 && is_global_var (var))
718 bitmap_set_bit (global_unused_vars, DECL_UID (var));
719
720 /* Walk the CFG marking all referenced symbols. */
721 FOR_EACH_BB (bb)
722 {
723 gimple_stmt_iterator gsi;
724 size_t i;
725 edge_iterator ei;
726 edge e;
727
728 /* Walk the statements. */
729 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
730 {
731 gimple stmt = gsi_stmt (gsi);
732 tree b = gimple_block (stmt);
733
734 if (is_gimple_debug (stmt))
735 continue;
736
737 if (gimple_clobber_p (stmt))
738 {
739 have_local_clobbers = true;
740 continue;
741 }
742
743 if (b)
744 TREE_USED (b) = true;
745
746 for (i = 0; i < gimple_num_ops (stmt); i++)
747 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i),
748 global_unused_vars);
749 }
750
751 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
752 {
753 use_operand_p arg_p;
754 ssa_op_iter i;
755 tree def;
756 gimple phi = gsi_stmt (gsi);
757
758 if (!is_gimple_reg (gimple_phi_result (phi)))
759 continue;
760
761 def = gimple_phi_result (phi);
762 mark_all_vars_used (&def, global_unused_vars);
763
764 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
765 {
766 tree arg = USE_FROM_PTR (arg_p);
767 mark_all_vars_used (&arg, global_unused_vars);
768 }
769 }
770
771 FOR_EACH_EDGE (e, ei, bb->succs)
772 if (e->goto_locus)
773 TREE_USED (e->goto_block) = true;
774 }
775
776 /* We do a two-pass approach about the out-of-scope clobbers. We want
777 to remove them if they are the only references to a local variable,
778 but we want to retain them when there's any other. So the first pass
779 ignores them, and the second pass (if there were any) tries to remove
780 them. */
781 if (have_local_clobbers)
782 FOR_EACH_BB (bb)
783 {
784 gimple_stmt_iterator gsi;
785
786 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
787 {
788 gimple stmt = gsi_stmt (gsi);
789 tree b = gimple_block (stmt);
790
791 if (gimple_clobber_p (stmt))
792 {
793 tree lhs = gimple_assign_lhs (stmt);
794 lhs = get_base_address (lhs);
795 if (TREE_CODE (lhs) == SSA_NAME)
796 lhs = SSA_NAME_VAR (lhs);
797 if (TREE_CODE (lhs) == VAR_DECL
798 && ((is_global_var (lhs)
799 && bitmap_bit_p (global_unused_vars, DECL_UID (lhs)))
800 || (!is_global_var (lhs) && !is_used_p (lhs))))
801 {
802 unlink_stmt_vdef (stmt);
803 gsi_remove (&gsi, true);
804 release_defs (stmt);
805 continue;
806 }
807 if (b)
808 TREE_USED (b) = true;
809 }
810 gsi_next (&gsi);
811 }
812 }
813
814 cfun->has_local_explicit_reg_vars = false;
815
816 /* Remove unmarked local and global vars from local_decls
817 and referenced vars. */
818 num = VEC_length (tree, cfun->local_decls);
819 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
820 {
821 var = VEC_index (tree, cfun->local_decls, srcidx);
822 if (TREE_CODE (var) == VAR_DECL)
823 {
824 if (is_global_var (var))
825 {
826 if (bitmap_bit_p (global_unused_vars, DECL_UID (var)))
827 continue;
828 }
829 else if (!is_used_p (var))
830 {
831 remove_referenced_var (var);
832 if (cfun->nonlocal_goto_save_area
833 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
834 cfun->nonlocal_goto_save_area = NULL;
835 continue;
836 }
837 }
838 if (TREE_CODE (var) == VAR_DECL
839 && DECL_HARD_REGISTER (var)
840 && !is_global_var (var))
841 cfun->has_local_explicit_reg_vars = true;
842
843 if (srcidx != dstidx)
844 VEC_replace (tree, cfun->local_decls, dstidx, var);
845 dstidx++;
846 }
847 if (dstidx != num)
848 VEC_truncate (tree, cfun->local_decls, dstidx);
849
850 /* ??? We end up with decls in referenced-vars that are not in
851 local-decls. */
852 FOR_EACH_REFERENCED_VAR (cfun, t, rvi)
853 if (TREE_CODE (t) == VAR_DECL
854 && !VAR_DECL_IS_VIRTUAL_OPERAND (t)
855 && !is_used_p (t))
856 remove_referenced_var (t);
857
858 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl),
859 global_unused_vars);
860
861 BITMAP_FREE (global_unused_vars);
862 BITMAP_FREE (usedvars);
863
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 {
866 fprintf (dump_file, "Scope blocks after cleanups:\n");
867 dump_scope_blocks (dump_file, dump_flags);
868 }
869
870 timevar_pop (TV_REMOVE_UNUSED);
871 }
872
873
874 /* Allocate and return a new live range information object base on MAP. */
875
876 static tree_live_info_p
877 new_tree_live_info (var_map map)
878 {
879 tree_live_info_p live;
880 unsigned x;
881
882 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
883 live->map = map;
884 live->num_blocks = last_basic_block;
885
886 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
887 for (x = 0; x < (unsigned)last_basic_block; x++)
888 live->livein[x] = BITMAP_ALLOC (NULL);
889
890 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
891 for (x = 0; x < (unsigned)last_basic_block; x++)
892 live->liveout[x] = BITMAP_ALLOC (NULL);
893
894 live->work_stack = XNEWVEC (int, last_basic_block);
895 live->stack_top = live->work_stack;
896
897 live->global = BITMAP_ALLOC (NULL);
898 return live;
899 }
900
901
902 /* Free storage for live range info object LIVE. */
903
904 void
905 delete_tree_live_info (tree_live_info_p live)
906 {
907 int x;
908
909 BITMAP_FREE (live->global);
910 free (live->work_stack);
911
912 for (x = live->num_blocks - 1; x >= 0; x--)
913 BITMAP_FREE (live->liveout[x]);
914 free (live->liveout);
915
916 for (x = live->num_blocks - 1; x >= 0; x--)
917 BITMAP_FREE (live->livein[x]);
918 free (live->livein);
919
920 free (live);
921 }
922
923
924 /* Visit basic block BB and propagate any required live on entry bits from
925 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
926 TMP is a temporary work bitmap which is passed in to avoid reallocating
927 it each time. */
928
929 static void
930 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
931 bitmap tmp)
932 {
933 edge e;
934 bool change;
935 edge_iterator ei;
936 basic_block pred_bb;
937 bitmap loe;
938 gcc_assert (!TEST_BIT (visited, bb->index));
939
940 SET_BIT (visited, bb->index);
941 loe = live_on_entry (live, bb);
942
943 FOR_EACH_EDGE (e, ei, bb->preds)
944 {
945 pred_bb = e->src;
946 if (pred_bb == ENTRY_BLOCK_PTR)
947 continue;
948 /* TMP is variables live-on-entry from BB that aren't defined in the
949 predecessor block. This should be the live on entry vars to pred.
950 Note that liveout is the DEFs in a block while live on entry is
951 being calculated. */
952 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
953
954 /* Add these bits to live-on-entry for the pred. if there are any
955 changes, and pred_bb has been visited already, add it to the
956 revisit stack. */
957 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
958 if (TEST_BIT (visited, pred_bb->index) && change)
959 {
960 RESET_BIT (visited, pred_bb->index);
961 *(live->stack_top)++ = pred_bb->index;
962 }
963 }
964 }
965
966
967 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
968 of all the variables. */
969
970 static void
971 live_worklist (tree_live_info_p live)
972 {
973 unsigned b;
974 basic_block bb;
975 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
976 bitmap tmp = BITMAP_ALLOC (NULL);
977
978 sbitmap_zero (visited);
979
980 /* Visit all the blocks in reverse order and propagate live on entry values
981 into the predecessors blocks. */
982 FOR_EACH_BB_REVERSE (bb)
983 loe_visit_block (live, bb, visited, tmp);
984
985 /* Process any blocks which require further iteration. */
986 while (live->stack_top != live->work_stack)
987 {
988 b = *--(live->stack_top);
989 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
990 }
991
992 BITMAP_FREE (tmp);
993 sbitmap_free (visited);
994 }
995
996
997 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
998 links. Set the live on entry fields in LIVE. Def's are marked temporarily
999 in the liveout vector. */
1000
1001 static void
1002 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
1003 {
1004 int p;
1005 gimple stmt;
1006 use_operand_p use;
1007 basic_block def_bb = NULL;
1008 imm_use_iterator imm_iter;
1009 bool global = false;
1010
1011 p = var_to_partition (live->map, ssa_name);
1012 if (p == NO_PARTITION)
1013 return;
1014
1015 stmt = SSA_NAME_DEF_STMT (ssa_name);
1016 if (stmt)
1017 {
1018 def_bb = gimple_bb (stmt);
1019 /* Mark defs in liveout bitmap temporarily. */
1020 if (def_bb)
1021 bitmap_set_bit (live->liveout[def_bb->index], p);
1022 }
1023 else
1024 def_bb = ENTRY_BLOCK_PTR;
1025
1026 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
1027 add it to the list of live on entry blocks. */
1028 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
1029 {
1030 gimple use_stmt = USE_STMT (use);
1031 basic_block add_block = NULL;
1032
1033 if (gimple_code (use_stmt) == GIMPLE_PHI)
1034 {
1035 /* Uses in PHI's are considered to be live at exit of the SRC block
1036 as this is where a copy would be inserted. Check to see if it is
1037 defined in that block, or whether its live on entry. */
1038 int index = PHI_ARG_INDEX_FROM_USE (use);
1039 edge e = gimple_phi_arg_edge (use_stmt, index);
1040 if (e->src != ENTRY_BLOCK_PTR)
1041 {
1042 if (e->src != def_bb)
1043 add_block = e->src;
1044 }
1045 }
1046 else if (is_gimple_debug (use_stmt))
1047 continue;
1048 else
1049 {
1050 /* If its not defined in this block, its live on entry. */
1051 basic_block use_bb = gimple_bb (use_stmt);
1052 if (use_bb != def_bb)
1053 add_block = use_bb;
1054 }
1055
1056 /* If there was a live on entry use, set the bit. */
1057 if (add_block)
1058 {
1059 global = true;
1060 bitmap_set_bit (live->livein[add_block->index], p);
1061 }
1062 }
1063
1064 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1065 on entry blocks between the def and all the uses. */
1066 if (global)
1067 bitmap_set_bit (live->global, p);
1068 }
1069
1070
1071 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1072
1073 void
1074 calculate_live_on_exit (tree_live_info_p liveinfo)
1075 {
1076 basic_block bb;
1077 edge e;
1078 edge_iterator ei;
1079
1080 /* live on entry calculations used liveout vectors for defs, clear them. */
1081 FOR_EACH_BB (bb)
1082 bitmap_clear (liveinfo->liveout[bb->index]);
1083
1084 /* Set all the live-on-exit bits for uses in PHIs. */
1085 FOR_EACH_BB (bb)
1086 {
1087 gimple_stmt_iterator gsi;
1088 size_t i;
1089
1090 /* Mark the PHI arguments which are live on exit to the pred block. */
1091 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1092 {
1093 gimple phi = gsi_stmt (gsi);
1094 for (i = 0; i < gimple_phi_num_args (phi); i++)
1095 {
1096 tree t = PHI_ARG_DEF (phi, i);
1097 int p;
1098
1099 if (TREE_CODE (t) != SSA_NAME)
1100 continue;
1101
1102 p = var_to_partition (liveinfo->map, t);
1103 if (p == NO_PARTITION)
1104 continue;
1105 e = gimple_phi_arg_edge (phi, i);
1106 if (e->src != ENTRY_BLOCK_PTR)
1107 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1108 }
1109 }
1110
1111 /* Add each successors live on entry to this bock live on exit. */
1112 FOR_EACH_EDGE (e, ei, bb->succs)
1113 if (e->dest != EXIT_BLOCK_PTR)
1114 bitmap_ior_into (liveinfo->liveout[bb->index],
1115 live_on_entry (liveinfo, e->dest));
1116 }
1117 }
1118
1119
1120 /* Given partition map MAP, calculate all the live on entry bitmaps for
1121 each partition. Return a new live info object. */
1122
1123 tree_live_info_p
1124 calculate_live_ranges (var_map map)
1125 {
1126 tree var;
1127 unsigned i;
1128 tree_live_info_p live;
1129
1130 live = new_tree_live_info (map);
1131 for (i = 0; i < num_var_partitions (map); i++)
1132 {
1133 var = partition_to_var (map, i);
1134 if (var != NULL_TREE)
1135 set_var_live_on_entry (var, live);
1136 }
1137
1138 live_worklist (live);
1139
1140 #ifdef ENABLE_CHECKING
1141 verify_live_on_entry (live);
1142 #endif
1143
1144 calculate_live_on_exit (live);
1145 return live;
1146 }
1147
1148
1149 /* Output partition map MAP to file F. */
1150
1151 void
1152 dump_var_map (FILE *f, var_map map)
1153 {
1154 int t;
1155 unsigned x, y;
1156 int p;
1157
1158 fprintf (f, "\nPartition map \n\n");
1159
1160 for (x = 0; x < map->num_partitions; x++)
1161 {
1162 if (map->view_to_partition != NULL)
1163 p = map->view_to_partition[x];
1164 else
1165 p = x;
1166
1167 if (ssa_name (p) == NULL_TREE)
1168 continue;
1169
1170 t = 0;
1171 for (y = 1; y < num_ssa_names; y++)
1172 {
1173 p = partition_find (map->var_partition, y);
1174 if (map->partition_to_view)
1175 p = map->partition_to_view[p];
1176 if (p == (int)x)
1177 {
1178 if (t++ == 0)
1179 {
1180 fprintf(f, "Partition %d (", x);
1181 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1182 fprintf (f, " - ");
1183 }
1184 fprintf (f, "%d ", y);
1185 }
1186 }
1187 if (t != 0)
1188 fprintf (f, ")\n");
1189 }
1190 fprintf (f, "\n");
1191 }
1192
1193
1194 /* Output live range info LIVE to file F, controlled by FLAG. */
1195
1196 void
1197 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1198 {
1199 basic_block bb;
1200 unsigned i;
1201 var_map map = live->map;
1202 bitmap_iterator bi;
1203
1204 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1205 {
1206 FOR_EACH_BB (bb)
1207 {
1208 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1209 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1210 {
1211 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1212 fprintf (f, " ");
1213 }
1214 fprintf (f, "\n");
1215 }
1216 }
1217
1218 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1219 {
1220 FOR_EACH_BB (bb)
1221 {
1222 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1223 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1224 {
1225 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1226 fprintf (f, " ");
1227 }
1228 fprintf (f, "\n");
1229 }
1230 }
1231 }
1232
1233 #ifdef ENABLE_CHECKING
1234 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1235
1236 void
1237 register_ssa_partition_check (tree ssa_var)
1238 {
1239 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1240 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1241 {
1242 fprintf (stderr, "Illegally registering a virtual SSA name :");
1243 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1244 fprintf (stderr, " in the SSA->Normal phase.\n");
1245 internal_error ("SSA corruption");
1246 }
1247 }
1248
1249
1250 /* Verify that the info in LIVE matches the current cfg. */
1251
1252 static void
1253 verify_live_on_entry (tree_live_info_p live)
1254 {
1255 unsigned i;
1256 tree var;
1257 gimple stmt;
1258 basic_block bb;
1259 edge e;
1260 int num;
1261 edge_iterator ei;
1262 var_map map = live->map;
1263
1264 /* Check for live on entry partitions and report those with a DEF in
1265 the program. This will typically mean an optimization has done
1266 something wrong. */
1267 bb = ENTRY_BLOCK_PTR;
1268 num = 0;
1269 FOR_EACH_EDGE (e, ei, bb->succs)
1270 {
1271 int entry_block = e->dest->index;
1272 if (e->dest == EXIT_BLOCK_PTR)
1273 continue;
1274 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1275 {
1276 basic_block tmp;
1277 tree d;
1278 bitmap loe;
1279 var = partition_to_var (map, i);
1280 stmt = SSA_NAME_DEF_STMT (var);
1281 tmp = gimple_bb (stmt);
1282 d = gimple_default_def (cfun, SSA_NAME_VAR (var));
1283
1284 loe = live_on_entry (live, e->dest);
1285 if (loe && bitmap_bit_p (loe, i))
1286 {
1287 if (!gimple_nop_p (stmt))
1288 {
1289 num++;
1290 print_generic_expr (stderr, var, TDF_SLIM);
1291 fprintf (stderr, " is defined ");
1292 if (tmp)
1293 fprintf (stderr, " in BB%d, ", tmp->index);
1294 fprintf (stderr, "by:\n");
1295 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1296 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1297 entry_block);
1298 fprintf (stderr, " So it appears to have multiple defs.\n");
1299 }
1300 else
1301 {
1302 if (d != var)
1303 {
1304 num++;
1305 print_generic_expr (stderr, var, TDF_SLIM);
1306 fprintf (stderr, " is live-on-entry to BB%d ",
1307 entry_block);
1308 if (d)
1309 {
1310 fprintf (stderr, " but is not the default def of ");
1311 print_generic_expr (stderr, d, TDF_SLIM);
1312 fprintf (stderr, "\n");
1313 }
1314 else
1315 fprintf (stderr, " and there is no default def.\n");
1316 }
1317 }
1318 }
1319 else
1320 if (d == var)
1321 {
1322 /* The only way this var shouldn't be marked live on entry is
1323 if it occurs in a PHI argument of the block. */
1324 size_t z;
1325 bool ok = false;
1326 gimple_stmt_iterator gsi;
1327 for (gsi = gsi_start_phis (e->dest);
1328 !gsi_end_p (gsi) && !ok;
1329 gsi_next (&gsi))
1330 {
1331 gimple phi = gsi_stmt (gsi);
1332 for (z = 0; z < gimple_phi_num_args (phi); z++)
1333 if (var == gimple_phi_arg_def (phi, z))
1334 {
1335 ok = true;
1336 break;
1337 }
1338 }
1339 if (ok)
1340 continue;
1341 num++;
1342 print_generic_expr (stderr, var, TDF_SLIM);
1343 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1344 entry_block);
1345 fprintf (stderr, "but it is a default def so it should be.\n");
1346 }
1347 }
1348 }
1349 gcc_assert (num <= 0);
1350 }
1351 #endif