tree-vect-loop-manip.c (vect_can_advance_ivs_p): Query is_gimple_reg on the SSA name...
[gcc.git] / gcc / tree-ssa-live.c
1 /* Liveness for SSA trees.
2 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "gimple-pretty-print.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "timevar.h"
31 #include "dumpfile.h"
32 #include "tree-ssa-live.h"
33 #include "diagnostic-core.h"
34 #include "debug.h"
35 #include "flags.h"
36 #include "gimple.h"
37
38 #ifdef ENABLE_CHECKING
39 static void verify_live_on_entry (tree_live_info_p);
40 #endif
41
42
43 /* VARMAP maintains a mapping from SSA version number to real variables.
44
45 All SSA_NAMES are divided into partitions. Initially each ssa_name is the
46 only member of it's own partition. Coalescing will attempt to group any
47 ssa_names which occur in a copy or in a PHI node into the same partition.
48
49 At the end of out-of-ssa, each partition becomes a "real" variable and is
50 rewritten as a compiler variable.
51
52 The var_map data structure is used to manage these partitions. It allows
53 partitions to be combined, and determines which partition belongs to what
54 ssa_name or variable, and vice versa. */
55
56
57 /* This routine will initialize the basevar fields of MAP. */
58
59 static void
60 var_map_base_init (var_map map)
61 {
62 int x, num_part;
63 tree var;
64 htab_t decl_to_index;
65 struct tree_int_map *m, *mapstorage;
66
67 num_part = num_var_partitions (map);
68 decl_to_index = htab_create (num_part, tree_decl_map_hash,
69 tree_int_map_eq, NULL);
70 /* We can have at most num_part entries in the hash tables, so it's
71 enough to allocate so many map elements once, saving some malloc
72 calls. */
73 mapstorage = m = XNEWVEC (struct tree_int_map, num_part);
74
75 /* If a base table already exists, clear it, otherwise create it. */
76 free (map->partition_to_base_index);
77 map->partition_to_base_index = (int *) xmalloc (sizeof (int) * num_part);
78
79 /* Build the base variable list, and point partitions at their bases. */
80 for (x = 0; x < num_part; x++)
81 {
82 struct tree_int_map **slot;
83 unsigned baseindex;
84 var = partition_to_var (map, x);
85 var = SSA_NAME_VAR (var);
86 /* If base variable hasn't been seen, set it up. */
87 m->base.from = var;
88 slot = (struct tree_int_map **) htab_find_slot (decl_to_index, m, INSERT);
89 if (!*slot)
90 {
91 baseindex = m - mapstorage;
92 m->to = baseindex;
93 *slot = m;
94 m++;
95 }
96 else
97 baseindex = (*slot)->to;
98 map->partition_to_base_index[x] = baseindex;
99 }
100
101 map->num_basevars = m - mapstorage;
102
103 free (mapstorage);
104 htab_delete (decl_to_index);
105 }
106
107
108 /* Remove the base table in MAP. */
109
110 static void
111 var_map_base_fini (var_map map)
112 {
113 /* Free the basevar info if it is present. */
114 if (map->partition_to_base_index != NULL)
115 {
116 free (map->partition_to_base_index);
117 map->partition_to_base_index = NULL;
118 map->num_basevars = 0;
119 }
120 }
121 /* Create a variable partition map of SIZE, initialize and return it. */
122
123 var_map
124 init_var_map (int size)
125 {
126 var_map map;
127
128 map = (var_map) xmalloc (sizeof (struct _var_map));
129 map->var_partition = partition_new (size);
130
131 map->partition_to_view = NULL;
132 map->view_to_partition = NULL;
133 map->num_partitions = size;
134 map->partition_size = size;
135 map->num_basevars = 0;
136 map->partition_to_base_index = NULL;
137 return map;
138 }
139
140
141 /* Free memory associated with MAP. */
142
143 void
144 delete_var_map (var_map map)
145 {
146 var_map_base_fini (map);
147 partition_delete (map->var_partition);
148 free (map->partition_to_view);
149 free (map->view_to_partition);
150 free (map);
151 }
152
153
154 /* This function will combine the partitions in MAP for VAR1 and VAR2. It
155 Returns the partition which represents the new partition. If the two
156 partitions cannot be combined, NO_PARTITION is returned. */
157
158 int
159 var_union (var_map map, tree var1, tree var2)
160 {
161 int p1, p2, p3;
162
163 gcc_assert (TREE_CODE (var1) == SSA_NAME);
164 gcc_assert (TREE_CODE (var2) == SSA_NAME);
165
166 /* This is independent of partition_to_view. If partition_to_view is
167 on, then whichever one of these partitions is absorbed will never have a
168 dereference into the partition_to_view array any more. */
169
170 p1 = partition_find (map->var_partition, SSA_NAME_VERSION (var1));
171 p2 = partition_find (map->var_partition, SSA_NAME_VERSION (var2));
172
173 gcc_assert (p1 != NO_PARTITION);
174 gcc_assert (p2 != NO_PARTITION);
175
176 if (p1 == p2)
177 p3 = p1;
178 else
179 p3 = partition_union (map->var_partition, p1, p2);
180
181 if (map->partition_to_view)
182 p3 = map->partition_to_view[p3];
183
184 return p3;
185 }
186
187
188 /* Compress the partition numbers in MAP such that they fall in the range
189 0..(num_partitions-1) instead of wherever they turned out during
190 the partitioning exercise. This removes any references to unused
191 partitions, thereby allowing bitmaps and other vectors to be much
192 denser.
193
194 This is implemented such that compaction doesn't affect partitioning.
195 Ie., once partitions are created and possibly merged, running one
196 or more different kind of compaction will not affect the partitions
197 themselves. Their index might change, but all the same variables will
198 still be members of the same partition group. This allows work on reduced
199 sets, and no loss of information when a larger set is later desired.
200
201 In particular, coalescing can work on partitions which have 2 or more
202 definitions, and then 'recompact' later to include all the single
203 definitions for assignment to program variables. */
204
205
206 /* Set MAP back to the initial state of having no partition view. Return a
207 bitmap which has a bit set for each partition number which is in use in the
208 varmap. */
209
210 static bitmap
211 partition_view_init (var_map map)
212 {
213 bitmap used;
214 int tmp;
215 unsigned int x;
216
217 used = BITMAP_ALLOC (NULL);
218
219 /* Already in a view? Abandon the old one. */
220 if (map->partition_to_view)
221 {
222 free (map->partition_to_view);
223 map->partition_to_view = NULL;
224 }
225 if (map->view_to_partition)
226 {
227 free (map->view_to_partition);
228 map->view_to_partition = NULL;
229 }
230
231 /* Find out which partitions are actually referenced. */
232 for (x = 0; x < map->partition_size; x++)
233 {
234 tmp = partition_find (map->var_partition, x);
235 if (ssa_name (tmp) != NULL_TREE && is_gimple_reg (ssa_name (tmp))
236 && (!has_zero_uses (ssa_name (tmp))
237 || !SSA_NAME_IS_DEFAULT_DEF (ssa_name (tmp))))
238 bitmap_set_bit (used, tmp);
239 }
240
241 map->num_partitions = map->partition_size;
242 return used;
243 }
244
245
246 /* This routine will finalize the view data for MAP based on the partitions
247 set in SELECTED. This is either the same bitmap returned from
248 partition_view_init, or a trimmed down version if some of those partitions
249 were not desired in this view. SELECTED is freed before returning. */
250
251 static void
252 partition_view_fini (var_map map, bitmap selected)
253 {
254 bitmap_iterator bi;
255 unsigned count, i, x, limit;
256
257 gcc_assert (selected);
258
259 count = bitmap_count_bits (selected);
260 limit = map->partition_size;
261
262 /* If its a one-to-one ratio, we don't need any view compaction. */
263 if (count < limit)
264 {
265 map->partition_to_view = (int *)xmalloc (limit * sizeof (int));
266 memset (map->partition_to_view, 0xff, (limit * sizeof (int)));
267 map->view_to_partition = (int *)xmalloc (count * sizeof (int));
268
269 i = 0;
270 /* Give each selected partition an index. */
271 EXECUTE_IF_SET_IN_BITMAP (selected, 0, x, bi)
272 {
273 map->partition_to_view[x] = i;
274 map->view_to_partition[i] = x;
275 i++;
276 }
277 gcc_assert (i == count);
278 map->num_partitions = i;
279 }
280
281 BITMAP_FREE (selected);
282 }
283
284
285 /* Create a partition view which includes all the used partitions in MAP. If
286 WANT_BASES is true, create the base variable map as well. */
287
288 extern void
289 partition_view_normal (var_map map, bool want_bases)
290 {
291 bitmap used;
292
293 used = partition_view_init (map);
294 partition_view_fini (map, used);
295
296 if (want_bases)
297 var_map_base_init (map);
298 else
299 var_map_base_fini (map);
300 }
301
302
303 /* Create a partition view in MAP which includes just partitions which occur in
304 the bitmap ONLY. If WANT_BASES is true, create the base variable map
305 as well. */
306
307 extern void
308 partition_view_bitmap (var_map map, bitmap only, bool want_bases)
309 {
310 bitmap used;
311 bitmap new_partitions = BITMAP_ALLOC (NULL);
312 unsigned x, p;
313 bitmap_iterator bi;
314
315 used = partition_view_init (map);
316 EXECUTE_IF_SET_IN_BITMAP (only, 0, x, bi)
317 {
318 p = partition_find (map->var_partition, x);
319 gcc_assert (bitmap_bit_p (used, p));
320 bitmap_set_bit (new_partitions, p);
321 }
322 partition_view_fini (map, new_partitions);
323
324 BITMAP_FREE (used);
325 if (want_bases)
326 var_map_base_init (map);
327 else
328 var_map_base_fini (map);
329 }
330
331
332 static bitmap usedvars;
333
334 /* Mark VAR as used, so that it'll be preserved during rtl expansion.
335 Returns true if VAR wasn't marked before. */
336
337 static inline bool
338 set_is_used (tree var)
339 {
340 return bitmap_set_bit (usedvars, DECL_UID (var));
341 }
342
343 /* Return true if VAR is marked as used. */
344
345 static inline bool
346 is_used_p (tree var)
347 {
348 return bitmap_bit_p (usedvars, DECL_UID (var));
349 }
350
351 static inline void mark_all_vars_used (tree *);
352
353 /* Helper function for mark_all_vars_used, called via walk_tree. */
354
355 static tree
356 mark_all_vars_used_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
357 {
358 tree t = *tp;
359 enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
360 tree b;
361
362 if (TREE_CODE (t) == SSA_NAME)
363 t = SSA_NAME_VAR (t);
364
365 if (IS_EXPR_CODE_CLASS (c)
366 && (b = TREE_BLOCK (t)) != NULL)
367 TREE_USED (b) = true;
368
369 /* Ignore TMR_OFFSET and TMR_STEP for TARGET_MEM_REFS, as those
370 fields do not contain vars. */
371 if (TREE_CODE (t) == TARGET_MEM_REF)
372 {
373 mark_all_vars_used (&TMR_BASE (t));
374 mark_all_vars_used (&TMR_INDEX (t));
375 mark_all_vars_used (&TMR_INDEX2 (t));
376 *walk_subtrees = 0;
377 return NULL;
378 }
379
380 /* Only need to mark VAR_DECLS; parameters and return results are not
381 eliminated as unused. */
382 if (TREE_CODE (t) == VAR_DECL)
383 {
384 /* When a global var becomes used for the first time also walk its
385 initializer (non global ones don't have any). */
386 if (set_is_used (t) && is_global_var (t))
387 mark_all_vars_used (&DECL_INITIAL (t));
388 }
389 /* remove_unused_scope_block_p requires information about labels
390 which are not DECL_IGNORED_P to tell if they might be used in the IL. */
391 else if (TREE_CODE (t) == LABEL_DECL)
392 /* Although the TREE_USED values that the frontend uses would be
393 acceptable (albeit slightly over-conservative) for our purposes,
394 init_vars_expansion clears TREE_USED for LABEL_DECLs too, so we
395 must re-compute it here. */
396 TREE_USED (t) = 1;
397
398 if (IS_TYPE_OR_DECL_P (t))
399 *walk_subtrees = 0;
400
401 return NULL;
402 }
403
404 /* Mark the scope block SCOPE and its subblocks unused when they can be
405 possibly eliminated if dead. */
406
407 static void
408 mark_scope_block_unused (tree scope)
409 {
410 tree t;
411 TREE_USED (scope) = false;
412 if (!(*debug_hooks->ignore_block) (scope))
413 TREE_USED (scope) = true;
414 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
415 mark_scope_block_unused (t);
416 }
417
418 /* Look if the block is dead (by possibly eliminating its dead subblocks)
419 and return true if so.
420 Block is declared dead if:
421 1) No statements are associated with it.
422 2) Declares no live variables
423 3) All subblocks are dead
424 or there is precisely one subblocks and the block
425 has same abstract origin as outer block and declares
426 no variables, so it is pure wrapper.
427 When we are not outputting full debug info, we also eliminate dead variables
428 out of scope blocks to let them to be recycled by GGC and to save copying work
429 done by the inliner. */
430
431 static bool
432 remove_unused_scope_block_p (tree scope)
433 {
434 tree *t, *next;
435 bool unused = !TREE_USED (scope);
436 int nsubblocks = 0;
437
438 for (t = &BLOCK_VARS (scope); *t; t = next)
439 {
440 next = &DECL_CHAIN (*t);
441
442 /* Debug info of nested function refers to the block of the
443 function. We might stil call it even if all statements
444 of function it was nested into was elliminated.
445
446 TODO: We can actually look into cgraph to see if function
447 will be output to file. */
448 if (TREE_CODE (*t) == FUNCTION_DECL)
449 unused = false;
450
451 /* If a decl has a value expr, we need to instantiate it
452 regardless of debug info generation, to avoid codegen
453 differences in memory overlap tests. update_equiv_regs() may
454 indirectly call validate_equiv_mem() to test whether a
455 SET_DEST overlaps with others, and if the value expr changes
456 by virtual register instantiation, we may get end up with
457 different results. */
458 else if (TREE_CODE (*t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*t))
459 unused = false;
460
461 /* Remove everything we don't generate debug info for. */
462 else if (DECL_IGNORED_P (*t))
463 {
464 *t = DECL_CHAIN (*t);
465 next = t;
466 }
467
468 /* When we are outputting debug info, we usually want to output
469 info about optimized-out variables in the scope blocks.
470 Exception are the scope blocks not containing any instructions
471 at all so user can't get into the scopes at first place. */
472 else if (is_used_p (*t))
473 unused = false;
474 else if (TREE_CODE (*t) == LABEL_DECL && TREE_USED (*t))
475 /* For labels that are still used in the IL, the decision to
476 preserve them must not depend DEBUG_INFO_LEVEL, otherwise we
477 risk having different ordering in debug vs. non-debug builds
478 during inlining or versioning.
479 A label appearing here (we have already checked DECL_IGNORED_P)
480 should not be used in the IL unless it has been explicitly used
481 before, so we use TREE_USED as an approximation. */
482 /* In principle, we should do the same here as for the debug case
483 below, however, when debugging, there might be additional nested
484 levels that keep an upper level with a label live, so we have to
485 force this block to be considered used, too. */
486 unused = false;
487
488 /* When we are not doing full debug info, we however can keep around
489 only the used variables for cfgexpand's memory packing saving quite
490 a lot of memory.
491
492 For sake of -g3, we keep around those vars but we don't count this as
493 use of block, so innermost block with no used vars and no instructions
494 can be considered dead. We only want to keep around blocks user can
495 breakpoint into and ask about value of optimized out variables.
496
497 Similarly we need to keep around types at least until all
498 variables of all nested blocks are gone. We track no
499 information on whether given type is used or not, so we have
500 to keep them even when not emitting debug information,
501 otherwise we may end up remapping variables and their (local)
502 types in different orders depending on whether debug
503 information is being generated. */
504
505 else if (TREE_CODE (*t) == TYPE_DECL
506 || debug_info_level == DINFO_LEVEL_NORMAL
507 || debug_info_level == DINFO_LEVEL_VERBOSE)
508 ;
509 else
510 {
511 *t = DECL_CHAIN (*t);
512 next = t;
513 }
514 }
515
516 for (t = &BLOCK_SUBBLOCKS (scope); *t ;)
517 if (remove_unused_scope_block_p (*t))
518 {
519 if (BLOCK_SUBBLOCKS (*t))
520 {
521 tree next = BLOCK_CHAIN (*t);
522 tree supercontext = BLOCK_SUPERCONTEXT (*t);
523
524 *t = BLOCK_SUBBLOCKS (*t);
525 while (BLOCK_CHAIN (*t))
526 {
527 BLOCK_SUPERCONTEXT (*t) = supercontext;
528 t = &BLOCK_CHAIN (*t);
529 }
530 BLOCK_CHAIN (*t) = next;
531 BLOCK_SUPERCONTEXT (*t) = supercontext;
532 t = &BLOCK_CHAIN (*t);
533 nsubblocks ++;
534 }
535 else
536 *t = BLOCK_CHAIN (*t);
537 }
538 else
539 {
540 t = &BLOCK_CHAIN (*t);
541 nsubblocks ++;
542 }
543
544
545 if (!unused)
546 ;
547 /* Outer scope is always used. */
548 else if (!BLOCK_SUPERCONTEXT (scope)
549 || TREE_CODE (BLOCK_SUPERCONTEXT (scope)) == FUNCTION_DECL)
550 unused = false;
551 /* Innermost blocks with no live variables nor statements can be always
552 eliminated. */
553 else if (!nsubblocks)
554 ;
555 /* For terse debug info we can eliminate info on unused variables. */
556 else if (debug_info_level == DINFO_LEVEL_NONE
557 || debug_info_level == DINFO_LEVEL_TERSE)
558 {
559 /* Even for -g0/-g1 don't prune outer scopes from artificial
560 functions, otherwise diagnostics using tree_nonartificial_location
561 will not be emitted properly. */
562 if (inlined_function_outer_scope_p (scope))
563 {
564 tree ao = scope;
565
566 while (ao
567 && TREE_CODE (ao) == BLOCK
568 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
569 ao = BLOCK_ABSTRACT_ORIGIN (ao);
570 if (ao
571 && TREE_CODE (ao) == FUNCTION_DECL
572 && DECL_DECLARED_INLINE_P (ao)
573 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
574 unused = false;
575 }
576 }
577 else if (BLOCK_VARS (scope) || BLOCK_NUM_NONLOCALIZED_VARS (scope))
578 unused = false;
579 /* See if this block is important for representation of inlined function.
580 Inlined functions are always represented by block with
581 block_ultimate_origin being set to FUNCTION_DECL and DECL_SOURCE_LOCATION
582 set... */
583 else if (inlined_function_outer_scope_p (scope))
584 unused = false;
585 else
586 /* Verfify that only blocks with source location set
587 are entry points to the inlined functions. */
588 gcc_assert (BLOCK_SOURCE_LOCATION (scope) == UNKNOWN_LOCATION);
589
590 TREE_USED (scope) = !unused;
591 return unused;
592 }
593
594 /* Mark all VAR_DECLS under *EXPR_P as used, so that they won't be
595 eliminated during the tree->rtl conversion process. */
596
597 static inline void
598 mark_all_vars_used (tree *expr_p)
599 {
600 walk_tree (expr_p, mark_all_vars_used_1, NULL, NULL);
601 }
602
603
604 /* Dump scope blocks starting at SCOPE to FILE. INDENT is the
605 indentation level and FLAGS is as in print_generic_expr. */
606
607 static void
608 dump_scope_block (FILE *file, int indent, tree scope, int flags)
609 {
610 tree var, t;
611 unsigned int i;
612
613 fprintf (file, "\n%*s{ Scope block #%i%s%s",indent, "" , BLOCK_NUMBER (scope),
614 TREE_USED (scope) ? "" : " (unused)",
615 BLOCK_ABSTRACT (scope) ? " (abstract)": "");
616 if (BLOCK_SOURCE_LOCATION (scope) != UNKNOWN_LOCATION)
617 {
618 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (scope));
619 fprintf (file, " %s:%i", s.file, s.line);
620 }
621 if (BLOCK_ABSTRACT_ORIGIN (scope))
622 {
623 tree origin = block_ultimate_origin (scope);
624 if (origin)
625 {
626 fprintf (file, " Originating from :");
627 if (DECL_P (origin))
628 print_generic_decl (file, origin, flags);
629 else
630 fprintf (file, "#%i", BLOCK_NUMBER (origin));
631 }
632 }
633 fprintf (file, " \n");
634 for (var = BLOCK_VARS (scope); var; var = DECL_CHAIN (var))
635 {
636 fprintf (file, "%*s", indent, "");
637 print_generic_decl (file, var, flags);
638 fprintf (file, "\n");
639 }
640 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (scope); i++)
641 {
642 fprintf (file, "%*s",indent, "");
643 print_generic_decl (file, BLOCK_NONLOCALIZED_VAR (scope, i),
644 flags);
645 fprintf (file, " (nonlocalized)\n");
646 }
647 for (t = BLOCK_SUBBLOCKS (scope); t ; t = BLOCK_CHAIN (t))
648 dump_scope_block (file, indent + 2, t, flags);
649 fprintf (file, "\n%*s}\n",indent, "");
650 }
651
652 /* Dump the tree of lexical scopes starting at SCOPE to stderr. FLAGS
653 is as in print_generic_expr. */
654
655 DEBUG_FUNCTION void
656 debug_scope_block (tree scope, int flags)
657 {
658 dump_scope_block (stderr, 0, scope, flags);
659 }
660
661
662 /* Dump the tree of lexical scopes of current_function_decl to FILE.
663 FLAGS is as in print_generic_expr. */
664
665 void
666 dump_scope_blocks (FILE *file, int flags)
667 {
668 dump_scope_block (file, 0, DECL_INITIAL (current_function_decl), flags);
669 }
670
671
672 /* Dump the tree of lexical scopes of current_function_decl to stderr.
673 FLAGS is as in print_generic_expr. */
674
675 DEBUG_FUNCTION void
676 debug_scope_blocks (int flags)
677 {
678 dump_scope_blocks (stderr, flags);
679 }
680
681 /* Remove local variables that are not referenced in the IL. */
682
683 void
684 remove_unused_locals (void)
685 {
686 basic_block bb;
687 tree var;
688 unsigned srcidx, dstidx, num;
689 bool have_local_clobbers = false;
690
691 /* Removing declarations from lexical blocks when not optimizing is
692 not only a waste of time, it actually causes differences in stack
693 layout. */
694 if (!optimize)
695 return;
696
697 timevar_push (TV_REMOVE_UNUSED);
698
699 mark_scope_block_unused (DECL_INITIAL (current_function_decl));
700
701 usedvars = BITMAP_ALLOC (NULL);
702
703 /* Walk the CFG marking all referenced symbols. */
704 FOR_EACH_BB (bb)
705 {
706 gimple_stmt_iterator gsi;
707 size_t i;
708 edge_iterator ei;
709 edge e;
710
711 /* Walk the statements. */
712 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
713 {
714 gimple stmt = gsi_stmt (gsi);
715 tree b = gimple_block (stmt);
716
717 if (is_gimple_debug (stmt))
718 continue;
719
720 if (gimple_clobber_p (stmt))
721 {
722 have_local_clobbers = true;
723 continue;
724 }
725
726 if (b)
727 TREE_USED (b) = true;
728
729 for (i = 0; i < gimple_num_ops (stmt); i++)
730 mark_all_vars_used (gimple_op_ptr (gsi_stmt (gsi), i));
731 }
732
733 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
734 {
735 use_operand_p arg_p;
736 ssa_op_iter i;
737 tree def;
738 gimple phi = gsi_stmt (gsi);
739
740 if (!is_gimple_reg (gimple_phi_result (phi)))
741 continue;
742
743 def = gimple_phi_result (phi);
744 mark_all_vars_used (&def);
745
746 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_ALL_USES)
747 {
748 tree arg = USE_FROM_PTR (arg_p);
749 mark_all_vars_used (&arg);
750 }
751 }
752
753 FOR_EACH_EDGE (e, ei, bb->succs)
754 if (e->goto_locus)
755 TREE_USED (e->goto_block) = true;
756 }
757
758 /* We do a two-pass approach about the out-of-scope clobbers. We want
759 to remove them if they are the only references to a local variable,
760 but we want to retain them when there's any other. So the first pass
761 ignores them, and the second pass (if there were any) tries to remove
762 them. */
763 if (have_local_clobbers)
764 FOR_EACH_BB (bb)
765 {
766 gimple_stmt_iterator gsi;
767
768 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
769 {
770 gimple stmt = gsi_stmt (gsi);
771 tree b = gimple_block (stmt);
772
773 if (gimple_clobber_p (stmt))
774 {
775 tree lhs = gimple_assign_lhs (stmt);
776 lhs = get_base_address (lhs);
777 if (TREE_CODE (lhs) == SSA_NAME)
778 lhs = SSA_NAME_VAR (lhs);
779 if (TREE_CODE (lhs) == VAR_DECL && !is_used_p (lhs))
780 {
781 unlink_stmt_vdef (stmt);
782 gsi_remove (&gsi, true);
783 release_defs (stmt);
784 continue;
785 }
786 if (b)
787 TREE_USED (b) = true;
788 }
789 gsi_next (&gsi);
790 }
791 }
792
793 cfun->has_local_explicit_reg_vars = false;
794
795 /* Remove unmarked local and global vars from local_decls. */
796 num = VEC_length (tree, cfun->local_decls);
797 for (srcidx = 0, dstidx = 0; srcidx < num; srcidx++)
798 {
799 var = VEC_index (tree, cfun->local_decls, srcidx);
800 if (TREE_CODE (var) == VAR_DECL)
801 {
802 if (!is_used_p (var))
803 {
804 if (cfun->nonlocal_goto_save_area
805 && TREE_OPERAND (cfun->nonlocal_goto_save_area, 0) == var)
806 cfun->nonlocal_goto_save_area = NULL;
807 continue;
808 }
809 }
810 if (TREE_CODE (var) == VAR_DECL
811 && DECL_HARD_REGISTER (var)
812 && !is_global_var (var))
813 cfun->has_local_explicit_reg_vars = true;
814
815 if (srcidx != dstidx)
816 VEC_replace (tree, cfun->local_decls, dstidx, var);
817 dstidx++;
818 }
819 if (dstidx != num)
820 VEC_truncate (tree, cfun->local_decls, dstidx);
821
822 remove_unused_scope_block_p (DECL_INITIAL (current_function_decl));
823
824 BITMAP_FREE (usedvars);
825
826 if (dump_file && (dump_flags & TDF_DETAILS))
827 {
828 fprintf (dump_file, "Scope blocks after cleanups:\n");
829 dump_scope_blocks (dump_file, dump_flags);
830 }
831
832 timevar_pop (TV_REMOVE_UNUSED);
833 }
834
835
836 /* Allocate and return a new live range information object base on MAP. */
837
838 static tree_live_info_p
839 new_tree_live_info (var_map map)
840 {
841 tree_live_info_p live;
842 unsigned x;
843
844 live = (tree_live_info_p) xmalloc (sizeof (struct tree_live_info_d));
845 live->map = map;
846 live->num_blocks = last_basic_block;
847
848 live->livein = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
849 for (x = 0; x < (unsigned)last_basic_block; x++)
850 live->livein[x] = BITMAP_ALLOC (NULL);
851
852 live->liveout = (bitmap *)xmalloc (last_basic_block * sizeof (bitmap));
853 for (x = 0; x < (unsigned)last_basic_block; x++)
854 live->liveout[x] = BITMAP_ALLOC (NULL);
855
856 live->work_stack = XNEWVEC (int, last_basic_block);
857 live->stack_top = live->work_stack;
858
859 live->global = BITMAP_ALLOC (NULL);
860 return live;
861 }
862
863
864 /* Free storage for live range info object LIVE. */
865
866 void
867 delete_tree_live_info (tree_live_info_p live)
868 {
869 int x;
870
871 BITMAP_FREE (live->global);
872 free (live->work_stack);
873
874 for (x = live->num_blocks - 1; x >= 0; x--)
875 BITMAP_FREE (live->liveout[x]);
876 free (live->liveout);
877
878 for (x = live->num_blocks - 1; x >= 0; x--)
879 BITMAP_FREE (live->livein[x]);
880 free (live->livein);
881
882 free (live);
883 }
884
885
886 /* Visit basic block BB and propagate any required live on entry bits from
887 LIVE into the predecessors. VISITED is the bitmap of visited blocks.
888 TMP is a temporary work bitmap which is passed in to avoid reallocating
889 it each time. */
890
891 static void
892 loe_visit_block (tree_live_info_p live, basic_block bb, sbitmap visited,
893 bitmap tmp)
894 {
895 edge e;
896 bool change;
897 edge_iterator ei;
898 basic_block pred_bb;
899 bitmap loe;
900 gcc_assert (!TEST_BIT (visited, bb->index));
901
902 SET_BIT (visited, bb->index);
903 loe = live_on_entry (live, bb);
904
905 FOR_EACH_EDGE (e, ei, bb->preds)
906 {
907 pred_bb = e->src;
908 if (pred_bb == ENTRY_BLOCK_PTR)
909 continue;
910 /* TMP is variables live-on-entry from BB that aren't defined in the
911 predecessor block. This should be the live on entry vars to pred.
912 Note that liveout is the DEFs in a block while live on entry is
913 being calculated. */
914 bitmap_and_compl (tmp, loe, live->liveout[pred_bb->index]);
915
916 /* Add these bits to live-on-entry for the pred. if there are any
917 changes, and pred_bb has been visited already, add it to the
918 revisit stack. */
919 change = bitmap_ior_into (live_on_entry (live, pred_bb), tmp);
920 if (TEST_BIT (visited, pred_bb->index) && change)
921 {
922 RESET_BIT (visited, pred_bb->index);
923 *(live->stack_top)++ = pred_bb->index;
924 }
925 }
926 }
927
928
929 /* Using LIVE, fill in all the live-on-entry blocks between the defs and uses
930 of all the variables. */
931
932 static void
933 live_worklist (tree_live_info_p live)
934 {
935 unsigned b;
936 basic_block bb;
937 sbitmap visited = sbitmap_alloc (last_basic_block + 1);
938 bitmap tmp = BITMAP_ALLOC (NULL);
939
940 sbitmap_zero (visited);
941
942 /* Visit all the blocks in reverse order and propagate live on entry values
943 into the predecessors blocks. */
944 FOR_EACH_BB_REVERSE (bb)
945 loe_visit_block (live, bb, visited, tmp);
946
947 /* Process any blocks which require further iteration. */
948 while (live->stack_top != live->work_stack)
949 {
950 b = *--(live->stack_top);
951 loe_visit_block (live, BASIC_BLOCK (b), visited, tmp);
952 }
953
954 BITMAP_FREE (tmp);
955 sbitmap_free (visited);
956 }
957
958
959 /* Calculate the initial live on entry vector for SSA_NAME using immediate_use
960 links. Set the live on entry fields in LIVE. Def's are marked temporarily
961 in the liveout vector. */
962
963 static void
964 set_var_live_on_entry (tree ssa_name, tree_live_info_p live)
965 {
966 int p;
967 gimple stmt;
968 use_operand_p use;
969 basic_block def_bb = NULL;
970 imm_use_iterator imm_iter;
971 bool global = false;
972
973 p = var_to_partition (live->map, ssa_name);
974 if (p == NO_PARTITION)
975 return;
976
977 stmt = SSA_NAME_DEF_STMT (ssa_name);
978 if (stmt)
979 {
980 def_bb = gimple_bb (stmt);
981 /* Mark defs in liveout bitmap temporarily. */
982 if (def_bb)
983 bitmap_set_bit (live->liveout[def_bb->index], p);
984 }
985 else
986 def_bb = ENTRY_BLOCK_PTR;
987
988 /* Visit each use of SSA_NAME and if it isn't in the same block as the def,
989 add it to the list of live on entry blocks. */
990 FOR_EACH_IMM_USE_FAST (use, imm_iter, ssa_name)
991 {
992 gimple use_stmt = USE_STMT (use);
993 basic_block add_block = NULL;
994
995 if (gimple_code (use_stmt) == GIMPLE_PHI)
996 {
997 /* Uses in PHI's are considered to be live at exit of the SRC block
998 as this is where a copy would be inserted. Check to see if it is
999 defined in that block, or whether its live on entry. */
1000 int index = PHI_ARG_INDEX_FROM_USE (use);
1001 edge e = gimple_phi_arg_edge (use_stmt, index);
1002 if (e->src != ENTRY_BLOCK_PTR)
1003 {
1004 if (e->src != def_bb)
1005 add_block = e->src;
1006 }
1007 }
1008 else if (is_gimple_debug (use_stmt))
1009 continue;
1010 else
1011 {
1012 /* If its not defined in this block, its live on entry. */
1013 basic_block use_bb = gimple_bb (use_stmt);
1014 if (use_bb != def_bb)
1015 add_block = use_bb;
1016 }
1017
1018 /* If there was a live on entry use, set the bit. */
1019 if (add_block)
1020 {
1021 global = true;
1022 bitmap_set_bit (live->livein[add_block->index], p);
1023 }
1024 }
1025
1026 /* If SSA_NAME is live on entry to at least one block, fill in all the live
1027 on entry blocks between the def and all the uses. */
1028 if (global)
1029 bitmap_set_bit (live->global, p);
1030 }
1031
1032
1033 /* Calculate the live on exit vectors based on the entry info in LIVEINFO. */
1034
1035 void
1036 calculate_live_on_exit (tree_live_info_p liveinfo)
1037 {
1038 basic_block bb;
1039 edge e;
1040 edge_iterator ei;
1041
1042 /* live on entry calculations used liveout vectors for defs, clear them. */
1043 FOR_EACH_BB (bb)
1044 bitmap_clear (liveinfo->liveout[bb->index]);
1045
1046 /* Set all the live-on-exit bits for uses in PHIs. */
1047 FOR_EACH_BB (bb)
1048 {
1049 gimple_stmt_iterator gsi;
1050 size_t i;
1051
1052 /* Mark the PHI arguments which are live on exit to the pred block. */
1053 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1054 {
1055 gimple phi = gsi_stmt (gsi);
1056 for (i = 0; i < gimple_phi_num_args (phi); i++)
1057 {
1058 tree t = PHI_ARG_DEF (phi, i);
1059 int p;
1060
1061 if (TREE_CODE (t) != SSA_NAME)
1062 continue;
1063
1064 p = var_to_partition (liveinfo->map, t);
1065 if (p == NO_PARTITION)
1066 continue;
1067 e = gimple_phi_arg_edge (phi, i);
1068 if (e->src != ENTRY_BLOCK_PTR)
1069 bitmap_set_bit (liveinfo->liveout[e->src->index], p);
1070 }
1071 }
1072
1073 /* Add each successors live on entry to this bock live on exit. */
1074 FOR_EACH_EDGE (e, ei, bb->succs)
1075 if (e->dest != EXIT_BLOCK_PTR)
1076 bitmap_ior_into (liveinfo->liveout[bb->index],
1077 live_on_entry (liveinfo, e->dest));
1078 }
1079 }
1080
1081
1082 /* Given partition map MAP, calculate all the live on entry bitmaps for
1083 each partition. Return a new live info object. */
1084
1085 tree_live_info_p
1086 calculate_live_ranges (var_map map)
1087 {
1088 tree var;
1089 unsigned i;
1090 tree_live_info_p live;
1091
1092 live = new_tree_live_info (map);
1093 for (i = 0; i < num_var_partitions (map); i++)
1094 {
1095 var = partition_to_var (map, i);
1096 if (var != NULL_TREE)
1097 set_var_live_on_entry (var, live);
1098 }
1099
1100 live_worklist (live);
1101
1102 #ifdef ENABLE_CHECKING
1103 verify_live_on_entry (live);
1104 #endif
1105
1106 calculate_live_on_exit (live);
1107 return live;
1108 }
1109
1110
1111 /* Output partition map MAP to file F. */
1112
1113 void
1114 dump_var_map (FILE *f, var_map map)
1115 {
1116 int t;
1117 unsigned x, y;
1118 int p;
1119
1120 fprintf (f, "\nPartition map \n\n");
1121
1122 for (x = 0; x < map->num_partitions; x++)
1123 {
1124 if (map->view_to_partition != NULL)
1125 p = map->view_to_partition[x];
1126 else
1127 p = x;
1128
1129 if (ssa_name (p) == NULL_TREE)
1130 continue;
1131
1132 t = 0;
1133 for (y = 1; y < num_ssa_names; y++)
1134 {
1135 p = partition_find (map->var_partition, y);
1136 if (map->partition_to_view)
1137 p = map->partition_to_view[p];
1138 if (p == (int)x)
1139 {
1140 if (t++ == 0)
1141 {
1142 fprintf(f, "Partition %d (", x);
1143 print_generic_expr (f, partition_to_var (map, p), TDF_SLIM);
1144 fprintf (f, " - ");
1145 }
1146 fprintf (f, "%d ", y);
1147 }
1148 }
1149 if (t != 0)
1150 fprintf (f, ")\n");
1151 }
1152 fprintf (f, "\n");
1153 }
1154
1155
1156 /* Output live range info LIVE to file F, controlled by FLAG. */
1157
1158 void
1159 dump_live_info (FILE *f, tree_live_info_p live, int flag)
1160 {
1161 basic_block bb;
1162 unsigned i;
1163 var_map map = live->map;
1164 bitmap_iterator bi;
1165
1166 if ((flag & LIVEDUMP_ENTRY) && live->livein)
1167 {
1168 FOR_EACH_BB (bb)
1169 {
1170 fprintf (f, "\nLive on entry to BB%d : ", bb->index);
1171 EXECUTE_IF_SET_IN_BITMAP (live->livein[bb->index], 0, i, bi)
1172 {
1173 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1174 fprintf (f, " ");
1175 }
1176 fprintf (f, "\n");
1177 }
1178 }
1179
1180 if ((flag & LIVEDUMP_EXIT) && live->liveout)
1181 {
1182 FOR_EACH_BB (bb)
1183 {
1184 fprintf (f, "\nLive on exit from BB%d : ", bb->index);
1185 EXECUTE_IF_SET_IN_BITMAP (live->liveout[bb->index], 0, i, bi)
1186 {
1187 print_generic_expr (f, partition_to_var (map, i), TDF_SLIM);
1188 fprintf (f, " ");
1189 }
1190 fprintf (f, "\n");
1191 }
1192 }
1193 }
1194
1195 #ifdef ENABLE_CHECKING
1196 /* Verify that SSA_VAR is a non-virtual SSA_NAME. */
1197
1198 void
1199 register_ssa_partition_check (tree ssa_var)
1200 {
1201 gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
1202 if (!is_gimple_reg (ssa_var))
1203 {
1204 fprintf (stderr, "Illegally registering a virtual SSA name :");
1205 print_generic_expr (stderr, ssa_var, TDF_SLIM);
1206 fprintf (stderr, " in the SSA->Normal phase.\n");
1207 internal_error ("SSA corruption");
1208 }
1209 }
1210
1211
1212 /* Verify that the info in LIVE matches the current cfg. */
1213
1214 static void
1215 verify_live_on_entry (tree_live_info_p live)
1216 {
1217 unsigned i;
1218 tree var;
1219 gimple stmt;
1220 basic_block bb;
1221 edge e;
1222 int num;
1223 edge_iterator ei;
1224 var_map map = live->map;
1225
1226 /* Check for live on entry partitions and report those with a DEF in
1227 the program. This will typically mean an optimization has done
1228 something wrong. */
1229 bb = ENTRY_BLOCK_PTR;
1230 num = 0;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1232 {
1233 int entry_block = e->dest->index;
1234 if (e->dest == EXIT_BLOCK_PTR)
1235 continue;
1236 for (i = 0; i < (unsigned)num_var_partitions (map); i++)
1237 {
1238 basic_block tmp;
1239 tree d;
1240 bitmap loe;
1241 var = partition_to_var (map, i);
1242 stmt = SSA_NAME_DEF_STMT (var);
1243 tmp = gimple_bb (stmt);
1244 d = ssa_default_def (cfun, SSA_NAME_VAR (var));
1245
1246 loe = live_on_entry (live, e->dest);
1247 if (loe && bitmap_bit_p (loe, i))
1248 {
1249 if (!gimple_nop_p (stmt))
1250 {
1251 num++;
1252 print_generic_expr (stderr, var, TDF_SLIM);
1253 fprintf (stderr, " is defined ");
1254 if (tmp)
1255 fprintf (stderr, " in BB%d, ", tmp->index);
1256 fprintf (stderr, "by:\n");
1257 print_gimple_stmt (stderr, stmt, 0, TDF_SLIM);
1258 fprintf (stderr, "\nIt is also live-on-entry to entry BB %d",
1259 entry_block);
1260 fprintf (stderr, " So it appears to have multiple defs.\n");
1261 }
1262 else
1263 {
1264 if (d != var)
1265 {
1266 num++;
1267 print_generic_expr (stderr, var, TDF_SLIM);
1268 fprintf (stderr, " is live-on-entry to BB%d ",
1269 entry_block);
1270 if (d)
1271 {
1272 fprintf (stderr, " but is not the default def of ");
1273 print_generic_expr (stderr, d, TDF_SLIM);
1274 fprintf (stderr, "\n");
1275 }
1276 else
1277 fprintf (stderr, " and there is no default def.\n");
1278 }
1279 }
1280 }
1281 else
1282 if (d == var)
1283 {
1284 /* The only way this var shouldn't be marked live on entry is
1285 if it occurs in a PHI argument of the block. */
1286 size_t z;
1287 bool ok = false;
1288 gimple_stmt_iterator gsi;
1289 for (gsi = gsi_start_phis (e->dest);
1290 !gsi_end_p (gsi) && !ok;
1291 gsi_next (&gsi))
1292 {
1293 gimple phi = gsi_stmt (gsi);
1294 for (z = 0; z < gimple_phi_num_args (phi); z++)
1295 if (var == gimple_phi_arg_def (phi, z))
1296 {
1297 ok = true;
1298 break;
1299 }
1300 }
1301 if (ok)
1302 continue;
1303 num++;
1304 print_generic_expr (stderr, var, TDF_SLIM);
1305 fprintf (stderr, " is not marked live-on-entry to entry BB%d ",
1306 entry_block);
1307 fprintf (stderr, "but it is a default def so it should be.\n");
1308 }
1309 }
1310 }
1311 gcc_assert (num <= 0);
1312 }
1313 #endif