bb-reorder.c, [...]: Fix comment typos.
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "diagnostic.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "tree-gimple.h"
34 #include "tree-inline.h"
35 #include "varray.h"
36 #include "timevar.h"
37 #include "hashtab.h"
38 #include "tree-dump.h"
39 #include "tree-ssa-live.h"
40 #include "errors.h"
41
42 static void live_worklist (tree_live_info_p, varray_type, int);
43 static tree_live_info_p new_tree_live_info (var_map);
44 static inline void set_if_valid (var_map, bitmap, tree);
45 static inline void add_livein_if_notdef (tree_live_info_p, bitmap,
46 tree, basic_block);
47 static inline void register_ssa_partition (var_map, tree, bool);
48 static inline void add_conflicts_if_valid (tpa_p, conflict_graph,
49 var_map, bitmap, tree);
50 static partition_pair_p find_partition_pair (coalesce_list_p, int, int, bool);
51
52 /* This is where the mapping from SSA version number to real storage variable
53 is tracked.
54
55 All SSA versions of the same variable may not ultimately be mapped back to
56 the same real variable. In that instance, we need to detect the live
57 range overlap, and give one of the variable new storage. The vector
58 'partition_to_var' tracks which partition maps to which variable.
59
60 Given a VAR, it is sometimes desirable to know which partition that VAR
61 represents. There is an additional field in the variable annotation to
62 track that information. */
63
64 /* Create a variable partition map of SIZE, initialize and return it. */
65
66 var_map
67 init_var_map (int size)
68 {
69 var_map map;
70
71 map = (var_map) xmalloc (sizeof (struct _var_map));
72 map->var_partition = partition_new (size);
73 map->partition_to_var
74 = (tree *)xmalloc (size * sizeof (tree));
75 memset (map->partition_to_var, 0, size * sizeof (tree));
76
77 map->partition_to_compact = NULL;
78 map->compact_to_partition = NULL;
79 map->num_partitions = size;
80 map->partition_size = size;
81 map->ref_count = NULL;
82 return map;
83 }
84
85
86 /* Free memory associated with MAP. */
87
88 void
89 delete_var_map (var_map map)
90 {
91 free (map->partition_to_var);
92 partition_delete (map->var_partition);
93 if (map->partition_to_compact)
94 free (map->partition_to_compact);
95 if (map->compact_to_partition)
96 free (map->compact_to_partition);
97 if (map->ref_count)
98 free (map->ref_count);
99 free (map);
100 }
101
102
103 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
104 Returns the partition which represents the new partition. If the two
105 partitions cannot be combined, NO_PARTITION is returned. */
106
107 int
108 var_union (var_map map, tree var1, tree var2)
109 {
110 int p1, p2, p3;
111 tree root_var = NULL_TREE;
112 tree other_var = NULL_TREE;
113
114 /* This is independent of partition_to_compact. If partition_to_compact is
115 on, then whichever one of these partitions is absorbed will never have a
116 dereference into the partition_to_compact array any more. */
117
118 if (TREE_CODE (var1) == SSA_NAME)
119 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
120 else
121 {
122 p1 = var_to_partition (map, var1);
123 if (map->compact_to_partition)
124 p1 = map->compact_to_partition[p1];
125 root_var = var1;
126 }
127
128 if (TREE_CODE (var2) == SSA_NAME)
129 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
130 else
131 {
132 p2 = var_to_partition (map, var2);
133 if (map->compact_to_partition)
134 p2 = map->compact_to_partition[p2];
135
136 /* If there is no root_var set, or it's not a user variable, set the
137 root_var to this one. */
138 if (!root_var || (DECL_P (root_var) && DECL_IGNORED_P (root_var)))
139 {
140 other_var = root_var;
141 root_var = var2;
142 }
143 else
144 other_var = var2;
145 }
146
147 gcc_assert (p1 != NO_PARTITION);
148 gcc_assert (p2 != NO_PARTITION);
149
150 if (p1 == p2)
151 p3 = p1;
152 else
153 p3 = partition_union (map->var_partition, p1, p2);
154
155 if (map->partition_to_compact)
156 p3 = map->partition_to_compact[p3];
157
158 if (root_var)
159 change_partition_var (map, root_var, p3);
160 if (other_var)
161 change_partition_var (map, other_var, p3);
162
163 return p3;
164 }
165
166
167 /* Compress the partition numbers in MAP such that they fall in the range
168 0..(num_partitions-1) instead of wherever they turned out during
169 the partitioning exercise. This removes any references to unused
170 partitions, thereby allowing bitmaps and other vectors to be much
171 denser. Compression type is controlled by FLAGS.
172
173 This is implemented such that compaction doesn't affect partitioning.
174 Ie., once partitions are created and possibly merged, running one
175 or more different kind of compaction will not affect the partitions
176 themselves. Their index might change, but all the same variables will
177 still be members of the same partition group. This allows work on reduced
178 sets, and no loss of information when a larger set is later desired.
179
180 In particular, coalescing can work on partitions which have 2 or more
181 definitions, and then 'recompact' later to include all the single
182 definitions for assignment to program variables. */
183
184 void
185 compact_var_map (var_map map, int flags)
186 {
187 sbitmap used;
188 int x, limit, count, tmp, root, root_i;
189 tree var;
190 root_var_p rv = NULL;
191
192 limit = map->partition_size;
193 used = sbitmap_alloc (limit);
194 sbitmap_zero (used);
195
196 /* Already compressed? Abandon the old one. */
197 if (map->partition_to_compact)
198 {
199 free (map->partition_to_compact);
200 map->partition_to_compact = NULL;
201 }
202 if (map->compact_to_partition)
203 {
204 free (map->compact_to_partition);
205 map->compact_to_partition = NULL;
206 }
207
208 map->num_partitions = map->partition_size;
209
210 if (flags & VARMAP_NO_SINGLE_DEFS)
211 rv = root_var_init (map);
212
213 map->partition_to_compact = (int *)xmalloc (limit * sizeof (int));
214 memset (map->partition_to_compact, 0xff, (limit * sizeof (int)));
215
216 /* Find out which partitions are actually referenced. */
217 count = 0;
218 for (x = 0; x < limit; x++)
219 {
220 tmp = partition_find (map->var_partition, x);
221 if (!TEST_BIT (used, tmp) && map->partition_to_var[tmp] != NULL_TREE)
222 {
223 /* It is referenced, check to see if there is more than one version
224 in the root_var table, if one is available. */
225 if (rv)
226 {
227 root = root_var_find (rv, tmp);
228 root_i = root_var_first_partition (rv, root);
229 /* If there is only one, don't include this in the compaction. */
230 if (root_var_next_partition (rv, root_i) == ROOT_VAR_NONE)
231 continue;
232 }
233 SET_BIT (used, tmp);
234 count++;
235 }
236 }
237
238 /* Build a compacted partitioning. */
239 if (count != limit)
240 {
241 map->compact_to_partition = (int *)xmalloc (count * sizeof (int));
242 count = 0;
243 /* SSA renaming begins at 1, so skip 0 when compacting. */
244 EXECUTE_IF_SET_IN_SBITMAP (used, 1, x,
245 {
246 map->partition_to_compact[x] = count;
247 map->compact_to_partition[count] = x;
248 var = map->partition_to_var[x];
249 if (TREE_CODE (var) != SSA_NAME)
250 change_partition_var (map, var, count);
251 count++;
252 });
253 }
254 else
255 {
256 free (map->partition_to_compact);
257 map->partition_to_compact = NULL;
258 }
259
260 map->num_partitions = count;
261
262 if (rv)
263 root_var_delete (rv);
264 sbitmap_free (used);
265 }
266
267
268 /* This function is used to change the representative variable in MAP for VAR's
269 partition from an SSA_NAME variable to a regular variable. This allows
270 partitions to be mapped back to real variables. */
271
272 void
273 change_partition_var (var_map map, tree var, int part)
274 {
275 var_ann_t ann;
276
277 gcc_assert (TREE_CODE (var) != SSA_NAME);
278
279 ann = var_ann (var);
280 ann->out_of_ssa_tag = 1;
281 VAR_ANN_PARTITION (ann) = part;
282 if (map->compact_to_partition)
283 map->partition_to_var[map->compact_to_partition[part]] = var;
284 }
285
286
287 /* Helper function for mark_all_vars_used, called via walk_tree. */
288
289 static tree
290 mark_all_vars_used_1 (tree *tp, int *walk_subtrees,
291 void *data ATTRIBUTE_UNUSED)
292 {
293 tree t = *tp;
294
295 /* Only need to mark VAR_DECLS; parameters and return results are not
296 eliminated as unused. */
297 if (TREE_CODE (t) == VAR_DECL)
298 set_is_used (t);
299
300 if (DECL_P (t) || TYPE_P (t))
301 *walk_subtrees = 0;
302
303 return NULL;
304 }
305
306 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
307 eliminated during the tree->rtl conversion process. */
308
309 static inline void
310 mark_all_vars_used (tree *expr_p)
311 {
312 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
313 }
314
315 /* This function looks through the program and uses FLAGS to determine what
316 SSA versioned variables are given entries in a new partition table. This
317 new partition map is returned. */
318
319 var_map
320 create_ssa_var_map (int flags)
321 {
322 block_stmt_iterator bsi;
323 basic_block bb;
324 tree dest, use;
325 tree stmt;
326 stmt_ann_t ann;
327 var_map map;
328 ssa_op_iter iter;
329 #ifdef ENABLE_CHECKING
330 sbitmap used_in_real_ops;
331 sbitmap used_in_virtual_ops;
332 #endif
333
334 map = init_var_map (num_ssa_names + 1);
335
336 #ifdef ENABLE_CHECKING
337 used_in_real_ops = sbitmap_alloc (num_referenced_vars);
338 sbitmap_zero (used_in_real_ops);
339
340 used_in_virtual_ops = sbitmap_alloc (num_referenced_vars);
341 sbitmap_zero (used_in_virtual_ops);
342 #endif
343
344 if (flags & SSA_VAR_MAP_REF_COUNT)
345 {
346 map->ref_count
347 = (int *)xmalloc (((num_ssa_names + 1) * sizeof (int)));
348 memset (map->ref_count, 0, (num_ssa_names + 1) * sizeof (int));
349 }
350
351 FOR_EACH_BB (bb)
352 {
353 tree phi, arg;
354 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
355 {
356 int i;
357 register_ssa_partition (map, PHI_RESULT (phi), false);
358 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
359 {
360 arg = PHI_ARG_DEF (phi, i);
361 if (TREE_CODE (arg) == SSA_NAME)
362 register_ssa_partition (map, arg, true);
363
364 mark_all_vars_used (&PHI_ARG_DEF_TREE (phi, i));
365 }
366 }
367
368 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
369 {
370 stmt = bsi_stmt (bsi);
371 get_stmt_operands (stmt);
372 ann = stmt_ann (stmt);
373
374 /* Register USE and DEF operands in each statement. */
375 FOR_EACH_SSA_TREE_OPERAND (use , stmt, iter, SSA_OP_USE)
376 {
377 register_ssa_partition (map, use, true);
378
379 #ifdef ENABLE_CHECKING
380 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (use))->uid);
381 #endif
382 }
383
384 FOR_EACH_SSA_TREE_OPERAND (dest, stmt, iter, SSA_OP_DEF)
385 {
386 register_ssa_partition (map, dest, false);
387
388 #ifdef ENABLE_CHECKING
389 SET_BIT (used_in_real_ops, var_ann (SSA_NAME_VAR (dest))->uid);
390 #endif
391 }
392
393 #ifdef ENABLE_CHECKING
394 /* Validate that virtual ops don't get used in funny ways. */
395 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter,
396 SSA_OP_VIRTUAL_USES | SSA_OP_VMUSTDEF)
397 {
398 SET_BIT (used_in_virtual_ops, var_ann (SSA_NAME_VAR (use))->uid);
399 }
400
401 #endif /* ENABLE_CHECKING */
402
403 mark_all_vars_used (bsi_stmt_ptr (bsi));
404 }
405 }
406
407 #if defined ENABLE_CHECKING
408 {
409 unsigned i;
410 sbitmap both = sbitmap_alloc (num_referenced_vars);
411 sbitmap_a_and_b (both, used_in_real_ops, used_in_virtual_ops);
412 if (sbitmap_first_set_bit (both) >= 0)
413 {
414 EXECUTE_IF_SET_IN_SBITMAP (both, 0, i,
415 fprintf (stderr, "Variable %s used in real and virtual operands\n",
416 get_name (referenced_var (i))));
417 internal_error ("SSA corruption");
418 }
419
420 sbitmap_free (used_in_real_ops);
421 sbitmap_free (used_in_virtual_ops);
422 sbitmap_free (both);
423 }
424 #endif
425
426 return map;
427 }
428
429
430 /* Allocate and return a new live range information object base on MAP. */
431
432 static tree_live_info_p
433 new_tree_live_info (var_map map)
434 {
435 tree_live_info_p live;
436 int x;
437
438 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
439 live->map = map;
440 live->num_blocks = last_basic_block;
441
442 live->global = BITMAP_XMALLOC ();
443
444 live->livein = (bitmap *)xmalloc (num_var_partitions (map) * sizeof (bitmap));
445 for (x = 0; x < num_var_partitions (map); x++)
446 live->livein[x] = BITMAP_XMALLOC ();
447
448 /* liveout is deferred until it is actually requested. */
449 live->liveout = NULL;
450 return live;
451 }
452
453
454 /* Free storage for live range info object LIVE. */
455
456 void
457 delete_tree_live_info (tree_live_info_p live)
458 {
459 int x;
460 if (live->liveout)
461 {
462 for (x = live->num_blocks - 1; x >= 0; x--)
463 BITMAP_XFREE (live->liveout[x]);
464 free (live->liveout);
465 }
466 if (live->livein)
467 {
468 for (x = num_var_partitions (live->map) - 1; x >= 0; x--)
469 BITMAP_XFREE (live->livein[x]);
470 free (live->livein);
471 }
472 if (live->global)
473 BITMAP_XFREE (live->global);
474
475 free (live);
476 }
477
478
479 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
480 for partition I. STACK is a varray used for temporary memory which is
481 passed in rather than being allocated on every call. */
482
483 static void
484 live_worklist (tree_live_info_p live, varray_type stack, int i)
485 {
486 int b;
487 tree var;
488 basic_block def_bb = NULL;
489 edge e;
490 var_map map = live->map;
491
492 var = partition_to_var (map, i);
493 if (SSA_NAME_DEF_STMT (var))
494 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
495
496 EXECUTE_IF_SET_IN_BITMAP (live->livein[i], 0, b,
497 {
498 VARRAY_PUSH_INT (stack, b);
499 });
500
501 while (VARRAY_ACTIVE_SIZE (stack) > 0)
502 {
503 b = VARRAY_TOP_INT (stack);
504 VARRAY_POP (stack);
505
506 for (e = BASIC_BLOCK (b)->pred; e; e = e->pred_next)
507 if (e->src != ENTRY_BLOCK_PTR)
508 {
509 /* Its not live on entry to the block its defined in. */
510 if (e->src == def_bb)
511 continue;
512 if (!bitmap_bit_p (live->livein[i], e->src->index))
513 {
514 bitmap_set_bit (live->livein[i], e->src->index);
515 VARRAY_PUSH_INT (stack, e->src->index);
516 }
517 }
518 }
519 }
520
521
522 /* If VAR is in a partition of MAP, set the bit for that partition in VEC. */
523
524 static inline void
525 set_if_valid (var_map map, bitmap vec, tree var)
526 {
527 int p = var_to_partition (map, var);
528 if (p != NO_PARTITION)
529 bitmap_set_bit (vec, p);
530 }
531
532
533 /* If VAR is in a partition and it isn't defined in DEF_VEC, set the livein and
534 global bit for it in the LIVE object. BB is the block being processed. */
535
536 static inline void
537 add_livein_if_notdef (tree_live_info_p live, bitmap def_vec,
538 tree var, basic_block bb)
539 {
540 int p = var_to_partition (live->map, var);
541 if (p == NO_PARTITION || bb == ENTRY_BLOCK_PTR)
542 return;
543 if (!bitmap_bit_p (def_vec, p))
544 {
545 bitmap_set_bit (live->livein[p], bb->index);
546 bitmap_set_bit (live->global, p);
547 }
548 }
549
550
551 /* Given partition map MAP, calculate all the live on entry bitmaps for
552 each basic block. Return a live info object. */
553
554 tree_live_info_p
555 calculate_live_on_entry (var_map map)
556 {
557 tree_live_info_p live;
558 int i;
559 basic_block bb;
560 bitmap saw_def;
561 tree phi, var, stmt;
562 tree op;
563 edge e;
564 varray_type stack;
565 block_stmt_iterator bsi;
566 stmt_ann_t ann;
567 ssa_op_iter iter;
568 #ifdef ENABLE_CHECKING
569 int num;
570 #endif
571
572
573 saw_def = BITMAP_XMALLOC ();
574
575 live = new_tree_live_info (map);
576
577 FOR_EACH_BB (bb)
578 {
579 bitmap_clear (saw_def);
580
581 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
582 {
583 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
584 {
585 var = PHI_ARG_DEF (phi, i);
586 if (!phi_ssa_name_p (var))
587 continue;
588 stmt = SSA_NAME_DEF_STMT (var);
589 e = PHI_ARG_EDGE (phi, i);
590
591 /* Any uses in PHIs which either don't have def's or are not
592 defined in the block from which the def comes, will be live
593 on entry to that block. */
594 if (!stmt || e->src != bb_for_stmt (stmt))
595 add_livein_if_notdef (live, saw_def, var, e->src);
596 }
597 }
598
599 /* Don't mark PHI results as defined until all the PHI nodes have
600 been processed. If the PHI sequence is:
601 a_3 = PHI <a_1, a_2>
602 b_3 = PHI <b_1, a_3>
603 The a_3 referred to in b_3's PHI node is the one incoming on the
604 edge, *not* the PHI node just seen. */
605
606 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
607 {
608 var = PHI_RESULT (phi);
609 set_if_valid (map, saw_def, var);
610 }
611
612 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
613 {
614 stmt = bsi_stmt (bsi);
615 get_stmt_operands (stmt);
616 ann = stmt_ann (stmt);
617
618 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
619 {
620 add_livein_if_notdef (live, saw_def, op, bb);
621 }
622
623 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
624 {
625 set_if_valid (map, saw_def, op);
626 }
627 }
628 }
629
630 VARRAY_INT_INIT (stack, last_basic_block, "stack");
631 EXECUTE_IF_SET_IN_BITMAP (live->global, 0, i,
632 {
633 live_worklist (live, stack, i);
634 });
635
636 #ifdef ENABLE_CHECKING
637 /* Check for live on entry partitions and report those with a DEF in
638 the program. This will typically mean an optimization has done
639 something wrong. */
640
641 bb = ENTRY_BLOCK_PTR;
642 num = 0;
643 for (e = bb->succ; e; e = e->succ_next)
644 {
645 int entry_block = e->dest->index;
646 if (e->dest == EXIT_BLOCK_PTR)
647 continue;
648 for (i = 0; i < num_var_partitions (map); i++)
649 {
650 basic_block tmp;
651 tree d;
652 var = partition_to_var (map, i);
653 stmt = SSA_NAME_DEF_STMT (var);
654 tmp = bb_for_stmt (stmt);
655 d = default_def (SSA_NAME_VAR (var));
656
657 if (bitmap_bit_p (live_entry_blocks (live, i), entry_block))
658 {
659 if (!IS_EMPTY_STMT (stmt))
660 {
661 num++;
662 print_generic_expr (stderr, var, TDF_SLIM);
663 fprintf (stderr, " is defined ");
664 if (tmp)
665 fprintf (stderr, " in BB%d, ", tmp->index);
666 fprintf (stderr, "by:\n");
667 print_generic_expr (stderr, stmt, TDF_SLIM);
668 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
669 entry_block);
670 fprintf (stderr, " So it appears to have multiple defs.\n");
671 }
672 else
673 {
674 if (d != var)
675 {
676 num++;
677 print_generic_expr (stderr, var, TDF_SLIM);
678 fprintf (stderr, " is live-on-entry to BB%d ",entry_block);
679 if (d)
680 {
681 fprintf (stderr, " but is not the default def of ");
682 print_generic_expr (stderr, d, TDF_SLIM);
683 fprintf (stderr, "\n");
684 }
685 else
686 fprintf (stderr, " and there is no default def.\n");
687 }
688 }
689 }
690 else
691 if (d == var)
692 {
693 /* The only way this var shouldn't be marked live on entry is
694 if it occurs in a PHI argument of the block. */
695 int z, ok = 0;
696 for (phi = phi_nodes (e->dest);
697 phi && !ok;
698 phi = PHI_CHAIN (phi))
699 {
700 for (z = 0; z < PHI_NUM_ARGS (phi); z++)
701 if (var == PHI_ARG_DEF (phi, z))
702 {
703 ok = 1;
704 break;
705 }
706 }
707 if (ok)
708 continue;
709 num++;
710 print_generic_expr (stderr, var, TDF_SLIM);
711 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
712 entry_block);
713 fprintf (stderr, "but it is a default def so it should be.\n");
714 }
715 }
716 }
717 gcc_assert (num <= 0);
718 #endif
719
720 BITMAP_XFREE (saw_def);
721
722 return live;
723 }
724
725
726 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
727
728 void
729 calculate_live_on_exit (tree_live_info_p liveinfo)
730 {
731 unsigned b;
732 int i, x;
733 bitmap *on_exit;
734 basic_block bb;
735 edge e;
736 tree t, phi;
737 bitmap on_entry;
738 var_map map = liveinfo->map;
739
740 on_exit = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
741 for (x = 0; x < last_basic_block; x++)
742 on_exit[x] = BITMAP_XMALLOC ();
743
744 /* Set all the live-on-exit bits for uses in PHIs. */
745 FOR_EACH_BB (bb)
746 {
747 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
748 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
749 {
750 t = PHI_ARG_DEF (phi, i);
751 e = PHI_ARG_EDGE (phi, i);
752 if (!phi_ssa_name_p (t) || e->src == ENTRY_BLOCK_PTR)
753 continue;
754 set_if_valid (map, on_exit[e->src->index], t);
755 }
756 }
757
758 /* Set live on exit for all predecessors of live on entry's. */
759 for (i = 0; i < num_var_partitions (map); i++)
760 {
761 on_entry = live_entry_blocks (liveinfo, i);
762 EXECUTE_IF_SET_IN_BITMAP (on_entry, 0, b,
763 {
764 for (e = BASIC_BLOCK(b)->pred; e; e = e->pred_next)
765 if (e->src != ENTRY_BLOCK_PTR)
766 bitmap_set_bit (on_exit[e->src->index], i);
767 });
768 }
769
770 liveinfo->liveout = on_exit;
771 }
772
773
774 /* Initialize a tree_partition_associator object using MAP. */
775
776 tpa_p
777 tpa_init (var_map map)
778 {
779 tpa_p tpa;
780 int num_partitions = num_var_partitions (map);
781 int x;
782
783 if (num_partitions == 0)
784 return NULL;
785
786 tpa = (tpa_p) xmalloc (sizeof (struct tree_partition_associator_d));
787 tpa->num_trees = 0;
788 tpa->uncompressed_num = -1;
789 tpa->map = map;
790 tpa->next_partition = (int *)xmalloc (num_partitions * sizeof (int));
791 memset (tpa->next_partition, TPA_NONE, num_partitions * sizeof (int));
792
793 tpa->partition_to_tree_map = (int *)xmalloc (num_partitions * sizeof (int));
794 memset (tpa->partition_to_tree_map, TPA_NONE, num_partitions * sizeof (int));
795
796 x = MAX (40, (num_partitions / 20));
797 VARRAY_TREE_INIT (tpa->trees, x, "trees");
798 VARRAY_INT_INIT (tpa->first_partition, x, "first_partition");
799
800 return tpa;
801
802 }
803
804
805 /* Remove PARTITION_INDEX from TREE_INDEX's list in the tpa structure TPA. */
806
807 void
808 tpa_remove_partition (tpa_p tpa, int tree_index, int partition_index)
809 {
810 int i;
811
812 i = tpa_first_partition (tpa, tree_index);
813 if (i == partition_index)
814 {
815 VARRAY_INT (tpa->first_partition, tree_index) = tpa->next_partition[i];
816 }
817 else
818 {
819 for ( ; i != TPA_NONE; i = tpa_next_partition (tpa, i))
820 {
821 if (tpa->next_partition[i] == partition_index)
822 {
823 tpa->next_partition[i] = tpa->next_partition[partition_index];
824 break;
825 }
826 }
827 }
828 }
829
830
831 /* Free the memory used by tree_partition_associator object TPA. */
832
833 void
834 tpa_delete (tpa_p tpa)
835 {
836 if (!tpa)
837 return;
838
839 free (tpa->partition_to_tree_map);
840 free (tpa->next_partition);
841 free (tpa);
842 }
843
844
845 /* This function will remove any tree entries from TPA which have only a single
846 element. This will help keep the size of the conflict graph down. The
847 function returns the number of remaining tree lists. */
848
849 int
850 tpa_compact (tpa_p tpa)
851 {
852 int last, x, y, first, swap_i;
853 tree swap_t;
854
855 /* Find the last list which has more than 1 partition. */
856 for (last = tpa->num_trees - 1; last > 0; last--)
857 {
858 first = tpa_first_partition (tpa, last);
859 if (tpa_next_partition (tpa, first) != NO_PARTITION)
860 break;
861 }
862
863 x = 0;
864 while (x < last)
865 {
866 first = tpa_first_partition (tpa, x);
867
868 /* If there is not more than one partition, swap with the current end
869 of the tree list. */
870 if (tpa_next_partition (tpa, first) == NO_PARTITION)
871 {
872 swap_t = VARRAY_TREE (tpa->trees, last);
873 swap_i = VARRAY_INT (tpa->first_partition, last);
874
875 /* Update the last entry. Since it is known to only have one
876 partition, there is nothing else to update. */
877 VARRAY_TREE (tpa->trees, last) = VARRAY_TREE (tpa->trees, x);
878 VARRAY_INT (tpa->first_partition, last)
879 = VARRAY_INT (tpa->first_partition, x);
880 tpa->partition_to_tree_map[tpa_first_partition (tpa, last)] = last;
881
882 /* Since this list is known to have more than one partition, update
883 the list owner entries. */
884 VARRAY_TREE (tpa->trees, x) = swap_t;
885 VARRAY_INT (tpa->first_partition, x) = swap_i;
886 for (y = tpa_first_partition (tpa, x);
887 y != NO_PARTITION;
888 y = tpa_next_partition (tpa, y))
889 tpa->partition_to_tree_map[y] = x;
890
891 /* Ensure last is a list with more than one partition. */
892 last--;
893 for (; last > x; last--)
894 {
895 first = tpa_first_partition (tpa, last);
896 if (tpa_next_partition (tpa, first) != NO_PARTITION)
897 break;
898 }
899 }
900 x++;
901 }
902
903 first = tpa_first_partition (tpa, x);
904 if (tpa_next_partition (tpa, first) != NO_PARTITION)
905 x++;
906 tpa->uncompressed_num = tpa->num_trees;
907 tpa->num_trees = x;
908 return last;
909 }
910
911
912 /* Initialize a root_var object with SSA partitions from MAP which are based
913 on each root variable. */
914
915 root_var_p
916 root_var_init (var_map map)
917 {
918 root_var_p rv;
919 int num_partitions = num_var_partitions (map);
920 int x, p;
921 tree t;
922 var_ann_t ann;
923 sbitmap seen;
924
925 rv = tpa_init (map);
926 if (!rv)
927 return NULL;
928
929 seen = sbitmap_alloc (num_partitions);
930 sbitmap_zero (seen);
931
932 /* Start at the end and work towards the front. This will provide a list
933 that is ordered from smallest to largest. */
934 for (x = num_partitions - 1; x >= 0; x--)
935 {
936 t = partition_to_var (map, x);
937
938 /* The var map may not be compacted yet, so check for NULL. */
939 if (!t)
940 continue;
941
942 p = var_to_partition (map, t);
943
944 gcc_assert (p != NO_PARTITION);
945
946 /* Make sure we only put coalesced partitions into the list once. */
947 if (TEST_BIT (seen, p))
948 continue;
949 SET_BIT (seen, p);
950 if (TREE_CODE (t) == SSA_NAME)
951 t = SSA_NAME_VAR (t);
952 ann = var_ann (t);
953 if (ann->root_var_processed)
954 {
955 rv->next_partition[p] = VARRAY_INT (rv->first_partition,
956 VAR_ANN_ROOT_INDEX (ann));
957 VARRAY_INT (rv->first_partition, VAR_ANN_ROOT_INDEX (ann)) = p;
958 }
959 else
960 {
961 ann->root_var_processed = 1;
962 VAR_ANN_ROOT_INDEX (ann) = rv->num_trees++;
963 VARRAY_PUSH_TREE (rv->trees, t);
964 VARRAY_PUSH_INT (rv->first_partition, p);
965 }
966 rv->partition_to_tree_map[p] = VAR_ANN_ROOT_INDEX (ann);
967 }
968
969 /* Reset the out_of_ssa_tag flag on each variable for later use. */
970 for (x = 0; x < rv->num_trees; x++)
971 {
972 t = VARRAY_TREE (rv->trees, x);
973 var_ann (t)->root_var_processed = 0;
974 }
975
976 sbitmap_free (seen);
977 return rv;
978 }
979
980
981 /* Initialize a type_var structure which associates all the partitions in MAP
982 of the same type to the type node's index. Volatiles are ignored. */
983
984 type_var_p
985 type_var_init (var_map map)
986 {
987 type_var_p tv;
988 int x, y, p;
989 int num_partitions = num_var_partitions (map);
990 tree t;
991 sbitmap seen;
992
993 seen = sbitmap_alloc (num_partitions);
994 sbitmap_zero (seen);
995
996 tv = tpa_init (map);
997 if (!tv)
998 return NULL;
999
1000 for (x = num_partitions - 1; x >= 0; x--)
1001 {
1002 t = partition_to_var (map, x);
1003
1004 /* Disallow coalescing of these types of variables. */
1005 if (!t
1006 || TREE_THIS_VOLATILE (t)
1007 || TREE_CODE (t) == RESULT_DECL
1008 || TREE_CODE (t) == PARM_DECL
1009 || (DECL_P (t)
1010 && (DECL_REGISTER (t)
1011 || !DECL_IGNORED_P (t)
1012 || DECL_RTL_SET_P (t))))
1013 continue;
1014
1015 p = var_to_partition (map, t);
1016
1017 gcc_assert (p != NO_PARTITION);
1018
1019 /* If partitions have been coalesced, only add the representative
1020 for the partition to the list once. */
1021 if (TEST_BIT (seen, p))
1022 continue;
1023 SET_BIT (seen, p);
1024 t = TREE_TYPE (t);
1025
1026 /* Find the list for this type. */
1027 for (y = 0; y < tv->num_trees; y++)
1028 if (t == VARRAY_TREE (tv->trees, y))
1029 break;
1030 if (y == tv->num_trees)
1031 {
1032 tv->num_trees++;
1033 VARRAY_PUSH_TREE (tv->trees, t);
1034 VARRAY_PUSH_INT (tv->first_partition, p);
1035 }
1036 else
1037 {
1038 tv->next_partition[p] = VARRAY_INT (tv->first_partition, y);
1039 VARRAY_INT (tv->first_partition, y) = p;
1040 }
1041 tv->partition_to_tree_map[p] = y;
1042 }
1043 sbitmap_free (seen);
1044 return tv;
1045 }
1046
1047
1048 /* Create a new coalesce list object from MAP and return it. */
1049
1050 coalesce_list_p
1051 create_coalesce_list (var_map map)
1052 {
1053 coalesce_list_p list;
1054
1055 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
1056
1057 list->map = map;
1058 list->add_mode = true;
1059 list->list = (partition_pair_p *) xcalloc (num_var_partitions (map),
1060 sizeof (struct partition_pair_d));
1061 return list;
1062 }
1063
1064
1065 /* Delete coalesce list CL. */
1066
1067 void
1068 delete_coalesce_list (coalesce_list_p cl)
1069 {
1070 free (cl->list);
1071 free (cl);
1072 }
1073
1074
1075 /* Find a matching coalesce pair object in CL for partitions P1 and P2. If
1076 one isn't found, return NULL if CREATE is false, otherwise create a new
1077 coalesce pair object and return it. */
1078
1079 static partition_pair_p
1080 find_partition_pair (coalesce_list_p cl, int p1, int p2, bool create)
1081 {
1082 partition_pair_p node, tmp;
1083 int s;
1084
1085 /* Normalize so that p1 is the smaller value. */
1086 if (p2 < p1)
1087 {
1088 s = p1;
1089 p1 = p2;
1090 p2 = s;
1091 }
1092
1093 tmp = NULL;
1094
1095 /* The list is sorted such that if we find a value greater than p2,
1096 p2 is not in the list. */
1097 for (node = cl->list[p1]; node; node = node->next)
1098 {
1099 if (node->second_partition == p2)
1100 return node;
1101 else
1102 if (node->second_partition > p2)
1103 break;
1104 tmp = node;
1105 }
1106
1107 if (!create)
1108 return NULL;
1109
1110 node = (partition_pair_p) xmalloc (sizeof (struct partition_pair_d));
1111 node->first_partition = p1;
1112 node->second_partition = p2;
1113 node->cost = 0;
1114
1115 if (tmp != NULL)
1116 {
1117 node->next = tmp->next;
1118 tmp->next = node;
1119 }
1120 else
1121 {
1122 /* This is now the first node in the list. */
1123 node->next = cl->list[p1];
1124 cl->list[p1] = node;
1125 }
1126
1127 return node;
1128 }
1129
1130
1131 /* Add a potential coalesce between P1 and P2 in CL with a cost of VALUE. */
1132
1133 void
1134 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
1135 {
1136 partition_pair_p node;
1137
1138 gcc_assert (cl->add_mode);
1139
1140 if (p1 == p2)
1141 return;
1142
1143 node = find_partition_pair (cl, p1, p2, true);
1144
1145 node->cost += value;
1146 }
1147
1148
1149 /* Comparison function to allow qsort to sort P1 and P2 in descending order. */
1150
1151 static
1152 int compare_pairs (const void *p1, const void *p2)
1153 {
1154 return (*(partition_pair_p *)p2)->cost - (*(partition_pair_p *)p1)->cost;
1155 }
1156
1157
1158 /* Prepare CL for removal of preferred pairs. When finished, list element
1159 0 has all the coalesce pairs, sorted in order from most important coalesce
1160 to least important. */
1161
1162 void
1163 sort_coalesce_list (coalesce_list_p cl)
1164 {
1165 int x, num, count;
1166 partition_pair_p chain, p;
1167 partition_pair_p *list;
1168
1169 gcc_assert (cl->add_mode);
1170
1171 cl->add_mode = false;
1172
1173 /* Compact the array of lists to a single list, and count the elements. */
1174 num = 0;
1175 chain = NULL;
1176 for (x = 0; x < num_var_partitions (cl->map); x++)
1177 if (cl->list[x] != NULL)
1178 {
1179 for (p = cl->list[x]; p->next != NULL; p = p->next)
1180 num++;
1181 num++;
1182 p->next = chain;
1183 chain = cl->list[x];
1184 cl->list[x] = NULL;
1185 }
1186
1187 /* Only call qsort if there are more than 2 items. */
1188 if (num > 2)
1189 {
1190 list = xmalloc (sizeof (partition_pair_p) * num);
1191 count = 0;
1192 for (p = chain; p != NULL; p = p->next)
1193 list[count++] = p;
1194
1195 gcc_assert (count == num);
1196
1197 qsort (list, count, sizeof (partition_pair_p), compare_pairs);
1198
1199 p = list[0];
1200 for (x = 1; x < num; x++)
1201 {
1202 p->next = list[x];
1203 p = list[x];
1204 }
1205 p->next = NULL;
1206 cl->list[0] = list[0];
1207 free (list);
1208 }
1209 else
1210 {
1211 cl->list[0] = chain;
1212 if (num == 2)
1213 {
1214 /* Simply swap the two elements if they are in the wrong order. */
1215 if (chain->cost < chain->next->cost)
1216 {
1217 cl->list[0] = chain->next;
1218 cl->list[0]->next = chain;
1219 chain->next = NULL;
1220 }
1221 }
1222 }
1223 }
1224
1225
1226 /* Retrieve the best remaining pair to coalesce from CL. Returns the 2
1227 partitions via P1 and P2. Their calculated cost is returned by the function.
1228 NO_BEST_COALESCE is returned if the coalesce list is empty. */
1229
1230 int
1231 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
1232 {
1233 partition_pair_p node;
1234 int ret;
1235
1236 gcc_assert (!cl->add_mode);
1237
1238 node = cl->list[0];
1239 if (!node)
1240 return NO_BEST_COALESCE;
1241
1242 cl->list[0] = node->next;
1243
1244 *p1 = node->first_partition;
1245 *p2 = node->second_partition;
1246 ret = node->cost;
1247 free (node);
1248
1249 return ret;
1250 }
1251
1252
1253 /* If variable VAR is in a partition in MAP, add a conflict in GRAPH between
1254 VAR and any other live partitions in VEC which are associated via TPA.
1255 Reset the live bit in VEC. */
1256
1257 static inline void
1258 add_conflicts_if_valid (tpa_p tpa, conflict_graph graph,
1259 var_map map, bitmap vec, tree var)
1260 {
1261 int p, y, first;
1262 p = var_to_partition (map, var);
1263 if (p != NO_PARTITION)
1264 {
1265 bitmap_clear_bit (vec, p);
1266 first = tpa_find_tree (tpa, p);
1267 /* If find returns nothing, this object isn't interesting. */
1268 if (first == TPA_NONE)
1269 return;
1270 /* Only add interferences between objects in the same list. */
1271 for (y = tpa_first_partition (tpa, first);
1272 y != TPA_NONE;
1273 y = tpa_next_partition (tpa, y))
1274 {
1275 if (bitmap_bit_p (vec, y))
1276 conflict_graph_add (graph, p, y);
1277 }
1278 }
1279 }
1280
1281
1282 /* Return a conflict graph for the information contained in LIVE_INFO. Only
1283 conflicts between items in the same TPA list are added. If optional
1284 coalesce list CL is passed in, any copies encountered are added. */
1285
1286 conflict_graph
1287 build_tree_conflict_graph (tree_live_info_p liveinfo, tpa_p tpa,
1288 coalesce_list_p cl)
1289 {
1290 conflict_graph graph;
1291 var_map map;
1292 bitmap live;
1293 int x, y, i;
1294 basic_block bb;
1295 varray_type partition_link, tpa_to_clear, tpa_nodes;
1296 unsigned l;
1297 ssa_op_iter iter;
1298
1299 map = live_var_map (liveinfo);
1300 graph = conflict_graph_new (num_var_partitions (map));
1301
1302 if (tpa_num_trees (tpa) == 0)
1303 return graph;
1304
1305 live = BITMAP_XMALLOC ();
1306
1307 VARRAY_INT_INIT (partition_link, num_var_partitions (map) + 1, "part_link");
1308 VARRAY_INT_INIT (tpa_nodes, tpa_num_trees (tpa), "tpa nodes");
1309 VARRAY_INT_INIT (tpa_to_clear, 50, "tpa to clear");
1310
1311 FOR_EACH_BB (bb)
1312 {
1313 block_stmt_iterator bsi;
1314 tree phi;
1315
1316 /* Start with live on exit temporaries. */
1317 bitmap_copy (live, live_on_exit (liveinfo, bb));
1318
1319 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
1320 {
1321 bool is_a_copy = false;
1322 tree stmt = bsi_stmt (bsi);
1323 stmt_ann_t ann;
1324
1325 get_stmt_operands (stmt);
1326 ann = stmt_ann (stmt);
1327
1328 /* A copy between 2 partitions does not introduce an interference
1329 by itself. If they did, you would never be able to coalesce
1330 two things which are copied. If the two variables really do
1331 conflict, they will conflict elsewhere in the program.
1332
1333 This is handled specially here since we may also be interested
1334 in copies between real variables and SSA_NAME variables. We may
1335 be interested in trying to coalesce SSA_NAME variables with
1336 root variables in some cases. */
1337
1338 if (TREE_CODE (stmt) == MODIFY_EXPR)
1339 {
1340 tree lhs = TREE_OPERAND (stmt, 0);
1341 tree rhs = TREE_OPERAND (stmt, 1);
1342 int p1, p2;
1343 int bit;
1344
1345 if (DECL_P (lhs) || TREE_CODE (lhs) == SSA_NAME)
1346 p1 = var_to_partition (map, lhs);
1347 else
1348 p1 = NO_PARTITION;
1349
1350 if (DECL_P (rhs) || TREE_CODE (rhs) == SSA_NAME)
1351 p2 = var_to_partition (map, rhs);
1352 else
1353 p2 = NO_PARTITION;
1354
1355 if (p1 != NO_PARTITION && p2 != NO_PARTITION)
1356 {
1357 is_a_copy = true;
1358 bit = bitmap_bit_p (live, p2);
1359 /* If the RHS is live, make it not live while we add
1360 the conflicts, then make it live again. */
1361 if (bit)
1362 bitmap_clear_bit (live, p2);
1363 add_conflicts_if_valid (tpa, graph, map, live, lhs);
1364 if (bit)
1365 bitmap_set_bit (live, p2);
1366 if (cl)
1367 add_coalesce (cl, p1, p2, 1);
1368 set_if_valid (map, live, rhs);
1369 }
1370 }
1371
1372 if (!is_a_copy)
1373 {
1374 tree var;
1375 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
1376 {
1377 add_conflicts_if_valid (tpa, graph, map, live, var);
1378 }
1379
1380 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1381 {
1382 set_if_valid (map, live, var);
1383 }
1384 }
1385 }
1386
1387 /* If result of a PHI is unused, then the loops over the statements
1388 will not record any conflicts. However, since the PHI node is
1389 going to be translated out of SSA form we must record a conflict
1390 between the result of the PHI and any variables with are live.
1391 Otherwise the out-of-ssa translation may create incorrect code. */
1392 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1393 {
1394 tree result = PHI_RESULT (phi);
1395 int p = var_to_partition (map, result);
1396
1397 if (p != NO_PARTITION && ! bitmap_bit_p (live, p))
1398 add_conflicts_if_valid (tpa, graph, map, live, result);
1399 }
1400
1401 /* Anything which is still live at this point interferes.
1402 In order to implement this efficiently, only conflicts between
1403 partitions which have the same TPA root need be added.
1404 TPA roots which have been seen are tracked in 'tpa_nodes'. A nonzero
1405 entry points to an index into 'partition_link', which then indexes
1406 into itself forming a linked list of partitions sharing a tpa root
1407 which have been seen as live up to this point. Since partitions start
1408 at index zero, all entries in partition_link are (partition + 1).
1409
1410 Conflicts are added between the current partition and any already seen.
1411 tpa_clear contains all the tpa_roots processed, and these are the only
1412 entries which need to be zero'd out for a clean restart. */
1413
1414 EXECUTE_IF_SET_IN_BITMAP (live, 0, x,
1415 {
1416 i = tpa_find_tree (tpa, x);
1417 if (i != TPA_NONE)
1418 {
1419 int start = VARRAY_INT (tpa_nodes, i);
1420 /* If start is 0, a new root reference list is being started.
1421 Register it to be cleared. */
1422 if (!start)
1423 VARRAY_PUSH_INT (tpa_to_clear, i);
1424
1425 /* Add interferences to other tpa members seen. */
1426 for (y = start; y != 0; y = VARRAY_INT (partition_link, y))
1427 conflict_graph_add (graph, x, y - 1);
1428 VARRAY_INT (tpa_nodes, i) = x + 1;
1429 VARRAY_INT (partition_link, x + 1) = start;
1430 }
1431 });
1432
1433 /* Now clear the used tpa root references. */
1434 for (l = 0; l < VARRAY_ACTIVE_SIZE (tpa_to_clear); l++)
1435 VARRAY_INT (tpa_nodes, VARRAY_INT (tpa_to_clear, l)) = 0;
1436 VARRAY_POP_ALL (tpa_to_clear);
1437 }
1438
1439 BITMAP_XFREE (live);
1440 return graph;
1441 }
1442
1443
1444 /* This routine will attempt to coalesce the elements in TPA subject to the
1445 conflicts found in GRAPH. If optional coalesce_list CL is provided,
1446 only coalesces specified within the coalesce list are attempted. Otherwise
1447 an attempt is made to coalesce as many partitions within each TPA grouping
1448 as possible. If DEBUG is provided, debug output will be sent there. */
1449
1450 void
1451 coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
1452 coalesce_list_p cl, FILE *debug)
1453 {
1454 int x, y, z, w;
1455 tree var, tmp;
1456
1457 /* Attempt to coalesce any items in a coalesce list. */
1458 if (cl)
1459 {
1460 while (pop_best_coalesce (cl, &x, &y) != NO_BEST_COALESCE)
1461 {
1462 if (debug)
1463 {
1464 fprintf (debug, "Coalesce list: (%d)", x);
1465 print_generic_expr (debug, partition_to_var (map, x), TDF_SLIM);
1466 fprintf (debug, " & (%d)", y);
1467 print_generic_expr (debug, partition_to_var (map, y), TDF_SLIM);
1468 }
1469
1470 w = tpa_find_tree (tpa, x);
1471 z = tpa_find_tree (tpa, y);
1472 if (w != z || w == TPA_NONE || z == TPA_NONE)
1473 {
1474 if (debug)
1475 {
1476 if (w != z)
1477 fprintf (debug, ": Fail, Non-matching TPA's\n");
1478 if (w == TPA_NONE)
1479 fprintf (debug, ": Fail %d non TPA.\n", x);
1480 else
1481 fprintf (debug, ": Fail %d non TPA.\n", y);
1482 }
1483 continue;
1484 }
1485 var = partition_to_var (map, x);
1486 tmp = partition_to_var (map, y);
1487 x = var_to_partition (map, var);
1488 y = var_to_partition (map, tmp);
1489 if (debug)
1490 fprintf (debug, " [map: %d, %d] ", x, y);
1491 if (x == y)
1492 {
1493 if (debug)
1494 fprintf (debug, ": Already Coalesced.\n");
1495 continue;
1496 }
1497 if (!conflict_graph_conflict_p (graph, x, y))
1498 {
1499 z = var_union (map, var, tmp);
1500 if (z == NO_PARTITION)
1501 {
1502 if (debug)
1503 fprintf (debug, ": Unable to perform partition union.\n");
1504 continue;
1505 }
1506
1507 /* z is the new combined partition. We need to remove the other
1508 partition from the list. Set x to be that other partition. */
1509 if (z == x)
1510 {
1511 conflict_graph_merge_regs (graph, x, y);
1512 w = tpa_find_tree (tpa, y);
1513 tpa_remove_partition (tpa, w, y);
1514 }
1515 else
1516 {
1517 conflict_graph_merge_regs (graph, y, x);
1518 w = tpa_find_tree (tpa, x);
1519 tpa_remove_partition (tpa, w, x);
1520 }
1521
1522 if (debug)
1523 fprintf (debug, ": Success -> %d\n", z);
1524 }
1525 else
1526 if (debug)
1527 fprintf (debug, ": Fail due to conflict\n");
1528 }
1529 /* If using a coalesce list, don't try to coalesce anything else. */
1530 return;
1531 }
1532
1533 for (x = 0; x < tpa_num_trees (tpa); x++)
1534 {
1535 while (tpa_first_partition (tpa, x) != TPA_NONE)
1536 {
1537 int p1, p2;
1538 /* Coalesce first partition with anything that doesn't conflict. */
1539 y = tpa_first_partition (tpa, x);
1540 tpa_remove_partition (tpa, x, y);
1541
1542 var = partition_to_var (map, y);
1543 /* p1 is the partition representative to which y belongs. */
1544 p1 = var_to_partition (map, var);
1545
1546 for (z = tpa_next_partition (tpa, y);
1547 z != TPA_NONE;
1548 z = tpa_next_partition (tpa, z))
1549 {
1550 tmp = partition_to_var (map, z);
1551 /* p2 is the partition representative to which z belongs. */
1552 p2 = var_to_partition (map, tmp);
1553 if (debug)
1554 {
1555 fprintf (debug, "Coalesce : ");
1556 print_generic_expr (debug, var, TDF_SLIM);
1557 fprintf (debug, " &");
1558 print_generic_expr (debug, tmp, TDF_SLIM);
1559 fprintf (debug, " (%d ,%d)", p1, p2);
1560 }
1561
1562 /* If partitions are already merged, don't check for conflict. */
1563 if (tmp == var)
1564 {
1565 tpa_remove_partition (tpa, x, z);
1566 if (debug)
1567 fprintf (debug, ": Already coalesced\n");
1568 }
1569 else
1570 if (!conflict_graph_conflict_p (graph, p1, p2))
1571 {
1572 int v;
1573 if (tpa_find_tree (tpa, y) == TPA_NONE
1574 || tpa_find_tree (tpa, z) == TPA_NONE)
1575 {
1576 if (debug)
1577 fprintf (debug, ": Fail non-TPA member\n");
1578 continue;
1579 }
1580 if ((v = var_union (map, var, tmp)) == NO_PARTITION)
1581 {
1582 if (debug)
1583 fprintf (debug, ": Fail cannot combine partitions\n");
1584 continue;
1585 }
1586
1587 tpa_remove_partition (tpa, x, z);
1588 if (v == p1)
1589 conflict_graph_merge_regs (graph, v, z);
1590 else
1591 {
1592 /* Update the first partition's representative. */
1593 conflict_graph_merge_regs (graph, v, y);
1594 p1 = v;
1595 }
1596
1597 /* The root variable of the partition may be changed
1598 now. */
1599 var = partition_to_var (map, p1);
1600
1601 if (debug)
1602 fprintf (debug, ": Success -> %d\n", v);
1603 }
1604 else
1605 if (debug)
1606 fprintf (debug, ": Fail, Conflict\n");
1607 }
1608 }
1609 }
1610 }
1611
1612
1613 /* Send debug info for coalesce list CL to file F. */
1614
1615 void
1616 dump_coalesce_list (FILE *f, coalesce_list_p cl)
1617 {
1618 partition_pair_p node;
1619 int x, num;
1620 tree var;
1621
1622 if (cl->add_mode)
1623 {
1624 fprintf (f, "Coalesce List:\n");
1625 num = num_var_partitions (cl->map);
1626 for (x = 0; x < num; x++)
1627 {
1628 node = cl->list[x];
1629 if (node)
1630 {
1631 fprintf (f, "[");
1632 print_generic_expr (f, partition_to_var (cl->map, x), TDF_SLIM);
1633 fprintf (f, "] - ");
1634 for ( ; node; node = node->next)
1635 {
1636 var = partition_to_var (cl->map, node->second_partition);
1637 print_generic_expr (f, var, TDF_SLIM);
1638 fprintf (f, "(%1d), ", node->cost);
1639 }
1640 fprintf (f, "\n");
1641 }
1642 }
1643 }
1644 else
1645 {
1646 fprintf (f, "Sorted Coalesce list:\n");
1647 for (node = cl->list[0]; node; node = node->next)
1648 {
1649 fprintf (f, "(%d) ", node->cost);
1650 var = partition_to_var (cl->map, node->first_partition);
1651 print_generic_expr (f, var, TDF_SLIM);
1652 fprintf (f, " : ");
1653 var = partition_to_var (cl->map, node->second_partition);
1654 print_generic_expr (f, var, TDF_SLIM);
1655 fprintf (f, "\n");
1656 }
1657 }
1658 }
1659
1660
1661 /* Output tree_partition_associator object TPA to file F.. */
1662
1663 void
1664 tpa_dump (FILE *f, tpa_p tpa)
1665 {
1666 int x, i;
1667
1668 if (!tpa)
1669 return;
1670
1671 for (x = 0; x < tpa_num_trees (tpa); x++)
1672 {
1673 print_generic_expr (f, tpa_tree (tpa, x), TDF_SLIM);
1674 fprintf (f, " : (");
1675 for (i = tpa_first_partition (tpa, x);
1676 i != TPA_NONE;
1677 i = tpa_next_partition (tpa, i))
1678 {
1679 fprintf (f, "(%d)",i);
1680 print_generic_expr (f, partition_to_var (tpa->map, i), TDF_SLIM);
1681 fprintf (f, " ");
1682
1683 #ifdef ENABLE_CHECKING
1684 if (tpa_find_tree (tpa, i) != x)
1685 fprintf (f, "**find tree incorrectly set** ");
1686 #endif
1687
1688 }
1689 fprintf (f, ")\n");
1690 }
1691 fflush (f);
1692 }
1693
1694
1695 /* Output partition map MAP to file F. */
1696
1697 void
1698 dump_var_map (FILE *f, var_map map)
1699 {
1700 int t;
1701 unsigned x, y;
1702 int p;
1703
1704 fprintf (f, "\nPartition map \n\n");
1705
1706 for (x = 0; x < map->num_partitions; x++)
1707 {
1708 if (map->compact_to_partition != NULL)
1709 p = map->compact_to_partition[x];
1710 else
1711 p = x;
1712
1713 if (map->partition_to_var[p] == NULL_TREE)
1714 continue;
1715
1716 t = 0;
1717 for (y = 1; y < num_ssa_names; y++)
1718 {
1719 p = partition_find (map->var_partition, y);
1720 if (map->partition_to_compact)
1721 p = map->partition_to_compact[p];
1722 if (p == (int)x)
1723 {
1724 if (t++ == 0)
1725 {
1726 fprintf(f, "Partition %d (", x);
1727 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1728 fprintf (f, " - ");
1729 }
1730 fprintf (f, "%d ", y);
1731 }
1732 }
1733 if (t != 0)
1734 fprintf (f, ")\n");
1735 }
1736 fprintf (f, "\n");
1737 }
1738
1739
1740 /* Output live range info LIVE to file F, controlled by FLAG. */
1741
1742 void
1743 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1744 {
1745 basic_block bb;
1746 int i;
1747 var_map map = live->map;
1748
1749 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1750 {
1751 FOR_EACH_BB (bb)
1752 {
1753 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1754 for (i = 0; i < num_var_partitions (map); i++)
1755 {
1756 if (bitmap_bit_p (live_entry_blocks (live, i), bb->index))
1757 {
1758 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1759 fprintf (f, " ");
1760 }
1761 }
1762 fprintf (f, "\n");
1763 }
1764 }
1765
1766 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1767 {
1768 FOR_EACH_BB (bb)
1769 {
1770 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1771 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i,
1772 {
1773 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1774 fprintf (f, " ");
1775 });
1776 fprintf (f, "\n");
1777 }
1778 }
1779 }
1780
1781 #ifdef ENABLE_CHECKING
1782 void
1783 register_ssa_partition_check (tree ssa_var)
1784 {
1785 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1786 if (!is_gimple_reg (SSA_NAME_VAR (ssa_var)))
1787 {
1788 fprintf (stderr, "Illegally registering a virtual SSA name :");
1789 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1790 fprintf (stderr, " in the SSA->Normal phase.\n");
1791 internal_error ("SSA corruption");
1792 }
1793 }
1794 #endif