New syntax for -fsanitize-recover.
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "hash-map.h"
29 #include "hash-table.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "tree-eh.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "tree-pass.h"
51 #include "flags.h"
52 #include "tree-affine.h"
53 #include "tree-ssa-propagate.h"
54 #include "trans-mem.h"
55 #include "gimple-fold.h"
56
57 /* TODO: Support for predicated code motion. I.e.
58
59 while (1)
60 {
61 if (cond)
62 {
63 a = inv;
64 something;
65 }
66 }
67
68 Where COND and INV are invariants, but evaluating INV may trap or be
69 invalid from some other reason if !COND. This may be transformed to
70
71 if (cond)
72 a = inv;
73 while (1)
74 {
75 if (cond)
76 something;
77 } */
78
79 /* The auxiliary data kept for each statement. */
80
81 struct lim_aux_data
82 {
83 struct loop *max_loop; /* The outermost loop in that the statement
84 is invariant. */
85
86 struct loop *tgt_loop; /* The loop out of that we want to move the
87 invariant. */
88
89 struct loop *always_executed_in;
90 /* The outermost loop for that we are sure
91 the statement is executed if the loop
92 is entered. */
93
94 unsigned cost; /* Cost of the computation performed by the
95 statement. */
96
97 vec<gimple> depends; /* Vector of statements that must be also
98 hoisted out of the loop when this statement
99 is hoisted; i.e. those that define the
100 operands of the statement and are inside of
101 the MAX_LOOP loop. */
102 };
103
104 /* Maps statements to their lim_aux_data. */
105
106 static hash_map<gimple, lim_aux_data *> *lim_aux_data_map;
107
108 /* Description of a memory reference location. */
109
110 typedef struct mem_ref_loc
111 {
112 tree *ref; /* The reference itself. */
113 gimple stmt; /* The statement in that it occurs. */
114 } *mem_ref_loc_p;
115
116
117 /* Description of a memory reference. */
118
119 typedef struct im_mem_ref
120 {
121 unsigned id; /* ID assigned to the memory reference
122 (its index in memory_accesses.refs_list) */
123 hashval_t hash; /* Its hash value. */
124
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. */
127 ao_ref mem;
128
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 vec<mem_ref_loc> accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
134
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap_head indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
146 } *mem_ref_p;
147
148 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
149 to record (in)dependence against stores in the loop and its subloops, the
150 second to record (in)dependence against all references in the loop
151 and its subloops. */
152 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
153
154 /* Mem_ref hashtable helpers. */
155
156 struct mem_ref_hasher : typed_noop_remove <im_mem_ref>
157 {
158 typedef im_mem_ref value_type;
159 typedef tree_node compare_type;
160 static inline hashval_t hash (const value_type *);
161 static inline bool equal (const value_type *, const compare_type *);
162 };
163
164 /* A hash function for struct im_mem_ref object OBJ. */
165
166 inline hashval_t
167 mem_ref_hasher::hash (const value_type *mem)
168 {
169 return mem->hash;
170 }
171
172 /* An equality function for struct im_mem_ref object MEM1 with
173 memory reference OBJ2. */
174
175 inline bool
176 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
177 {
178 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
179 }
180
181
182 /* Description of memory accesses in loops. */
183
184 static struct
185 {
186 /* The hash table of memory references accessed in loops. */
187 hash_table<mem_ref_hasher> *refs;
188
189 /* The list of memory references. */
190 vec<mem_ref_p> refs_list;
191
192 /* The set of memory references accessed in each loop. */
193 vec<bitmap_head> refs_in_loop;
194
195 /* The set of memory references stored in each loop. */
196 vec<bitmap_head> refs_stored_in_loop;
197
198 /* The set of memory references stored in each loop, including subloops . */
199 vec<bitmap_head> all_refs_stored_in_loop;
200
201 /* Cache for expanding memory addresses. */
202 hash_map<tree, name_expansion *> *ttae_cache;
203 } memory_accesses;
204
205 /* Obstack for the bitmaps in the above data structures. */
206 static bitmap_obstack lim_bitmap_obstack;
207 static obstack mem_ref_obstack;
208
209 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
210
211 /* Minimum cost of an expensive expression. */
212 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
213
214 /* The outermost loop for which execution of the header guarantees that the
215 block will be executed. */
216 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
217 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
218
219 /* ID of the shared unanalyzable mem. */
220 #define UNANALYZABLE_MEM_ID 0
221
222 /* Whether the reference was analyzable. */
223 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
224
225 static struct lim_aux_data *
226 init_lim_data (gimple stmt)
227 {
228 lim_aux_data *p = XCNEW (struct lim_aux_data);
229 lim_aux_data_map->put (stmt, p);
230
231 return p;
232 }
233
234 static struct lim_aux_data *
235 get_lim_data (gimple stmt)
236 {
237 lim_aux_data **p = lim_aux_data_map->get (stmt);
238 if (!p)
239 return NULL;
240
241 return *p;
242 }
243
244 /* Releases the memory occupied by DATA. */
245
246 static void
247 free_lim_aux_data (struct lim_aux_data *data)
248 {
249 data->depends.release ();
250 free (data);
251 }
252
253 static void
254 clear_lim_data (gimple stmt)
255 {
256 lim_aux_data **p = lim_aux_data_map->get (stmt);
257 if (!p)
258 return;
259
260 free_lim_aux_data (*p);
261 *p = NULL;
262 }
263
264
265 /* The possibilities of statement movement. */
266 enum move_pos
267 {
268 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
269 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
270 become executed -- memory accesses, ... */
271 MOVE_POSSIBLE /* Unlimited movement. */
272 };
273
274
275 /* If it is possible to hoist the statement STMT unconditionally,
276 returns MOVE_POSSIBLE.
277 If it is possible to hoist the statement STMT, but we must avoid making
278 it executed if it would not be executed in the original program (e.g.
279 because it may trap), return MOVE_PRESERVE_EXECUTION.
280 Otherwise return MOVE_IMPOSSIBLE. */
281
282 enum move_pos
283 movement_possibility (gimple stmt)
284 {
285 tree lhs;
286 enum move_pos ret = MOVE_POSSIBLE;
287
288 if (flag_unswitch_loops
289 && gimple_code (stmt) == GIMPLE_COND)
290 {
291 /* If we perform unswitching, force the operands of the invariant
292 condition to be moved out of the loop. */
293 return MOVE_POSSIBLE;
294 }
295
296 if (gimple_code (stmt) == GIMPLE_PHI
297 && gimple_phi_num_args (stmt) <= 2
298 && !virtual_operand_p (gimple_phi_result (stmt))
299 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
300 return MOVE_POSSIBLE;
301
302 if (gimple_get_lhs (stmt) == NULL_TREE)
303 return MOVE_IMPOSSIBLE;
304
305 if (gimple_vdef (stmt))
306 return MOVE_IMPOSSIBLE;
307
308 if (stmt_ends_bb_p (stmt)
309 || gimple_has_volatile_ops (stmt)
310 || gimple_has_side_effects (stmt)
311 || stmt_could_throw_p (stmt))
312 return MOVE_IMPOSSIBLE;
313
314 if (is_gimple_call (stmt))
315 {
316 /* While pure or const call is guaranteed to have no side effects, we
317 cannot move it arbitrarily. Consider code like
318
319 char *s = something ();
320
321 while (1)
322 {
323 if (s)
324 t = strlen (s);
325 else
326 t = 0;
327 }
328
329 Here the strlen call cannot be moved out of the loop, even though
330 s is invariant. In addition to possibly creating a call with
331 invalid arguments, moving out a function call that is not executed
332 may cause performance regressions in case the call is costly and
333 not executed at all. */
334 ret = MOVE_PRESERVE_EXECUTION;
335 lhs = gimple_call_lhs (stmt);
336 }
337 else if (is_gimple_assign (stmt))
338 lhs = gimple_assign_lhs (stmt);
339 else
340 return MOVE_IMPOSSIBLE;
341
342 if (TREE_CODE (lhs) == SSA_NAME
343 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
344 return MOVE_IMPOSSIBLE;
345
346 if (TREE_CODE (lhs) != SSA_NAME
347 || gimple_could_trap_p (stmt))
348 return MOVE_PRESERVE_EXECUTION;
349
350 /* Non local loads in a transaction cannot be hoisted out. Well,
351 unless the load happens on every path out of the loop, but we
352 don't take this into account yet. */
353 if (flag_tm
354 && gimple_in_transaction (stmt)
355 && gimple_assign_single_p (stmt))
356 {
357 tree rhs = gimple_assign_rhs1 (stmt);
358 if (DECL_P (rhs) && is_global_var (rhs))
359 {
360 if (dump_file)
361 {
362 fprintf (dump_file, "Cannot hoist conditional load of ");
363 print_generic_expr (dump_file, rhs, TDF_SLIM);
364 fprintf (dump_file, " because it is in a transaction.\n");
365 }
366 return MOVE_IMPOSSIBLE;
367 }
368 }
369
370 return ret;
371 }
372
373 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
374 loop to that we could move the expression using DEF if it did not have
375 other operands, i.e. the outermost loop enclosing LOOP in that the value
376 of DEF is invariant. */
377
378 static struct loop *
379 outermost_invariant_loop (tree def, struct loop *loop)
380 {
381 gimple def_stmt;
382 basic_block def_bb;
383 struct loop *max_loop;
384 struct lim_aux_data *lim_data;
385
386 if (!def)
387 return superloop_at_depth (loop, 1);
388
389 if (TREE_CODE (def) != SSA_NAME)
390 {
391 gcc_assert (is_gimple_min_invariant (def));
392 return superloop_at_depth (loop, 1);
393 }
394
395 def_stmt = SSA_NAME_DEF_STMT (def);
396 def_bb = gimple_bb (def_stmt);
397 if (!def_bb)
398 return superloop_at_depth (loop, 1);
399
400 max_loop = find_common_loop (loop, def_bb->loop_father);
401
402 lim_data = get_lim_data (def_stmt);
403 if (lim_data != NULL && lim_data->max_loop != NULL)
404 max_loop = find_common_loop (max_loop,
405 loop_outer (lim_data->max_loop));
406 if (max_loop == loop)
407 return NULL;
408 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
409
410 return max_loop;
411 }
412
413 /* DATA is a structure containing information associated with a statement
414 inside LOOP. DEF is one of the operands of this statement.
415
416 Find the outermost loop enclosing LOOP in that value of DEF is invariant
417 and record this in DATA->max_loop field. If DEF itself is defined inside
418 this loop as well (i.e. we need to hoist it out of the loop if we want
419 to hoist the statement represented by DATA), record the statement in that
420 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
421 add the cost of the computation of DEF to the DATA->cost.
422
423 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
424
425 static bool
426 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
427 bool add_cost)
428 {
429 gimple def_stmt = SSA_NAME_DEF_STMT (def);
430 basic_block def_bb = gimple_bb (def_stmt);
431 struct loop *max_loop;
432 struct lim_aux_data *def_data;
433
434 if (!def_bb)
435 return true;
436
437 max_loop = outermost_invariant_loop (def, loop);
438 if (!max_loop)
439 return false;
440
441 if (flow_loop_nested_p (data->max_loop, max_loop))
442 data->max_loop = max_loop;
443
444 def_data = get_lim_data (def_stmt);
445 if (!def_data)
446 return true;
447
448 if (add_cost
449 /* Only add the cost if the statement defining DEF is inside LOOP,
450 i.e. if it is likely that by moving the invariants dependent
451 on it, we will be able to avoid creating a new register for
452 it (since it will be only used in these dependent invariants). */
453 && def_bb->loop_father == loop)
454 data->cost += def_data->cost;
455
456 data->depends.safe_push (def_stmt);
457
458 return true;
459 }
460
461 /* Returns an estimate for a cost of statement STMT. The values here
462 are just ad-hoc constants, similar to costs for inlining. */
463
464 static unsigned
465 stmt_cost (gimple stmt)
466 {
467 /* Always try to create possibilities for unswitching. */
468 if (gimple_code (stmt) == GIMPLE_COND
469 || gimple_code (stmt) == GIMPLE_PHI)
470 return LIM_EXPENSIVE;
471
472 /* We should be hoisting calls if possible. */
473 if (is_gimple_call (stmt))
474 {
475 tree fndecl;
476
477 /* Unless the call is a builtin_constant_p; this always folds to a
478 constant, so moving it is useless. */
479 fndecl = gimple_call_fndecl (stmt);
480 if (fndecl
481 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
482 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
483 return 0;
484
485 return LIM_EXPENSIVE;
486 }
487
488 /* Hoisting memory references out should almost surely be a win. */
489 if (gimple_references_memory_p (stmt))
490 return LIM_EXPENSIVE;
491
492 if (gimple_code (stmt) != GIMPLE_ASSIGN)
493 return 1;
494
495 switch (gimple_assign_rhs_code (stmt))
496 {
497 case MULT_EXPR:
498 case WIDEN_MULT_EXPR:
499 case WIDEN_MULT_PLUS_EXPR:
500 case WIDEN_MULT_MINUS_EXPR:
501 case DOT_PROD_EXPR:
502 case FMA_EXPR:
503 case TRUNC_DIV_EXPR:
504 case CEIL_DIV_EXPR:
505 case FLOOR_DIV_EXPR:
506 case ROUND_DIV_EXPR:
507 case EXACT_DIV_EXPR:
508 case CEIL_MOD_EXPR:
509 case FLOOR_MOD_EXPR:
510 case ROUND_MOD_EXPR:
511 case TRUNC_MOD_EXPR:
512 case RDIV_EXPR:
513 /* Division and multiplication are usually expensive. */
514 return LIM_EXPENSIVE;
515
516 case LSHIFT_EXPR:
517 case RSHIFT_EXPR:
518 case WIDEN_LSHIFT_EXPR:
519 case LROTATE_EXPR:
520 case RROTATE_EXPR:
521 /* Shifts and rotates are usually expensive. */
522 return LIM_EXPENSIVE;
523
524 case CONSTRUCTOR:
525 /* Make vector construction cost proportional to the number
526 of elements. */
527 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
528
529 case SSA_NAME:
530 case PAREN_EXPR:
531 /* Whether or not something is wrapped inside a PAREN_EXPR
532 should not change move cost. Nor should an intermediate
533 unpropagated SSA name copy. */
534 return 0;
535
536 default:
537 return 1;
538 }
539 }
540
541 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
542 REF is independent. If REF is not independent in LOOP, NULL is returned
543 instead. */
544
545 static struct loop *
546 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
547 {
548 struct loop *aloop;
549
550 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
551 return NULL;
552
553 for (aloop = outer;
554 aloop != loop;
555 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
556 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
557 && ref_indep_loop_p (aloop, ref))
558 return aloop;
559
560 if (ref_indep_loop_p (loop, ref))
561 return loop;
562 else
563 return NULL;
564 }
565
566 /* If there is a simple load or store to a memory reference in STMT, returns
567 the location of the memory reference, and sets IS_STORE according to whether
568 it is a store or load. Otherwise, returns NULL. */
569
570 static tree *
571 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
572 {
573 tree *lhs, *rhs;
574
575 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
576 if (!gimple_assign_single_p (stmt))
577 return NULL;
578
579 lhs = gimple_assign_lhs_ptr (stmt);
580 rhs = gimple_assign_rhs1_ptr (stmt);
581
582 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
583 {
584 *is_store = false;
585 return rhs;
586 }
587 else if (gimple_vdef (stmt)
588 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
589 {
590 *is_store = true;
591 return lhs;
592 }
593 else
594 return NULL;
595 }
596
597 /* Returns the memory reference contained in STMT. */
598
599 static mem_ref_p
600 mem_ref_in_stmt (gimple stmt)
601 {
602 bool store;
603 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
604 hashval_t hash;
605 mem_ref_p ref;
606
607 if (!mem)
608 return NULL;
609 gcc_assert (!store);
610
611 hash = iterative_hash_expr (*mem, 0);
612 ref = memory_accesses.refs->find_with_hash (*mem, hash);
613
614 gcc_assert (ref != NULL);
615 return ref;
616 }
617
618 /* From a controlling predicate in DOM determine the arguments from
619 the PHI node PHI that are chosen if the predicate evaluates to
620 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
621 they are non-NULL. Returns true if the arguments can be determined,
622 else return false. */
623
624 static bool
625 extract_true_false_args_from_phi (basic_block dom, gimple phi,
626 tree *true_arg_p, tree *false_arg_p)
627 {
628 basic_block bb = gimple_bb (phi);
629 edge true_edge, false_edge, tem;
630 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
631
632 /* We have to verify that one edge into the PHI node is dominated
633 by the true edge of the predicate block and the other edge
634 dominated by the false edge. This ensures that the PHI argument
635 we are going to take is completely determined by the path we
636 take from the predicate block.
637 We can only use BB dominance checks below if the destination of
638 the true/false edges are dominated by their edge, thus only
639 have a single predecessor. */
640 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
641 tem = EDGE_PRED (bb, 0);
642 if (tem == true_edge
643 || (single_pred_p (true_edge->dest)
644 && (tem->src == true_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, true_edge->dest))))
647 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else if (tem == false_edge
649 || (single_pred_p (false_edge->dest)
650 && (tem->src == false_edge->dest
651 || dominated_by_p (CDI_DOMINATORS,
652 tem->src, false_edge->dest))))
653 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
654 else
655 return false;
656 tem = EDGE_PRED (bb, 1);
657 if (tem == true_edge
658 || (single_pred_p (true_edge->dest)
659 && (tem->src == true_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, true_edge->dest))))
662 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else if (tem == false_edge
664 || (single_pred_p (false_edge->dest)
665 && (tem->src == false_edge->dest
666 || dominated_by_p (CDI_DOMINATORS,
667 tem->src, false_edge->dest))))
668 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
669 else
670 return false;
671 if (!arg0 || !arg1)
672 return false;
673
674 if (true_arg_p)
675 *true_arg_p = arg0;
676 if (false_arg_p)
677 *false_arg_p = arg1;
678
679 return true;
680 }
681
682 /* Determine the outermost loop to that it is possible to hoist a statement
683 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
684 the outermost loop in that the value computed by STMT is invariant.
685 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
686 we preserve the fact whether STMT is executed. It also fills other related
687 information to LIM_DATA (STMT).
688
689 The function returns false if STMT cannot be hoisted outside of the loop it
690 is defined in, and true otherwise. */
691
692 static bool
693 determine_max_movement (gimple stmt, bool must_preserve_exec)
694 {
695 basic_block bb = gimple_bb (stmt);
696 struct loop *loop = bb->loop_father;
697 struct loop *level;
698 struct lim_aux_data *lim_data = get_lim_data (stmt);
699 tree val;
700 ssa_op_iter iter;
701
702 if (must_preserve_exec)
703 level = ALWAYS_EXECUTED_IN (bb);
704 else
705 level = superloop_at_depth (loop, 1);
706 lim_data->max_loop = level;
707
708 if (gimple_code (stmt) == GIMPLE_PHI)
709 {
710 use_operand_p use_p;
711 unsigned min_cost = UINT_MAX;
712 unsigned total_cost = 0;
713 struct lim_aux_data *def_data;
714
715 /* We will end up promoting dependencies to be unconditionally
716 evaluated. For this reason the PHI cost (and thus the
717 cost we remove from the loop by doing the invariant motion)
718 is that of the cheapest PHI argument dependency chain. */
719 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
720 {
721 val = USE_FROM_PTR (use_p);
722
723 if (TREE_CODE (val) != SSA_NAME)
724 {
725 /* Assign const 1 to constants. */
726 min_cost = MIN (min_cost, 1);
727 total_cost += 1;
728 continue;
729 }
730 if (!add_dependency (val, lim_data, loop, false))
731 return false;
732
733 gimple def_stmt = SSA_NAME_DEF_STMT (val);
734 if (gimple_bb (def_stmt)
735 && gimple_bb (def_stmt)->loop_father == loop)
736 {
737 def_data = get_lim_data (def_stmt);
738 if (def_data)
739 {
740 min_cost = MIN (min_cost, def_data->cost);
741 total_cost += def_data->cost;
742 }
743 }
744 }
745
746 min_cost = MIN (min_cost, total_cost);
747 lim_data->cost += min_cost;
748
749 if (gimple_phi_num_args (stmt) > 1)
750 {
751 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
752 gimple cond;
753 if (gsi_end_p (gsi_last_bb (dom)))
754 return false;
755 cond = gsi_stmt (gsi_last_bb (dom));
756 if (gimple_code (cond) != GIMPLE_COND)
757 return false;
758 /* Verify that this is an extended form of a diamond and
759 the PHI arguments are completely controlled by the
760 predicate in DOM. */
761 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
762 return false;
763
764 /* Fold in dependencies and cost of the condition. */
765 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
766 {
767 if (!add_dependency (val, lim_data, loop, false))
768 return false;
769 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
770 if (def_data)
771 total_cost += def_data->cost;
772 }
773
774 /* We want to avoid unconditionally executing very expensive
775 operations. As costs for our dependencies cannot be
776 negative just claim we are not invariand for this case.
777 We also are not sure whether the control-flow inside the
778 loop will vanish. */
779 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
780 && !(min_cost != 0
781 && total_cost / min_cost <= 2))
782 return false;
783
784 /* Assume that the control-flow in the loop will vanish.
785 ??? We should verify this and not artificially increase
786 the cost if that is not the case. */
787 lim_data->cost += stmt_cost (stmt);
788 }
789
790 return true;
791 }
792 else
793 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
794 if (!add_dependency (val, lim_data, loop, true))
795 return false;
796
797 if (gimple_vuse (stmt))
798 {
799 mem_ref_p ref = mem_ref_in_stmt (stmt);
800
801 if (ref)
802 {
803 lim_data->max_loop
804 = outermost_indep_loop (lim_data->max_loop, loop, ref);
805 if (!lim_data->max_loop)
806 return false;
807 }
808 else
809 {
810 if ((val = gimple_vuse (stmt)) != NULL_TREE)
811 {
812 if (!add_dependency (val, lim_data, loop, false))
813 return false;
814 }
815 }
816 }
817
818 lim_data->cost += stmt_cost (stmt);
819
820 return true;
821 }
822
823 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
824 and that one of the operands of this statement is computed by STMT.
825 Ensure that STMT (together with all the statements that define its
826 operands) is hoisted at least out of the loop LEVEL. */
827
828 static void
829 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
830 {
831 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
832 struct lim_aux_data *lim_data;
833 gimple dep_stmt;
834 unsigned i;
835
836 stmt_loop = find_common_loop (orig_loop, stmt_loop);
837 lim_data = get_lim_data (stmt);
838 if (lim_data != NULL && lim_data->tgt_loop != NULL)
839 stmt_loop = find_common_loop (stmt_loop,
840 loop_outer (lim_data->tgt_loop));
841 if (flow_loop_nested_p (stmt_loop, level))
842 return;
843
844 gcc_assert (level == lim_data->max_loop
845 || flow_loop_nested_p (lim_data->max_loop, level));
846
847 lim_data->tgt_loop = level;
848 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
849 set_level (dep_stmt, orig_loop, level);
850 }
851
852 /* Determines an outermost loop from that we want to hoist the statement STMT.
853 For now we chose the outermost possible loop. TODO -- use profiling
854 information to set it more sanely. */
855
856 static void
857 set_profitable_level (gimple stmt)
858 {
859 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
860 }
861
862 /* Returns true if STMT is a call that has side effects. */
863
864 static bool
865 nonpure_call_p (gimple stmt)
866 {
867 if (gimple_code (stmt) != GIMPLE_CALL)
868 return false;
869
870 return gimple_has_side_effects (stmt);
871 }
872
873 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
874
875 static gimple
876 rewrite_reciprocal (gimple_stmt_iterator *bsi)
877 {
878 gimple stmt, stmt1, stmt2;
879 tree name, lhs, type;
880 tree real_one;
881 gimple_stmt_iterator gsi;
882
883 stmt = gsi_stmt (*bsi);
884 lhs = gimple_assign_lhs (stmt);
885 type = TREE_TYPE (lhs);
886
887 real_one = build_one_cst (type);
888
889 name = make_temp_ssa_name (type, NULL, "reciptmp");
890 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
891 gimple_assign_rhs2 (stmt));
892
893 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
894 gimple_assign_rhs1 (stmt));
895
896 /* Replace division stmt with reciprocal and multiply stmts.
897 The multiply stmt is not invariant, so update iterator
898 and avoid rescanning. */
899 gsi = *bsi;
900 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
901 gsi_replace (&gsi, stmt2, true);
902
903 /* Continue processing with invariant reciprocal statement. */
904 return stmt1;
905 }
906
907 /* Check if the pattern at *BSI is a bittest of the form
908 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
909
910 static gimple
911 rewrite_bittest (gimple_stmt_iterator *bsi)
912 {
913 gimple stmt, use_stmt, stmt1, stmt2;
914 tree lhs, name, t, a, b;
915 use_operand_p use;
916
917 stmt = gsi_stmt (*bsi);
918 lhs = gimple_assign_lhs (stmt);
919
920 /* Verify that the single use of lhs is a comparison against zero. */
921 if (TREE_CODE (lhs) != SSA_NAME
922 || !single_imm_use (lhs, &use, &use_stmt)
923 || gimple_code (use_stmt) != GIMPLE_COND)
924 return stmt;
925 if (gimple_cond_lhs (use_stmt) != lhs
926 || (gimple_cond_code (use_stmt) != NE_EXPR
927 && gimple_cond_code (use_stmt) != EQ_EXPR)
928 || !integer_zerop (gimple_cond_rhs (use_stmt)))
929 return stmt;
930
931 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
932 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
933 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
934 return stmt;
935
936 /* There is a conversion in between possibly inserted by fold. */
937 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
938 {
939 t = gimple_assign_rhs1 (stmt1);
940 if (TREE_CODE (t) != SSA_NAME
941 || !has_single_use (t))
942 return stmt;
943 stmt1 = SSA_NAME_DEF_STMT (t);
944 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
945 return stmt;
946 }
947
948 /* Verify that B is loop invariant but A is not. Verify that with
949 all the stmt walking we are still in the same loop. */
950 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
951 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
952 return stmt;
953
954 a = gimple_assign_rhs1 (stmt1);
955 b = gimple_assign_rhs2 (stmt1);
956
957 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
958 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
959 {
960 gimple_stmt_iterator rsi;
961
962 /* 1 << B */
963 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
964 build_int_cst (TREE_TYPE (a), 1), b);
965 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
966 stmt1 = gimple_build_assign (name, t);
967
968 /* A & (1 << B) */
969 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
970 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
971 stmt2 = gimple_build_assign (name, t);
972
973 /* Replace the SSA_NAME we compare against zero. Adjust
974 the type of zero accordingly. */
975 SET_USE (use, name);
976 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
977
978 /* Don't use gsi_replace here, none of the new assignments sets
979 the variable originally set in stmt. Move bsi to stmt1, and
980 then remove the original stmt, so that we get a chance to
981 retain debug info for it. */
982 rsi = *bsi;
983 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
984 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
985 gsi_remove (&rsi, true);
986
987 return stmt1;
988 }
989
990 return stmt;
991 }
992
993 /* For each statement determines the outermost loop in that it is invariant,
994 - statements on whose motion it depends and the cost of the computation.
995 - This information is stored to the LIM_DATA structure associated with
996 - each statement. */
997 class invariantness_dom_walker : public dom_walker
998 {
999 public:
1000 invariantness_dom_walker (cdi_direction direction)
1001 : dom_walker (direction) {}
1002
1003 virtual void before_dom_children (basic_block);
1004 };
1005
1006 /* Determine the outermost loops in that statements in basic block BB are
1007 invariant, and record them to the LIM_DATA associated with the statements.
1008 Callback for dom_walker. */
1009
1010 void
1011 invariantness_dom_walker::before_dom_children (basic_block bb)
1012 {
1013 enum move_pos pos;
1014 gimple_stmt_iterator bsi;
1015 gimple stmt;
1016 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1017 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1018 struct lim_aux_data *lim_data;
1019
1020 if (!loop_outer (bb->loop_father))
1021 return;
1022
1023 if (dump_file && (dump_flags & TDF_DETAILS))
1024 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1025 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1026
1027 /* Look at PHI nodes, but only if there is at most two.
1028 ??? We could relax this further by post-processing the inserted
1029 code and transforming adjacent cond-exprs with the same predicate
1030 to control flow again. */
1031 bsi = gsi_start_phis (bb);
1032 if (!gsi_end_p (bsi)
1033 && ((gsi_next (&bsi), gsi_end_p (bsi))
1034 || (gsi_next (&bsi), gsi_end_p (bsi))))
1035 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1036 {
1037 stmt = gsi_stmt (bsi);
1038
1039 pos = movement_possibility (stmt);
1040 if (pos == MOVE_IMPOSSIBLE)
1041 continue;
1042
1043 lim_data = init_lim_data (stmt);
1044 lim_data->always_executed_in = outermost;
1045
1046 if (!determine_max_movement (stmt, false))
1047 {
1048 lim_data->max_loop = NULL;
1049 continue;
1050 }
1051
1052 if (dump_file && (dump_flags & TDF_DETAILS))
1053 {
1054 print_gimple_stmt (dump_file, stmt, 2, 0);
1055 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1056 loop_depth (lim_data->max_loop),
1057 lim_data->cost);
1058 }
1059
1060 if (lim_data->cost >= LIM_EXPENSIVE)
1061 set_profitable_level (stmt);
1062 }
1063
1064 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1065 {
1066 stmt = gsi_stmt (bsi);
1067
1068 pos = movement_possibility (stmt);
1069 if (pos == MOVE_IMPOSSIBLE)
1070 {
1071 if (nonpure_call_p (stmt))
1072 {
1073 maybe_never = true;
1074 outermost = NULL;
1075 }
1076 /* Make sure to note always_executed_in for stores to make
1077 store-motion work. */
1078 else if (stmt_makes_single_store (stmt))
1079 {
1080 struct lim_aux_data *lim_data = init_lim_data (stmt);
1081 lim_data->always_executed_in = outermost;
1082 }
1083 continue;
1084 }
1085
1086 if (is_gimple_assign (stmt)
1087 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1088 == GIMPLE_BINARY_RHS))
1089 {
1090 tree op0 = gimple_assign_rhs1 (stmt);
1091 tree op1 = gimple_assign_rhs2 (stmt);
1092 struct loop *ol1 = outermost_invariant_loop (op1,
1093 loop_containing_stmt (stmt));
1094
1095 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1096 to be hoisted out of loop, saving expensive divide. */
1097 if (pos == MOVE_POSSIBLE
1098 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1099 && flag_unsafe_math_optimizations
1100 && !flag_trapping_math
1101 && ol1 != NULL
1102 && outermost_invariant_loop (op0, ol1) == NULL)
1103 stmt = rewrite_reciprocal (&bsi);
1104
1105 /* If the shift count is invariant, convert (A >> B) & 1 to
1106 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1107 saving an expensive shift. */
1108 if (pos == MOVE_POSSIBLE
1109 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1110 && integer_onep (op1)
1111 && TREE_CODE (op0) == SSA_NAME
1112 && has_single_use (op0))
1113 stmt = rewrite_bittest (&bsi);
1114 }
1115
1116 lim_data = init_lim_data (stmt);
1117 lim_data->always_executed_in = outermost;
1118
1119 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1120 continue;
1121
1122 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1123 {
1124 lim_data->max_loop = NULL;
1125 continue;
1126 }
1127
1128 if (dump_file && (dump_flags & TDF_DETAILS))
1129 {
1130 print_gimple_stmt (dump_file, stmt, 2, 0);
1131 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1132 loop_depth (lim_data->max_loop),
1133 lim_data->cost);
1134 }
1135
1136 if (lim_data->cost >= LIM_EXPENSIVE)
1137 set_profitable_level (stmt);
1138 }
1139 }
1140
1141 class move_computations_dom_walker : public dom_walker
1142 {
1143 public:
1144 move_computations_dom_walker (cdi_direction direction)
1145 : dom_walker (direction), todo_ (0) {}
1146
1147 virtual void before_dom_children (basic_block);
1148
1149 unsigned int todo_;
1150 };
1151
1152 /* Hoist the statements in basic block BB out of the loops prescribed by
1153 data stored in LIM_DATA structures associated with each statement. Callback
1154 for walk_dominator_tree. */
1155
1156 void
1157 move_computations_dom_walker::before_dom_children (basic_block bb)
1158 {
1159 struct loop *level;
1160 gimple_stmt_iterator bsi;
1161 gimple stmt;
1162 unsigned cost = 0;
1163 struct lim_aux_data *lim_data;
1164
1165 if (!loop_outer (bb->loop_father))
1166 return;
1167
1168 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1169 {
1170 gimple new_stmt;
1171 stmt = gsi_stmt (bsi);
1172
1173 lim_data = get_lim_data (stmt);
1174 if (lim_data == NULL)
1175 {
1176 gsi_next (&bsi);
1177 continue;
1178 }
1179
1180 cost = lim_data->cost;
1181 level = lim_data->tgt_loop;
1182 clear_lim_data (stmt);
1183
1184 if (!level)
1185 {
1186 gsi_next (&bsi);
1187 continue;
1188 }
1189
1190 if (dump_file && (dump_flags & TDF_DETAILS))
1191 {
1192 fprintf (dump_file, "Moving PHI node\n");
1193 print_gimple_stmt (dump_file, stmt, 0, 0);
1194 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1195 cost, level->num);
1196 }
1197
1198 if (gimple_phi_num_args (stmt) == 1)
1199 {
1200 tree arg = PHI_ARG_DEF (stmt, 0);
1201 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1202 gimple_phi_result (stmt),
1203 arg, NULL_TREE);
1204 }
1205 else
1206 {
1207 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1208 gimple cond = gsi_stmt (gsi_last_bb (dom));
1209 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1210 /* Get the PHI arguments corresponding to the true and false
1211 edges of COND. */
1212 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1213 gcc_assert (arg0 && arg1);
1214 t = build2 (gimple_cond_code (cond), boolean_type_node,
1215 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1216 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1217 gimple_phi_result (stmt),
1218 t, arg0, arg1);
1219 todo_ |= TODO_cleanup_cfg;
1220 }
1221 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1222 remove_phi_node (&bsi, false);
1223 }
1224
1225 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1226 {
1227 edge e;
1228
1229 stmt = gsi_stmt (bsi);
1230
1231 lim_data = get_lim_data (stmt);
1232 if (lim_data == NULL)
1233 {
1234 gsi_next (&bsi);
1235 continue;
1236 }
1237
1238 cost = lim_data->cost;
1239 level = lim_data->tgt_loop;
1240 clear_lim_data (stmt);
1241
1242 if (!level)
1243 {
1244 gsi_next (&bsi);
1245 continue;
1246 }
1247
1248 /* We do not really want to move conditionals out of the loop; we just
1249 placed it here to force its operands to be moved if necessary. */
1250 if (gimple_code (stmt) == GIMPLE_COND)
1251 continue;
1252
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 {
1255 fprintf (dump_file, "Moving statement\n");
1256 print_gimple_stmt (dump_file, stmt, 0, 0);
1257 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1258 cost, level->num);
1259 }
1260
1261 e = loop_preheader_edge (level);
1262 gcc_assert (!gimple_vdef (stmt));
1263 if (gimple_vuse (stmt))
1264 {
1265 /* The new VUSE is the one from the virtual PHI in the loop
1266 header or the one already present. */
1267 gimple_stmt_iterator gsi2;
1268 for (gsi2 = gsi_start_phis (e->dest);
1269 !gsi_end_p (gsi2); gsi_next (&gsi2))
1270 {
1271 gimple phi = gsi_stmt (gsi2);
1272 if (virtual_operand_p (gimple_phi_result (phi)))
1273 {
1274 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1275 break;
1276 }
1277 }
1278 }
1279 gsi_remove (&bsi, false);
1280 /* In case this is a stmt that is not unconditionally executed
1281 when the target loop header is executed and the stmt may
1282 invoke undefined integer or pointer overflow rewrite it to
1283 unsigned arithmetic. */
1284 if (is_gimple_assign (stmt)
1285 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1286 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1287 && arith_code_with_undefined_signed_overflow
1288 (gimple_assign_rhs_code (stmt))
1289 && (!ALWAYS_EXECUTED_IN (bb)
1290 || !(ALWAYS_EXECUTED_IN (bb) == level
1291 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1292 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1293 else
1294 gsi_insert_on_edge (e, stmt);
1295 }
1296 }
1297
1298 /* Hoist the statements out of the loops prescribed by data stored in
1299 LIM_DATA structures associated with each statement.*/
1300
1301 static unsigned int
1302 move_computations (void)
1303 {
1304 move_computations_dom_walker walker (CDI_DOMINATORS);
1305 walker.walk (cfun->cfg->x_entry_block_ptr);
1306
1307 gsi_commit_edge_inserts ();
1308 if (need_ssa_update_p (cfun))
1309 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1310
1311 return walker.todo_;
1312 }
1313
1314 /* Checks whether the statement defining variable *INDEX can be hoisted
1315 out of the loop passed in DATA. Callback for for_each_index. */
1316
1317 static bool
1318 may_move_till (tree ref, tree *index, void *data)
1319 {
1320 struct loop *loop = (struct loop *) data, *max_loop;
1321
1322 /* If REF is an array reference, check also that the step and the lower
1323 bound is invariant in LOOP. */
1324 if (TREE_CODE (ref) == ARRAY_REF)
1325 {
1326 tree step = TREE_OPERAND (ref, 3);
1327 tree lbound = TREE_OPERAND (ref, 2);
1328
1329 max_loop = outermost_invariant_loop (step, loop);
1330 if (!max_loop)
1331 return false;
1332
1333 max_loop = outermost_invariant_loop (lbound, loop);
1334 if (!max_loop)
1335 return false;
1336 }
1337
1338 max_loop = outermost_invariant_loop (*index, loop);
1339 if (!max_loop)
1340 return false;
1341
1342 return true;
1343 }
1344
1345 /* If OP is SSA NAME, force the statement that defines it to be
1346 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1347
1348 static void
1349 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1350 {
1351 gimple stmt;
1352
1353 if (!op
1354 || is_gimple_min_invariant (op))
1355 return;
1356
1357 gcc_assert (TREE_CODE (op) == SSA_NAME);
1358
1359 stmt = SSA_NAME_DEF_STMT (op);
1360 if (gimple_nop_p (stmt))
1361 return;
1362
1363 set_level (stmt, orig_loop, loop);
1364 }
1365
1366 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1367 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1368 for_each_index. */
1369
1370 struct fmt_data
1371 {
1372 struct loop *loop;
1373 struct loop *orig_loop;
1374 };
1375
1376 static bool
1377 force_move_till (tree ref, tree *index, void *data)
1378 {
1379 struct fmt_data *fmt_data = (struct fmt_data *) data;
1380
1381 if (TREE_CODE (ref) == ARRAY_REF)
1382 {
1383 tree step = TREE_OPERAND (ref, 3);
1384 tree lbound = TREE_OPERAND (ref, 2);
1385
1386 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1387 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1388 }
1389
1390 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1391
1392 return true;
1393 }
1394
1395 /* A function to free the mem_ref object OBJ. */
1396
1397 static void
1398 memref_free (struct im_mem_ref *mem)
1399 {
1400 mem->accesses_in_loop.release ();
1401 }
1402
1403 /* Allocates and returns a memory reference description for MEM whose hash
1404 value is HASH and id is ID. */
1405
1406 static mem_ref_p
1407 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1408 {
1409 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1410 ao_ref_init (&ref->mem, mem);
1411 ref->id = id;
1412 ref->hash = hash;
1413 ref->stored = NULL;
1414 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1415 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1416 ref->accesses_in_loop.create (1);
1417
1418 return ref;
1419 }
1420
1421 /* Records memory reference location *LOC in LOOP to the memory reference
1422 description REF. The reference occurs in statement STMT. */
1423
1424 static void
1425 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1426 {
1427 mem_ref_loc aref;
1428 aref.stmt = stmt;
1429 aref.ref = loc;
1430 ref->accesses_in_loop.safe_push (aref);
1431 }
1432
1433 /* Set the LOOP bit in REF stored bitmap and allocate that if
1434 necessary. Return whether a bit was changed. */
1435
1436 static bool
1437 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1438 {
1439 if (!ref->stored)
1440 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1441 return bitmap_set_bit (ref->stored, loop->num);
1442 }
1443
1444 /* Marks reference REF as stored in LOOP. */
1445
1446 static void
1447 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1448 {
1449 while (loop != current_loops->tree_root
1450 && set_ref_stored_in_loop (ref, loop))
1451 loop = loop_outer (loop);
1452 }
1453
1454 /* Gathers memory references in statement STMT in LOOP, storing the
1455 information about them in the memory_accesses structure. Marks
1456 the vops accessed through unrecognized statements there as
1457 well. */
1458
1459 static void
1460 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1461 {
1462 tree *mem = NULL;
1463 hashval_t hash;
1464 im_mem_ref **slot;
1465 mem_ref_p ref;
1466 bool is_stored;
1467 unsigned id;
1468
1469 if (!gimple_vuse (stmt))
1470 return;
1471
1472 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1473 if (!mem)
1474 {
1475 /* We use the shared mem_ref for all unanalyzable refs. */
1476 id = UNANALYZABLE_MEM_ID;
1477 ref = memory_accesses.refs_list[id];
1478 if (dump_file && (dump_flags & TDF_DETAILS))
1479 {
1480 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1481 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1482 }
1483 is_stored = gimple_vdef (stmt);
1484 }
1485 else
1486 {
1487 hash = iterative_hash_expr (*mem, 0);
1488 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1489 if (*slot)
1490 {
1491 ref = (mem_ref_p) *slot;
1492 id = ref->id;
1493 }
1494 else
1495 {
1496 id = memory_accesses.refs_list.length ();
1497 ref = mem_ref_alloc (*mem, hash, id);
1498 memory_accesses.refs_list.safe_push (ref);
1499 *slot = ref;
1500
1501 if (dump_file && (dump_flags & TDF_DETAILS))
1502 {
1503 fprintf (dump_file, "Memory reference %u: ", id);
1504 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1505 fprintf (dump_file, "\n");
1506 }
1507 }
1508
1509 record_mem_ref_loc (ref, stmt, mem);
1510 }
1511 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1512 if (is_stored)
1513 {
1514 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1515 mark_ref_stored (ref, loop);
1516 }
1517 return;
1518 }
1519
1520 static unsigned *bb_loop_postorder;
1521
1522 /* qsort sort function to sort blocks after their loop fathers postorder. */
1523
1524 static int
1525 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1526 {
1527 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1528 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1529 struct loop *loop1 = bb1->loop_father;
1530 struct loop *loop2 = bb2->loop_father;
1531 if (loop1->num == loop2->num)
1532 return 0;
1533 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1534 }
1535
1536 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1537
1538 static int
1539 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1540 {
1541 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1542 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1543 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1544 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1545 if (loop1->num == loop2->num)
1546 return 0;
1547 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1548 }
1549
1550 /* Gathers memory references in loops. */
1551
1552 static void
1553 analyze_memory_references (void)
1554 {
1555 gimple_stmt_iterator bsi;
1556 basic_block bb, *bbs;
1557 struct loop *loop, *outer;
1558 unsigned i, n;
1559
1560 /* Collect all basic-blocks in loops and sort them after their
1561 loops postorder. */
1562 i = 0;
1563 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1564 FOR_EACH_BB_FN (bb, cfun)
1565 if (bb->loop_father != current_loops->tree_root)
1566 bbs[i++] = bb;
1567 n = i;
1568 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1569
1570 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1571 That results in better locality for all the bitmaps. */
1572 for (i = 0; i < n; ++i)
1573 {
1574 basic_block bb = bbs[i];
1575 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1576 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1577 }
1578
1579 /* Sort the location list of gathered memory references after their
1580 loop postorder number. */
1581 im_mem_ref *ref;
1582 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1583 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1584
1585 free (bbs);
1586 // free (bb_loop_postorder);
1587
1588 /* Propagate the information about accessed memory references up
1589 the loop hierarchy. */
1590 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1591 {
1592 /* Finalize the overall touched references (including subloops). */
1593 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1594 &memory_accesses.refs_stored_in_loop[loop->num]);
1595
1596 /* Propagate the information about accessed memory references up
1597 the loop hierarchy. */
1598 outer = loop_outer (loop);
1599 if (outer == current_loops->tree_root)
1600 continue;
1601
1602 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1603 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1604 }
1605 }
1606
1607 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1608 tree_to_aff_combination_expand. */
1609
1610 static bool
1611 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1612 hash_map<tree, name_expansion *> **ttae_cache)
1613 {
1614 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1615 object and their offset differ in such a way that the locations cannot
1616 overlap, then they cannot alias. */
1617 widest_int size1, size2;
1618 aff_tree off1, off2;
1619
1620 /* Perform basic offset and type-based disambiguation. */
1621 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1622 return false;
1623
1624 /* The expansion of addresses may be a bit expensive, thus we only do
1625 the check at -O2 and higher optimization levels. */
1626 if (optimize < 2)
1627 return true;
1628
1629 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1630 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1631 aff_combination_expand (&off1, ttae_cache);
1632 aff_combination_expand (&off2, ttae_cache);
1633 aff_combination_scale (&off1, -1);
1634 aff_combination_add (&off2, &off1);
1635
1636 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1637 return false;
1638
1639 return true;
1640 }
1641
1642 /* Compare function for bsearch searching for reference locations
1643 in a loop. */
1644
1645 static int
1646 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1647 {
1648 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1649 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1650 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1651 if (loop->num == loc_loop->num
1652 || flow_loop_nested_p (loop, loc_loop))
1653 return 0;
1654 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1655 ? -1 : 1);
1656 }
1657
1658 /* Iterates over all locations of REF in LOOP and its subloops calling
1659 fn.operator() with the location as argument. When that operator
1660 returns true the iteration is stopped and true is returned.
1661 Otherwise false is returned. */
1662
1663 template <typename FN>
1664 static bool
1665 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1666 {
1667 unsigned i;
1668 mem_ref_loc_p loc;
1669
1670 /* Search for the cluster of locs in the accesses_in_loop vector
1671 which is sorted after postorder index of the loop father. */
1672 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1673 if (!loc)
1674 return false;
1675
1676 /* We have found one location inside loop or its sub-loops. Iterate
1677 both forward and backward to cover the whole cluster. */
1678 i = loc - ref->accesses_in_loop.address ();
1679 while (i > 0)
1680 {
1681 --i;
1682 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1683 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1684 break;
1685 if (fn (l))
1686 return true;
1687 }
1688 for (i = loc - ref->accesses_in_loop.address ();
1689 i < ref->accesses_in_loop.length (); ++i)
1690 {
1691 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1692 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1693 break;
1694 if (fn (l))
1695 return true;
1696 }
1697
1698 return false;
1699 }
1700
1701 /* Rewrites location LOC by TMP_VAR. */
1702
1703 struct rewrite_mem_ref_loc
1704 {
1705 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1706 bool operator () (mem_ref_loc_p loc);
1707 tree tmp_var;
1708 };
1709
1710 bool
1711 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1712 {
1713 *loc->ref = tmp_var;
1714 update_stmt (loc->stmt);
1715 return false;
1716 }
1717
1718 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1719
1720 static void
1721 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1722 {
1723 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1724 }
1725
1726 /* Stores the first reference location in LOCP. */
1727
1728 struct first_mem_ref_loc_1
1729 {
1730 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1731 bool operator () (mem_ref_loc_p loc);
1732 mem_ref_loc_p *locp;
1733 };
1734
1735 bool
1736 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1737 {
1738 *locp = loc;
1739 return true;
1740 }
1741
1742 /* Returns the first reference location to REF in LOOP. */
1743
1744 static mem_ref_loc_p
1745 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1746 {
1747 mem_ref_loc_p locp = NULL;
1748 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1749 return locp;
1750 }
1751
1752 struct prev_flag_edges {
1753 /* Edge to insert new flag comparison code. */
1754 edge append_cond_position;
1755
1756 /* Edge for fall through from previous flag comparison. */
1757 edge last_cond_fallthru;
1758 };
1759
1760 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1761 MEM along edge EX.
1762
1763 The store is only done if MEM has changed. We do this so no
1764 changes to MEM occur on code paths that did not originally store
1765 into it.
1766
1767 The common case for execute_sm will transform:
1768
1769 for (...) {
1770 if (foo)
1771 stuff;
1772 else
1773 MEM = TMP_VAR;
1774 }
1775
1776 into:
1777
1778 lsm = MEM;
1779 for (...) {
1780 if (foo)
1781 stuff;
1782 else
1783 lsm = TMP_VAR;
1784 }
1785 MEM = lsm;
1786
1787 This function will generate:
1788
1789 lsm = MEM;
1790
1791 lsm_flag = false;
1792 ...
1793 for (...) {
1794 if (foo)
1795 stuff;
1796 else {
1797 lsm = TMP_VAR;
1798 lsm_flag = true;
1799 }
1800 }
1801 if (lsm_flag) <--
1802 MEM = lsm; <--
1803 */
1804
1805 static void
1806 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1807 {
1808 basic_block new_bb, then_bb, old_dest;
1809 bool loop_has_only_one_exit;
1810 edge then_old_edge, orig_ex = ex;
1811 gimple_stmt_iterator gsi;
1812 gimple stmt;
1813 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1814 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1815
1816 /* ?? Insert store after previous store if applicable. See note
1817 below. */
1818 if (prev_edges)
1819 ex = prev_edges->append_cond_position;
1820
1821 loop_has_only_one_exit = single_pred_p (ex->dest);
1822
1823 if (loop_has_only_one_exit)
1824 ex = split_block_after_labels (ex->dest);
1825
1826 old_dest = ex->dest;
1827 new_bb = split_edge (ex);
1828 then_bb = create_empty_bb (new_bb);
1829 if (irr)
1830 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1831 add_bb_to_loop (then_bb, new_bb->loop_father);
1832
1833 gsi = gsi_start_bb (new_bb);
1834 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1835 NULL_TREE, NULL_TREE);
1836 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1837
1838 gsi = gsi_start_bb (then_bb);
1839 /* Insert actual store. */
1840 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1841 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1842
1843 make_edge (new_bb, then_bb,
1844 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1845 make_edge (new_bb, old_dest,
1846 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1847 then_old_edge = make_edge (then_bb, old_dest,
1848 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1849
1850 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1851
1852 if (prev_edges)
1853 {
1854 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1855 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1856 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1857 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1858 recompute_dominator (CDI_DOMINATORS, old_dest));
1859 }
1860
1861 /* ?? Because stores may alias, they must happen in the exact
1862 sequence they originally happened. Save the position right after
1863 the (_lsm) store we just created so we can continue appending after
1864 it and maintain the original order. */
1865 {
1866 struct prev_flag_edges *p;
1867
1868 if (orig_ex->aux)
1869 orig_ex->aux = NULL;
1870 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1871 p = (struct prev_flag_edges *) orig_ex->aux;
1872 p->append_cond_position = then_old_edge;
1873 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1874 orig_ex->aux = (void *) p;
1875 }
1876
1877 if (!loop_has_only_one_exit)
1878 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1879 {
1880 gimple phi = gsi_stmt (gsi);
1881 unsigned i;
1882
1883 for (i = 0; i < gimple_phi_num_args (phi); i++)
1884 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1885 {
1886 tree arg = gimple_phi_arg_def (phi, i);
1887 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1888 update_stmt (phi);
1889 }
1890 }
1891 /* Remove the original fall through edge. This was the
1892 single_succ_edge (new_bb). */
1893 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1894 }
1895
1896 /* When REF is set on the location, set flag indicating the store. */
1897
1898 struct sm_set_flag_if_changed
1899 {
1900 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1901 bool operator () (mem_ref_loc_p loc);
1902 tree flag;
1903 };
1904
1905 bool
1906 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1907 {
1908 /* Only set the flag for writes. */
1909 if (is_gimple_assign (loc->stmt)
1910 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1911 {
1912 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1913 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1914 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1915 }
1916 return false;
1917 }
1918
1919 /* Helper function for execute_sm. On every location where REF is
1920 set, set an appropriate flag indicating the store. */
1921
1922 static tree
1923 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1924 {
1925 tree flag;
1926 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1927 flag = create_tmp_reg (boolean_type_node, str);
1928 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1929 return flag;
1930 }
1931
1932 /* Executes store motion of memory reference REF from LOOP.
1933 Exits from the LOOP are stored in EXITS. The initialization of the
1934 temporary variable is put to the preheader of the loop, and assignments
1935 to the reference from the temporary variable are emitted to exits. */
1936
1937 static void
1938 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1939 {
1940 tree tmp_var, store_flag = NULL_TREE;
1941 unsigned i;
1942 gimple load;
1943 struct fmt_data fmt_data;
1944 edge ex;
1945 struct lim_aux_data *lim_data;
1946 bool multi_threaded_model_p = false;
1947 gimple_stmt_iterator gsi;
1948
1949 if (dump_file && (dump_flags & TDF_DETAILS))
1950 {
1951 fprintf (dump_file, "Executing store motion of ");
1952 print_generic_expr (dump_file, ref->mem.ref, 0);
1953 fprintf (dump_file, " from loop %d\n", loop->num);
1954 }
1955
1956 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1957 get_lsm_tmp_name (ref->mem.ref, ~0));
1958
1959 fmt_data.loop = loop;
1960 fmt_data.orig_loop = loop;
1961 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1962
1963 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1964 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1965 multi_threaded_model_p = true;
1966
1967 if (multi_threaded_model_p)
1968 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1969
1970 rewrite_mem_refs (loop, ref, tmp_var);
1971
1972 /* Emit the load code on a random exit edge or into the latch if
1973 the loop does not exit, so that we are sure it will be processed
1974 by move_computations after all dependencies. */
1975 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1976
1977 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1978 load altogether, since the store is predicated by a flag. We
1979 could, do the load only if it was originally in the loop. */
1980 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1981 lim_data = init_lim_data (load);
1982 lim_data->max_loop = loop;
1983 lim_data->tgt_loop = loop;
1984 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1985
1986 if (multi_threaded_model_p)
1987 {
1988 load = gimple_build_assign (store_flag, boolean_false_node);
1989 lim_data = init_lim_data (load);
1990 lim_data->max_loop = loop;
1991 lim_data->tgt_loop = loop;
1992 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1993 }
1994
1995 /* Sink the store to every exit from the loop. */
1996 FOR_EACH_VEC_ELT (exits, i, ex)
1997 if (!multi_threaded_model_p)
1998 {
1999 gimple store;
2000 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2001 gsi_insert_on_edge (ex, store);
2002 }
2003 else
2004 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2005 }
2006
2007 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2008 edges of the LOOP. */
2009
2010 static void
2011 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2012 vec<edge> exits)
2013 {
2014 mem_ref_p ref;
2015 unsigned i;
2016 bitmap_iterator bi;
2017
2018 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2019 {
2020 ref = memory_accesses.refs_list[i];
2021 execute_sm (loop, exits, ref);
2022 }
2023 }
2024
2025 struct ref_always_accessed
2026 {
2027 ref_always_accessed (struct loop *loop_, bool stored_p_)
2028 : loop (loop_), stored_p (stored_p_) {}
2029 bool operator () (mem_ref_loc_p loc);
2030 struct loop *loop;
2031 bool stored_p;
2032 };
2033
2034 bool
2035 ref_always_accessed::operator () (mem_ref_loc_p loc)
2036 {
2037 struct loop *must_exec;
2038
2039 if (!get_lim_data (loc->stmt))
2040 return false;
2041
2042 /* If we require an always executed store make sure the statement
2043 stores to the reference. */
2044 if (stored_p)
2045 {
2046 tree lhs = gimple_get_lhs (loc->stmt);
2047 if (!lhs
2048 || lhs != *loc->ref)
2049 return false;
2050 }
2051
2052 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2053 if (!must_exec)
2054 return false;
2055
2056 if (must_exec == loop
2057 || flow_loop_nested_p (must_exec, loop))
2058 return true;
2059
2060 return false;
2061 }
2062
2063 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2064 make sure REF is always stored to in LOOP. */
2065
2066 static bool
2067 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2068 {
2069 return for_all_locs_in_loop (loop, ref,
2070 ref_always_accessed (loop, stored_p));
2071 }
2072
2073 /* Returns true if REF1 and REF2 are independent. */
2074
2075 static bool
2076 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2077 {
2078 if (ref1 == ref2)
2079 return true;
2080
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2083 ref1->id, ref2->id);
2084
2085 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2086 {
2087 if (dump_file && (dump_flags & TDF_DETAILS))
2088 fprintf (dump_file, "dependent.\n");
2089 return false;
2090 }
2091 else
2092 {
2093 if (dump_file && (dump_flags & TDF_DETAILS))
2094 fprintf (dump_file, "independent.\n");
2095 return true;
2096 }
2097 }
2098
2099 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2100 and its super-loops. */
2101
2102 static void
2103 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2104 {
2105 /* We can propagate dependent-in-loop bits up the loop
2106 hierarchy to all outer loops. */
2107 while (loop != current_loops->tree_root
2108 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2109 loop = loop_outer (loop);
2110 }
2111
2112 /* Returns true if REF is independent on all other memory references in
2113 LOOP. */
2114
2115 static bool
2116 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2117 {
2118 bitmap refs_to_check;
2119 unsigned i;
2120 bitmap_iterator bi;
2121 mem_ref_p aref;
2122
2123 if (stored_p)
2124 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2125 else
2126 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2127
2128 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2129 return false;
2130
2131 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2132 {
2133 aref = memory_accesses.refs_list[i];
2134 if (!refs_independent_p (ref, aref))
2135 return false;
2136 }
2137
2138 return true;
2139 }
2140
2141 /* Returns true if REF is independent on all other memory references in
2142 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2143
2144 static bool
2145 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2146 {
2147 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2148
2149 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2150 return true;
2151 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2152 return false;
2153
2154 struct loop *inner = loop->inner;
2155 while (inner)
2156 {
2157 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2158 return false;
2159 inner = inner->next;
2160 }
2161
2162 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2163
2164 if (dump_file && (dump_flags & TDF_DETAILS))
2165 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2166 ref->id, loop->num, indep_p ? "independent" : "dependent");
2167
2168 /* Record the computed result in the cache. */
2169 if (indep_p)
2170 {
2171 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2172 && stored_p)
2173 {
2174 /* If it's independend against all refs then it's independent
2175 against stores, too. */
2176 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2177 }
2178 }
2179 else
2180 {
2181 record_dep_loop (loop, ref, stored_p);
2182 if (!stored_p)
2183 {
2184 /* If it's dependent against stores it's dependent against
2185 all refs, too. */
2186 record_dep_loop (loop, ref, true);
2187 }
2188 }
2189
2190 return indep_p;
2191 }
2192
2193 /* Returns true if REF is independent on all other memory references in
2194 LOOP. */
2195
2196 static bool
2197 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2198 {
2199 gcc_checking_assert (MEM_ANALYZABLE (ref));
2200
2201 return ref_indep_loop_p_2 (loop, ref, false);
2202 }
2203
2204 /* Returns true if we can perform store motion of REF from LOOP. */
2205
2206 static bool
2207 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2208 {
2209 tree base;
2210
2211 /* Can't hoist unanalyzable refs. */
2212 if (!MEM_ANALYZABLE (ref))
2213 return false;
2214
2215 /* It should be movable. */
2216 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2217 || TREE_THIS_VOLATILE (ref->mem.ref)
2218 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2219 return false;
2220
2221 /* If it can throw fail, we do not properly update EH info. */
2222 if (tree_could_throw_p (ref->mem.ref))
2223 return false;
2224
2225 /* If it can trap, it must be always executed in LOOP.
2226 Readonly memory locations may trap when storing to them, but
2227 tree_could_trap_p is a predicate for rvalues, so check that
2228 explicitly. */
2229 base = get_base_address (ref->mem.ref);
2230 if ((tree_could_trap_p (ref->mem.ref)
2231 || (DECL_P (base) && TREE_READONLY (base)))
2232 && !ref_always_accessed_p (loop, ref, true))
2233 return false;
2234
2235 /* And it must be independent on all other memory references
2236 in LOOP. */
2237 if (!ref_indep_loop_p (loop, ref))
2238 return false;
2239
2240 return true;
2241 }
2242
2243 /* Marks the references in LOOP for that store motion should be performed
2244 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2245 motion was performed in one of the outer loops. */
2246
2247 static void
2248 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2249 {
2250 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2251 unsigned i;
2252 bitmap_iterator bi;
2253 mem_ref_p ref;
2254
2255 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2256 {
2257 ref = memory_accesses.refs_list[i];
2258 if (can_sm_ref_p (loop, ref))
2259 bitmap_set_bit (refs_to_sm, i);
2260 }
2261 }
2262
2263 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2264 for a store motion optimization (i.e. whether we can insert statement
2265 on its exits). */
2266
2267 static bool
2268 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2269 vec<edge> exits)
2270 {
2271 unsigned i;
2272 edge ex;
2273
2274 FOR_EACH_VEC_ELT (exits, i, ex)
2275 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2276 return false;
2277
2278 return true;
2279 }
2280
2281 /* Try to perform store motion for all memory references modified inside
2282 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2283 store motion was executed in one of the outer loops. */
2284
2285 static void
2286 store_motion_loop (struct loop *loop, bitmap sm_executed)
2287 {
2288 vec<edge> exits = get_loop_exit_edges (loop);
2289 struct loop *subloop;
2290 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2291
2292 if (loop_suitable_for_sm (loop, exits))
2293 {
2294 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2295 hoist_memory_references (loop, sm_in_loop, exits);
2296 }
2297 exits.release ();
2298
2299 bitmap_ior_into (sm_executed, sm_in_loop);
2300 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2301 store_motion_loop (subloop, sm_executed);
2302 bitmap_and_compl_into (sm_executed, sm_in_loop);
2303 BITMAP_FREE (sm_in_loop);
2304 }
2305
2306 /* Try to perform store motion for all memory references modified inside
2307 loops. */
2308
2309 static void
2310 store_motion (void)
2311 {
2312 struct loop *loop;
2313 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2314
2315 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2316 store_motion_loop (loop, sm_executed);
2317
2318 BITMAP_FREE (sm_executed);
2319 gsi_commit_edge_inserts ();
2320 }
2321
2322 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2323 for each such basic block bb records the outermost loop for that execution
2324 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2325 blocks that contain a nonpure call. */
2326
2327 static void
2328 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2329 {
2330 basic_block bb = NULL, *bbs, last = NULL;
2331 unsigned i;
2332 edge e;
2333 struct loop *inn_loop = loop;
2334
2335 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2336 {
2337 bbs = get_loop_body_in_dom_order (loop);
2338
2339 for (i = 0; i < loop->num_nodes; i++)
2340 {
2341 edge_iterator ei;
2342 bb = bbs[i];
2343
2344 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2345 last = bb;
2346
2347 if (bitmap_bit_p (contains_call, bb->index))
2348 break;
2349
2350 FOR_EACH_EDGE (e, ei, bb->succs)
2351 if (!flow_bb_inside_loop_p (loop, e->dest))
2352 break;
2353 if (e)
2354 break;
2355
2356 /* A loop might be infinite (TODO use simple loop analysis
2357 to disprove this if possible). */
2358 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2359 break;
2360
2361 if (!flow_bb_inside_loop_p (inn_loop, bb))
2362 break;
2363
2364 if (bb->loop_father->header == bb)
2365 {
2366 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2367 break;
2368
2369 /* In a loop that is always entered we may proceed anyway.
2370 But record that we entered it and stop once we leave it. */
2371 inn_loop = bb->loop_father;
2372 }
2373 }
2374
2375 while (1)
2376 {
2377 SET_ALWAYS_EXECUTED_IN (last, loop);
2378 if (last == loop->header)
2379 break;
2380 last = get_immediate_dominator (CDI_DOMINATORS, last);
2381 }
2382
2383 free (bbs);
2384 }
2385
2386 for (loop = loop->inner; loop; loop = loop->next)
2387 fill_always_executed_in_1 (loop, contains_call);
2388 }
2389
2390 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2391 for each such basic block bb records the outermost loop for that execution
2392 of its header implies execution of bb. */
2393
2394 static void
2395 fill_always_executed_in (void)
2396 {
2397 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2398 basic_block bb;
2399 struct loop *loop;
2400
2401 bitmap_clear (contains_call);
2402 FOR_EACH_BB_FN (bb, cfun)
2403 {
2404 gimple_stmt_iterator gsi;
2405 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2406 {
2407 if (nonpure_call_p (gsi_stmt (gsi)))
2408 break;
2409 }
2410
2411 if (!gsi_end_p (gsi))
2412 bitmap_set_bit (contains_call, bb->index);
2413 }
2414
2415 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2416 fill_always_executed_in_1 (loop, contains_call);
2417
2418 sbitmap_free (contains_call);
2419 }
2420
2421
2422 /* Compute the global information needed by the loop invariant motion pass. */
2423
2424 static void
2425 tree_ssa_lim_initialize (void)
2426 {
2427 struct loop *loop;
2428 unsigned i;
2429
2430 bitmap_obstack_initialize (&lim_bitmap_obstack);
2431 gcc_obstack_init (&mem_ref_obstack);
2432 lim_aux_data_map = new hash_map<gimple, lim_aux_data *>;
2433
2434 if (flag_tm)
2435 compute_transaction_bits ();
2436
2437 alloc_aux_for_edges (0);
2438
2439 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2440 memory_accesses.refs_list.create (100);
2441 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2442 memory_accesses.refs_list.quick_push
2443 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2444
2445 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2446 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2447 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2448 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2449 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2450 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2451
2452 for (i = 0; i < number_of_loops (cfun); i++)
2453 {
2454 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2455 &lim_bitmap_obstack);
2456 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2457 &lim_bitmap_obstack);
2458 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2459 &lim_bitmap_obstack);
2460 }
2461
2462 memory_accesses.ttae_cache = NULL;
2463
2464 /* Initialize bb_loop_postorder with a mapping from loop->num to
2465 its postorder index. */
2466 i = 0;
2467 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2468 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2469 bb_loop_postorder[loop->num] = i++;
2470 }
2471
2472 /* Cleans up after the invariant motion pass. */
2473
2474 static void
2475 tree_ssa_lim_finalize (void)
2476 {
2477 basic_block bb;
2478 unsigned i;
2479 mem_ref_p ref;
2480
2481 free_aux_for_edges ();
2482
2483 FOR_EACH_BB_FN (bb, cfun)
2484 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2485
2486 bitmap_obstack_release (&lim_bitmap_obstack);
2487 delete lim_aux_data_map;
2488
2489 delete memory_accesses.refs;
2490 memory_accesses.refs = NULL;
2491
2492 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2493 memref_free (ref);
2494 memory_accesses.refs_list.release ();
2495 obstack_free (&mem_ref_obstack, NULL);
2496
2497 memory_accesses.refs_in_loop.release ();
2498 memory_accesses.refs_stored_in_loop.release ();
2499 memory_accesses.all_refs_stored_in_loop.release ();
2500
2501 if (memory_accesses.ttae_cache)
2502 free_affine_expand_cache (&memory_accesses.ttae_cache);
2503
2504 free (bb_loop_postorder);
2505 }
2506
2507 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2508 i.e. those that are likely to be win regardless of the register pressure. */
2509
2510 unsigned int
2511 tree_ssa_lim (void)
2512 {
2513 unsigned int todo;
2514
2515 tree_ssa_lim_initialize ();
2516
2517 /* Gathers information about memory accesses in the loops. */
2518 analyze_memory_references ();
2519
2520 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2521 fill_always_executed_in ();
2522
2523 /* For each statement determine the outermost loop in that it is
2524 invariant and cost for computing the invariant. */
2525 invariantness_dom_walker (CDI_DOMINATORS)
2526 .walk (cfun->cfg->x_entry_block_ptr);
2527
2528 /* Execute store motion. Force the necessary invariants to be moved
2529 out of the loops as well. */
2530 store_motion ();
2531
2532 /* Move the expressions that are expensive enough. */
2533 todo = move_computations ();
2534
2535 tree_ssa_lim_finalize ();
2536
2537 return todo;
2538 }
2539
2540 /* Loop invariant motion pass. */
2541
2542 namespace {
2543
2544 const pass_data pass_data_lim =
2545 {
2546 GIMPLE_PASS, /* type */
2547 "lim", /* name */
2548 OPTGROUP_LOOP, /* optinfo_flags */
2549 TV_LIM, /* tv_id */
2550 PROP_cfg, /* properties_required */
2551 0, /* properties_provided */
2552 0, /* properties_destroyed */
2553 0, /* todo_flags_start */
2554 0, /* todo_flags_finish */
2555 };
2556
2557 class pass_lim : public gimple_opt_pass
2558 {
2559 public:
2560 pass_lim (gcc::context *ctxt)
2561 : gimple_opt_pass (pass_data_lim, ctxt)
2562 {}
2563
2564 /* opt_pass methods: */
2565 opt_pass * clone () { return new pass_lim (m_ctxt); }
2566 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2567 virtual unsigned int execute (function *);
2568
2569 }; // class pass_lim
2570
2571 unsigned int
2572 pass_lim::execute (function *fun)
2573 {
2574 if (number_of_loops (fun) <= 1)
2575 return 0;
2576
2577 return tree_ssa_lim ();
2578 }
2579
2580 } // anon namespace
2581
2582 gimple_opt_pass *
2583 make_pass_lim (gcc::context *ctxt)
2584 {
2585 return new pass_lim (ctxt);
2586 }
2587
2588