whatis.cc: New file.
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-flow.h"
30 #include "cfgloop.h"
31 #include "domwalk.h"
32 #include "params.h"
33 #include "tree-pass.h"
34 #include "flags.h"
35 #include "hashtab.h"
36 #include "tree-affine.h"
37 #include "pointer-set.h"
38 #include "tree-ssa-propagate.h"
39
40 /* TODO: Support for predicated code motion. I.e.
41
42 while (1)
43 {
44 if (cond)
45 {
46 a = inv;
47 something;
48 }
49 }
50
51 Where COND and INV are invariants, but evaluating INV may trap or be
52 invalid from some other reason if !COND. This may be transformed to
53
54 if (cond)
55 a = inv;
56 while (1)
57 {
58 if (cond)
59 something;
60 } */
61
62 /* A type for the list of statements that have to be moved in order to be able
63 to hoist an invariant computation. */
64
65 struct depend
66 {
67 gimple stmt;
68 struct depend *next;
69 };
70
71 /* The auxiliary data kept for each statement. */
72
73 struct lim_aux_data
74 {
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
77
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
80
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
85
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
88
89 struct depend *depends; /* List of statements that must be also hoisted
90 out of the loop when this statement is
91 hoisted; i.e. those that define the operands
92 of the statement and are inside of the
93 MAX_LOOP loop. */
94 };
95
96 /* Maps statements to their lim_aux_data. */
97
98 static struct pointer_map_t *lim_aux_data_map;
99
100 /* Description of a memory reference location. */
101
102 typedef struct mem_ref_loc
103 {
104 tree *ref; /* The reference itself. */
105 gimple stmt; /* The statement in that it occurs. */
106 } *mem_ref_loc_p;
107
108 DEF_VEC_P(mem_ref_loc_p);
109 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
110
111 /* The list of memory reference locations in a loop. */
112
113 typedef struct mem_ref_locs
114 {
115 VEC (mem_ref_loc_p, heap) *locs;
116 } *mem_ref_locs_p;
117
118 DEF_VEC_P(mem_ref_locs_p);
119 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
120
121 /* Description of a memory reference. */
122
123 typedef struct mem_ref
124 {
125 tree mem; /* The memory itself. */
126 unsigned id; /* ID assigned to the memory reference
127 (its index in memory_accesses.refs_list) */
128 hashval_t hash; /* Its hash value. */
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
134
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap dep_loop; /* The complement of INDEP_LOOP. */
146
147 bitmap indep_ref; /* The set of memory references on that
148 this reference is independent. */
149 bitmap dep_ref; /* The complement of INDEP_REF. */
150 } *mem_ref_p;
151
152 DEF_VEC_P(mem_ref_p);
153 DEF_VEC_ALLOC_P(mem_ref_p, heap);
154
155 DEF_VEC_P(bitmap);
156 DEF_VEC_ALLOC_P(bitmap, heap);
157
158 DEF_VEC_P(htab_t);
159 DEF_VEC_ALLOC_P(htab_t, heap);
160
161 /* Description of memory accesses in loops. */
162
163 static struct
164 {
165 /* The hash table of memory references accessed in loops. */
166 htab_t refs;
167
168 /* The list of memory references. */
169 VEC (mem_ref_p, heap) *refs_list;
170
171 /* The set of memory references accessed in each loop. */
172 VEC (bitmap, heap) *refs_in_loop;
173
174 /* The set of memory references accessed in each loop, including
175 subloops. */
176 VEC (bitmap, heap) *all_refs_in_loop;
177
178 /* The set of memory references stored in each loop, including
179 subloops. */
180 VEC (bitmap, heap) *all_refs_stored_in_loop;
181
182 /* Cache for expanding memory addresses. */
183 struct pointer_map_t *ttae_cache;
184 } memory_accesses;
185
186 /* Obstack for the bitmaps in the above data structures. */
187 static bitmap_obstack lim_bitmap_obstack;
188
189 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
190
191 /* Minimum cost of an expensive expression. */
192 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
193
194 /* The outermost loop for which execution of the header guarantees that the
195 block will be executed. */
196 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
197 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
198
199 /* Whether the reference was analyzable. */
200 #define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
201
202 static struct lim_aux_data *
203 init_lim_data (gimple stmt)
204 {
205 void **p = pointer_map_insert (lim_aux_data_map, stmt);
206
207 *p = XCNEW (struct lim_aux_data);
208 return (struct lim_aux_data *) *p;
209 }
210
211 static struct lim_aux_data *
212 get_lim_data (gimple stmt)
213 {
214 void **p = pointer_map_contains (lim_aux_data_map, stmt);
215 if (!p)
216 return NULL;
217
218 return (struct lim_aux_data *) *p;
219 }
220
221 /* Releases the memory occupied by DATA. */
222
223 static void
224 free_lim_aux_data (struct lim_aux_data *data)
225 {
226 struct depend *dep, *next;
227
228 for (dep = data->depends; dep; dep = next)
229 {
230 next = dep->next;
231 free (dep);
232 }
233 free (data);
234 }
235
236 static void
237 clear_lim_data (gimple stmt)
238 {
239 void **p = pointer_map_contains (lim_aux_data_map, stmt);
240 if (!p)
241 return;
242
243 free_lim_aux_data ((struct lim_aux_data *) *p);
244 *p = NULL;
245 }
246
247 /* Calls CBCK for each index in memory reference ADDR_P. There are two
248 kinds situations handled; in each of these cases, the memory reference
249 and DATA are passed to the callback:
250
251 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
252 pass the pointer to the index to the callback.
253
254 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
255 pointer to addr to the callback.
256
257 If the callback returns false, the whole search stops and false is returned.
258 Otherwise the function returns true after traversing through the whole
259 reference *ADDR_P. */
260
261 bool
262 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
263 {
264 tree *nxt, *idx;
265
266 for (; ; addr_p = nxt)
267 {
268 switch (TREE_CODE (*addr_p))
269 {
270 case SSA_NAME:
271 return cbck (*addr_p, addr_p, data);
272
273 case MEM_REF:
274 nxt = &TREE_OPERAND (*addr_p, 0);
275 return cbck (*addr_p, nxt, data);
276
277 case BIT_FIELD_REF:
278 case VIEW_CONVERT_EXPR:
279 case REALPART_EXPR:
280 case IMAGPART_EXPR:
281 nxt = &TREE_OPERAND (*addr_p, 0);
282 break;
283
284 case COMPONENT_REF:
285 /* If the component has varying offset, it behaves like index
286 as well. */
287 idx = &TREE_OPERAND (*addr_p, 2);
288 if (*idx
289 && !cbck (*addr_p, idx, data))
290 return false;
291
292 nxt = &TREE_OPERAND (*addr_p, 0);
293 break;
294
295 case ARRAY_REF:
296 case ARRAY_RANGE_REF:
297 nxt = &TREE_OPERAND (*addr_p, 0);
298 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
299 return false;
300 break;
301
302 case VAR_DECL:
303 case PARM_DECL:
304 case STRING_CST:
305 case RESULT_DECL:
306 case VECTOR_CST:
307 case COMPLEX_CST:
308 case INTEGER_CST:
309 case REAL_CST:
310 case FIXED_CST:
311 case CONSTRUCTOR:
312 return true;
313
314 case ADDR_EXPR:
315 gcc_assert (is_gimple_min_invariant (*addr_p));
316 return true;
317
318 case TARGET_MEM_REF:
319 idx = &TMR_BASE (*addr_p);
320 if (*idx
321 && !cbck (*addr_p, idx, data))
322 return false;
323 idx = &TMR_INDEX (*addr_p);
324 if (*idx
325 && !cbck (*addr_p, idx, data))
326 return false;
327 idx = &TMR_INDEX2 (*addr_p);
328 if (*idx
329 && !cbck (*addr_p, idx, data))
330 return false;
331 return true;
332
333 default:
334 gcc_unreachable ();
335 }
336 }
337 }
338
339 /* If it is possible to hoist the statement STMT unconditionally,
340 returns MOVE_POSSIBLE.
341 If it is possible to hoist the statement STMT, but we must avoid making
342 it executed if it would not be executed in the original program (e.g.
343 because it may trap), return MOVE_PRESERVE_EXECUTION.
344 Otherwise return MOVE_IMPOSSIBLE. */
345
346 enum move_pos
347 movement_possibility (gimple stmt)
348 {
349 tree lhs;
350 enum move_pos ret = MOVE_POSSIBLE;
351
352 if (flag_unswitch_loops
353 && gimple_code (stmt) == GIMPLE_COND)
354 {
355 /* If we perform unswitching, force the operands of the invariant
356 condition to be moved out of the loop. */
357 return MOVE_POSSIBLE;
358 }
359
360 if (gimple_code (stmt) == GIMPLE_PHI
361 && gimple_phi_num_args (stmt) <= 2
362 && !virtual_operand_p (gimple_phi_result (stmt))
363 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
364 return MOVE_POSSIBLE;
365
366 if (gimple_get_lhs (stmt) == NULL_TREE)
367 return MOVE_IMPOSSIBLE;
368
369 if (gimple_vdef (stmt))
370 return MOVE_IMPOSSIBLE;
371
372 if (stmt_ends_bb_p (stmt)
373 || gimple_has_volatile_ops (stmt)
374 || gimple_has_side_effects (stmt)
375 || stmt_could_throw_p (stmt))
376 return MOVE_IMPOSSIBLE;
377
378 if (is_gimple_call (stmt))
379 {
380 /* While pure or const call is guaranteed to have no side effects, we
381 cannot move it arbitrarily. Consider code like
382
383 char *s = something ();
384
385 while (1)
386 {
387 if (s)
388 t = strlen (s);
389 else
390 t = 0;
391 }
392
393 Here the strlen call cannot be moved out of the loop, even though
394 s is invariant. In addition to possibly creating a call with
395 invalid arguments, moving out a function call that is not executed
396 may cause performance regressions in case the call is costly and
397 not executed at all. */
398 ret = MOVE_PRESERVE_EXECUTION;
399 lhs = gimple_call_lhs (stmt);
400 }
401 else if (is_gimple_assign (stmt))
402 lhs = gimple_assign_lhs (stmt);
403 else
404 return MOVE_IMPOSSIBLE;
405
406 if (TREE_CODE (lhs) == SSA_NAME
407 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
408 return MOVE_IMPOSSIBLE;
409
410 if (TREE_CODE (lhs) != SSA_NAME
411 || gimple_could_trap_p (stmt))
412 return MOVE_PRESERVE_EXECUTION;
413
414 /* Non local loads in a transaction cannot be hoisted out. Well,
415 unless the load happens on every path out of the loop, but we
416 don't take this into account yet. */
417 if (flag_tm
418 && gimple_in_transaction (stmt)
419 && gimple_assign_single_p (stmt))
420 {
421 tree rhs = gimple_assign_rhs1 (stmt);
422 if (DECL_P (rhs) && is_global_var (rhs))
423 {
424 if (dump_file)
425 {
426 fprintf (dump_file, "Cannot hoist conditional load of ");
427 print_generic_expr (dump_file, rhs, TDF_SLIM);
428 fprintf (dump_file, " because it is in a transaction.\n");
429 }
430 return MOVE_IMPOSSIBLE;
431 }
432 }
433
434 return ret;
435 }
436
437 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
438 loop to that we could move the expression using DEF if it did not have
439 other operands, i.e. the outermost loop enclosing LOOP in that the value
440 of DEF is invariant. */
441
442 static struct loop *
443 outermost_invariant_loop (tree def, struct loop *loop)
444 {
445 gimple def_stmt;
446 basic_block def_bb;
447 struct loop *max_loop;
448 struct lim_aux_data *lim_data;
449
450 if (!def)
451 return superloop_at_depth (loop, 1);
452
453 if (TREE_CODE (def) != SSA_NAME)
454 {
455 gcc_assert (is_gimple_min_invariant (def));
456 return superloop_at_depth (loop, 1);
457 }
458
459 def_stmt = SSA_NAME_DEF_STMT (def);
460 def_bb = gimple_bb (def_stmt);
461 if (!def_bb)
462 return superloop_at_depth (loop, 1);
463
464 max_loop = find_common_loop (loop, def_bb->loop_father);
465
466 lim_data = get_lim_data (def_stmt);
467 if (lim_data != NULL && lim_data->max_loop != NULL)
468 max_loop = find_common_loop (max_loop,
469 loop_outer (lim_data->max_loop));
470 if (max_loop == loop)
471 return NULL;
472 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
473
474 return max_loop;
475 }
476
477 /* DATA is a structure containing information associated with a statement
478 inside LOOP. DEF is one of the operands of this statement.
479
480 Find the outermost loop enclosing LOOP in that value of DEF is invariant
481 and record this in DATA->max_loop field. If DEF itself is defined inside
482 this loop as well (i.e. we need to hoist it out of the loop if we want
483 to hoist the statement represented by DATA), record the statement in that
484 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
485 add the cost of the computation of DEF to the DATA->cost.
486
487 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
488
489 static bool
490 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
491 bool add_cost)
492 {
493 gimple def_stmt = SSA_NAME_DEF_STMT (def);
494 basic_block def_bb = gimple_bb (def_stmt);
495 struct loop *max_loop;
496 struct depend *dep;
497 struct lim_aux_data *def_data;
498
499 if (!def_bb)
500 return true;
501
502 max_loop = outermost_invariant_loop (def, loop);
503 if (!max_loop)
504 return false;
505
506 if (flow_loop_nested_p (data->max_loop, max_loop))
507 data->max_loop = max_loop;
508
509 def_data = get_lim_data (def_stmt);
510 if (!def_data)
511 return true;
512
513 if (add_cost
514 /* Only add the cost if the statement defining DEF is inside LOOP,
515 i.e. if it is likely that by moving the invariants dependent
516 on it, we will be able to avoid creating a new register for
517 it (since it will be only used in these dependent invariants). */
518 && def_bb->loop_father == loop)
519 data->cost += def_data->cost;
520
521 dep = XNEW (struct depend);
522 dep->stmt = def_stmt;
523 dep->next = data->depends;
524 data->depends = dep;
525
526 return true;
527 }
528
529 /* Returns an estimate for a cost of statement STMT. The values here
530 are just ad-hoc constants, similar to costs for inlining. */
531
532 static unsigned
533 stmt_cost (gimple stmt)
534 {
535 /* Always try to create possibilities for unswitching. */
536 if (gimple_code (stmt) == GIMPLE_COND
537 || gimple_code (stmt) == GIMPLE_PHI)
538 return LIM_EXPENSIVE;
539
540 /* We should be hoisting calls if possible. */
541 if (is_gimple_call (stmt))
542 {
543 tree fndecl;
544
545 /* Unless the call is a builtin_constant_p; this always folds to a
546 constant, so moving it is useless. */
547 fndecl = gimple_call_fndecl (stmt);
548 if (fndecl
549 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
550 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
551 return 0;
552
553 return LIM_EXPENSIVE;
554 }
555
556 /* Hoisting memory references out should almost surely be a win. */
557 if (gimple_references_memory_p (stmt))
558 return LIM_EXPENSIVE;
559
560 if (gimple_code (stmt) != GIMPLE_ASSIGN)
561 return 1;
562
563 switch (gimple_assign_rhs_code (stmt))
564 {
565 case MULT_EXPR:
566 case WIDEN_MULT_EXPR:
567 case WIDEN_MULT_PLUS_EXPR:
568 case WIDEN_MULT_MINUS_EXPR:
569 case DOT_PROD_EXPR:
570 case FMA_EXPR:
571 case TRUNC_DIV_EXPR:
572 case CEIL_DIV_EXPR:
573 case FLOOR_DIV_EXPR:
574 case ROUND_DIV_EXPR:
575 case EXACT_DIV_EXPR:
576 case CEIL_MOD_EXPR:
577 case FLOOR_MOD_EXPR:
578 case ROUND_MOD_EXPR:
579 case TRUNC_MOD_EXPR:
580 case RDIV_EXPR:
581 /* Division and multiplication are usually expensive. */
582 return LIM_EXPENSIVE;
583
584 case LSHIFT_EXPR:
585 case RSHIFT_EXPR:
586 case WIDEN_LSHIFT_EXPR:
587 case LROTATE_EXPR:
588 case RROTATE_EXPR:
589 /* Shifts and rotates are usually expensive. */
590 return LIM_EXPENSIVE;
591
592 case CONSTRUCTOR:
593 /* Make vector construction cost proportional to the number
594 of elements. */
595 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
596
597 case SSA_NAME:
598 case PAREN_EXPR:
599 /* Whether or not something is wrapped inside a PAREN_EXPR
600 should not change move cost. Nor should an intermediate
601 unpropagated SSA name copy. */
602 return 0;
603
604 default:
605 return 1;
606 }
607 }
608
609 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
610 REF is independent. If REF is not independent in LOOP, NULL is returned
611 instead. */
612
613 static struct loop *
614 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
615 {
616 struct loop *aloop;
617
618 if (bitmap_bit_p (ref->stored, loop->num))
619 return NULL;
620
621 for (aloop = outer;
622 aloop != loop;
623 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
624 if (!bitmap_bit_p (ref->stored, aloop->num)
625 && ref_indep_loop_p (aloop, ref))
626 return aloop;
627
628 if (ref_indep_loop_p (loop, ref))
629 return loop;
630 else
631 return NULL;
632 }
633
634 /* If there is a simple load or store to a memory reference in STMT, returns
635 the location of the memory reference, and sets IS_STORE according to whether
636 it is a store or load. Otherwise, returns NULL. */
637
638 static tree *
639 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
640 {
641 tree *lhs, *rhs;
642
643 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
644 if (!gimple_assign_single_p (stmt))
645 return NULL;
646
647 lhs = gimple_assign_lhs_ptr (stmt);
648 rhs = gimple_assign_rhs1_ptr (stmt);
649
650 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
651 {
652 *is_store = false;
653 return rhs;
654 }
655 else if (gimple_vdef (stmt)
656 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
657 {
658 *is_store = true;
659 return lhs;
660 }
661 else
662 return NULL;
663 }
664
665 /* Returns the memory reference contained in STMT. */
666
667 static mem_ref_p
668 mem_ref_in_stmt (gimple stmt)
669 {
670 bool store;
671 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
672 hashval_t hash;
673 mem_ref_p ref;
674
675 if (!mem)
676 return NULL;
677 gcc_assert (!store);
678
679 hash = iterative_hash_expr (*mem, 0);
680 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
681
682 gcc_assert (ref != NULL);
683 return ref;
684 }
685
686 /* From a controlling predicate in DOM determine the arguments from
687 the PHI node PHI that are chosen if the predicate evaluates to
688 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
689 they are non-NULL. Returns true if the arguments can be determined,
690 else return false. */
691
692 static bool
693 extract_true_false_args_from_phi (basic_block dom, gimple phi,
694 tree *true_arg_p, tree *false_arg_p)
695 {
696 basic_block bb = gimple_bb (phi);
697 edge true_edge, false_edge, tem;
698 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
699
700 /* We have to verify that one edge into the PHI node is dominated
701 by the true edge of the predicate block and the other edge
702 dominated by the false edge. This ensures that the PHI argument
703 we are going to take is completely determined by the path we
704 take from the predicate block.
705 We can only use BB dominance checks below if the destination of
706 the true/false edges are dominated by their edge, thus only
707 have a single predecessor. */
708 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
709 tem = EDGE_PRED (bb, 0);
710 if (tem == true_edge
711 || (single_pred_p (true_edge->dest)
712 && (tem->src == true_edge->dest
713 || dominated_by_p (CDI_DOMINATORS,
714 tem->src, true_edge->dest))))
715 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
716 else if (tem == false_edge
717 || (single_pred_p (false_edge->dest)
718 && (tem->src == false_edge->dest
719 || dominated_by_p (CDI_DOMINATORS,
720 tem->src, false_edge->dest))))
721 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
722 else
723 return false;
724 tem = EDGE_PRED (bb, 1);
725 if (tem == true_edge
726 || (single_pred_p (true_edge->dest)
727 && (tem->src == true_edge->dest
728 || dominated_by_p (CDI_DOMINATORS,
729 tem->src, true_edge->dest))))
730 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
731 else if (tem == false_edge
732 || (single_pred_p (false_edge->dest)
733 && (tem->src == false_edge->dest
734 || dominated_by_p (CDI_DOMINATORS,
735 tem->src, false_edge->dest))))
736 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
737 else
738 return false;
739 if (!arg0 || !arg1)
740 return false;
741
742 if (true_arg_p)
743 *true_arg_p = arg0;
744 if (false_arg_p)
745 *false_arg_p = arg1;
746
747 return true;
748 }
749
750 /* Determine the outermost loop to that it is possible to hoist a statement
751 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
752 the outermost loop in that the value computed by STMT is invariant.
753 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
754 we preserve the fact whether STMT is executed. It also fills other related
755 information to LIM_DATA (STMT).
756
757 The function returns false if STMT cannot be hoisted outside of the loop it
758 is defined in, and true otherwise. */
759
760 static bool
761 determine_max_movement (gimple stmt, bool must_preserve_exec)
762 {
763 basic_block bb = gimple_bb (stmt);
764 struct loop *loop = bb->loop_father;
765 struct loop *level;
766 struct lim_aux_data *lim_data = get_lim_data (stmt);
767 tree val;
768 ssa_op_iter iter;
769
770 if (must_preserve_exec)
771 level = ALWAYS_EXECUTED_IN (bb);
772 else
773 level = superloop_at_depth (loop, 1);
774 lim_data->max_loop = level;
775
776 if (gimple_code (stmt) == GIMPLE_PHI)
777 {
778 use_operand_p use_p;
779 unsigned min_cost = UINT_MAX;
780 unsigned total_cost = 0;
781 struct lim_aux_data *def_data;
782
783 /* We will end up promoting dependencies to be unconditionally
784 evaluated. For this reason the PHI cost (and thus the
785 cost we remove from the loop by doing the invariant motion)
786 is that of the cheapest PHI argument dependency chain. */
787 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
788 {
789 val = USE_FROM_PTR (use_p);
790 if (TREE_CODE (val) != SSA_NAME)
791 continue;
792 if (!add_dependency (val, lim_data, loop, false))
793 return false;
794 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
795 if (def_data)
796 {
797 min_cost = MIN (min_cost, def_data->cost);
798 total_cost += def_data->cost;
799 }
800 }
801
802 lim_data->cost += min_cost;
803
804 if (gimple_phi_num_args (stmt) > 1)
805 {
806 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
807 gimple cond;
808 if (gsi_end_p (gsi_last_bb (dom)))
809 return false;
810 cond = gsi_stmt (gsi_last_bb (dom));
811 if (gimple_code (cond) != GIMPLE_COND)
812 return false;
813 /* Verify that this is an extended form of a diamond and
814 the PHI arguments are completely controlled by the
815 predicate in DOM. */
816 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
817 return false;
818
819 /* Fold in dependencies and cost of the condition. */
820 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
821 {
822 if (!add_dependency (val, lim_data, loop, false))
823 return false;
824 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
825 if (def_data)
826 total_cost += def_data->cost;
827 }
828
829 /* We want to avoid unconditionally executing very expensive
830 operations. As costs for our dependencies cannot be
831 negative just claim we are not invariand for this case.
832 We also are not sure whether the control-flow inside the
833 loop will vanish. */
834 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
835 && !(min_cost != 0
836 && total_cost / min_cost <= 2))
837 return false;
838
839 /* Assume that the control-flow in the loop will vanish.
840 ??? We should verify this and not artificially increase
841 the cost if that is not the case. */
842 lim_data->cost += stmt_cost (stmt);
843 }
844
845 return true;
846 }
847 else
848 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
849 if (!add_dependency (val, lim_data, loop, true))
850 return false;
851
852 if (gimple_vuse (stmt))
853 {
854 mem_ref_p ref = mem_ref_in_stmt (stmt);
855
856 if (ref)
857 {
858 lim_data->max_loop
859 = outermost_indep_loop (lim_data->max_loop, loop, ref);
860 if (!lim_data->max_loop)
861 return false;
862 }
863 else
864 {
865 if ((val = gimple_vuse (stmt)) != NULL_TREE)
866 {
867 if (!add_dependency (val, lim_data, loop, false))
868 return false;
869 }
870 }
871 }
872
873 lim_data->cost += stmt_cost (stmt);
874
875 return true;
876 }
877
878 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
879 and that one of the operands of this statement is computed by STMT.
880 Ensure that STMT (together with all the statements that define its
881 operands) is hoisted at least out of the loop LEVEL. */
882
883 static void
884 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
885 {
886 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
887 struct depend *dep;
888 struct lim_aux_data *lim_data;
889
890 stmt_loop = find_common_loop (orig_loop, stmt_loop);
891 lim_data = get_lim_data (stmt);
892 if (lim_data != NULL && lim_data->tgt_loop != NULL)
893 stmt_loop = find_common_loop (stmt_loop,
894 loop_outer (lim_data->tgt_loop));
895 if (flow_loop_nested_p (stmt_loop, level))
896 return;
897
898 gcc_assert (level == lim_data->max_loop
899 || flow_loop_nested_p (lim_data->max_loop, level));
900
901 lim_data->tgt_loop = level;
902 for (dep = lim_data->depends; dep; dep = dep->next)
903 set_level (dep->stmt, orig_loop, level);
904 }
905
906 /* Determines an outermost loop from that we want to hoist the statement STMT.
907 For now we chose the outermost possible loop. TODO -- use profiling
908 information to set it more sanely. */
909
910 static void
911 set_profitable_level (gimple stmt)
912 {
913 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
914 }
915
916 /* Returns true if STMT is a call that has side effects. */
917
918 static bool
919 nonpure_call_p (gimple stmt)
920 {
921 if (gimple_code (stmt) != GIMPLE_CALL)
922 return false;
923
924 return gimple_has_side_effects (stmt);
925 }
926
927 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
928
929 static gimple
930 rewrite_reciprocal (gimple_stmt_iterator *bsi)
931 {
932 gimple stmt, stmt1, stmt2;
933 tree name, lhs, type;
934 tree real_one;
935 gimple_stmt_iterator gsi;
936
937 stmt = gsi_stmt (*bsi);
938 lhs = gimple_assign_lhs (stmt);
939 type = TREE_TYPE (lhs);
940
941 real_one = build_one_cst (type);
942
943 name = make_temp_ssa_name (type, NULL, "reciptmp");
944 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
945 gimple_assign_rhs2 (stmt));
946
947 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
948 gimple_assign_rhs1 (stmt));
949
950 /* Replace division stmt with reciprocal and multiply stmts.
951 The multiply stmt is not invariant, so update iterator
952 and avoid rescanning. */
953 gsi = *bsi;
954 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
955 gsi_replace (&gsi, stmt2, true);
956
957 /* Continue processing with invariant reciprocal statement. */
958 return stmt1;
959 }
960
961 /* Check if the pattern at *BSI is a bittest of the form
962 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
963
964 static gimple
965 rewrite_bittest (gimple_stmt_iterator *bsi)
966 {
967 gimple stmt, use_stmt, stmt1, stmt2;
968 tree lhs, name, t, a, b;
969 use_operand_p use;
970
971 stmt = gsi_stmt (*bsi);
972 lhs = gimple_assign_lhs (stmt);
973
974 /* Verify that the single use of lhs is a comparison against zero. */
975 if (TREE_CODE (lhs) != SSA_NAME
976 || !single_imm_use (lhs, &use, &use_stmt)
977 || gimple_code (use_stmt) != GIMPLE_COND)
978 return stmt;
979 if (gimple_cond_lhs (use_stmt) != lhs
980 || (gimple_cond_code (use_stmt) != NE_EXPR
981 && gimple_cond_code (use_stmt) != EQ_EXPR)
982 || !integer_zerop (gimple_cond_rhs (use_stmt)))
983 return stmt;
984
985 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
986 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
987 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
988 return stmt;
989
990 /* There is a conversion in between possibly inserted by fold. */
991 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
992 {
993 t = gimple_assign_rhs1 (stmt1);
994 if (TREE_CODE (t) != SSA_NAME
995 || !has_single_use (t))
996 return stmt;
997 stmt1 = SSA_NAME_DEF_STMT (t);
998 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
999 return stmt;
1000 }
1001
1002 /* Verify that B is loop invariant but A is not. Verify that with
1003 all the stmt walking we are still in the same loop. */
1004 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1005 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1006 return stmt;
1007
1008 a = gimple_assign_rhs1 (stmt1);
1009 b = gimple_assign_rhs2 (stmt1);
1010
1011 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1012 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1013 {
1014 gimple_stmt_iterator rsi;
1015
1016 /* 1 << B */
1017 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1018 build_int_cst (TREE_TYPE (a), 1), b);
1019 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1020 stmt1 = gimple_build_assign (name, t);
1021
1022 /* A & (1 << B) */
1023 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1024 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1025 stmt2 = gimple_build_assign (name, t);
1026
1027 /* Replace the SSA_NAME we compare against zero. Adjust
1028 the type of zero accordingly. */
1029 SET_USE (use, name);
1030 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1031
1032 /* Don't use gsi_replace here, none of the new assignments sets
1033 the variable originally set in stmt. Move bsi to stmt1, and
1034 then remove the original stmt, so that we get a chance to
1035 retain debug info for it. */
1036 rsi = *bsi;
1037 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1038 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1039 gsi_remove (&rsi, true);
1040
1041 return stmt1;
1042 }
1043
1044 return stmt;
1045 }
1046
1047
1048 /* Determine the outermost loops in that statements in basic block BB are
1049 invariant, and record them to the LIM_DATA associated with the statements.
1050 Callback for walk_dominator_tree. */
1051
1052 static void
1053 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1054 basic_block bb)
1055 {
1056 enum move_pos pos;
1057 gimple_stmt_iterator bsi;
1058 gimple stmt;
1059 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1060 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1061 struct lim_aux_data *lim_data;
1062
1063 if (!loop_outer (bb->loop_father))
1064 return;
1065
1066 if (dump_file && (dump_flags & TDF_DETAILS))
1067 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1068 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1069
1070 /* Look at PHI nodes, but only if there is at most two.
1071 ??? We could relax this further by post-processing the inserted
1072 code and transforming adjacent cond-exprs with the same predicate
1073 to control flow again. */
1074 bsi = gsi_start_phis (bb);
1075 if (!gsi_end_p (bsi)
1076 && ((gsi_next (&bsi), gsi_end_p (bsi))
1077 || (gsi_next (&bsi), gsi_end_p (bsi))))
1078 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1079 {
1080 stmt = gsi_stmt (bsi);
1081
1082 pos = movement_possibility (stmt);
1083 if (pos == MOVE_IMPOSSIBLE)
1084 continue;
1085
1086 lim_data = init_lim_data (stmt);
1087 lim_data->always_executed_in = outermost;
1088
1089 if (!determine_max_movement (stmt, false))
1090 {
1091 lim_data->max_loop = NULL;
1092 continue;
1093 }
1094
1095 if (dump_file && (dump_flags & TDF_DETAILS))
1096 {
1097 print_gimple_stmt (dump_file, stmt, 2, 0);
1098 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1099 loop_depth (lim_data->max_loop),
1100 lim_data->cost);
1101 }
1102
1103 if (lim_data->cost >= LIM_EXPENSIVE)
1104 set_profitable_level (stmt);
1105 }
1106
1107 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1108 {
1109 stmt = gsi_stmt (bsi);
1110
1111 pos = movement_possibility (stmt);
1112 if (pos == MOVE_IMPOSSIBLE)
1113 {
1114 if (nonpure_call_p (stmt))
1115 {
1116 maybe_never = true;
1117 outermost = NULL;
1118 }
1119 /* Make sure to note always_executed_in for stores to make
1120 store-motion work. */
1121 else if (stmt_makes_single_store (stmt))
1122 {
1123 struct lim_aux_data *lim_data = init_lim_data (stmt);
1124 lim_data->always_executed_in = outermost;
1125 }
1126 continue;
1127 }
1128
1129 if (is_gimple_assign (stmt)
1130 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1131 == GIMPLE_BINARY_RHS))
1132 {
1133 tree op0 = gimple_assign_rhs1 (stmt);
1134 tree op1 = gimple_assign_rhs2 (stmt);
1135 struct loop *ol1 = outermost_invariant_loop (op1,
1136 loop_containing_stmt (stmt));
1137
1138 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1139 to be hoisted out of loop, saving expensive divide. */
1140 if (pos == MOVE_POSSIBLE
1141 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1142 && flag_unsafe_math_optimizations
1143 && !flag_trapping_math
1144 && ol1 != NULL
1145 && outermost_invariant_loop (op0, ol1) == NULL)
1146 stmt = rewrite_reciprocal (&bsi);
1147
1148 /* If the shift count is invariant, convert (A >> B) & 1 to
1149 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1150 saving an expensive shift. */
1151 if (pos == MOVE_POSSIBLE
1152 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1153 && integer_onep (op1)
1154 && TREE_CODE (op0) == SSA_NAME
1155 && has_single_use (op0))
1156 stmt = rewrite_bittest (&bsi);
1157 }
1158
1159 lim_data = init_lim_data (stmt);
1160 lim_data->always_executed_in = outermost;
1161
1162 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1163 continue;
1164
1165 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1166 {
1167 lim_data->max_loop = NULL;
1168 continue;
1169 }
1170
1171 if (dump_file && (dump_flags & TDF_DETAILS))
1172 {
1173 print_gimple_stmt (dump_file, stmt, 2, 0);
1174 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1175 loop_depth (lim_data->max_loop),
1176 lim_data->cost);
1177 }
1178
1179 if (lim_data->cost >= LIM_EXPENSIVE)
1180 set_profitable_level (stmt);
1181 }
1182 }
1183
1184 /* For each statement determines the outermost loop in that it is invariant,
1185 statements on whose motion it depends and the cost of the computation.
1186 This information is stored to the LIM_DATA structure associated with
1187 each statement. */
1188
1189 static void
1190 determine_invariantness (void)
1191 {
1192 struct dom_walk_data walk_data;
1193
1194 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1195 walk_data.dom_direction = CDI_DOMINATORS;
1196 walk_data.before_dom_children = determine_invariantness_stmt;
1197
1198 init_walk_dominator_tree (&walk_data);
1199 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1200 fini_walk_dominator_tree (&walk_data);
1201 }
1202
1203 /* Hoist the statements in basic block BB out of the loops prescribed by
1204 data stored in LIM_DATA structures associated with each statement. Callback
1205 for walk_dominator_tree. */
1206
1207 static void
1208 move_computations_stmt (struct dom_walk_data *dw_data,
1209 basic_block bb)
1210 {
1211 struct loop *level;
1212 gimple_stmt_iterator bsi;
1213 gimple stmt;
1214 unsigned cost = 0;
1215 struct lim_aux_data *lim_data;
1216
1217 if (!loop_outer (bb->loop_father))
1218 return;
1219
1220 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1221 {
1222 gimple new_stmt;
1223 stmt = gsi_stmt (bsi);
1224
1225 lim_data = get_lim_data (stmt);
1226 if (lim_data == NULL)
1227 {
1228 gsi_next (&bsi);
1229 continue;
1230 }
1231
1232 cost = lim_data->cost;
1233 level = lim_data->tgt_loop;
1234 clear_lim_data (stmt);
1235
1236 if (!level)
1237 {
1238 gsi_next (&bsi);
1239 continue;
1240 }
1241
1242 if (dump_file && (dump_flags & TDF_DETAILS))
1243 {
1244 fprintf (dump_file, "Moving PHI node\n");
1245 print_gimple_stmt (dump_file, stmt, 0, 0);
1246 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1247 cost, level->num);
1248 }
1249
1250 if (gimple_phi_num_args (stmt) == 1)
1251 {
1252 tree arg = PHI_ARG_DEF (stmt, 0);
1253 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1254 gimple_phi_result (stmt),
1255 arg, NULL_TREE);
1256 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1257 }
1258 else
1259 {
1260 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1261 gimple cond = gsi_stmt (gsi_last_bb (dom));
1262 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1263 /* Get the PHI arguments corresponding to the true and false
1264 edges of COND. */
1265 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1266 gcc_assert (arg0 && arg1);
1267 t = build2 (gimple_cond_code (cond), boolean_type_node,
1268 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1269 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1270 gimple_phi_result (stmt),
1271 t, arg0, arg1);
1272 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1273 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1274 }
1275 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1276 remove_phi_node (&bsi, false);
1277 }
1278
1279 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1280 {
1281 edge e;
1282
1283 stmt = gsi_stmt (bsi);
1284
1285 lim_data = get_lim_data (stmt);
1286 if (lim_data == NULL)
1287 {
1288 gsi_next (&bsi);
1289 continue;
1290 }
1291
1292 cost = lim_data->cost;
1293 level = lim_data->tgt_loop;
1294 clear_lim_data (stmt);
1295
1296 if (!level)
1297 {
1298 gsi_next (&bsi);
1299 continue;
1300 }
1301
1302 /* We do not really want to move conditionals out of the loop; we just
1303 placed it here to force its operands to be moved if necessary. */
1304 if (gimple_code (stmt) == GIMPLE_COND)
1305 continue;
1306
1307 if (dump_file && (dump_flags & TDF_DETAILS))
1308 {
1309 fprintf (dump_file, "Moving statement\n");
1310 print_gimple_stmt (dump_file, stmt, 0, 0);
1311 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1312 cost, level->num);
1313 }
1314
1315 e = loop_preheader_edge (level);
1316 gcc_assert (!gimple_vdef (stmt));
1317 if (gimple_vuse (stmt))
1318 {
1319 /* The new VUSE is the one from the virtual PHI in the loop
1320 header or the one already present. */
1321 gimple_stmt_iterator gsi2;
1322 for (gsi2 = gsi_start_phis (e->dest);
1323 !gsi_end_p (gsi2); gsi_next (&gsi2))
1324 {
1325 gimple phi = gsi_stmt (gsi2);
1326 if (virtual_operand_p (gimple_phi_result (phi)))
1327 {
1328 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1329 break;
1330 }
1331 }
1332 }
1333 gsi_remove (&bsi, false);
1334 gsi_insert_on_edge (e, stmt);
1335 }
1336 }
1337
1338 /* Hoist the statements out of the loops prescribed by data stored in
1339 LIM_DATA structures associated with each statement.*/
1340
1341 static unsigned int
1342 move_computations (void)
1343 {
1344 struct dom_walk_data walk_data;
1345 unsigned int todo = 0;
1346
1347 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1348 walk_data.global_data = &todo;
1349 walk_data.dom_direction = CDI_DOMINATORS;
1350 walk_data.before_dom_children = move_computations_stmt;
1351
1352 init_walk_dominator_tree (&walk_data);
1353 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1354 fini_walk_dominator_tree (&walk_data);
1355
1356 gsi_commit_edge_inserts ();
1357 if (need_ssa_update_p (cfun))
1358 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1359
1360 return todo;
1361 }
1362
1363 /* Checks whether the statement defining variable *INDEX can be hoisted
1364 out of the loop passed in DATA. Callback for for_each_index. */
1365
1366 static bool
1367 may_move_till (tree ref, tree *index, void *data)
1368 {
1369 struct loop *loop = (struct loop *) data, *max_loop;
1370
1371 /* If REF is an array reference, check also that the step and the lower
1372 bound is invariant in LOOP. */
1373 if (TREE_CODE (ref) == ARRAY_REF)
1374 {
1375 tree step = TREE_OPERAND (ref, 3);
1376 tree lbound = TREE_OPERAND (ref, 2);
1377
1378 max_loop = outermost_invariant_loop (step, loop);
1379 if (!max_loop)
1380 return false;
1381
1382 max_loop = outermost_invariant_loop (lbound, loop);
1383 if (!max_loop)
1384 return false;
1385 }
1386
1387 max_loop = outermost_invariant_loop (*index, loop);
1388 if (!max_loop)
1389 return false;
1390
1391 return true;
1392 }
1393
1394 /* If OP is SSA NAME, force the statement that defines it to be
1395 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1396
1397 static void
1398 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1399 {
1400 gimple stmt;
1401
1402 if (!op
1403 || is_gimple_min_invariant (op))
1404 return;
1405
1406 gcc_assert (TREE_CODE (op) == SSA_NAME);
1407
1408 stmt = SSA_NAME_DEF_STMT (op);
1409 if (gimple_nop_p (stmt))
1410 return;
1411
1412 set_level (stmt, orig_loop, loop);
1413 }
1414
1415 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1416 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1417 for_each_index. */
1418
1419 struct fmt_data
1420 {
1421 struct loop *loop;
1422 struct loop *orig_loop;
1423 };
1424
1425 static bool
1426 force_move_till (tree ref, tree *index, void *data)
1427 {
1428 struct fmt_data *fmt_data = (struct fmt_data *) data;
1429
1430 if (TREE_CODE (ref) == ARRAY_REF)
1431 {
1432 tree step = TREE_OPERAND (ref, 3);
1433 tree lbound = TREE_OPERAND (ref, 2);
1434
1435 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1436 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1437 }
1438
1439 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1440
1441 return true;
1442 }
1443
1444 /* A hash function for struct mem_ref object OBJ. */
1445
1446 static hashval_t
1447 memref_hash (const void *obj)
1448 {
1449 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1450
1451 return mem->hash;
1452 }
1453
1454 /* An equality function for struct mem_ref object OBJ1 with
1455 memory reference OBJ2. */
1456
1457 static int
1458 memref_eq (const void *obj1, const void *obj2)
1459 {
1460 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1461
1462 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1463 }
1464
1465 /* Releases list of memory reference locations ACCS. */
1466
1467 static void
1468 free_mem_ref_locs (mem_ref_locs_p accs)
1469 {
1470 unsigned i;
1471 mem_ref_loc_p loc;
1472
1473 if (!accs)
1474 return;
1475
1476 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1477 free (loc);
1478 VEC_free (mem_ref_loc_p, heap, accs->locs);
1479 free (accs);
1480 }
1481
1482 /* A function to free the mem_ref object OBJ. */
1483
1484 static void
1485 memref_free (struct mem_ref *mem)
1486 {
1487 unsigned i;
1488 mem_ref_locs_p accs;
1489
1490 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1491 free_mem_ref_locs (accs);
1492 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1493
1494 free (mem);
1495 }
1496
1497 /* Allocates and returns a memory reference description for MEM whose hash
1498 value is HASH and id is ID. */
1499
1500 static mem_ref_p
1501 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1502 {
1503 mem_ref_p ref = XNEW (struct mem_ref);
1504 ref->mem = mem;
1505 ref->id = id;
1506 ref->hash = hash;
1507 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1508 ref->indep_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
1509 ref->dep_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
1510 ref->indep_ref = BITMAP_ALLOC (&lim_bitmap_obstack);
1511 ref->dep_ref = BITMAP_ALLOC (&lim_bitmap_obstack);
1512 ref->accesses_in_loop = NULL;
1513
1514 return ref;
1515 }
1516
1517 /* Allocates and returns the new list of locations. */
1518
1519 static mem_ref_locs_p
1520 mem_ref_locs_alloc (void)
1521 {
1522 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1523 accs->locs = NULL;
1524 return accs;
1525 }
1526
1527 /* Records memory reference location *LOC in LOOP to the memory reference
1528 description REF. The reference occurs in statement STMT. */
1529
1530 static void
1531 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1532 {
1533 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1534 mem_ref_locs_p accs;
1535 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1536
1537 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1538 <= (unsigned) loop->num)
1539 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1540 loop->num + 1);
1541 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1542 if (!accs)
1543 {
1544 accs = mem_ref_locs_alloc ();
1545 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1546 }
1547
1548 aref->stmt = stmt;
1549 aref->ref = loc;
1550
1551 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1552 bitmap_set_bit (ril, ref->id);
1553 }
1554
1555 /* Marks reference REF as stored in LOOP. */
1556
1557 static void
1558 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1559 {
1560 for (;
1561 loop != current_loops->tree_root
1562 && !bitmap_bit_p (ref->stored, loop->num);
1563 loop = loop_outer (loop))
1564 bitmap_set_bit (ref->stored, loop->num);
1565 }
1566
1567 /* Gathers memory references in statement STMT in LOOP, storing the
1568 information about them in the memory_accesses structure. Marks
1569 the vops accessed through unrecognized statements there as
1570 well. */
1571
1572 static void
1573 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1574 {
1575 tree *mem = NULL;
1576 hashval_t hash;
1577 PTR *slot;
1578 mem_ref_p ref;
1579 bool is_stored;
1580 unsigned id;
1581
1582 if (!gimple_vuse (stmt))
1583 return;
1584
1585 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1586 if (!mem)
1587 {
1588 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1589 ref = mem_ref_alloc (error_mark_node, 0, id);
1590 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1591 if (dump_file && (dump_flags & TDF_DETAILS))
1592 {
1593 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1594 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1595 }
1596 if (gimple_vdef (stmt))
1597 mark_ref_stored (ref, loop);
1598 record_mem_ref_loc (ref, loop, stmt, mem);
1599 return;
1600 }
1601
1602 hash = iterative_hash_expr (*mem, 0);
1603 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1604
1605 if (*slot)
1606 {
1607 ref = (mem_ref_p) *slot;
1608 id = ref->id;
1609 }
1610 else
1611 {
1612 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1613 ref = mem_ref_alloc (*mem, hash, id);
1614 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1615 *slot = ref;
1616
1617 if (dump_file && (dump_flags & TDF_DETAILS))
1618 {
1619 fprintf (dump_file, "Memory reference %u: ", id);
1620 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1621 fprintf (dump_file, "\n");
1622 }
1623 }
1624
1625 if (is_stored)
1626 mark_ref_stored (ref, loop);
1627
1628 record_mem_ref_loc (ref, loop, stmt, mem);
1629 return;
1630 }
1631
1632 /* Gathers memory references in loops. */
1633
1634 static void
1635 gather_mem_refs_in_loops (void)
1636 {
1637 gimple_stmt_iterator bsi;
1638 basic_block bb;
1639 struct loop *loop;
1640 loop_iterator li;
1641 bitmap lrefs, alrefs, alrefso;
1642
1643 FOR_EACH_BB (bb)
1644 {
1645 loop = bb->loop_father;
1646 if (loop == current_loops->tree_root)
1647 continue;
1648
1649 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1650 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1651 }
1652
1653 /* Propagate the information about accessed memory references up
1654 the loop hierarchy. */
1655 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1656 {
1657 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1658 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1659 bitmap_ior_into (alrefs, lrefs);
1660
1661 if (loop_outer (loop) == current_loops->tree_root)
1662 continue;
1663
1664 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1665 loop_outer (loop)->num);
1666 bitmap_ior_into (alrefso, alrefs);
1667 }
1668 }
1669
1670 /* Create a mapping from virtual operands to references that touch them
1671 in LOOP. */
1672
1673 static void
1674 create_vop_ref_mapping_loop (struct loop *loop)
1675 {
1676 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1677 struct loop *sloop;
1678 bitmap_iterator bi;
1679 unsigned i;
1680 mem_ref_p ref;
1681
1682 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1683 {
1684 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1685 for (sloop = loop; sloop != current_loops->tree_root;
1686 sloop = loop_outer (sloop))
1687 if (bitmap_bit_p (ref->stored, loop->num))
1688 {
1689 bitmap refs_stored
1690 = VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
1691 sloop->num);
1692 bitmap_set_bit (refs_stored, ref->id);
1693 }
1694 }
1695 }
1696
1697 /* For each non-clobbered virtual operand and each loop, record the memory
1698 references in this loop that touch the operand. */
1699
1700 static void
1701 create_vop_ref_mapping (void)
1702 {
1703 loop_iterator li;
1704 struct loop *loop;
1705
1706 FOR_EACH_LOOP (li, loop, 0)
1707 {
1708 create_vop_ref_mapping_loop (loop);
1709 }
1710 }
1711
1712 /* Gathers information about memory accesses in the loops. */
1713
1714 static void
1715 analyze_memory_references (void)
1716 {
1717 unsigned i;
1718 bitmap empty;
1719
1720 memory_accesses.refs = htab_create (100, memref_hash, memref_eq, NULL);
1721 memory_accesses.refs_list = NULL;
1722 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1723 number_of_loops ());
1724 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1725 number_of_loops ());
1726 memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
1727 number_of_loops ());
1728
1729 for (i = 0; i < number_of_loops (); i++)
1730 {
1731 empty = BITMAP_ALLOC (&lim_bitmap_obstack);
1732 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1733 empty = BITMAP_ALLOC (&lim_bitmap_obstack);
1734 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1735 empty = BITMAP_ALLOC (&lim_bitmap_obstack);
1736 VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
1737 }
1738
1739 memory_accesses.ttae_cache = NULL;
1740
1741 gather_mem_refs_in_loops ();
1742 create_vop_ref_mapping ();
1743 }
1744
1745 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1746 tree_to_aff_combination_expand. */
1747
1748 static bool
1749 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1750 {
1751 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1752 object and their offset differ in such a way that the locations cannot
1753 overlap, then they cannot alias. */
1754 double_int size1, size2;
1755 aff_tree off1, off2;
1756
1757 /* Perform basic offset and type-based disambiguation. */
1758 if (!refs_may_alias_p (mem1, mem2))
1759 return false;
1760
1761 /* The expansion of addresses may be a bit expensive, thus we only do
1762 the check at -O2 and higher optimization levels. */
1763 if (optimize < 2)
1764 return true;
1765
1766 get_inner_reference_aff (mem1, &off1, &size1);
1767 get_inner_reference_aff (mem2, &off2, &size2);
1768 aff_combination_expand (&off1, ttae_cache);
1769 aff_combination_expand (&off2, ttae_cache);
1770 aff_combination_scale (&off1, double_int_minus_one);
1771 aff_combination_add (&off2, &off1);
1772
1773 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1774 return false;
1775
1776 return true;
1777 }
1778
1779 /* Rewrites location LOC by TMP_VAR. */
1780
1781 static void
1782 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1783 {
1784 *loc->ref = tmp_var;
1785 update_stmt (loc->stmt);
1786 }
1787
1788 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1789
1790 static void
1791 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1792 VEC (mem_ref_loc_p, heap) **locs)
1793 {
1794 mem_ref_locs_p accs;
1795 unsigned i;
1796 mem_ref_loc_p loc;
1797 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1798 loop->num);
1799 struct loop *subloop;
1800
1801 if (!bitmap_bit_p (refs, ref->id))
1802 return;
1803
1804 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1805 > (unsigned) loop->num)
1806 {
1807 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1808 if (accs)
1809 {
1810 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1811 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1812 }
1813 }
1814
1815 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1816 get_all_locs_in_loop (subloop, ref, locs);
1817 }
1818
1819 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1820
1821 static void
1822 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1823 {
1824 unsigned i;
1825 mem_ref_loc_p loc;
1826 VEC (mem_ref_loc_p, heap) *locs = NULL;
1827
1828 get_all_locs_in_loop (loop, ref, &locs);
1829 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1830 rewrite_mem_ref_loc (loc, tmp_var);
1831 VEC_free (mem_ref_loc_p, heap, locs);
1832 }
1833
1834 /* The name and the length of the currently generated variable
1835 for lsm. */
1836 #define MAX_LSM_NAME_LENGTH 40
1837 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1838 static int lsm_tmp_name_length;
1839
1840 /* Adds S to lsm_tmp_name. */
1841
1842 static void
1843 lsm_tmp_name_add (const char *s)
1844 {
1845 int l = strlen (s) + lsm_tmp_name_length;
1846 if (l > MAX_LSM_NAME_LENGTH)
1847 return;
1848
1849 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1850 lsm_tmp_name_length = l;
1851 }
1852
1853 /* Stores the name for temporary variable that replaces REF to
1854 lsm_tmp_name. */
1855
1856 static void
1857 gen_lsm_tmp_name (tree ref)
1858 {
1859 const char *name;
1860
1861 switch (TREE_CODE (ref))
1862 {
1863 case MEM_REF:
1864 case TARGET_MEM_REF:
1865 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1866 lsm_tmp_name_add ("_");
1867 break;
1868
1869 case ADDR_EXPR:
1870 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1871 break;
1872
1873 case BIT_FIELD_REF:
1874 case VIEW_CONVERT_EXPR:
1875 case ARRAY_RANGE_REF:
1876 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1877 break;
1878
1879 case REALPART_EXPR:
1880 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1881 lsm_tmp_name_add ("_RE");
1882 break;
1883
1884 case IMAGPART_EXPR:
1885 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1886 lsm_tmp_name_add ("_IM");
1887 break;
1888
1889 case COMPONENT_REF:
1890 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1891 lsm_tmp_name_add ("_");
1892 name = get_name (TREE_OPERAND (ref, 1));
1893 if (!name)
1894 name = "F";
1895 lsm_tmp_name_add (name);
1896 break;
1897
1898 case ARRAY_REF:
1899 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1900 lsm_tmp_name_add ("_I");
1901 break;
1902
1903 case SSA_NAME:
1904 case VAR_DECL:
1905 case PARM_DECL:
1906 name = get_name (ref);
1907 if (!name)
1908 name = "D";
1909 lsm_tmp_name_add (name);
1910 break;
1911
1912 case STRING_CST:
1913 lsm_tmp_name_add ("S");
1914 break;
1915
1916 case RESULT_DECL:
1917 lsm_tmp_name_add ("R");
1918 break;
1919
1920 case INTEGER_CST:
1921 /* Nothing. */
1922 break;
1923
1924 default:
1925 gcc_unreachable ();
1926 }
1927 }
1928
1929 /* Determines name for temporary variable that replaces REF.
1930 The name is accumulated into the lsm_tmp_name variable.
1931 N is added to the name of the temporary. */
1932
1933 char *
1934 get_lsm_tmp_name (tree ref, unsigned n)
1935 {
1936 char ns[2];
1937
1938 lsm_tmp_name_length = 0;
1939 gen_lsm_tmp_name (ref);
1940 lsm_tmp_name_add ("_lsm");
1941 if (n < 10)
1942 {
1943 ns[0] = '0' + n;
1944 ns[1] = 0;
1945 lsm_tmp_name_add (ns);
1946 }
1947 return lsm_tmp_name;
1948 }
1949
1950 struct prev_flag_edges {
1951 /* Edge to insert new flag comparison code. */
1952 edge append_cond_position;
1953
1954 /* Edge for fall through from previous flag comparison. */
1955 edge last_cond_fallthru;
1956 };
1957
1958 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1959 MEM along edge EX.
1960
1961 The store is only done if MEM has changed. We do this so no
1962 changes to MEM occur on code paths that did not originally store
1963 into it.
1964
1965 The common case for execute_sm will transform:
1966
1967 for (...) {
1968 if (foo)
1969 stuff;
1970 else
1971 MEM = TMP_VAR;
1972 }
1973
1974 into:
1975
1976 lsm = MEM;
1977 for (...) {
1978 if (foo)
1979 stuff;
1980 else
1981 lsm = TMP_VAR;
1982 }
1983 MEM = lsm;
1984
1985 This function will generate:
1986
1987 lsm = MEM;
1988
1989 lsm_flag = false;
1990 ...
1991 for (...) {
1992 if (foo)
1993 stuff;
1994 else {
1995 lsm = TMP_VAR;
1996 lsm_flag = true;
1997 }
1998 }
1999 if (lsm_flag) <--
2000 MEM = lsm; <--
2001 */
2002
2003 static void
2004 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
2005 {
2006 basic_block new_bb, then_bb, old_dest;
2007 bool loop_has_only_one_exit;
2008 edge then_old_edge, orig_ex = ex;
2009 gimple_stmt_iterator gsi;
2010 gimple stmt;
2011 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
2012
2013 /* ?? Insert store after previous store if applicable. See note
2014 below. */
2015 if (prev_edges)
2016 ex = prev_edges->append_cond_position;
2017
2018 loop_has_only_one_exit = single_pred_p (ex->dest);
2019
2020 if (loop_has_only_one_exit)
2021 ex = split_block_after_labels (ex->dest);
2022
2023 old_dest = ex->dest;
2024 new_bb = split_edge (ex);
2025 then_bb = create_empty_bb (new_bb);
2026 if (current_loops && new_bb->loop_father)
2027 add_bb_to_loop (then_bb, new_bb->loop_father);
2028
2029 gsi = gsi_start_bb (new_bb);
2030 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2031 NULL_TREE, NULL_TREE);
2032 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2033
2034 gsi = gsi_start_bb (then_bb);
2035 /* Insert actual store. */
2036 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2037 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2038
2039 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
2040 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
2041 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
2042
2043 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2044
2045 if (prev_edges)
2046 {
2047 basic_block prevbb = prev_edges->last_cond_fallthru->src;
2048 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
2049 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2050 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2051 recompute_dominator (CDI_DOMINATORS, old_dest));
2052 }
2053
2054 /* ?? Because stores may alias, they must happen in the exact
2055 sequence they originally happened. Save the position right after
2056 the (_lsm) store we just created so we can continue appending after
2057 it and maintain the original order. */
2058 {
2059 struct prev_flag_edges *p;
2060
2061 if (orig_ex->aux)
2062 orig_ex->aux = NULL;
2063 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
2064 p = (struct prev_flag_edges *) orig_ex->aux;
2065 p->append_cond_position = then_old_edge;
2066 p->last_cond_fallthru = find_edge (new_bb, old_dest);
2067 orig_ex->aux = (void *) p;
2068 }
2069
2070 if (!loop_has_only_one_exit)
2071 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
2072 {
2073 gimple phi = gsi_stmt (gsi);
2074 unsigned i;
2075
2076 for (i = 0; i < gimple_phi_num_args (phi); i++)
2077 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2078 {
2079 tree arg = gimple_phi_arg_def (phi, i);
2080 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2081 update_stmt (phi);
2082 }
2083 }
2084 /* Remove the original fall through edge. This was the
2085 single_succ_edge (new_bb). */
2086 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
2087 }
2088
2089 /* Helper function for execute_sm. On every location where REF is
2090 set, set an appropriate flag indicating the store. */
2091
2092 static tree
2093 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
2094 {
2095 unsigned i;
2096 mem_ref_loc_p loc;
2097 tree flag;
2098 VEC (mem_ref_loc_p, heap) *locs = NULL;
2099 char *str = get_lsm_tmp_name (ref->mem, ~0);
2100
2101 lsm_tmp_name_add ("_flag");
2102 flag = create_tmp_reg (boolean_type_node, str);
2103 get_all_locs_in_loop (loop, ref, &locs);
2104 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2105 {
2106 gimple_stmt_iterator gsi;
2107 gimple stmt;
2108
2109 /* Only set the flag for writes. */
2110 if (is_gimple_assign (loc->stmt)
2111 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2112 {
2113 gsi = gsi_for_stmt (loc->stmt);
2114 stmt = gimple_build_assign (flag, boolean_true_node);
2115 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2116 }
2117 }
2118 VEC_free (mem_ref_loc_p, heap, locs);
2119 return flag;
2120 }
2121
2122 /* Executes store motion of memory reference REF from LOOP.
2123 Exits from the LOOP are stored in EXITS. The initialization of the
2124 temporary variable is put to the preheader of the loop, and assignments
2125 to the reference from the temporary variable are emitted to exits. */
2126
2127 static void
2128 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2129 {
2130 tree tmp_var, store_flag;
2131 unsigned i;
2132 gimple load;
2133 struct fmt_data fmt_data;
2134 edge ex, latch_edge;
2135 struct lim_aux_data *lim_data;
2136 bool multi_threaded_model_p = false;
2137
2138 if (dump_file && (dump_flags & TDF_DETAILS))
2139 {
2140 fprintf (dump_file, "Executing store motion of ");
2141 print_generic_expr (dump_file, ref->mem, 0);
2142 fprintf (dump_file, " from loop %d\n", loop->num);
2143 }
2144
2145 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem),
2146 get_lsm_tmp_name (ref->mem, ~0));
2147
2148 fmt_data.loop = loop;
2149 fmt_data.orig_loop = loop;
2150 for_each_index (&ref->mem, force_move_till, &fmt_data);
2151
2152 if (block_in_transaction (loop_preheader_edge (loop)->src)
2153 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2154 multi_threaded_model_p = true;
2155
2156 if (multi_threaded_model_p)
2157 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2158
2159 rewrite_mem_refs (loop, ref, tmp_var);
2160
2161 /* Emit the load code into the latch, so that we are sure it will
2162 be processed after all dependencies. */
2163 latch_edge = loop_latch_edge (loop);
2164
2165 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2166 load altogether, since the store is predicated by a flag. We
2167 could, do the load only if it was originally in the loop. */
2168 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2169 lim_data = init_lim_data (load);
2170 lim_data->max_loop = loop;
2171 lim_data->tgt_loop = loop;
2172 gsi_insert_on_edge (latch_edge, load);
2173
2174 if (multi_threaded_model_p)
2175 {
2176 load = gimple_build_assign (store_flag, boolean_false_node);
2177 lim_data = init_lim_data (load);
2178 lim_data->max_loop = loop;
2179 lim_data->tgt_loop = loop;
2180 gsi_insert_on_edge (latch_edge, load);
2181 }
2182
2183 /* Sink the store to every exit from the loop. */
2184 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2185 if (!multi_threaded_model_p)
2186 {
2187 gimple store;
2188 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2189 gsi_insert_on_edge (ex, store);
2190 }
2191 else
2192 execute_sm_if_changed (ex, ref->mem, tmp_var, store_flag);
2193 }
2194
2195 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2196 edges of the LOOP. */
2197
2198 static void
2199 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2200 VEC (edge, heap) *exits)
2201 {
2202 mem_ref_p ref;
2203 unsigned i;
2204 bitmap_iterator bi;
2205
2206 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2207 {
2208 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2209 execute_sm (loop, exits, ref);
2210 }
2211 }
2212
2213 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2214 make sure REF is always stored to in LOOP. */
2215
2216 static bool
2217 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2218 {
2219 VEC (mem_ref_loc_p, heap) *locs = NULL;
2220 unsigned i;
2221 mem_ref_loc_p loc;
2222 bool ret = false;
2223 struct loop *must_exec;
2224 tree base;
2225
2226 base = get_base_address (ref->mem);
2227 if (INDIRECT_REF_P (base)
2228 || TREE_CODE (base) == MEM_REF)
2229 base = TREE_OPERAND (base, 0);
2230
2231 get_all_locs_in_loop (loop, ref, &locs);
2232 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2233 {
2234 if (!get_lim_data (loc->stmt))
2235 continue;
2236
2237 /* If we require an always executed store make sure the statement
2238 stores to the reference. */
2239 if (stored_p)
2240 {
2241 tree lhs;
2242 if (!gimple_get_lhs (loc->stmt))
2243 continue;
2244 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2245 if (!lhs)
2246 continue;
2247 if (INDIRECT_REF_P (lhs)
2248 || TREE_CODE (lhs) == MEM_REF)
2249 lhs = TREE_OPERAND (lhs, 0);
2250 if (lhs != base)
2251 continue;
2252 }
2253
2254 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2255 if (!must_exec)
2256 continue;
2257
2258 if (must_exec == loop
2259 || flow_loop_nested_p (must_exec, loop))
2260 {
2261 ret = true;
2262 break;
2263 }
2264 }
2265 VEC_free (mem_ref_loc_p, heap, locs);
2266
2267 return ret;
2268 }
2269
2270 /* Returns true if REF1 and REF2 are independent. */
2271
2272 static bool
2273 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2274 {
2275 if (ref1 == ref2
2276 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2277 return true;
2278 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2279 return false;
2280 if (!MEM_ANALYZABLE (ref1)
2281 || !MEM_ANALYZABLE (ref2))
2282 return false;
2283
2284 if (dump_file && (dump_flags & TDF_DETAILS))
2285 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2286 ref1->id, ref2->id);
2287
2288 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2289 &memory_accesses.ttae_cache))
2290 {
2291 bitmap_set_bit (ref1->dep_ref, ref2->id);
2292 bitmap_set_bit (ref2->dep_ref, ref1->id);
2293 if (dump_file && (dump_flags & TDF_DETAILS))
2294 fprintf (dump_file, "dependent.\n");
2295 return false;
2296 }
2297 else
2298 {
2299 bitmap_set_bit (ref1->indep_ref, ref2->id);
2300 bitmap_set_bit (ref2->indep_ref, ref1->id);
2301 if (dump_file && (dump_flags & TDF_DETAILS))
2302 fprintf (dump_file, "independent.\n");
2303 return true;
2304 }
2305 }
2306
2307 /* Records the information whether REF is independent in LOOP (according
2308 to INDEP). */
2309
2310 static void
2311 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2312 {
2313 if (indep)
2314 bitmap_set_bit (ref->indep_loop, loop->num);
2315 else
2316 bitmap_set_bit (ref->dep_loop, loop->num);
2317 }
2318
2319 /* Returns true if REF is independent on all other memory references in
2320 LOOP. */
2321
2322 static bool
2323 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2324 {
2325 bitmap refs_to_check;
2326 unsigned i;
2327 bitmap_iterator bi;
2328 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2329 mem_ref_p aref;
2330
2331 if (stored)
2332 refs_to_check = VEC_index (bitmap,
2333 memory_accesses.all_refs_in_loop, loop->num);
2334 else
2335 refs_to_check = VEC_index (bitmap,
2336 memory_accesses.all_refs_stored_in_loop,
2337 loop->num);
2338
2339 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2340 {
2341 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2342 if (!MEM_ANALYZABLE (aref)
2343 || !refs_independent_p (ref, aref))
2344 {
2345 ret = false;
2346 record_indep_loop (loop, aref, false);
2347 break;
2348 }
2349 }
2350
2351 return ret;
2352 }
2353
2354 /* Returns true if REF is independent on all other memory references in
2355 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2356
2357 static bool
2358 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2359 {
2360 bool ret;
2361
2362 if (bitmap_bit_p (ref->indep_loop, loop->num))
2363 return true;
2364 if (bitmap_bit_p (ref->dep_loop, loop->num))
2365 return false;
2366
2367 ret = ref_indep_loop_p_1 (loop, ref);
2368
2369 if (dump_file && (dump_flags & TDF_DETAILS))
2370 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2371 ref->id, loop->num, ret ? "independent" : "dependent");
2372
2373 record_indep_loop (loop, ref, ret);
2374
2375 return ret;
2376 }
2377
2378 /* Returns true if we can perform store motion of REF from LOOP. */
2379
2380 static bool
2381 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2382 {
2383 tree base;
2384
2385 /* Can't hoist unanalyzable refs. */
2386 if (!MEM_ANALYZABLE (ref))
2387 return false;
2388
2389 /* Unless the reference is stored in the loop, there is nothing to do. */
2390 if (!bitmap_bit_p (ref->stored, loop->num))
2391 return false;
2392
2393 /* It should be movable. */
2394 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2395 || TREE_THIS_VOLATILE (ref->mem)
2396 || !for_each_index (&ref->mem, may_move_till, loop))
2397 return false;
2398
2399 /* If it can throw fail, we do not properly update EH info. */
2400 if (tree_could_throw_p (ref->mem))
2401 return false;
2402
2403 /* If it can trap, it must be always executed in LOOP.
2404 Readonly memory locations may trap when storing to them, but
2405 tree_could_trap_p is a predicate for rvalues, so check that
2406 explicitly. */
2407 base = get_base_address (ref->mem);
2408 if ((tree_could_trap_p (ref->mem)
2409 || (DECL_P (base) && TREE_READONLY (base)))
2410 && !ref_always_accessed_p (loop, ref, true))
2411 return false;
2412
2413 /* And it must be independent on all other memory references
2414 in LOOP. */
2415 if (!ref_indep_loop_p (loop, ref))
2416 return false;
2417
2418 return true;
2419 }
2420
2421 /* Marks the references in LOOP for that store motion should be performed
2422 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2423 motion was performed in one of the outer loops. */
2424
2425 static void
2426 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2427 {
2428 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2429 loop->num);
2430 unsigned i;
2431 bitmap_iterator bi;
2432 mem_ref_p ref;
2433
2434 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2435 {
2436 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2437 if (can_sm_ref_p (loop, ref))
2438 bitmap_set_bit (refs_to_sm, i);
2439 }
2440 }
2441
2442 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2443 for a store motion optimization (i.e. whether we can insert statement
2444 on its exits). */
2445
2446 static bool
2447 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2448 VEC (edge, heap) *exits)
2449 {
2450 unsigned i;
2451 edge ex;
2452
2453 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2454 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2455 return false;
2456
2457 return true;
2458 }
2459
2460 /* Try to perform store motion for all memory references modified inside
2461 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2462 store motion was executed in one of the outer loops. */
2463
2464 static void
2465 store_motion_loop (struct loop *loop, bitmap sm_executed)
2466 {
2467 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2468 struct loop *subloop;
2469 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2470
2471 if (loop_suitable_for_sm (loop, exits))
2472 {
2473 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2474 hoist_memory_references (loop, sm_in_loop, exits);
2475 }
2476 VEC_free (edge, heap, exits);
2477
2478 bitmap_ior_into (sm_executed, sm_in_loop);
2479 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2480 store_motion_loop (subloop, sm_executed);
2481 bitmap_and_compl_into (sm_executed, sm_in_loop);
2482 BITMAP_FREE (sm_in_loop);
2483 }
2484
2485 /* Try to perform store motion for all memory references modified inside
2486 loops. */
2487
2488 static void
2489 store_motion (void)
2490 {
2491 struct loop *loop;
2492 bitmap sm_executed = BITMAP_ALLOC (NULL);
2493
2494 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2495 store_motion_loop (loop, sm_executed);
2496
2497 BITMAP_FREE (sm_executed);
2498 gsi_commit_edge_inserts ();
2499 }
2500
2501 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2502 for each such basic block bb records the outermost loop for that execution
2503 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2504 blocks that contain a nonpure call. */
2505
2506 static void
2507 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2508 {
2509 basic_block bb = NULL, *bbs, last = NULL;
2510 unsigned i;
2511 edge e;
2512 struct loop *inn_loop = loop;
2513
2514 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2515 {
2516 bbs = get_loop_body_in_dom_order (loop);
2517
2518 for (i = 0; i < loop->num_nodes; i++)
2519 {
2520 edge_iterator ei;
2521 bb = bbs[i];
2522
2523 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2524 last = bb;
2525
2526 if (bitmap_bit_p (contains_call, bb->index))
2527 break;
2528
2529 FOR_EACH_EDGE (e, ei, bb->succs)
2530 if (!flow_bb_inside_loop_p (loop, e->dest))
2531 break;
2532 if (e)
2533 break;
2534
2535 /* A loop might be infinite (TODO use simple loop analysis
2536 to disprove this if possible). */
2537 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2538 break;
2539
2540 if (!flow_bb_inside_loop_p (inn_loop, bb))
2541 break;
2542
2543 if (bb->loop_father->header == bb)
2544 {
2545 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2546 break;
2547
2548 /* In a loop that is always entered we may proceed anyway.
2549 But record that we entered it and stop once we leave it. */
2550 inn_loop = bb->loop_father;
2551 }
2552 }
2553
2554 while (1)
2555 {
2556 SET_ALWAYS_EXECUTED_IN (last, loop);
2557 if (last == loop->header)
2558 break;
2559 last = get_immediate_dominator (CDI_DOMINATORS, last);
2560 }
2561
2562 free (bbs);
2563 }
2564
2565 for (loop = loop->inner; loop; loop = loop->next)
2566 fill_always_executed_in (loop, contains_call);
2567 }
2568
2569 /* Compute the global information needed by the loop invariant motion pass. */
2570
2571 static void
2572 tree_ssa_lim_initialize (void)
2573 {
2574 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2575 gimple_stmt_iterator bsi;
2576 struct loop *loop;
2577 basic_block bb;
2578
2579 bitmap_obstack_initialize (&lim_bitmap_obstack);
2580
2581 bitmap_clear (contains_call);
2582 FOR_EACH_BB (bb)
2583 {
2584 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2585 {
2586 if (nonpure_call_p (gsi_stmt (bsi)))
2587 break;
2588 }
2589
2590 if (!gsi_end_p (bsi))
2591 bitmap_set_bit (contains_call, bb->index);
2592 }
2593
2594 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2595 fill_always_executed_in (loop, contains_call);
2596
2597 sbitmap_free (contains_call);
2598
2599 lim_aux_data_map = pointer_map_create ();
2600
2601 if (flag_tm)
2602 compute_transaction_bits ();
2603
2604 alloc_aux_for_edges (0);
2605 }
2606
2607 /* Cleans up after the invariant motion pass. */
2608
2609 static void
2610 tree_ssa_lim_finalize (void)
2611 {
2612 basic_block bb;
2613 unsigned i;
2614 mem_ref_p ref;
2615
2616 free_aux_for_edges ();
2617
2618 FOR_EACH_BB (bb)
2619 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2620
2621 bitmap_obstack_release (&lim_bitmap_obstack);
2622 pointer_map_destroy (lim_aux_data_map);
2623
2624 htab_delete (memory_accesses.refs);
2625
2626 FOR_EACH_VEC_ELT (mem_ref_p, memory_accesses.refs_list, i, ref)
2627 memref_free (ref);
2628 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2629
2630 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2631 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2632 VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
2633
2634 if (memory_accesses.ttae_cache)
2635 free_affine_expand_cache (&memory_accesses.ttae_cache);
2636 }
2637
2638 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2639 i.e. those that are likely to be win regardless of the register pressure. */
2640
2641 unsigned int
2642 tree_ssa_lim (void)
2643 {
2644 unsigned int todo;
2645
2646 tree_ssa_lim_initialize ();
2647
2648 /* Gathers information about memory accesses in the loops. */
2649 analyze_memory_references ();
2650
2651 /* For each statement determine the outermost loop in that it is
2652 invariant and cost for computing the invariant. */
2653 determine_invariantness ();
2654
2655 /* Execute store motion. Force the necessary invariants to be moved
2656 out of the loops as well. */
2657 store_motion ();
2658
2659 /* Move the expressions that are expensive enough. */
2660 todo = move_computations ();
2661
2662 tree_ssa_lim_finalize ();
2663
2664 return todo;
2665 }