backport: ChangeLog.tuples: ChangeLog from gimple-tuples-branch.
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation,
3 Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "diagnostic.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "tree-ssa-live.h"
32 #include "toplev.h"
33 #include "debug.h"
34 #include "flags.h"
35
36 #ifdef ENABLE_CHECKING
37 static void verify_live_on_entry (tree_live_info_p);
38 #endif
39
40
41 /* VARMAP maintains a mapping from SSA version number to real variables.
42
43 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
44 only member of it's own partition. Coalescing will attempt to group any
45 ssa_names which occur in a copy or in a PHI node into the same partition.
46
47 At the end of out-of-ssa, each partition becomes a "real" variable and is
48 rewritten as a compiler variable.
49
50 The var_map data structure is used to manage these partitions. It allows
51 partitions to be combined, and determines which partition belongs to what
52 ssa_name or variable, and vice versa. */
53
54
55 /* This routine will initialize the basevar fields of MAP. */
56
57 static void
58 var_map_base_init (var_map map)
59 {
60 int x, num_part, num;
61 tree var;
62 var_ann_t ann;
63
64 num = 0;
65 num_part = num_var_partitions (map);
66
67 /* If a base table already exists, clear it, otherwise create it. */
68 if (map->partition_to_base_index != NULL)
69 {
70 free (map->partition_to_base_index);
71 VEC_truncate (tree, map->basevars, 0);
72 }
73 else
74 map->basevars = VEC_alloc (tree, heap, MAX (40, (num_part / 10)));
75
76 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
77
78 /* Build the base variable list, and point partitions at their bases. */
79 for (x = 0; x < num_part; x++)
80 {
81 var = partition_to_var (map, x);
82 if (TREE_CODE (var) == SSA_NAME)
83 var = SSA_NAME_VAR (var);
84 ann = var_ann (var);
85 /* If base variable hasn't been seen, set it up. */
86 if (!ann->base_var_processed)
87 {
88 ann->base_var_processed = 1;
89 VAR_ANN_BASE_INDEX (ann) = num++;
90 VEC_safe_push (tree, heap, map->basevars, var);
91 }
92 map->partition_to_base_index[x] = VAR_ANN_BASE_INDEX (ann);
93 }
94
95 map->num_basevars = num;
96
97 /* Now clear the processed bit. */
98 for (x = 0; x < num; x++)
99 {
100 var = VEC_index (tree, map->basevars, x);
101 var_ann (var)->base_var_processed = 0;
102 }
103
104 #ifdef ENABLE_CHECKING
105 for (x = 0; x < num_part; x++)
106 {
107 tree var2;
108 var = SSA_NAME_VAR (partition_to_var (map, x));
109 var2 = VEC_index (tree, map->basevars, basevar_index (map, x));
110 gcc_assert (var == var2);
111 }
112 #endif
113 }
114
115
116 /* Remove the base table in MAP. */
117
118 static void
119 var_map_base_fini (var_map map)
120 {
121 /* Free the basevar info if it is present. */
122 if (map->partition_to_base_index != NULL)
123 {
124 VEC_free (tree, heap, map->basevars);
125 free (map->partition_to_base_index);
126 map->partition_to_base_index = NULL;
127 map->num_basevars = 0;
128 }
129 }
130 /* Create a variable partition map of SIZE, initialize and return it. */
131
132 var_map
133 init_var_map (int size)
134 {
135 var_map map;
136
137 map = (var_map) xmalloc (sizeof (struct _var_map));
138 map->var_partition = partition_new (size);
139 map->partition_to_var
140 = (tree *)xmalloc (size * sizeof (tree));
141 memset (map->partition_to_var, 0, size * sizeof (tree));
142
143 map->partition_to_view = NULL;
144 map->view_to_partition = NULL;
145 map->num_partitions = size;
146 map->partition_size = size;
147 map->num_basevars = 0;
148 map->partition_to_base_index = NULL;
149 map->basevars = NULL;
150 return map;
151 }
152
153
154 /* Free memory associated with MAP. */
155
156 void
157 delete_var_map (var_map map)
158 {
159 var_map_base_fini (map);
160 free (map->partition_to_var);
161 partition_delete (map->var_partition);
162 if (map->partition_to_view)
163 free (map->partition_to_view);
164 if (map->view_to_partition)
165 free (map->view_to_partition);
166 free (map);
167 }
168
169
170 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
171 Returns the partition which represents the new partition. If the two
172 partitions cannot be combined, NO_PARTITION is returned. */
173
174 int
175 var_union (var_map map, tree var1, tree var2)
176 {
177 int p1, p2, p3;
178 tree root_var = NULL_TREE;
179 tree other_var = NULL_TREE;
180
181 /* This is independent of partition_to_view. If partition_to_view is
182 on, then whichever one of these partitions is absorbed will never have a
183 dereference into the partition_to_view array any more. */
184
185 if (TREE_CODE (var1) == SSA_NAME)
186 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
187 else
188 {
189 p1 = var_to_partition (map, var1);
190 if (map->view_to_partition)
191 p1 = map->view_to_partition[p1];
192 root_var = var1;
193 }
194
195 if (TREE_CODE (var2) == SSA_NAME)
196 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
197 else
198 {
199 p2 = var_to_partition (map, var2);
200 if (map->view_to_partition)
201 p2 = map->view_to_partition[p2];
202
203 /* If there is no root_var set, or it's not a user variable, set the
204 root_var to this one. */
205 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
206 {
207 other_var = root_var;
208 root_var = var2;
209 }
210 else
211 other_var = var2;
212 }
213
214 gcc_assert (p1 != NO_PARTITION);
215 gcc_assert (p2 != NO_PARTITION);
216
217 if (p1 == p2)
218 p3 = p1;
219 else
220 p3 = partition_union (map->var_partition, p1, p2);
221
222 if (map->partition_to_view)
223 p3 = map->partition_to_view[p3];
224
225 if (root_var)
226 change_partition_var (map, root_var, p3);
227 if (other_var)
228 change_partition_var (map, other_var, p3);
229
230 return p3;
231 }
232
233
234 /* Compress the partition numbers in MAP such that they fall in the range
235 0..(num_partitions-1) instead of wherever they turned out during
236 the partitioning exercise. This removes any references to unused
237 partitions, thereby allowing bitmaps and other vectors to be much
238 denser.
239
240 This is implemented such that compaction doesn't affect partitioning.
241 Ie., once partitions are created and possibly merged, running one
242 or more different kind of compaction will not affect the partitions
243 themselves. Their index might change, but all the same variables will
244 still be members of the same partition group. This allows work on reduced
245 sets, and no loss of information when a larger set is later desired.
246
247 In particular, coalescing can work on partitions which have 2 or more
248 definitions, and then 'recompact' later to include all the single
249 definitions for assignment to program variables. */
250
251
252 /* Set MAP back to the initial state of having no partition view. Return a
253 bitmap which has a bit set for each partition number which is in use in the
254 varmap. */
255
256 static bitmap
257 partition_view_init (var_map map)
258 {
259 bitmap used;
260 int tmp;
261 unsigned int x;
262
263 used = BITMAP_ALLOC (NULL);
264
265 /* Already in a view? Abandon the old one. */
266 if (map->partition_to_view)
267 {
268 free (map->partition_to_view);
269 map->partition_to_view = NULL;
270 }
271 if (map->view_to_partition)
272 {
273 free (map->view_to_partition);
274 map->view_to_partition = NULL;
275 }
276
277 /* Find out which partitions are actually referenced. */
278 for (x = 0; x < map->partition_size; x++)
279 {
280 tmp = partition_find (map->var_partition, x);
281 if (map->partition_to_var[tmp] != NULL_TREE && !bitmap_bit_p (used, tmp))
282 bitmap_set_bit (used, tmp);
283 }
284
285 map->num_partitions = map->partition_size;
286 return used;
287 }
288
289
290 /* This routine will finalize the view data for MAP based on the partitions
291 set in SELECTED. This is either the same bitmap returned from
292 partition_view_init, or a trimmed down version if some of those partitions
293 were not desired in this view. SELECTED is freed before returning. */
294
295 static void
296 partition_view_fini (var_map map, bitmap selected)
297 {
298 bitmap_iterator bi;
299 unsigned count, i, x, limit;
300 tree var;
301
302 gcc_assert (selected);
303
304 count = bitmap_count_bits (selected);
305 limit = map->partition_size;
306
307 /* If its a one-to-one ratio, we don't need any view compaction. */
308 if (count < limit)
309 {
310 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
311 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
312 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
313
314 i = 0;
315 /* Give each selected partition an index. */
316 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
317 {
318 map->partition_to_view[x] = i;
319 map->view_to_partition[i] = x;
320 var = map->partition_to_var[x];
321 /* If any one of the members of a partition is not an SSA_NAME, make
322 sure it is the representative. */
323 if (TREE_CODE (var) != SSA_NAME)
324 change_partition_var (map, var, i);
325 i++;
326 }
327 gcc_assert (i == count);
328 map->num_partitions = i;
329 }
330
331 BITMAP_FREE (selected);
332 }
333
334
335 /* Create a partition view which includes all the used partitions in MAP. If
336 WANT_BASES is true, create the base variable map as well. */
337
338 extern void
339 partition_view_normal (var_map map, bool want_bases)
340 {
341 bitmap used;
342
343 used = partition_view_init (map);
344 partition_view_fini (map, used);
345
346 if (want_bases)
347 var_map_base_init (map);
348 else
349 var_map_base_fini (map);
350 }
351
352
353 /* Create a partition view in MAP which includes just partitions which occur in
354 the bitmap ONLY. If WANT_BASES is true, create the base variable map
355 as well. */
356
357 extern void
358 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
359 {
360 bitmap used;
361 bitmap new_partitions = BITMAP_ALLOC (NULL);
362 unsigned x, p;
363 bitmap_iterator bi;
364
365 used = partition_view_init (map);
366 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
367 {
368 p = partition_find (map->var_partition, x);
369 gcc_assert (bitmap_bit_p (used, p));
370 bitmap_set_bit (new_partitions, p);
371 }
372 partition_view_fini (map, new_partitions);
373
374 BITMAP_FREE (used);
375 if (want_bases)
376 var_map_base_init (map);
377 else
378 var_map_base_fini (map);
379 }
380
381
382 /* This function is used to change the representative variable in MAP for VAR's
383 partition to a regular non-ssa variable. This allows partitions to be
384 mapped back to real variables. */
385
386 void
387 change_partition_var (var_map map, tree var, int part)
388 {
389 var_ann_t ann;
390
391 gcc_assert (TREE_CODE (var) != SSA_NAME);
392
393 ann = var_ann (var);
394 ann->out_of_ssa_tag = 1;
395 VAR_ANN_PARTITION (ann) = part;
396 if (map->view_to_partition)
397 map->partition_to_var[map->view_to_partition[part]] = var;
398 }
399
400
401 static inline void mark_all_vars_used (tree *, void *data);
402
403 /* Helper function for mark_all_vars_used, called via walk_tree. */
404
405 static tree
406 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data)
407 {
408 tree t = *tp;
409 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
410 tree b;
411
412 if (TREE_CODE (t) == SSA_NAME)
413 t = SSA_NAME_VAR (t);
414
415 if (IS_EXPR_CODE_CLASS (c)
416 && (b = TREE_BLOCK (t)) != NULL)
417 TREE_USED (b) = true;
418
419 /* Ignore TREE_ORIGINAL for TARGET_MEM_REFS, as well as other
420 fields that do not contain vars. */
421 if (TREE_CODE (t) == TARGET_MEM_REF)
422 {
423 mark_all_vars_used (&TMR_SYMBOL (t), data);
424 mark_all_vars_used (&TMR_BASE (t), data);
425 mark_all_vars_used (&TMR_INDEX (t), data);
426 *walk_subtrees = 0;
427 return NULL;
428 }
429
430 /* Only need to mark VAR_DECLS; parameters and return results are not
431 eliminated as unused. */
432 if (TREE_CODE (t) == VAR_DECL)
433 {
434 if (data != NULL && bitmap_bit_p ((bitmap) data, DECL_UID (t)))
435 {
436 bitmap_clear_bit ((bitmap) data, DECL_UID (t));
437 mark_all_vars_used (&DECL_INITIAL (t), data);
438 }
439 set_is_used (t);
440 }
441
442 if (IS_TYPE_OR_DECL_P (t))
443 *walk_subtrees = 0;
444
445 return NULL;
446 }
447
448 /* Mark the scope block SCOPE and its subblocks unused when they can be
449 possibly eliminated if dead. */
450
451 static void
452 mark_scope_block_unused (tree scope)
453 {
454 tree t;
455 TREE_USED (scope) = false;
456 if (!(*debug_hooks->ignore_block) (scope))
457 TREE_USED (scope) = true;
458 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
459 mark_scope_block_unused (t);
460 }
461
462 /* Look if the block is dead (by possibly eliminating its dead subblocks)
463 and return true if so.
464 Block is declared dead if:
465 1) No statements are associated with it.
466 2) Declares no live variables
467 3) All subblocks are dead
468 or there is precisely one subblocks and the block
469 has same abstract origin as outer block and declares
470 no variables, so it is pure wrapper.
471 When we are not outputting full debug info, we also eliminate dead variables
472 out of scope blocks to let them to be recycled by GGC and to save copying work
473 done by the inliner. */
474
475 static bool
476 remove_unused_scope_block_p (tree scope)
477 {
478 tree *t, *next;
479 bool unused = !TREE_USED (scope);
480 var_ann_t ann;
481 int nsubblocks = 0;
482
483 for (t = &BLOCK_VARS (scope); *t; t = next)
484 {
485 next = &TREE_CHAIN (*t);
486
487 /* Debug info of nested function refers to the block of the
488 function. */
489 if (TREE_CODE (*t) == FUNCTION_DECL)
490 unused = false;
491
492 /* When we are outputting debug info, we usually want to output
493 info about optimized-out variables in the scope blocks.
494 Exception are the scope blocks not containing any instructions
495 at all so user can't get into the scopes at first place. */
496 else if ((ann = var_ann (*t)) != NULL
497 && ann->used)
498 unused = false;
499
500 /* When we are not doing full debug info, we however can keep around
501 only the used variables for cfgexpand's memory packing saving quite
502 a lot of memory. */
503 else if (debug_info_level == DINFO_LEVEL_NORMAL
504 || debug_info_level == DINFO_LEVEL_VERBOSE
505 /* Removing declarations before inlining is going to affect
506 DECL_UID that in turn is going to affect hashtables and
507 code generation. */
508 || !cfun->after_inlining)
509 unused = false;
510
511 else
512 {
513 *t = TREE_CHAIN (*t);
514 next = t;
515 }
516 }
517
518 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
519 if (remove_unused_scope_block_p (*t))
520 {
521 if (BLOCK_SUBBLOCKS (*t))
522 {
523 tree next = BLOCK_CHAIN (*t);
524 tree supercontext = BLOCK_SUPERCONTEXT (*t);
525 *t = BLOCK_SUBBLOCKS (*t);
526 gcc_assert (!BLOCK_CHAIN (*t));
527 BLOCK_CHAIN (*t) = next;
528 BLOCK_SUPERCONTEXT (*t) = supercontext;
529 t = &BLOCK_CHAIN (*t);
530 nsubblocks ++;
531 }
532 else
533 {
534 gcc_assert (!BLOCK_VARS (*t));
535 *t = BLOCK_CHAIN (*t);
536 }
537 }
538 else
539 {
540 t = &BLOCK_CHAIN (*t);
541 nsubblocks ++;
542 }
543 /* Outer scope is always used. */
544 if (!BLOCK_SUPERCONTEXT (scope)
545 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
546 unused = false;
547 /* If there are more than one live subblocks, it is used. */
548 else if (nsubblocks > 1)
549 unused = false;
550 /* When there is only one subblock, see if it is just wrapper we can
551 ignore. Wrappers are not declaring any variables and not changing
552 abstract origin. */
553 else if (nsubblocks == 1
554 && (BLOCK_VARS (scope)
555 || ((debug_info_level == DINFO_LEVEL_NORMAL
556 || debug_info_level == DINFO_LEVEL_VERBOSE)
557 && ((BLOCK_ABSTRACT_ORIGIN (scope)
558 != BLOCK_ABSTRACT_ORIGIN (BLOCK_SUPERCONTEXT (scope)))))))
559 unused = false;
560 return unused;
561 }
562
563 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
564 eliminated during the tree->rtl conversion process. */
565
566 static inline void
567 mark_all_vars_used (tree *expr_p, void *data)
568 {
569 walk_tree (expr_p, mark_all_vars_used_1, data, NULL);
570 }
571
572
573 /* Remove local variables that are not referenced in the IL. */
574
575 void
576 remove_unused_locals (void)
577 {
578 basic_block bb;
579 tree t, *cell;
580 referenced_var_iterator rvi;
581 var_ann_t ann;
582 bitmap global_unused_vars = NULL;
583
584 if (optimize)
585 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
586
587 /* Assume all locals are unused. */
588 FOR_EACH_REFERENCED_VAR (t, rvi)
589 var_ann (t)->used = false;
590
591 /* Walk the CFG marking all referenced symbols. */
592 FOR_EACH_BB (bb)
593 {
594 gimple_stmt_iterator gsi;
595 size_t i;
596
597 /* Walk the statements. */
598 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
599 {
600 gimple stmt = gsi_stmt (gsi);
601 tree b = gimple_block (stmt);
602
603 if (b)
604 TREE_USED (b) = true;
605
606 for (i = 0; i < gimple_num_ops (stmt); i++)
607 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i), NULL);
608 }
609
610 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
611 {
612 use_operand_p arg_p;
613 ssa_op_iter i;
614 tree def;
615 gimple phi = gsi_stmt (gsi);
616
617 /* No point processing globals. */
618 if (is_global_var (SSA_NAME_VAR (gimple_phi_result (phi))))
619 continue;
620
621 def = gimple_phi_result (phi);
622 mark_all_vars_used (&def, NULL);
623
624 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
625 {
626 tree arg = USE_FROM_PTR (arg_p);
627 mark_all_vars_used (&arg, NULL);
628 }
629 }
630 }
631
632 /* Remove unmarked local vars from local_decls. */
633 for (cell = &cfun->local_decls; *cell; )
634 {
635 tree var = TREE_VALUE (*cell);
636
637 if (TREE_CODE (var) != FUNCTION_DECL
638 && (!(ann = var_ann (var))
639 || !ann->used))
640 {
641 if (is_global_var (var))
642 {
643 if (global_unused_vars == NULL)
644 global_unused_vars = BITMAP_ALLOC (NULL);
645 bitmap_set_bit (global_unused_vars, DECL_UID (var));
646 }
647 else
648 {
649 *cell = TREE_CHAIN (*cell);
650 continue;
651 }
652 }
653 cell = &TREE_CHAIN (*cell);
654 }
655
656 /* Remove unmarked global vars from local_decls. */
657 if (global_unused_vars != NULL)
658 {
659 for (t = cfun->local_decls; t; t = TREE_CHAIN (t))
660 {
661 tree var = TREE_VALUE (t);
662
663 if (TREE_CODE (var) == VAR_DECL
664 && is_global_var (var)
665 && (ann = var_ann (var)) != NULL
666 && ann->used)
667 mark_all_vars_used (&DECL_INITIAL (var), global_unused_vars);
668 }
669
670 for (cell = &cfun->local_decls; *cell; )
671 {
672 tree var = TREE_VALUE (*cell);
673
674 if (TREE_CODE (var) == VAR_DECL
675 && is_global_var (var)
676 && bitmap_bit_p (global_unused_vars, DECL_UID (var))
677 && (optimize || DECL_ARTIFICIAL (var)))
678 *cell = TREE_CHAIN (*cell);
679 else
680 cell = &TREE_CHAIN (*cell);
681 }
682 BITMAP_FREE (global_unused_vars);
683 }
684
685 /* Remove unused variables from REFERENCED_VARs. As a special
686 exception keep the variables that are believed to be aliased.
687 Those can't be easily removed from the alias sets and operand
688 caches. They will be removed shortly after the next may_alias
689 pass is performed. */
690 FOR_EACH_REFERENCED_VAR (t, rvi)
691 if (!is_global_var (t)
692 && !MTAG_P (t)
693 && TREE_CODE (t) != PARM_DECL
694 && TREE_CODE (t) != RESULT_DECL
695 && !(ann = var_ann (t))->used
696 && !ann->symbol_mem_tag
697 && !TREE_ADDRESSABLE (t)
698 && (optimize || DECL_ARTIFICIAL (t)))
699 remove_referenced_var (t);
700 if (optimize)
701 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
702 }
703
704
705 /* Allocate and return a new live range information object base on MAP. */
706
707 static tree_live_info_p
708 new_tree_live_info (var_map map)
709 {
710 tree_live_info_p live;
711 unsigned x;
712
713 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
714 live->map = map;
715 live->num_blocks = last_basic_block;
716
717 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
718 for (x = 0; x < (unsigned)last_basic_block; x++)
719 live->livein[x] = BITMAP_ALLOC (NULL);
720
721 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
722 for (x = 0; x < (unsigned)last_basic_block; x++)
723 live->liveout[x] = BITMAP_ALLOC (NULL);
724
725 live->work_stack = XNEWVEC (int, last_basic_block);
726 live->stack_top = live->work_stack;
727
728 live->global = BITMAP_ALLOC (NULL);
729 return live;
730 }
731
732
733 /* Free storage for live range info object LIVE. */
734
735 void
736 delete_tree_live_info (tree_live_info_p live)
737 {
738 int x;
739
740 BITMAP_FREE (live->global);
741 free (live->work_stack);
742
743 for (x = live->num_blocks - 1; x >= 0; x--)
744 BITMAP_FREE (live->liveout[x]);
745 free (live->liveout);
746
747 for (x = live->num_blocks - 1; x >= 0; x--)
748 BITMAP_FREE (live->livein[x]);
749 free (live->livein);
750
751 free (live);
752 }
753
754
755 /* Visit basic block BB and propagate any required live on entry bits from
756 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
757 TMP is a temporary work bitmap which is passed in to avoid reallocating
758 it each time. */
759
760 static void
761 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
762 bitmap tmp)
763 {
764 edge e;
765 bool change;
766 edge_iterator ei;
767 basic_block pred_bb;
768 bitmap loe;
769 gcc_assert (!TEST_BIT (visited, bb->index));
770
771 SET_BIT (visited, bb->index);
772 loe = live_on_entry (live, bb);
773
774 FOR_EACH_EDGE (e, ei, bb->preds)
775 {
776 pred_bb = e->src;
777 if (pred_bb == ENTRY_BLOCK_PTR)
778 continue;
779 /* TMP is variables live-on-entry from BB that aren't defined in the
780 predecessor block. This should be the live on entry vars to pred.
781 Note that liveout is the DEFs in a block while live on entry is
782 being calculated. */
783 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
784
785 /* Add these bits to live-on-entry for the pred. if there are any
786 changes, and pred_bb has been visited already, add it to the
787 revisit stack. */
788 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
789 if (TEST_BIT (visited, pred_bb->index) && change)
790 {
791 RESET_BIT (visited, pred_bb->index);
792 *(live->stack_top)++ = pred_bb->index;
793 }
794 }
795 }
796
797
798 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
799 of all the variables. */
800
801 static void
802 live_worklist (tree_live_info_p live)
803 {
804 unsigned b;
805 basic_block bb;
806 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
807 bitmap tmp = BITMAP_ALLOC (NULL);
808
809 sbitmap_zero (visited);
810
811 /* Visit all the blocks in reverse order and propagate live on entry values
812 into the predecessors blocks. */
813 FOR_EACH_BB_REVERSE (bb)
814 loe_visit_block (live, bb, visited, tmp);
815
816 /* Process any blocks which require further iteration. */
817 while (live->stack_top != live->work_stack)
818 {
819 b = *--(live->stack_top);
820 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
821 }
822
823 BITMAP_FREE (tmp);
824 sbitmap_free (visited);
825 }
826
827
828 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
829 links. Set the live on entry fields in LIVE. Def's are marked temporarily
830 in the liveout vector. */
831
832 static void
833 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
834 {
835 int p;
836 gimple stmt;
837 use_operand_p use;
838 basic_block def_bb = NULL;
839 imm_use_iterator imm_iter;
840 bool global = false;
841
842 p = var_to_partition (live->map, ssa_name);
843 if (p == NO_PARTITION)
844 return;
845
846 stmt = SSA_NAME_DEF_STMT (ssa_name);
847 if (stmt)
848 {
849 def_bb = gimple_bb (stmt);
850 /* Mark defs in liveout bitmap temporarily. */
851 if (def_bb)
852 bitmap_set_bit (live->liveout[def_bb->index], p);
853 }
854 else
855 def_bb = ENTRY_BLOCK_PTR;
856
857 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
858 add it to the list of live on entry blocks. */
859 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
860 {
861 gimple use_stmt = USE_STMT (use);
862 basic_block add_block = NULL;
863
864 if (gimple_code (use_stmt) == GIMPLE_PHI)
865 {
866 /* Uses in PHI's are considered to be live at exit of the SRC block
867 as this is where a copy would be inserted. Check to see if it is
868 defined in that block, or whether its live on entry. */
869 int index = PHI_ARG_INDEX_FROM_USE (use);
870 edge e = gimple_phi_arg_edge (use_stmt, index);
871 if (e->src != ENTRY_BLOCK_PTR)
872 {
873 if (e->src != def_bb)
874 add_block = e->src;
875 }
876 }
877 else
878 {
879 /* If its not defined in this block, its live on entry. */
880 basic_block use_bb = gimple_bb (use_stmt);
881 if (use_bb != def_bb)
882 add_block = use_bb;
883 }
884
885 /* If there was a live on entry use, set the bit. */
886 if (add_block)
887 {
888 global = true;
889 bitmap_set_bit (live->livein[add_block->index], p);
890 }
891 }
892
893 /* If SSA_NAME is live on entry to at least one block, fill in all the live
894 on entry blocks between the def and all the uses. */
895 if (global)
896 bitmap_set_bit (live->global, p);
897 }
898
899
900 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
901
902 void
903 calculate_live_on_exit (tree_live_info_p liveinfo)
904 {
905 basic_block bb;
906 edge e;
907 edge_iterator ei;
908
909 /* live on entry calculations used liveout vectors for defs, clear them. */
910 FOR_EACH_BB (bb)
911 bitmap_clear (liveinfo->liveout[bb->index]);
912
913 /* Set all the live-on-exit bits for uses in PHIs. */
914 FOR_EACH_BB (bb)
915 {
916 gimple_stmt_iterator gsi;
917 size_t i;
918
919 /* Mark the PHI arguments which are live on exit to the pred block. */
920 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
921 {
922 gimple phi = gsi_stmt (gsi);
923 for (i = 0; i < gimple_phi_num_args (phi); i++)
924 {
925 tree t = PHI_ARG_DEF (phi, i);
926 int p;
927
928 if (TREE_CODE (t) != SSA_NAME)
929 continue;
930
931 p = var_to_partition (liveinfo->map, t);
932 if (p == NO_PARTITION)
933 continue;
934 e = gimple_phi_arg_edge (phi, i);
935 if (e->src != ENTRY_BLOCK_PTR)
936 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
937 }
938 }
939
940 /* Add each successors live on entry to this bock live on exit. */
941 FOR_EACH_EDGE (e, ei, bb->succs)
942 if (e->dest != EXIT_BLOCK_PTR)
943 bitmap_ior_into (liveinfo->liveout[bb->index],
944 live_on_entry (liveinfo, e->dest));
945 }
946 }
947
948
949 /* Given partition map MAP, calculate all the live on entry bitmaps for
950 each partition. Return a new live info object. */
951
952 tree_live_info_p
953 calculate_live_ranges (var_map map)
954 {
955 tree var;
956 unsigned i;
957 tree_live_info_p live;
958
959 live = new_tree_live_info (map);
960 for (i = 0; i < num_var_partitions (map); i++)
961 {
962 var = partition_to_var (map, i);
963 if (var != NULL_TREE)
964 set_var_live_on_entry (var, live);
965 }
966
967 live_worklist (live);
968
969 #ifdef ENABLE_CHECKING
970 verify_live_on_entry (live);
971 #endif
972
973 calculate_live_on_exit (live);
974 return live;
975 }
976
977
978 /* Output partition map MAP to file F. */
979
980 void
981 dump_var_map (FILE *f, var_map map)
982 {
983 int t;
984 unsigned x, y;
985 int p;
986
987 fprintf (f, "\nPartition map \n\n");
988
989 for (x = 0; x < map->num_partitions; x++)
990 {
991 if (map->view_to_partition != NULL)
992 p = map->view_to_partition[x];
993 else
994 p = x;
995
996 if (map->partition_to_var[p] == NULL_TREE)
997 continue;
998
999 t = 0;
1000 for (y = 1; y < num_ssa_names; y++)
1001 {
1002 p = partition_find (map->var_partition, y);
1003 if (map->partition_to_view)
1004 p = map->partition_to_view[p];
1005 if (p == (int)x)
1006 {
1007 if (t++ == 0)
1008 {
1009 fprintf(f, "Partition %d (", x);
1010 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1011 fprintf (f, " - ");
1012 }
1013 fprintf (f, "%d ", y);
1014 }
1015 }
1016 if (t != 0)
1017 fprintf (f, ")\n");
1018 }
1019 fprintf (f, "\n");
1020 }
1021
1022
1023 /* Output live range info LIVE to file F, controlled by FLAG. */
1024
1025 void
1026 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1027 {
1028 basic_block bb;
1029 unsigned i;
1030 var_map map = live->map;
1031 bitmap_iterator bi;
1032
1033 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1034 {
1035 FOR_EACH_BB (bb)
1036 {
1037 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1038 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1039 {
1040 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1041 fprintf (f, " ");
1042 }
1043 fprintf (f, "\n");
1044 }
1045 }
1046
1047 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1048 {
1049 FOR_EACH_BB (bb)
1050 {
1051 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1052 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1053 {
1054 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1055 fprintf (f, " ");
1056 }
1057 fprintf (f, "\n");
1058 }
1059 }
1060 }
1061
1062
1063 #ifdef ENABLE_CHECKING
1064 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1065
1066 void
1067 register_ssa_partition_check (tree ssa_var)
1068 {
1069 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1070 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1071 {
1072 fprintf (stderr, "Illegally registering a virtual SSA name :");
1073 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1074 fprintf (stderr, " in the SSA->Normal phase.\n");
1075 internal_error ("SSA corruption");
1076 }
1077 }
1078
1079
1080 /* Verify that the info in LIVE matches the current cfg. */
1081
1082 static void
1083 verify_live_on_entry (tree_live_info_p live)
1084 {
1085 unsigned i;
1086 tree var;
1087 gimple stmt;
1088 basic_block bb;
1089 edge e;
1090 int num;
1091 edge_iterator ei;
1092 var_map map = live->map;
1093
1094 /* Check for live on entry partitions and report those with a DEF in
1095 the program. This will typically mean an optimization has done
1096 something wrong. */
1097 bb = ENTRY_BLOCK_PTR;
1098 num = 0;
1099 FOR_EACH_EDGE (e, ei, bb->succs)
1100 {
1101 int entry_block = e->dest->index;
1102 if (e->dest == EXIT_BLOCK_PTR)
1103 continue;
1104 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1105 {
1106 basic_block tmp;
1107 tree d;
1108 bitmap loe;
1109 var = partition_to_var (map, i);
1110 stmt = SSA_NAME_DEF_STMT (var);
1111 tmp = gimple_bb (stmt);
1112 d = gimple_default_def (cfun, SSA_NAME_VAR (var));
1113
1114 loe = live_on_entry (live, e->dest);
1115 if (loe && bitmap_bit_p (loe, i))
1116 {
1117 if (!gimple_nop_p (stmt))
1118 {
1119 num++;
1120 print_generic_expr (stderr, var, TDF_SLIM);
1121 fprintf (stderr, " is defined ");
1122 if (tmp)
1123 fprintf (stderr, " in BB%d, ", tmp->index);
1124 fprintf (stderr, "by:\n");
1125 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1126 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1127 entry_block);
1128 fprintf (stderr, " So it appears to have multiple defs.\n");
1129 }
1130 else
1131 {
1132 if (d != var)
1133 {
1134 num++;
1135 print_generic_expr (stderr, var, TDF_SLIM);
1136 fprintf (stderr, " is live-on-entry to BB%d ",
1137 entry_block);
1138 if (d)
1139 {
1140 fprintf (stderr, " but is not the default def of ");
1141 print_generic_expr (stderr, d, TDF_SLIM);
1142 fprintf (stderr, "\n");
1143 }
1144 else
1145 fprintf (stderr, " and there is no default def.\n");
1146 }
1147 }
1148 }
1149 else
1150 if (d == var)
1151 {
1152 /* The only way this var shouldn't be marked live on entry is
1153 if it occurs in a PHI argument of the block. */
1154 size_t z;
1155 bool ok = false;
1156 gimple_stmt_iterator gsi;
1157 for (gsi = gsi_start_phis (e->dest);
1158 !gsi_end_p (gsi) && !ok;
1159 gsi_next (&gsi))
1160 {
1161 gimple phi = gsi_stmt (gsi);
1162 for (z = 0; z < gimple_phi_num_args (phi); z++)
1163 if (var == gimple_phi_arg_def (phi, z))
1164 {
1165 ok = true;
1166 break;
1167 }
1168 }
1169 if (ok)
1170 continue;
1171 num++;
1172 print_generic_expr (stderr, var, TDF_SLIM);
1173 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1174 entry_block);
1175 fprintf (stderr, "but it is a default def so it should be.\n");
1176 }
1177 }
1178 }
1179 gcc_assert (num <= 0);
1180 }
1181 #endif