0e806f4b68222b388f46e47bc2afe95362a1a69b
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "predict.h"
27 #include "vec.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "machmode.h"
31 #include "hard-reg-set.h"
32 #include "input.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "gimple-pretty-print.h"
39 #include "hash-map.h"
40 #include "hash-table.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "is-a.h"
46 #include "gimple.h"
47 #include "gimplify.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-ssa-loop.h"
57 #include "tree-into-ssa.h"
58 #include "cfgloop.h"
59 #include "domwalk.h"
60 #include "params.h"
61 #include "tree-pass.h"
62 #include "flags.h"
63 #include "tree-affine.h"
64 #include "tree-ssa-propagate.h"
65 #include "trans-mem.h"
66 #include "gimple-fold.h"
67
68 /* TODO: Support for predicated code motion. I.e.
69
70 while (1)
71 {
72 if (cond)
73 {
74 a = inv;
75 something;
76 }
77 }
78
79 Where COND and INV are invariants, but evaluating INV may trap or be
80 invalid from some other reason if !COND. This may be transformed to
81
82 if (cond)
83 a = inv;
84 while (1)
85 {
86 if (cond)
87 something;
88 } */
89
90 /* The auxiliary data kept for each statement. */
91
92 struct lim_aux_data
93 {
94 struct loop *max_loop; /* The outermost loop in that the statement
95 is invariant. */
96
97 struct loop *tgt_loop; /* The loop out of that we want to move the
98 invariant. */
99
100 struct loop *always_executed_in;
101 /* The outermost loop for that we are sure
102 the statement is executed if the loop
103 is entered. */
104
105 unsigned cost; /* Cost of the computation performed by the
106 statement. */
107
108 vec<gimple> depends; /* Vector of statements that must be also
109 hoisted out of the loop when this statement
110 is hoisted; i.e. those that define the
111 operands of the statement and are inside of
112 the MAX_LOOP loop. */
113 };
114
115 /* Maps statements to their lim_aux_data. */
116
117 static hash_map<gimple, lim_aux_data *> *lim_aux_data_map;
118
119 /* Description of a memory reference location. */
120
121 typedef struct mem_ref_loc
122 {
123 tree *ref; /* The reference itself. */
124 gimple stmt; /* The statement in that it occurs. */
125 } *mem_ref_loc_p;
126
127
128 /* Description of a memory reference. */
129
130 typedef struct im_mem_ref
131 {
132 unsigned id; /* ID assigned to the memory reference
133 (its index in memory_accesses.refs_list) */
134 hashval_t hash; /* Its hash value. */
135
136 /* The memory access itself and associated caching of alias-oracle
137 query meta-data. */
138 ao_ref mem;
139
140 bitmap stored; /* The set of loops in that this memory location
141 is stored to. */
142 vec<mem_ref_loc> accesses_in_loop;
143 /* The locations of the accesses. Vector
144 indexed by the loop number. */
145
146 /* The following sets are computed on demand. We keep both set and
147 its complement, so that we know whether the information was
148 already computed or not. */
149 bitmap_head indep_loop; /* The set of loops in that the memory
150 reference is independent, meaning:
151 If it is stored in the loop, this store
152 is independent on all other loads and
153 stores.
154 If it is only loaded, then it is independent
155 on all stores in the loop. */
156 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
157 } *mem_ref_p;
158
159 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
160 to record (in)dependence against stores in the loop and its subloops, the
161 second to record (in)dependence against all references in the loop
162 and its subloops. */
163 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
164
165 /* Mem_ref hashtable helpers. */
166
167 struct mem_ref_hasher : typed_noop_remove <im_mem_ref>
168 {
169 typedef im_mem_ref value_type;
170 typedef tree_node compare_type;
171 static inline hashval_t hash (const value_type *);
172 static inline bool equal (const value_type *, const compare_type *);
173 };
174
175 /* A hash function for struct im_mem_ref object OBJ. */
176
177 inline hashval_t
178 mem_ref_hasher::hash (const value_type *mem)
179 {
180 return mem->hash;
181 }
182
183 /* An equality function for struct im_mem_ref object MEM1 with
184 memory reference OBJ2. */
185
186 inline bool
187 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
188 {
189 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
190 }
191
192
193 /* Description of memory accesses in loops. */
194
195 static struct
196 {
197 /* The hash table of memory references accessed in loops. */
198 hash_table<mem_ref_hasher> *refs;
199
200 /* The list of memory references. */
201 vec<mem_ref_p> refs_list;
202
203 /* The set of memory references accessed in each loop. */
204 vec<bitmap_head> refs_in_loop;
205
206 /* The set of memory references stored in each loop. */
207 vec<bitmap_head> refs_stored_in_loop;
208
209 /* The set of memory references stored in each loop, including subloops . */
210 vec<bitmap_head> all_refs_stored_in_loop;
211
212 /* Cache for expanding memory addresses. */
213 hash_map<tree, name_expansion *> *ttae_cache;
214 } memory_accesses;
215
216 /* Obstack for the bitmaps in the above data structures. */
217 static bitmap_obstack lim_bitmap_obstack;
218 static obstack mem_ref_obstack;
219
220 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
221
222 /* Minimum cost of an expensive expression. */
223 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
224
225 /* The outermost loop for which execution of the header guarantees that the
226 block will be executed. */
227 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
228 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
229
230 /* ID of the shared unanalyzable mem. */
231 #define UNANALYZABLE_MEM_ID 0
232
233 /* Whether the reference was analyzable. */
234 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
235
236 static struct lim_aux_data *
237 init_lim_data (gimple stmt)
238 {
239 lim_aux_data *p = XCNEW (struct lim_aux_data);
240 lim_aux_data_map->put (stmt, p);
241
242 return p;
243 }
244
245 static struct lim_aux_data *
246 get_lim_data (gimple stmt)
247 {
248 lim_aux_data **p = lim_aux_data_map->get (stmt);
249 if (!p)
250 return NULL;
251
252 return *p;
253 }
254
255 /* Releases the memory occupied by DATA. */
256
257 static void
258 free_lim_aux_data (struct lim_aux_data *data)
259 {
260 data->depends.release ();
261 free (data);
262 }
263
264 static void
265 clear_lim_data (gimple stmt)
266 {
267 lim_aux_data **p = lim_aux_data_map->get (stmt);
268 if (!p)
269 return;
270
271 free_lim_aux_data (*p);
272 *p = NULL;
273 }
274
275
276 /* The possibilities of statement movement. */
277 enum move_pos
278 {
279 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
280 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
281 become executed -- memory accesses, ... */
282 MOVE_POSSIBLE /* Unlimited movement. */
283 };
284
285
286 /* If it is possible to hoist the statement STMT unconditionally,
287 returns MOVE_POSSIBLE.
288 If it is possible to hoist the statement STMT, but we must avoid making
289 it executed if it would not be executed in the original program (e.g.
290 because it may trap), return MOVE_PRESERVE_EXECUTION.
291 Otherwise return MOVE_IMPOSSIBLE. */
292
293 enum move_pos
294 movement_possibility (gimple stmt)
295 {
296 tree lhs;
297 enum move_pos ret = MOVE_POSSIBLE;
298
299 if (flag_unswitch_loops
300 && gimple_code (stmt) == GIMPLE_COND)
301 {
302 /* If we perform unswitching, force the operands of the invariant
303 condition to be moved out of the loop. */
304 return MOVE_POSSIBLE;
305 }
306
307 if (gimple_code (stmt) == GIMPLE_PHI
308 && gimple_phi_num_args (stmt) <= 2
309 && !virtual_operand_p (gimple_phi_result (stmt))
310 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
311 return MOVE_POSSIBLE;
312
313 if (gimple_get_lhs (stmt) == NULL_TREE)
314 return MOVE_IMPOSSIBLE;
315
316 if (gimple_vdef (stmt))
317 return MOVE_IMPOSSIBLE;
318
319 if (stmt_ends_bb_p (stmt)
320 || gimple_has_volatile_ops (stmt)
321 || gimple_has_side_effects (stmt)
322 || stmt_could_throw_p (stmt))
323 return MOVE_IMPOSSIBLE;
324
325 if (is_gimple_call (stmt))
326 {
327 /* While pure or const call is guaranteed to have no side effects, we
328 cannot move it arbitrarily. Consider code like
329
330 char *s = something ();
331
332 while (1)
333 {
334 if (s)
335 t = strlen (s);
336 else
337 t = 0;
338 }
339
340 Here the strlen call cannot be moved out of the loop, even though
341 s is invariant. In addition to possibly creating a call with
342 invalid arguments, moving out a function call that is not executed
343 may cause performance regressions in case the call is costly and
344 not executed at all. */
345 ret = MOVE_PRESERVE_EXECUTION;
346 lhs = gimple_call_lhs (stmt);
347 }
348 else if (is_gimple_assign (stmt))
349 lhs = gimple_assign_lhs (stmt);
350 else
351 return MOVE_IMPOSSIBLE;
352
353 if (TREE_CODE (lhs) == SSA_NAME
354 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
355 return MOVE_IMPOSSIBLE;
356
357 if (TREE_CODE (lhs) != SSA_NAME
358 || gimple_could_trap_p (stmt))
359 return MOVE_PRESERVE_EXECUTION;
360
361 /* Non local loads in a transaction cannot be hoisted out. Well,
362 unless the load happens on every path out of the loop, but we
363 don't take this into account yet. */
364 if (flag_tm
365 && gimple_in_transaction (stmt)
366 && gimple_assign_single_p (stmt))
367 {
368 tree rhs = gimple_assign_rhs1 (stmt);
369 if (DECL_P (rhs) && is_global_var (rhs))
370 {
371 if (dump_file)
372 {
373 fprintf (dump_file, "Cannot hoist conditional load of ");
374 print_generic_expr (dump_file, rhs, TDF_SLIM);
375 fprintf (dump_file, " because it is in a transaction.\n");
376 }
377 return MOVE_IMPOSSIBLE;
378 }
379 }
380
381 return ret;
382 }
383
384 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
385 loop to that we could move the expression using DEF if it did not have
386 other operands, i.e. the outermost loop enclosing LOOP in that the value
387 of DEF is invariant. */
388
389 static struct loop *
390 outermost_invariant_loop (tree def, struct loop *loop)
391 {
392 gimple def_stmt;
393 basic_block def_bb;
394 struct loop *max_loop;
395 struct lim_aux_data *lim_data;
396
397 if (!def)
398 return superloop_at_depth (loop, 1);
399
400 if (TREE_CODE (def) != SSA_NAME)
401 {
402 gcc_assert (is_gimple_min_invariant (def));
403 return superloop_at_depth (loop, 1);
404 }
405
406 def_stmt = SSA_NAME_DEF_STMT (def);
407 def_bb = gimple_bb (def_stmt);
408 if (!def_bb)
409 return superloop_at_depth (loop, 1);
410
411 max_loop = find_common_loop (loop, def_bb->loop_father);
412
413 lim_data = get_lim_data (def_stmt);
414 if (lim_data != NULL && lim_data->max_loop != NULL)
415 max_loop = find_common_loop (max_loop,
416 loop_outer (lim_data->max_loop));
417 if (max_loop == loop)
418 return NULL;
419 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
420
421 return max_loop;
422 }
423
424 /* DATA is a structure containing information associated with a statement
425 inside LOOP. DEF is one of the operands of this statement.
426
427 Find the outermost loop enclosing LOOP in that value of DEF is invariant
428 and record this in DATA->max_loop field. If DEF itself is defined inside
429 this loop as well (i.e. we need to hoist it out of the loop if we want
430 to hoist the statement represented by DATA), record the statement in that
431 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
432 add the cost of the computation of DEF to the DATA->cost.
433
434 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
435
436 static bool
437 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
438 bool add_cost)
439 {
440 gimple def_stmt = SSA_NAME_DEF_STMT (def);
441 basic_block def_bb = gimple_bb (def_stmt);
442 struct loop *max_loop;
443 struct lim_aux_data *def_data;
444
445 if (!def_bb)
446 return true;
447
448 max_loop = outermost_invariant_loop (def, loop);
449 if (!max_loop)
450 return false;
451
452 if (flow_loop_nested_p (data->max_loop, max_loop))
453 data->max_loop = max_loop;
454
455 def_data = get_lim_data (def_stmt);
456 if (!def_data)
457 return true;
458
459 if (add_cost
460 /* Only add the cost if the statement defining DEF is inside LOOP,
461 i.e. if it is likely that by moving the invariants dependent
462 on it, we will be able to avoid creating a new register for
463 it (since it will be only used in these dependent invariants). */
464 && def_bb->loop_father == loop)
465 data->cost += def_data->cost;
466
467 data->depends.safe_push (def_stmt);
468
469 return true;
470 }
471
472 /* Returns an estimate for a cost of statement STMT. The values here
473 are just ad-hoc constants, similar to costs for inlining. */
474
475 static unsigned
476 stmt_cost (gimple stmt)
477 {
478 /* Always try to create possibilities for unswitching. */
479 if (gimple_code (stmt) == GIMPLE_COND
480 || gimple_code (stmt) == GIMPLE_PHI)
481 return LIM_EXPENSIVE;
482
483 /* We should be hoisting calls if possible. */
484 if (is_gimple_call (stmt))
485 {
486 tree fndecl;
487
488 /* Unless the call is a builtin_constant_p; this always folds to a
489 constant, so moving it is useless. */
490 fndecl = gimple_call_fndecl (stmt);
491 if (fndecl
492 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
493 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
494 return 0;
495
496 return LIM_EXPENSIVE;
497 }
498
499 /* Hoisting memory references out should almost surely be a win. */
500 if (gimple_references_memory_p (stmt))
501 return LIM_EXPENSIVE;
502
503 if (gimple_code (stmt) != GIMPLE_ASSIGN)
504 return 1;
505
506 switch (gimple_assign_rhs_code (stmt))
507 {
508 case MULT_EXPR:
509 case WIDEN_MULT_EXPR:
510 case WIDEN_MULT_PLUS_EXPR:
511 case WIDEN_MULT_MINUS_EXPR:
512 case DOT_PROD_EXPR:
513 case FMA_EXPR:
514 case TRUNC_DIV_EXPR:
515 case CEIL_DIV_EXPR:
516 case FLOOR_DIV_EXPR:
517 case ROUND_DIV_EXPR:
518 case EXACT_DIV_EXPR:
519 case CEIL_MOD_EXPR:
520 case FLOOR_MOD_EXPR:
521 case ROUND_MOD_EXPR:
522 case TRUNC_MOD_EXPR:
523 case RDIV_EXPR:
524 /* Division and multiplication are usually expensive. */
525 return LIM_EXPENSIVE;
526
527 case LSHIFT_EXPR:
528 case RSHIFT_EXPR:
529 case WIDEN_LSHIFT_EXPR:
530 case LROTATE_EXPR:
531 case RROTATE_EXPR:
532 /* Shifts and rotates are usually expensive. */
533 return LIM_EXPENSIVE;
534
535 case CONSTRUCTOR:
536 /* Make vector construction cost proportional to the number
537 of elements. */
538 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
539
540 case SSA_NAME:
541 case PAREN_EXPR:
542 /* Whether or not something is wrapped inside a PAREN_EXPR
543 should not change move cost. Nor should an intermediate
544 unpropagated SSA name copy. */
545 return 0;
546
547 default:
548 return 1;
549 }
550 }
551
552 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
553 REF is independent. If REF is not independent in LOOP, NULL is returned
554 instead. */
555
556 static struct loop *
557 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
558 {
559 struct loop *aloop;
560
561 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
562 return NULL;
563
564 for (aloop = outer;
565 aloop != loop;
566 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
567 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
568 && ref_indep_loop_p (aloop, ref))
569 return aloop;
570
571 if (ref_indep_loop_p (loop, ref))
572 return loop;
573 else
574 return NULL;
575 }
576
577 /* If there is a simple load or store to a memory reference in STMT, returns
578 the location of the memory reference, and sets IS_STORE according to whether
579 it is a store or load. Otherwise, returns NULL. */
580
581 static tree *
582 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
583 {
584 tree *lhs, *rhs;
585
586 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
587 if (!gimple_assign_single_p (stmt))
588 return NULL;
589
590 lhs = gimple_assign_lhs_ptr (stmt);
591 rhs = gimple_assign_rhs1_ptr (stmt);
592
593 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
594 {
595 *is_store = false;
596 return rhs;
597 }
598 else if (gimple_vdef (stmt)
599 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
600 {
601 *is_store = true;
602 return lhs;
603 }
604 else
605 return NULL;
606 }
607
608 /* Returns the memory reference contained in STMT. */
609
610 static mem_ref_p
611 mem_ref_in_stmt (gimple stmt)
612 {
613 bool store;
614 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
615 hashval_t hash;
616 mem_ref_p ref;
617
618 if (!mem)
619 return NULL;
620 gcc_assert (!store);
621
622 hash = iterative_hash_expr (*mem, 0);
623 ref = memory_accesses.refs->find_with_hash (*mem, hash);
624
625 gcc_assert (ref != NULL);
626 return ref;
627 }
628
629 /* From a controlling predicate in DOM determine the arguments from
630 the PHI node PHI that are chosen if the predicate evaluates to
631 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
632 they are non-NULL. Returns true if the arguments can be determined,
633 else return false. */
634
635 static bool
636 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
637 tree *true_arg_p, tree *false_arg_p)
638 {
639 basic_block bb = gimple_bb (phi);
640 edge true_edge, false_edge, tem;
641 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
642
643 /* We have to verify that one edge into the PHI node is dominated
644 by the true edge of the predicate block and the other edge
645 dominated by the false edge. This ensures that the PHI argument
646 we are going to take is completely determined by the path we
647 take from the predicate block.
648 We can only use BB dominance checks below if the destination of
649 the true/false edges are dominated by their edge, thus only
650 have a single predecessor. */
651 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
652 tem = EDGE_PRED (bb, 0);
653 if (tem == true_edge
654 || (single_pred_p (true_edge->dest)
655 && (tem->src == true_edge->dest
656 || dominated_by_p (CDI_DOMINATORS,
657 tem->src, true_edge->dest))))
658 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
659 else if (tem == false_edge
660 || (single_pred_p (false_edge->dest)
661 && (tem->src == false_edge->dest
662 || dominated_by_p (CDI_DOMINATORS,
663 tem->src, false_edge->dest))))
664 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
665 else
666 return false;
667 tem = EDGE_PRED (bb, 1);
668 if (tem == true_edge
669 || (single_pred_p (true_edge->dest)
670 && (tem->src == true_edge->dest
671 || dominated_by_p (CDI_DOMINATORS,
672 tem->src, true_edge->dest))))
673 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
674 else if (tem == false_edge
675 || (single_pred_p (false_edge->dest)
676 && (tem->src == false_edge->dest
677 || dominated_by_p (CDI_DOMINATORS,
678 tem->src, false_edge->dest))))
679 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
680 else
681 return false;
682 if (!arg0 || !arg1)
683 return false;
684
685 if (true_arg_p)
686 *true_arg_p = arg0;
687 if (false_arg_p)
688 *false_arg_p = arg1;
689
690 return true;
691 }
692
693 /* Determine the outermost loop to that it is possible to hoist a statement
694 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
695 the outermost loop in that the value computed by STMT is invariant.
696 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
697 we preserve the fact whether STMT is executed. It also fills other related
698 information to LIM_DATA (STMT).
699
700 The function returns false if STMT cannot be hoisted outside of the loop it
701 is defined in, and true otherwise. */
702
703 static bool
704 determine_max_movement (gimple stmt, bool must_preserve_exec)
705 {
706 basic_block bb = gimple_bb (stmt);
707 struct loop *loop = bb->loop_father;
708 struct loop *level;
709 struct lim_aux_data *lim_data = get_lim_data (stmt);
710 tree val;
711 ssa_op_iter iter;
712
713 if (must_preserve_exec)
714 level = ALWAYS_EXECUTED_IN (bb);
715 else
716 level = superloop_at_depth (loop, 1);
717 lim_data->max_loop = level;
718
719 if (gphi *phi = dyn_cast <gphi *> (stmt))
720 {
721 use_operand_p use_p;
722 unsigned min_cost = UINT_MAX;
723 unsigned total_cost = 0;
724 struct lim_aux_data *def_data;
725
726 /* We will end up promoting dependencies to be unconditionally
727 evaluated. For this reason the PHI cost (and thus the
728 cost we remove from the loop by doing the invariant motion)
729 is that of the cheapest PHI argument dependency chain. */
730 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
731 {
732 val = USE_FROM_PTR (use_p);
733
734 if (TREE_CODE (val) != SSA_NAME)
735 {
736 /* Assign const 1 to constants. */
737 min_cost = MIN (min_cost, 1);
738 total_cost += 1;
739 continue;
740 }
741 if (!add_dependency (val, lim_data, loop, false))
742 return false;
743
744 gimple def_stmt = SSA_NAME_DEF_STMT (val);
745 if (gimple_bb (def_stmt)
746 && gimple_bb (def_stmt)->loop_father == loop)
747 {
748 def_data = get_lim_data (def_stmt);
749 if (def_data)
750 {
751 min_cost = MIN (min_cost, def_data->cost);
752 total_cost += def_data->cost;
753 }
754 }
755 }
756
757 min_cost = MIN (min_cost, total_cost);
758 lim_data->cost += min_cost;
759
760 if (gimple_phi_num_args (phi) > 1)
761 {
762 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
763 gimple cond;
764 if (gsi_end_p (gsi_last_bb (dom)))
765 return false;
766 cond = gsi_stmt (gsi_last_bb (dom));
767 if (gimple_code (cond) != GIMPLE_COND)
768 return false;
769 /* Verify that this is an extended form of a diamond and
770 the PHI arguments are completely controlled by the
771 predicate in DOM. */
772 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
773 return false;
774
775 /* Fold in dependencies and cost of the condition. */
776 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
777 {
778 if (!add_dependency (val, lim_data, loop, false))
779 return false;
780 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
781 if (def_data)
782 total_cost += def_data->cost;
783 }
784
785 /* We want to avoid unconditionally executing very expensive
786 operations. As costs for our dependencies cannot be
787 negative just claim we are not invariand for this case.
788 We also are not sure whether the control-flow inside the
789 loop will vanish. */
790 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
791 && !(min_cost != 0
792 && total_cost / min_cost <= 2))
793 return false;
794
795 /* Assume that the control-flow in the loop will vanish.
796 ??? We should verify this and not artificially increase
797 the cost if that is not the case. */
798 lim_data->cost += stmt_cost (stmt);
799 }
800
801 return true;
802 }
803 else
804 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
805 if (!add_dependency (val, lim_data, loop, true))
806 return false;
807
808 if (gimple_vuse (stmt))
809 {
810 mem_ref_p ref = mem_ref_in_stmt (stmt);
811
812 if (ref)
813 {
814 lim_data->max_loop
815 = outermost_indep_loop (lim_data->max_loop, loop, ref);
816 if (!lim_data->max_loop)
817 return false;
818 }
819 else
820 {
821 if ((val = gimple_vuse (stmt)) != NULL_TREE)
822 {
823 if (!add_dependency (val, lim_data, loop, false))
824 return false;
825 }
826 }
827 }
828
829 lim_data->cost += stmt_cost (stmt);
830
831 return true;
832 }
833
834 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
835 and that one of the operands of this statement is computed by STMT.
836 Ensure that STMT (together with all the statements that define its
837 operands) is hoisted at least out of the loop LEVEL. */
838
839 static void
840 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
841 {
842 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
843 struct lim_aux_data *lim_data;
844 gimple dep_stmt;
845 unsigned i;
846
847 stmt_loop = find_common_loop (orig_loop, stmt_loop);
848 lim_data = get_lim_data (stmt);
849 if (lim_data != NULL && lim_data->tgt_loop != NULL)
850 stmt_loop = find_common_loop (stmt_loop,
851 loop_outer (lim_data->tgt_loop));
852 if (flow_loop_nested_p (stmt_loop, level))
853 return;
854
855 gcc_assert (level == lim_data->max_loop
856 || flow_loop_nested_p (lim_data->max_loop, level));
857
858 lim_data->tgt_loop = level;
859 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
860 set_level (dep_stmt, orig_loop, level);
861 }
862
863 /* Determines an outermost loop from that we want to hoist the statement STMT.
864 For now we chose the outermost possible loop. TODO -- use profiling
865 information to set it more sanely. */
866
867 static void
868 set_profitable_level (gimple stmt)
869 {
870 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
871 }
872
873 /* Returns true if STMT is a call that has side effects. */
874
875 static bool
876 nonpure_call_p (gimple stmt)
877 {
878 if (gimple_code (stmt) != GIMPLE_CALL)
879 return false;
880
881 return gimple_has_side_effects (stmt);
882 }
883
884 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
885
886 static gimple
887 rewrite_reciprocal (gimple_stmt_iterator *bsi)
888 {
889 gassign *stmt, *stmt1, *stmt2;
890 tree name, lhs, type;
891 tree real_one;
892 gimple_stmt_iterator gsi;
893
894 stmt = as_a <gassign *> (gsi_stmt (*bsi));
895 lhs = gimple_assign_lhs (stmt);
896 type = TREE_TYPE (lhs);
897
898 real_one = build_one_cst (type);
899
900 name = make_temp_ssa_name (type, NULL, "reciptmp");
901 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
902 gimple_assign_rhs2 (stmt));
903
904 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
905 gimple_assign_rhs1 (stmt));
906
907 /* Replace division stmt with reciprocal and multiply stmts.
908 The multiply stmt is not invariant, so update iterator
909 and avoid rescanning. */
910 gsi = *bsi;
911 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
912 gsi_replace (&gsi, stmt2, true);
913
914 /* Continue processing with invariant reciprocal statement. */
915 return stmt1;
916 }
917
918 /* Check if the pattern at *BSI is a bittest of the form
919 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
920
921 static gimple
922 rewrite_bittest (gimple_stmt_iterator *bsi)
923 {
924 gassign *stmt;
925 gimple stmt1;
926 gassign *stmt2;
927 gimple use_stmt;
928 gcond *cond_stmt;
929 tree lhs, name, t, a, b;
930 use_operand_p use;
931
932 stmt = as_a <gassign *> (gsi_stmt (*bsi));
933 lhs = gimple_assign_lhs (stmt);
934
935 /* Verify that the single use of lhs is a comparison against zero. */
936 if (TREE_CODE (lhs) != SSA_NAME
937 || !single_imm_use (lhs, &use, &use_stmt))
938 return stmt;
939 cond_stmt = dyn_cast <gcond *> (use_stmt);
940 if (!cond_stmt)
941 return stmt;
942 if (gimple_cond_lhs (cond_stmt) != lhs
943 || (gimple_cond_code (cond_stmt) != NE_EXPR
944 && gimple_cond_code (cond_stmt) != EQ_EXPR)
945 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
946 return stmt;
947
948 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
949 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
950 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
951 return stmt;
952
953 /* There is a conversion in between possibly inserted by fold. */
954 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
955 {
956 t = gimple_assign_rhs1 (stmt1);
957 if (TREE_CODE (t) != SSA_NAME
958 || !has_single_use (t))
959 return stmt;
960 stmt1 = SSA_NAME_DEF_STMT (t);
961 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
962 return stmt;
963 }
964
965 /* Verify that B is loop invariant but A is not. Verify that with
966 all the stmt walking we are still in the same loop. */
967 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
968 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
969 return stmt;
970
971 a = gimple_assign_rhs1 (stmt1);
972 b = gimple_assign_rhs2 (stmt1);
973
974 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
975 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
976 {
977 gimple_stmt_iterator rsi;
978
979 /* 1 << B */
980 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
981 build_int_cst (TREE_TYPE (a), 1), b);
982 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
983 stmt1 = gimple_build_assign (name, t);
984
985 /* A & (1 << B) */
986 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
987 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
988 stmt2 = gimple_build_assign (name, t);
989
990 /* Replace the SSA_NAME we compare against zero. Adjust
991 the type of zero accordingly. */
992 SET_USE (use, name);
993 gimple_cond_set_rhs (cond_stmt,
994 build_int_cst_type (TREE_TYPE (name),
995 0));
996
997 /* Don't use gsi_replace here, none of the new assignments sets
998 the variable originally set in stmt. Move bsi to stmt1, and
999 then remove the original stmt, so that we get a chance to
1000 retain debug info for it. */
1001 rsi = *bsi;
1002 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1003 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1004 gsi_remove (&rsi, true);
1005
1006 return stmt1;
1007 }
1008
1009 return stmt;
1010 }
1011
1012 /* For each statement determines the outermost loop in that it is invariant,
1013 - statements on whose motion it depends and the cost of the computation.
1014 - This information is stored to the LIM_DATA structure associated with
1015 - each statement. */
1016 class invariantness_dom_walker : public dom_walker
1017 {
1018 public:
1019 invariantness_dom_walker (cdi_direction direction)
1020 : dom_walker (direction) {}
1021
1022 virtual void before_dom_children (basic_block);
1023 };
1024
1025 /* Determine the outermost loops in that statements in basic block BB are
1026 invariant, and record them to the LIM_DATA associated with the statements.
1027 Callback for dom_walker. */
1028
1029 void
1030 invariantness_dom_walker::before_dom_children (basic_block bb)
1031 {
1032 enum move_pos pos;
1033 gimple_stmt_iterator bsi;
1034 gimple stmt;
1035 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1036 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1037 struct lim_aux_data *lim_data;
1038
1039 if (!loop_outer (bb->loop_father))
1040 return;
1041
1042 if (dump_file && (dump_flags & TDF_DETAILS))
1043 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1044 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1045
1046 /* Look at PHI nodes, but only if there is at most two.
1047 ??? We could relax this further by post-processing the inserted
1048 code and transforming adjacent cond-exprs with the same predicate
1049 to control flow again. */
1050 bsi = gsi_start_phis (bb);
1051 if (!gsi_end_p (bsi)
1052 && ((gsi_next (&bsi), gsi_end_p (bsi))
1053 || (gsi_next (&bsi), gsi_end_p (bsi))))
1054 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1055 {
1056 stmt = gsi_stmt (bsi);
1057
1058 pos = movement_possibility (stmt);
1059 if (pos == MOVE_IMPOSSIBLE)
1060 continue;
1061
1062 lim_data = init_lim_data (stmt);
1063 lim_data->always_executed_in = outermost;
1064
1065 if (!determine_max_movement (stmt, false))
1066 {
1067 lim_data->max_loop = NULL;
1068 continue;
1069 }
1070
1071 if (dump_file && (dump_flags & TDF_DETAILS))
1072 {
1073 print_gimple_stmt (dump_file, stmt, 2, 0);
1074 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1075 loop_depth (lim_data->max_loop),
1076 lim_data->cost);
1077 }
1078
1079 if (lim_data->cost >= LIM_EXPENSIVE)
1080 set_profitable_level (stmt);
1081 }
1082
1083 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1084 {
1085 stmt = gsi_stmt (bsi);
1086
1087 pos = movement_possibility (stmt);
1088 if (pos == MOVE_IMPOSSIBLE)
1089 {
1090 if (nonpure_call_p (stmt))
1091 {
1092 maybe_never = true;
1093 outermost = NULL;
1094 }
1095 /* Make sure to note always_executed_in for stores to make
1096 store-motion work. */
1097 else if (stmt_makes_single_store (stmt))
1098 {
1099 struct lim_aux_data *lim_data = init_lim_data (stmt);
1100 lim_data->always_executed_in = outermost;
1101 }
1102 continue;
1103 }
1104
1105 if (is_gimple_assign (stmt)
1106 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1107 == GIMPLE_BINARY_RHS))
1108 {
1109 tree op0 = gimple_assign_rhs1 (stmt);
1110 tree op1 = gimple_assign_rhs2 (stmt);
1111 struct loop *ol1 = outermost_invariant_loop (op1,
1112 loop_containing_stmt (stmt));
1113
1114 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1115 to be hoisted out of loop, saving expensive divide. */
1116 if (pos == MOVE_POSSIBLE
1117 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1118 && flag_unsafe_math_optimizations
1119 && !flag_trapping_math
1120 && ol1 != NULL
1121 && outermost_invariant_loop (op0, ol1) == NULL)
1122 stmt = rewrite_reciprocal (&bsi);
1123
1124 /* If the shift count is invariant, convert (A >> B) & 1 to
1125 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1126 saving an expensive shift. */
1127 if (pos == MOVE_POSSIBLE
1128 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1129 && integer_onep (op1)
1130 && TREE_CODE (op0) == SSA_NAME
1131 && has_single_use (op0))
1132 stmt = rewrite_bittest (&bsi);
1133 }
1134
1135 lim_data = init_lim_data (stmt);
1136 lim_data->always_executed_in = outermost;
1137
1138 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1139 continue;
1140
1141 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1142 {
1143 lim_data->max_loop = NULL;
1144 continue;
1145 }
1146
1147 if (dump_file && (dump_flags & TDF_DETAILS))
1148 {
1149 print_gimple_stmt (dump_file, stmt, 2, 0);
1150 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1151 loop_depth (lim_data->max_loop),
1152 lim_data->cost);
1153 }
1154
1155 if (lim_data->cost >= LIM_EXPENSIVE)
1156 set_profitable_level (stmt);
1157 }
1158 }
1159
1160 class move_computations_dom_walker : public dom_walker
1161 {
1162 public:
1163 move_computations_dom_walker (cdi_direction direction)
1164 : dom_walker (direction), todo_ (0) {}
1165
1166 virtual void before_dom_children (basic_block);
1167
1168 unsigned int todo_;
1169 };
1170
1171 /* Hoist the statements in basic block BB out of the loops prescribed by
1172 data stored in LIM_DATA structures associated with each statement. Callback
1173 for walk_dominator_tree. */
1174
1175 void
1176 move_computations_dom_walker::before_dom_children (basic_block bb)
1177 {
1178 struct loop *level;
1179 unsigned cost = 0;
1180 struct lim_aux_data *lim_data;
1181
1182 if (!loop_outer (bb->loop_father))
1183 return;
1184
1185 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1186 {
1187 gassign *new_stmt;
1188 gphi *stmt = bsi.phi ();
1189
1190 lim_data = get_lim_data (stmt);
1191 if (lim_data == NULL)
1192 {
1193 gsi_next (&bsi);
1194 continue;
1195 }
1196
1197 cost = lim_data->cost;
1198 level = lim_data->tgt_loop;
1199 clear_lim_data (stmt);
1200
1201 if (!level)
1202 {
1203 gsi_next (&bsi);
1204 continue;
1205 }
1206
1207 if (dump_file && (dump_flags & TDF_DETAILS))
1208 {
1209 fprintf (dump_file, "Moving PHI node\n");
1210 print_gimple_stmt (dump_file, stmt, 0, 0);
1211 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1212 cost, level->num);
1213 }
1214
1215 if (gimple_phi_num_args (stmt) == 1)
1216 {
1217 tree arg = PHI_ARG_DEF (stmt, 0);
1218 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1219 gimple_phi_result (stmt),
1220 arg);
1221 }
1222 else
1223 {
1224 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1225 gimple cond = gsi_stmt (gsi_last_bb (dom));
1226 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1227 /* Get the PHI arguments corresponding to the true and false
1228 edges of COND. */
1229 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1230 gcc_assert (arg0 && arg1);
1231 t = build2 (gimple_cond_code (cond), boolean_type_node,
1232 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1233 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1234 gimple_phi_result (stmt),
1235 t, arg0, arg1);
1236 todo_ |= TODO_cleanup_cfg;
1237 }
1238 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1239 remove_phi_node (&bsi, false);
1240 }
1241
1242 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1243 {
1244 edge e;
1245
1246 gimple stmt = gsi_stmt (bsi);
1247
1248 lim_data = get_lim_data (stmt);
1249 if (lim_data == NULL)
1250 {
1251 gsi_next (&bsi);
1252 continue;
1253 }
1254
1255 cost = lim_data->cost;
1256 level = lim_data->tgt_loop;
1257 clear_lim_data (stmt);
1258
1259 if (!level)
1260 {
1261 gsi_next (&bsi);
1262 continue;
1263 }
1264
1265 /* We do not really want to move conditionals out of the loop; we just
1266 placed it here to force its operands to be moved if necessary. */
1267 if (gimple_code (stmt) == GIMPLE_COND)
1268 continue;
1269
1270 if (dump_file && (dump_flags & TDF_DETAILS))
1271 {
1272 fprintf (dump_file, "Moving statement\n");
1273 print_gimple_stmt (dump_file, stmt, 0, 0);
1274 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1275 cost, level->num);
1276 }
1277
1278 e = loop_preheader_edge (level);
1279 gcc_assert (!gimple_vdef (stmt));
1280 if (gimple_vuse (stmt))
1281 {
1282 /* The new VUSE is the one from the virtual PHI in the loop
1283 header or the one already present. */
1284 gphi_iterator gsi2;
1285 for (gsi2 = gsi_start_phis (e->dest);
1286 !gsi_end_p (gsi2); gsi_next (&gsi2))
1287 {
1288 gphi *phi = gsi2.phi ();
1289 if (virtual_operand_p (gimple_phi_result (phi)))
1290 {
1291 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1292 break;
1293 }
1294 }
1295 }
1296 gsi_remove (&bsi, false);
1297 /* In case this is a stmt that is not unconditionally executed
1298 when the target loop header is executed and the stmt may
1299 invoke undefined integer or pointer overflow rewrite it to
1300 unsigned arithmetic. */
1301 if (is_gimple_assign (stmt)
1302 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1303 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1304 && arith_code_with_undefined_signed_overflow
1305 (gimple_assign_rhs_code (stmt))
1306 && (!ALWAYS_EXECUTED_IN (bb)
1307 || !(ALWAYS_EXECUTED_IN (bb) == level
1308 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1309 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1310 else
1311 gsi_insert_on_edge (e, stmt);
1312 }
1313 }
1314
1315 /* Hoist the statements out of the loops prescribed by data stored in
1316 LIM_DATA structures associated with each statement.*/
1317
1318 static unsigned int
1319 move_computations (void)
1320 {
1321 move_computations_dom_walker walker (CDI_DOMINATORS);
1322 walker.walk (cfun->cfg->x_entry_block_ptr);
1323
1324 gsi_commit_edge_inserts ();
1325 if (need_ssa_update_p (cfun))
1326 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1327
1328 return walker.todo_;
1329 }
1330
1331 /* Checks whether the statement defining variable *INDEX can be hoisted
1332 out of the loop passed in DATA. Callback for for_each_index. */
1333
1334 static bool
1335 may_move_till (tree ref, tree *index, void *data)
1336 {
1337 struct loop *loop = (struct loop *) data, *max_loop;
1338
1339 /* If REF is an array reference, check also that the step and the lower
1340 bound is invariant in LOOP. */
1341 if (TREE_CODE (ref) == ARRAY_REF)
1342 {
1343 tree step = TREE_OPERAND (ref, 3);
1344 tree lbound = TREE_OPERAND (ref, 2);
1345
1346 max_loop = outermost_invariant_loop (step, loop);
1347 if (!max_loop)
1348 return false;
1349
1350 max_loop = outermost_invariant_loop (lbound, loop);
1351 if (!max_loop)
1352 return false;
1353 }
1354
1355 max_loop = outermost_invariant_loop (*index, loop);
1356 if (!max_loop)
1357 return false;
1358
1359 return true;
1360 }
1361
1362 /* If OP is SSA NAME, force the statement that defines it to be
1363 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1364
1365 static void
1366 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1367 {
1368 gimple stmt;
1369
1370 if (!op
1371 || is_gimple_min_invariant (op))
1372 return;
1373
1374 gcc_assert (TREE_CODE (op) == SSA_NAME);
1375
1376 stmt = SSA_NAME_DEF_STMT (op);
1377 if (gimple_nop_p (stmt))
1378 return;
1379
1380 set_level (stmt, orig_loop, loop);
1381 }
1382
1383 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1384 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1385 for_each_index. */
1386
1387 struct fmt_data
1388 {
1389 struct loop *loop;
1390 struct loop *orig_loop;
1391 };
1392
1393 static bool
1394 force_move_till (tree ref, tree *index, void *data)
1395 {
1396 struct fmt_data *fmt_data = (struct fmt_data *) data;
1397
1398 if (TREE_CODE (ref) == ARRAY_REF)
1399 {
1400 tree step = TREE_OPERAND (ref, 3);
1401 tree lbound = TREE_OPERAND (ref, 2);
1402
1403 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1404 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1405 }
1406
1407 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1408
1409 return true;
1410 }
1411
1412 /* A function to free the mem_ref object OBJ. */
1413
1414 static void
1415 memref_free (struct im_mem_ref *mem)
1416 {
1417 mem->accesses_in_loop.release ();
1418 }
1419
1420 /* Allocates and returns a memory reference description for MEM whose hash
1421 value is HASH and id is ID. */
1422
1423 static mem_ref_p
1424 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1425 {
1426 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1427 ao_ref_init (&ref->mem, mem);
1428 ref->id = id;
1429 ref->hash = hash;
1430 ref->stored = NULL;
1431 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1432 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1433 ref->accesses_in_loop.create (1);
1434
1435 return ref;
1436 }
1437
1438 /* Records memory reference location *LOC in LOOP to the memory reference
1439 description REF. The reference occurs in statement STMT. */
1440
1441 static void
1442 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1443 {
1444 mem_ref_loc aref;
1445 aref.stmt = stmt;
1446 aref.ref = loc;
1447 ref->accesses_in_loop.safe_push (aref);
1448 }
1449
1450 /* Set the LOOP bit in REF stored bitmap and allocate that if
1451 necessary. Return whether a bit was changed. */
1452
1453 static bool
1454 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1455 {
1456 if (!ref->stored)
1457 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1458 return bitmap_set_bit (ref->stored, loop->num);
1459 }
1460
1461 /* Marks reference REF as stored in LOOP. */
1462
1463 static void
1464 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1465 {
1466 while (loop != current_loops->tree_root
1467 && set_ref_stored_in_loop (ref, loop))
1468 loop = loop_outer (loop);
1469 }
1470
1471 /* Gathers memory references in statement STMT in LOOP, storing the
1472 information about them in the memory_accesses structure. Marks
1473 the vops accessed through unrecognized statements there as
1474 well. */
1475
1476 static void
1477 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1478 {
1479 tree *mem = NULL;
1480 hashval_t hash;
1481 im_mem_ref **slot;
1482 mem_ref_p ref;
1483 bool is_stored;
1484 unsigned id;
1485
1486 if (!gimple_vuse (stmt))
1487 return;
1488
1489 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1490 if (!mem)
1491 {
1492 /* We use the shared mem_ref for all unanalyzable refs. */
1493 id = UNANALYZABLE_MEM_ID;
1494 ref = memory_accesses.refs_list[id];
1495 if (dump_file && (dump_flags & TDF_DETAILS))
1496 {
1497 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1498 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1499 }
1500 is_stored = gimple_vdef (stmt);
1501 }
1502 else
1503 {
1504 hash = iterative_hash_expr (*mem, 0);
1505 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1506 if (*slot)
1507 {
1508 ref = (mem_ref_p) *slot;
1509 id = ref->id;
1510 }
1511 else
1512 {
1513 id = memory_accesses.refs_list.length ();
1514 ref = mem_ref_alloc (*mem, hash, id);
1515 memory_accesses.refs_list.safe_push (ref);
1516 *slot = ref;
1517
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1519 {
1520 fprintf (dump_file, "Memory reference %u: ", id);
1521 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1522 fprintf (dump_file, "\n");
1523 }
1524 }
1525
1526 record_mem_ref_loc (ref, stmt, mem);
1527 }
1528 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1529 if (is_stored)
1530 {
1531 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1532 mark_ref_stored (ref, loop);
1533 }
1534 return;
1535 }
1536
1537 static unsigned *bb_loop_postorder;
1538
1539 /* qsort sort function to sort blocks after their loop fathers postorder. */
1540
1541 static int
1542 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1543 {
1544 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1545 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1546 struct loop *loop1 = bb1->loop_father;
1547 struct loop *loop2 = bb2->loop_father;
1548 if (loop1->num == loop2->num)
1549 return 0;
1550 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1551 }
1552
1553 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1554
1555 static int
1556 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1557 {
1558 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1559 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1560 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1561 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1562 if (loop1->num == loop2->num)
1563 return 0;
1564 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1565 }
1566
1567 /* Gathers memory references in loops. */
1568
1569 static void
1570 analyze_memory_references (void)
1571 {
1572 gimple_stmt_iterator bsi;
1573 basic_block bb, *bbs;
1574 struct loop *loop, *outer;
1575 unsigned i, n;
1576
1577 /* Collect all basic-blocks in loops and sort them after their
1578 loops postorder. */
1579 i = 0;
1580 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1581 FOR_EACH_BB_FN (bb, cfun)
1582 if (bb->loop_father != current_loops->tree_root)
1583 bbs[i++] = bb;
1584 n = i;
1585 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1586
1587 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1588 That results in better locality for all the bitmaps. */
1589 for (i = 0; i < n; ++i)
1590 {
1591 basic_block bb = bbs[i];
1592 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1593 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1594 }
1595
1596 /* Sort the location list of gathered memory references after their
1597 loop postorder number. */
1598 im_mem_ref *ref;
1599 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1600 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1601
1602 free (bbs);
1603 // free (bb_loop_postorder);
1604
1605 /* Propagate the information about accessed memory references up
1606 the loop hierarchy. */
1607 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1608 {
1609 /* Finalize the overall touched references (including subloops). */
1610 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1611 &memory_accesses.refs_stored_in_loop[loop->num]);
1612
1613 /* Propagate the information about accessed memory references up
1614 the loop hierarchy. */
1615 outer = loop_outer (loop);
1616 if (outer == current_loops->tree_root)
1617 continue;
1618
1619 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1620 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1621 }
1622 }
1623
1624 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1625 tree_to_aff_combination_expand. */
1626
1627 static bool
1628 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1629 hash_map<tree, name_expansion *> **ttae_cache)
1630 {
1631 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1632 object and their offset differ in such a way that the locations cannot
1633 overlap, then they cannot alias. */
1634 widest_int size1, size2;
1635 aff_tree off1, off2;
1636
1637 /* Perform basic offset and type-based disambiguation. */
1638 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1639 return false;
1640
1641 /* The expansion of addresses may be a bit expensive, thus we only do
1642 the check at -O2 and higher optimization levels. */
1643 if (optimize < 2)
1644 return true;
1645
1646 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1647 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1648 aff_combination_expand (&off1, ttae_cache);
1649 aff_combination_expand (&off2, ttae_cache);
1650 aff_combination_scale (&off1, -1);
1651 aff_combination_add (&off2, &off1);
1652
1653 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1654 return false;
1655
1656 return true;
1657 }
1658
1659 /* Compare function for bsearch searching for reference locations
1660 in a loop. */
1661
1662 static int
1663 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1664 {
1665 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1666 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1667 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1668 if (loop->num == loc_loop->num
1669 || flow_loop_nested_p (loop, loc_loop))
1670 return 0;
1671 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1672 ? -1 : 1);
1673 }
1674
1675 /* Iterates over all locations of REF in LOOP and its subloops calling
1676 fn.operator() with the location as argument. When that operator
1677 returns true the iteration is stopped and true is returned.
1678 Otherwise false is returned. */
1679
1680 template <typename FN>
1681 static bool
1682 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1683 {
1684 unsigned i;
1685 mem_ref_loc_p loc;
1686
1687 /* Search for the cluster of locs in the accesses_in_loop vector
1688 which is sorted after postorder index of the loop father. */
1689 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1690 if (!loc)
1691 return false;
1692
1693 /* We have found one location inside loop or its sub-loops. Iterate
1694 both forward and backward to cover the whole cluster. */
1695 i = loc - ref->accesses_in_loop.address ();
1696 while (i > 0)
1697 {
1698 --i;
1699 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1700 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1701 break;
1702 if (fn (l))
1703 return true;
1704 }
1705 for (i = loc - ref->accesses_in_loop.address ();
1706 i < ref->accesses_in_loop.length (); ++i)
1707 {
1708 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1709 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1710 break;
1711 if (fn (l))
1712 return true;
1713 }
1714
1715 return false;
1716 }
1717
1718 /* Rewrites location LOC by TMP_VAR. */
1719
1720 struct rewrite_mem_ref_loc
1721 {
1722 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1723 bool operator () (mem_ref_loc_p loc);
1724 tree tmp_var;
1725 };
1726
1727 bool
1728 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1729 {
1730 *loc->ref = tmp_var;
1731 update_stmt (loc->stmt);
1732 return false;
1733 }
1734
1735 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1736
1737 static void
1738 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1739 {
1740 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1741 }
1742
1743 /* Stores the first reference location in LOCP. */
1744
1745 struct first_mem_ref_loc_1
1746 {
1747 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1748 bool operator () (mem_ref_loc_p loc);
1749 mem_ref_loc_p *locp;
1750 };
1751
1752 bool
1753 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1754 {
1755 *locp = loc;
1756 return true;
1757 }
1758
1759 /* Returns the first reference location to REF in LOOP. */
1760
1761 static mem_ref_loc_p
1762 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1763 {
1764 mem_ref_loc_p locp = NULL;
1765 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1766 return locp;
1767 }
1768
1769 struct prev_flag_edges {
1770 /* Edge to insert new flag comparison code. */
1771 edge append_cond_position;
1772
1773 /* Edge for fall through from previous flag comparison. */
1774 edge last_cond_fallthru;
1775 };
1776
1777 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1778 MEM along edge EX.
1779
1780 The store is only done if MEM has changed. We do this so no
1781 changes to MEM occur on code paths that did not originally store
1782 into it.
1783
1784 The common case for execute_sm will transform:
1785
1786 for (...) {
1787 if (foo)
1788 stuff;
1789 else
1790 MEM = TMP_VAR;
1791 }
1792
1793 into:
1794
1795 lsm = MEM;
1796 for (...) {
1797 if (foo)
1798 stuff;
1799 else
1800 lsm = TMP_VAR;
1801 }
1802 MEM = lsm;
1803
1804 This function will generate:
1805
1806 lsm = MEM;
1807
1808 lsm_flag = false;
1809 ...
1810 for (...) {
1811 if (foo)
1812 stuff;
1813 else {
1814 lsm = TMP_VAR;
1815 lsm_flag = true;
1816 }
1817 }
1818 if (lsm_flag) <--
1819 MEM = lsm; <--
1820 */
1821
1822 static void
1823 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1824 {
1825 basic_block new_bb, then_bb, old_dest;
1826 bool loop_has_only_one_exit;
1827 edge then_old_edge, orig_ex = ex;
1828 gimple_stmt_iterator gsi;
1829 gimple stmt;
1830 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1831 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1832
1833 /* ?? Insert store after previous store if applicable. See note
1834 below. */
1835 if (prev_edges)
1836 ex = prev_edges->append_cond_position;
1837
1838 loop_has_only_one_exit = single_pred_p (ex->dest);
1839
1840 if (loop_has_only_one_exit)
1841 ex = split_block_after_labels (ex->dest);
1842
1843 old_dest = ex->dest;
1844 new_bb = split_edge (ex);
1845 then_bb = create_empty_bb (new_bb);
1846 if (irr)
1847 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1848 add_bb_to_loop (then_bb, new_bb->loop_father);
1849
1850 gsi = gsi_start_bb (new_bb);
1851 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1852 NULL_TREE, NULL_TREE);
1853 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1854
1855 gsi = gsi_start_bb (then_bb);
1856 /* Insert actual store. */
1857 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1858 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1859
1860 make_edge (new_bb, then_bb,
1861 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1862 make_edge (new_bb, old_dest,
1863 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1864 then_old_edge = make_edge (then_bb, old_dest,
1865 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1866
1867 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1868
1869 if (prev_edges)
1870 {
1871 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1872 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1873 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1874 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1875 recompute_dominator (CDI_DOMINATORS, old_dest));
1876 }
1877
1878 /* ?? Because stores may alias, they must happen in the exact
1879 sequence they originally happened. Save the position right after
1880 the (_lsm) store we just created so we can continue appending after
1881 it and maintain the original order. */
1882 {
1883 struct prev_flag_edges *p;
1884
1885 if (orig_ex->aux)
1886 orig_ex->aux = NULL;
1887 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1888 p = (struct prev_flag_edges *) orig_ex->aux;
1889 p->append_cond_position = then_old_edge;
1890 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1891 orig_ex->aux = (void *) p;
1892 }
1893
1894 if (!loop_has_only_one_exit)
1895 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1896 !gsi_end_p (gpi); gsi_next (&gpi))
1897 {
1898 gphi *phi = gpi.phi ();
1899 unsigned i;
1900
1901 for (i = 0; i < gimple_phi_num_args (phi); i++)
1902 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1903 {
1904 tree arg = gimple_phi_arg_def (phi, i);
1905 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1906 update_stmt (phi);
1907 }
1908 }
1909 /* Remove the original fall through edge. This was the
1910 single_succ_edge (new_bb). */
1911 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1912 }
1913
1914 /* When REF is set on the location, set flag indicating the store. */
1915
1916 struct sm_set_flag_if_changed
1917 {
1918 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1919 bool operator () (mem_ref_loc_p loc);
1920 tree flag;
1921 };
1922
1923 bool
1924 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1925 {
1926 /* Only set the flag for writes. */
1927 if (is_gimple_assign (loc->stmt)
1928 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1929 {
1930 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1931 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1932 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1933 }
1934 return false;
1935 }
1936
1937 /* Helper function for execute_sm. On every location where REF is
1938 set, set an appropriate flag indicating the store. */
1939
1940 static tree
1941 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1942 {
1943 tree flag;
1944 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1945 flag = create_tmp_reg (boolean_type_node, str);
1946 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1947 return flag;
1948 }
1949
1950 /* Executes store motion of memory reference REF from LOOP.
1951 Exits from the LOOP are stored in EXITS. The initialization of the
1952 temporary variable is put to the preheader of the loop, and assignments
1953 to the reference from the temporary variable are emitted to exits. */
1954
1955 static void
1956 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1957 {
1958 tree tmp_var, store_flag = NULL_TREE;
1959 unsigned i;
1960 gassign *load;
1961 struct fmt_data fmt_data;
1962 edge ex;
1963 struct lim_aux_data *lim_data;
1964 bool multi_threaded_model_p = false;
1965 gimple_stmt_iterator gsi;
1966
1967 if (dump_file && (dump_flags & TDF_DETAILS))
1968 {
1969 fprintf (dump_file, "Executing store motion of ");
1970 print_generic_expr (dump_file, ref->mem.ref, 0);
1971 fprintf (dump_file, " from loop %d\n", loop->num);
1972 }
1973
1974 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1975 get_lsm_tmp_name (ref->mem.ref, ~0));
1976
1977 fmt_data.loop = loop;
1978 fmt_data.orig_loop = loop;
1979 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1980
1981 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1982 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1983 multi_threaded_model_p = true;
1984
1985 if (multi_threaded_model_p)
1986 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1987
1988 rewrite_mem_refs (loop, ref, tmp_var);
1989
1990 /* Emit the load code on a random exit edge or into the latch if
1991 the loop does not exit, so that we are sure it will be processed
1992 by move_computations after all dependencies. */
1993 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1994
1995 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1996 load altogether, since the store is predicated by a flag. We
1997 could, do the load only if it was originally in the loop. */
1998 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1999 lim_data = init_lim_data (load);
2000 lim_data->max_loop = loop;
2001 lim_data->tgt_loop = loop;
2002 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2003
2004 if (multi_threaded_model_p)
2005 {
2006 load = gimple_build_assign (store_flag, boolean_false_node);
2007 lim_data = init_lim_data (load);
2008 lim_data->max_loop = loop;
2009 lim_data->tgt_loop = loop;
2010 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2011 }
2012
2013 /* Sink the store to every exit from the loop. */
2014 FOR_EACH_VEC_ELT (exits, i, ex)
2015 if (!multi_threaded_model_p)
2016 {
2017 gassign *store;
2018 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2019 gsi_insert_on_edge (ex, store);
2020 }
2021 else
2022 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2023 }
2024
2025 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2026 edges of the LOOP. */
2027
2028 static void
2029 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2030 vec<edge> exits)
2031 {
2032 mem_ref_p ref;
2033 unsigned i;
2034 bitmap_iterator bi;
2035
2036 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2037 {
2038 ref = memory_accesses.refs_list[i];
2039 execute_sm (loop, exits, ref);
2040 }
2041 }
2042
2043 struct ref_always_accessed
2044 {
2045 ref_always_accessed (struct loop *loop_, bool stored_p_)
2046 : loop (loop_), stored_p (stored_p_) {}
2047 bool operator () (mem_ref_loc_p loc);
2048 struct loop *loop;
2049 bool stored_p;
2050 };
2051
2052 bool
2053 ref_always_accessed::operator () (mem_ref_loc_p loc)
2054 {
2055 struct loop *must_exec;
2056
2057 if (!get_lim_data (loc->stmt))
2058 return false;
2059
2060 /* If we require an always executed store make sure the statement
2061 stores to the reference. */
2062 if (stored_p)
2063 {
2064 tree lhs = gimple_get_lhs (loc->stmt);
2065 if (!lhs
2066 || lhs != *loc->ref)
2067 return false;
2068 }
2069
2070 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2071 if (!must_exec)
2072 return false;
2073
2074 if (must_exec == loop
2075 || flow_loop_nested_p (must_exec, loop))
2076 return true;
2077
2078 return false;
2079 }
2080
2081 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2082 make sure REF is always stored to in LOOP. */
2083
2084 static bool
2085 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2086 {
2087 return for_all_locs_in_loop (loop, ref,
2088 ref_always_accessed (loop, stored_p));
2089 }
2090
2091 /* Returns true if REF1 and REF2 are independent. */
2092
2093 static bool
2094 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2095 {
2096 if (ref1 == ref2)
2097 return true;
2098
2099 if (dump_file && (dump_flags & TDF_DETAILS))
2100 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2101 ref1->id, ref2->id);
2102
2103 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2104 {
2105 if (dump_file && (dump_flags & TDF_DETAILS))
2106 fprintf (dump_file, "dependent.\n");
2107 return false;
2108 }
2109 else
2110 {
2111 if (dump_file && (dump_flags & TDF_DETAILS))
2112 fprintf (dump_file, "independent.\n");
2113 return true;
2114 }
2115 }
2116
2117 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2118 and its super-loops. */
2119
2120 static void
2121 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2122 {
2123 /* We can propagate dependent-in-loop bits up the loop
2124 hierarchy to all outer loops. */
2125 while (loop != current_loops->tree_root
2126 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2127 loop = loop_outer (loop);
2128 }
2129
2130 /* Returns true if REF is independent on all other memory references in
2131 LOOP. */
2132
2133 static bool
2134 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2135 {
2136 bitmap refs_to_check;
2137 unsigned i;
2138 bitmap_iterator bi;
2139 mem_ref_p aref;
2140
2141 if (stored_p)
2142 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2143 else
2144 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2145
2146 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2147 return false;
2148
2149 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2150 {
2151 aref = memory_accesses.refs_list[i];
2152 if (!refs_independent_p (ref, aref))
2153 return false;
2154 }
2155
2156 return true;
2157 }
2158
2159 /* Returns true if REF is independent on all other memory references in
2160 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2161
2162 static bool
2163 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2164 {
2165 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2166
2167 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2168 return true;
2169 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2170 return false;
2171
2172 struct loop *inner = loop->inner;
2173 while (inner)
2174 {
2175 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2176 return false;
2177 inner = inner->next;
2178 }
2179
2180 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2181
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2184 ref->id, loop->num, indep_p ? "independent" : "dependent");
2185
2186 /* Record the computed result in the cache. */
2187 if (indep_p)
2188 {
2189 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2190 && stored_p)
2191 {
2192 /* If it's independend against all refs then it's independent
2193 against stores, too. */
2194 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2195 }
2196 }
2197 else
2198 {
2199 record_dep_loop (loop, ref, stored_p);
2200 if (!stored_p)
2201 {
2202 /* If it's dependent against stores it's dependent against
2203 all refs, too. */
2204 record_dep_loop (loop, ref, true);
2205 }
2206 }
2207
2208 return indep_p;
2209 }
2210
2211 /* Returns true if REF is independent on all other memory references in
2212 LOOP. */
2213
2214 static bool
2215 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2216 {
2217 gcc_checking_assert (MEM_ANALYZABLE (ref));
2218
2219 return ref_indep_loop_p_2 (loop, ref, false);
2220 }
2221
2222 /* Returns true if we can perform store motion of REF from LOOP. */
2223
2224 static bool
2225 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2226 {
2227 tree base;
2228
2229 /* Can't hoist unanalyzable refs. */
2230 if (!MEM_ANALYZABLE (ref))
2231 return false;
2232
2233 /* It should be movable. */
2234 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2235 || TREE_THIS_VOLATILE (ref->mem.ref)
2236 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2237 return false;
2238
2239 /* If it can throw fail, we do not properly update EH info. */
2240 if (tree_could_throw_p (ref->mem.ref))
2241 return false;
2242
2243 /* If it can trap, it must be always executed in LOOP.
2244 Readonly memory locations may trap when storing to them, but
2245 tree_could_trap_p is a predicate for rvalues, so check that
2246 explicitly. */
2247 base = get_base_address (ref->mem.ref);
2248 if ((tree_could_trap_p (ref->mem.ref)
2249 || (DECL_P (base) && TREE_READONLY (base)))
2250 && !ref_always_accessed_p (loop, ref, true))
2251 return false;
2252
2253 /* And it must be independent on all other memory references
2254 in LOOP. */
2255 if (!ref_indep_loop_p (loop, ref))
2256 return false;
2257
2258 return true;
2259 }
2260
2261 /* Marks the references in LOOP for that store motion should be performed
2262 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2263 motion was performed in one of the outer loops. */
2264
2265 static void
2266 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2267 {
2268 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2269 unsigned i;
2270 bitmap_iterator bi;
2271 mem_ref_p ref;
2272
2273 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2274 {
2275 ref = memory_accesses.refs_list[i];
2276 if (can_sm_ref_p (loop, ref))
2277 bitmap_set_bit (refs_to_sm, i);
2278 }
2279 }
2280
2281 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2282 for a store motion optimization (i.e. whether we can insert statement
2283 on its exits). */
2284
2285 static bool
2286 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2287 vec<edge> exits)
2288 {
2289 unsigned i;
2290 edge ex;
2291
2292 FOR_EACH_VEC_ELT (exits, i, ex)
2293 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2294 return false;
2295
2296 return true;
2297 }
2298
2299 /* Try to perform store motion for all memory references modified inside
2300 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2301 store motion was executed in one of the outer loops. */
2302
2303 static void
2304 store_motion_loop (struct loop *loop, bitmap sm_executed)
2305 {
2306 vec<edge> exits = get_loop_exit_edges (loop);
2307 struct loop *subloop;
2308 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2309
2310 if (loop_suitable_for_sm (loop, exits))
2311 {
2312 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2313 hoist_memory_references (loop, sm_in_loop, exits);
2314 }
2315 exits.release ();
2316
2317 bitmap_ior_into (sm_executed, sm_in_loop);
2318 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2319 store_motion_loop (subloop, sm_executed);
2320 bitmap_and_compl_into (sm_executed, sm_in_loop);
2321 BITMAP_FREE (sm_in_loop);
2322 }
2323
2324 /* Try to perform store motion for all memory references modified inside
2325 loops. */
2326
2327 static void
2328 store_motion (void)
2329 {
2330 struct loop *loop;
2331 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2332
2333 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2334 store_motion_loop (loop, sm_executed);
2335
2336 BITMAP_FREE (sm_executed);
2337 gsi_commit_edge_inserts ();
2338 }
2339
2340 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2341 for each such basic block bb records the outermost loop for that execution
2342 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2343 blocks that contain a nonpure call. */
2344
2345 static void
2346 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2347 {
2348 basic_block bb = NULL, *bbs, last = NULL;
2349 unsigned i;
2350 edge e;
2351 struct loop *inn_loop = loop;
2352
2353 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2354 {
2355 bbs = get_loop_body_in_dom_order (loop);
2356
2357 for (i = 0; i < loop->num_nodes; i++)
2358 {
2359 edge_iterator ei;
2360 bb = bbs[i];
2361
2362 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2363 last = bb;
2364
2365 if (bitmap_bit_p (contains_call, bb->index))
2366 break;
2367
2368 FOR_EACH_EDGE (e, ei, bb->succs)
2369 if (!flow_bb_inside_loop_p (loop, e->dest))
2370 break;
2371 if (e)
2372 break;
2373
2374 /* A loop might be infinite (TODO use simple loop analysis
2375 to disprove this if possible). */
2376 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2377 break;
2378
2379 if (!flow_bb_inside_loop_p (inn_loop, bb))
2380 break;
2381
2382 if (bb->loop_father->header == bb)
2383 {
2384 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2385 break;
2386
2387 /* In a loop that is always entered we may proceed anyway.
2388 But record that we entered it and stop once we leave it. */
2389 inn_loop = bb->loop_father;
2390 }
2391 }
2392
2393 while (1)
2394 {
2395 SET_ALWAYS_EXECUTED_IN (last, loop);
2396 if (last == loop->header)
2397 break;
2398 last = get_immediate_dominator (CDI_DOMINATORS, last);
2399 }
2400
2401 free (bbs);
2402 }
2403
2404 for (loop = loop->inner; loop; loop = loop->next)
2405 fill_always_executed_in_1 (loop, contains_call);
2406 }
2407
2408 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2409 for each such basic block bb records the outermost loop for that execution
2410 of its header implies execution of bb. */
2411
2412 static void
2413 fill_always_executed_in (void)
2414 {
2415 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2416 basic_block bb;
2417 struct loop *loop;
2418
2419 bitmap_clear (contains_call);
2420 FOR_EACH_BB_FN (bb, cfun)
2421 {
2422 gimple_stmt_iterator gsi;
2423 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2424 {
2425 if (nonpure_call_p (gsi_stmt (gsi)))
2426 break;
2427 }
2428
2429 if (!gsi_end_p (gsi))
2430 bitmap_set_bit (contains_call, bb->index);
2431 }
2432
2433 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2434 fill_always_executed_in_1 (loop, contains_call);
2435
2436 sbitmap_free (contains_call);
2437 }
2438
2439
2440 /* Compute the global information needed by the loop invariant motion pass. */
2441
2442 static void
2443 tree_ssa_lim_initialize (void)
2444 {
2445 struct loop *loop;
2446 unsigned i;
2447
2448 bitmap_obstack_initialize (&lim_bitmap_obstack);
2449 gcc_obstack_init (&mem_ref_obstack);
2450 lim_aux_data_map = new hash_map<gimple, lim_aux_data *>;
2451
2452 if (flag_tm)
2453 compute_transaction_bits ();
2454
2455 alloc_aux_for_edges (0);
2456
2457 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2458 memory_accesses.refs_list.create (100);
2459 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2460 memory_accesses.refs_list.quick_push
2461 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2462
2463 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2464 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2465 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2466 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2467 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2468 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2469
2470 for (i = 0; i < number_of_loops (cfun); i++)
2471 {
2472 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2473 &lim_bitmap_obstack);
2474 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2475 &lim_bitmap_obstack);
2476 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2477 &lim_bitmap_obstack);
2478 }
2479
2480 memory_accesses.ttae_cache = NULL;
2481
2482 /* Initialize bb_loop_postorder with a mapping from loop->num to
2483 its postorder index. */
2484 i = 0;
2485 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2486 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2487 bb_loop_postorder[loop->num] = i++;
2488 }
2489
2490 /* Cleans up after the invariant motion pass. */
2491
2492 static void
2493 tree_ssa_lim_finalize (void)
2494 {
2495 basic_block bb;
2496 unsigned i;
2497 mem_ref_p ref;
2498
2499 free_aux_for_edges ();
2500
2501 FOR_EACH_BB_FN (bb, cfun)
2502 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2503
2504 bitmap_obstack_release (&lim_bitmap_obstack);
2505 delete lim_aux_data_map;
2506
2507 delete memory_accesses.refs;
2508 memory_accesses.refs = NULL;
2509
2510 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2511 memref_free (ref);
2512 memory_accesses.refs_list.release ();
2513 obstack_free (&mem_ref_obstack, NULL);
2514
2515 memory_accesses.refs_in_loop.release ();
2516 memory_accesses.refs_stored_in_loop.release ();
2517 memory_accesses.all_refs_stored_in_loop.release ();
2518
2519 if (memory_accesses.ttae_cache)
2520 free_affine_expand_cache (&memory_accesses.ttae_cache);
2521
2522 free (bb_loop_postorder);
2523 }
2524
2525 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2526 i.e. those that are likely to be win regardless of the register pressure. */
2527
2528 unsigned int
2529 tree_ssa_lim (void)
2530 {
2531 unsigned int todo;
2532
2533 tree_ssa_lim_initialize ();
2534
2535 /* Gathers information about memory accesses in the loops. */
2536 analyze_memory_references ();
2537
2538 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2539 fill_always_executed_in ();
2540
2541 /* For each statement determine the outermost loop in that it is
2542 invariant and cost for computing the invariant. */
2543 invariantness_dom_walker (CDI_DOMINATORS)
2544 .walk (cfun->cfg->x_entry_block_ptr);
2545
2546 /* Execute store motion. Force the necessary invariants to be moved
2547 out of the loops as well. */
2548 store_motion ();
2549
2550 /* Move the expressions that are expensive enough. */
2551 todo = move_computations ();
2552
2553 tree_ssa_lim_finalize ();
2554
2555 return todo;
2556 }
2557
2558 /* Loop invariant motion pass. */
2559
2560 namespace {
2561
2562 const pass_data pass_data_lim =
2563 {
2564 GIMPLE_PASS, /* type */
2565 "lim", /* name */
2566 OPTGROUP_LOOP, /* optinfo_flags */
2567 TV_LIM, /* tv_id */
2568 PROP_cfg, /* properties_required */
2569 0, /* properties_provided */
2570 0, /* properties_destroyed */
2571 0, /* todo_flags_start */
2572 0, /* todo_flags_finish */
2573 };
2574
2575 class pass_lim : public gimple_opt_pass
2576 {
2577 public:
2578 pass_lim (gcc::context *ctxt)
2579 : gimple_opt_pass (pass_data_lim, ctxt)
2580 {}
2581
2582 /* opt_pass methods: */
2583 opt_pass * clone () { return new pass_lim (m_ctxt); }
2584 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2585 virtual unsigned int execute (function *);
2586
2587 }; // class pass_lim
2588
2589 unsigned int
2590 pass_lim::execute (function *fun)
2591 {
2592 if (number_of_loops (fun) <= 1)
2593 return 0;
2594
2595 return tree_ssa_lim ();
2596 }
2597
2598 } // anon namespace
2599
2600 gimple_opt_pass *
2601 make_pass_lim (gcc::context *ctxt)
2602 {
2603 return new pass_lim (ctxt);
2604 }
2605
2606