Delete obsolete definition of MEMORY_MOVE_COST in AArch64.
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "pointer-set.h"
29 #include "hash-table.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "tree-eh.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
46 #include "tree-into-ssa.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "params.h"
50 #include "tree-pass.h"
51 #include "flags.h"
52 #include "tree-affine.h"
53 #include "tree-ssa-propagate.h"
54 #include "trans-mem.h"
55 #include "gimple-fold.h"
56
57 /* TODO: Support for predicated code motion. I.e.
58
59 while (1)
60 {
61 if (cond)
62 {
63 a = inv;
64 something;
65 }
66 }
67
68 Where COND and INV are invariants, but evaluating INV may trap or be
69 invalid from some other reason if !COND. This may be transformed to
70
71 if (cond)
72 a = inv;
73 while (1)
74 {
75 if (cond)
76 something;
77 } */
78
79 /* The auxiliary data kept for each statement. */
80
81 struct lim_aux_data
82 {
83 struct loop *max_loop; /* The outermost loop in that the statement
84 is invariant. */
85
86 struct loop *tgt_loop; /* The loop out of that we want to move the
87 invariant. */
88
89 struct loop *always_executed_in;
90 /* The outermost loop for that we are sure
91 the statement is executed if the loop
92 is entered. */
93
94 unsigned cost; /* Cost of the computation performed by the
95 statement. */
96
97 vec<gimple> depends; /* Vector of statements that must be also
98 hoisted out of the loop when this statement
99 is hoisted; i.e. those that define the
100 operands of the statement and are inside of
101 the MAX_LOOP loop. */
102 };
103
104 /* Maps statements to their lim_aux_data. */
105
106 static struct pointer_map_t *lim_aux_data_map;
107
108 /* Description of a memory reference location. */
109
110 typedef struct mem_ref_loc
111 {
112 tree *ref; /* The reference itself. */
113 gimple stmt; /* The statement in that it occurs. */
114 } *mem_ref_loc_p;
115
116
117 /* Description of a memory reference. */
118
119 typedef struct mem_ref
120 {
121 unsigned id; /* ID assigned to the memory reference
122 (its index in memory_accesses.refs_list) */
123 hashval_t hash; /* Its hash value. */
124
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. */
127 ao_ref mem;
128
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 vec<mem_ref_loc> accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
134
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap_head indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
146 } *mem_ref_p;
147
148 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
149 to record (in)dependence against stores in the loop and its subloops, the
150 second to record (in)dependence against all references in the loop
151 and its subloops. */
152 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
153
154 /* Mem_ref hashtable helpers. */
155
156 struct mem_ref_hasher : typed_noop_remove <mem_ref>
157 {
158 typedef mem_ref value_type;
159 typedef tree_node compare_type;
160 static inline hashval_t hash (const value_type *);
161 static inline bool equal (const value_type *, const compare_type *);
162 };
163
164 /* A hash function for struct mem_ref object OBJ. */
165
166 inline hashval_t
167 mem_ref_hasher::hash (const value_type *mem)
168 {
169 return mem->hash;
170 }
171
172 /* An equality function for struct mem_ref object MEM1 with
173 memory reference OBJ2. */
174
175 inline bool
176 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
177 {
178 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
179 }
180
181
182 /* Description of memory accesses in loops. */
183
184 static struct
185 {
186 /* The hash table of memory references accessed in loops. */
187 hash_table <mem_ref_hasher> refs;
188
189 /* The list of memory references. */
190 vec<mem_ref_p> refs_list;
191
192 /* The set of memory references accessed in each loop. */
193 vec<bitmap_head> refs_in_loop;
194
195 /* The set of memory references stored in each loop. */
196 vec<bitmap_head> refs_stored_in_loop;
197
198 /* The set of memory references stored in each loop, including subloops . */
199 vec<bitmap_head> all_refs_stored_in_loop;
200
201 /* Cache for expanding memory addresses. */
202 struct pointer_map_t *ttae_cache;
203 } memory_accesses;
204
205 /* Obstack for the bitmaps in the above data structures. */
206 static bitmap_obstack lim_bitmap_obstack;
207 static obstack mem_ref_obstack;
208
209 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
210
211 /* Minimum cost of an expensive expression. */
212 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
213
214 /* The outermost loop for which execution of the header guarantees that the
215 block will be executed. */
216 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
217 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
218
219 /* ID of the shared unanalyzable mem. */
220 #define UNANALYZABLE_MEM_ID 0
221
222 /* Whether the reference was analyzable. */
223 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
224
225 static struct lim_aux_data *
226 init_lim_data (gimple stmt)
227 {
228 void **p = pointer_map_insert (lim_aux_data_map, stmt);
229
230 *p = XCNEW (struct lim_aux_data);
231 return (struct lim_aux_data *) *p;
232 }
233
234 static struct lim_aux_data *
235 get_lim_data (gimple stmt)
236 {
237 void **p = pointer_map_contains (lim_aux_data_map, stmt);
238 if (!p)
239 return NULL;
240
241 return (struct lim_aux_data *) *p;
242 }
243
244 /* Releases the memory occupied by DATA. */
245
246 static void
247 free_lim_aux_data (struct lim_aux_data *data)
248 {
249 data->depends.release ();
250 free (data);
251 }
252
253 static void
254 clear_lim_data (gimple stmt)
255 {
256 void **p = pointer_map_contains (lim_aux_data_map, stmt);
257 if (!p)
258 return;
259
260 free_lim_aux_data ((struct lim_aux_data *) *p);
261 *p = NULL;
262 }
263
264
265 /* The possibilities of statement movement. */
266 enum move_pos
267 {
268 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
269 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
270 become executed -- memory accesses, ... */
271 MOVE_POSSIBLE /* Unlimited movement. */
272 };
273
274
275 /* If it is possible to hoist the statement STMT unconditionally,
276 returns MOVE_POSSIBLE.
277 If it is possible to hoist the statement STMT, but we must avoid making
278 it executed if it would not be executed in the original program (e.g.
279 because it may trap), return MOVE_PRESERVE_EXECUTION.
280 Otherwise return MOVE_IMPOSSIBLE. */
281
282 enum move_pos
283 movement_possibility (gimple stmt)
284 {
285 tree lhs;
286 enum move_pos ret = MOVE_POSSIBLE;
287
288 if (flag_unswitch_loops
289 && gimple_code (stmt) == GIMPLE_COND)
290 {
291 /* If we perform unswitching, force the operands of the invariant
292 condition to be moved out of the loop. */
293 return MOVE_POSSIBLE;
294 }
295
296 if (gimple_code (stmt) == GIMPLE_PHI
297 && gimple_phi_num_args (stmt) <= 2
298 && !virtual_operand_p (gimple_phi_result (stmt))
299 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
300 return MOVE_POSSIBLE;
301
302 if (gimple_get_lhs (stmt) == NULL_TREE)
303 return MOVE_IMPOSSIBLE;
304
305 if (gimple_vdef (stmt))
306 return MOVE_IMPOSSIBLE;
307
308 if (stmt_ends_bb_p (stmt)
309 || gimple_has_volatile_ops (stmt)
310 || gimple_has_side_effects (stmt)
311 || stmt_could_throw_p (stmt))
312 return MOVE_IMPOSSIBLE;
313
314 if (is_gimple_call (stmt))
315 {
316 /* While pure or const call is guaranteed to have no side effects, we
317 cannot move it arbitrarily. Consider code like
318
319 char *s = something ();
320
321 while (1)
322 {
323 if (s)
324 t = strlen (s);
325 else
326 t = 0;
327 }
328
329 Here the strlen call cannot be moved out of the loop, even though
330 s is invariant. In addition to possibly creating a call with
331 invalid arguments, moving out a function call that is not executed
332 may cause performance regressions in case the call is costly and
333 not executed at all. */
334 ret = MOVE_PRESERVE_EXECUTION;
335 lhs = gimple_call_lhs (stmt);
336 }
337 else if (is_gimple_assign (stmt))
338 lhs = gimple_assign_lhs (stmt);
339 else
340 return MOVE_IMPOSSIBLE;
341
342 if (TREE_CODE (lhs) == SSA_NAME
343 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
344 return MOVE_IMPOSSIBLE;
345
346 if (TREE_CODE (lhs) != SSA_NAME
347 || gimple_could_trap_p (stmt))
348 return MOVE_PRESERVE_EXECUTION;
349
350 /* Non local loads in a transaction cannot be hoisted out. Well,
351 unless the load happens on every path out of the loop, but we
352 don't take this into account yet. */
353 if (flag_tm
354 && gimple_in_transaction (stmt)
355 && gimple_assign_single_p (stmt))
356 {
357 tree rhs = gimple_assign_rhs1 (stmt);
358 if (DECL_P (rhs) && is_global_var (rhs))
359 {
360 if (dump_file)
361 {
362 fprintf (dump_file, "Cannot hoist conditional load of ");
363 print_generic_expr (dump_file, rhs, TDF_SLIM);
364 fprintf (dump_file, " because it is in a transaction.\n");
365 }
366 return MOVE_IMPOSSIBLE;
367 }
368 }
369
370 return ret;
371 }
372
373 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
374 loop to that we could move the expression using DEF if it did not have
375 other operands, i.e. the outermost loop enclosing LOOP in that the value
376 of DEF is invariant. */
377
378 static struct loop *
379 outermost_invariant_loop (tree def, struct loop *loop)
380 {
381 gimple def_stmt;
382 basic_block def_bb;
383 struct loop *max_loop;
384 struct lim_aux_data *lim_data;
385
386 if (!def)
387 return superloop_at_depth (loop, 1);
388
389 if (TREE_CODE (def) != SSA_NAME)
390 {
391 gcc_assert (is_gimple_min_invariant (def));
392 return superloop_at_depth (loop, 1);
393 }
394
395 def_stmt = SSA_NAME_DEF_STMT (def);
396 def_bb = gimple_bb (def_stmt);
397 if (!def_bb)
398 return superloop_at_depth (loop, 1);
399
400 max_loop = find_common_loop (loop, def_bb->loop_father);
401
402 lim_data = get_lim_data (def_stmt);
403 if (lim_data != NULL && lim_data->max_loop != NULL)
404 max_loop = find_common_loop (max_loop,
405 loop_outer (lim_data->max_loop));
406 if (max_loop == loop)
407 return NULL;
408 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
409
410 return max_loop;
411 }
412
413 /* DATA is a structure containing information associated with a statement
414 inside LOOP. DEF is one of the operands of this statement.
415
416 Find the outermost loop enclosing LOOP in that value of DEF is invariant
417 and record this in DATA->max_loop field. If DEF itself is defined inside
418 this loop as well (i.e. we need to hoist it out of the loop if we want
419 to hoist the statement represented by DATA), record the statement in that
420 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
421 add the cost of the computation of DEF to the DATA->cost.
422
423 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
424
425 static bool
426 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
427 bool add_cost)
428 {
429 gimple def_stmt = SSA_NAME_DEF_STMT (def);
430 basic_block def_bb = gimple_bb (def_stmt);
431 struct loop *max_loop;
432 struct lim_aux_data *def_data;
433
434 if (!def_bb)
435 return true;
436
437 max_loop = outermost_invariant_loop (def, loop);
438 if (!max_loop)
439 return false;
440
441 if (flow_loop_nested_p (data->max_loop, max_loop))
442 data->max_loop = max_loop;
443
444 def_data = get_lim_data (def_stmt);
445 if (!def_data)
446 return true;
447
448 if (add_cost
449 /* Only add the cost if the statement defining DEF is inside LOOP,
450 i.e. if it is likely that by moving the invariants dependent
451 on it, we will be able to avoid creating a new register for
452 it (since it will be only used in these dependent invariants). */
453 && def_bb->loop_father == loop)
454 data->cost += def_data->cost;
455
456 data->depends.safe_push (def_stmt);
457
458 return true;
459 }
460
461 /* Returns an estimate for a cost of statement STMT. The values here
462 are just ad-hoc constants, similar to costs for inlining. */
463
464 static unsigned
465 stmt_cost (gimple stmt)
466 {
467 /* Always try to create possibilities for unswitching. */
468 if (gimple_code (stmt) == GIMPLE_COND
469 || gimple_code (stmt) == GIMPLE_PHI)
470 return LIM_EXPENSIVE;
471
472 /* We should be hoisting calls if possible. */
473 if (is_gimple_call (stmt))
474 {
475 tree fndecl;
476
477 /* Unless the call is a builtin_constant_p; this always folds to a
478 constant, so moving it is useless. */
479 fndecl = gimple_call_fndecl (stmt);
480 if (fndecl
481 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
482 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
483 return 0;
484
485 return LIM_EXPENSIVE;
486 }
487
488 /* Hoisting memory references out should almost surely be a win. */
489 if (gimple_references_memory_p (stmt))
490 return LIM_EXPENSIVE;
491
492 if (gimple_code (stmt) != GIMPLE_ASSIGN)
493 return 1;
494
495 switch (gimple_assign_rhs_code (stmt))
496 {
497 case MULT_EXPR:
498 case WIDEN_MULT_EXPR:
499 case WIDEN_MULT_PLUS_EXPR:
500 case WIDEN_MULT_MINUS_EXPR:
501 case DOT_PROD_EXPR:
502 case FMA_EXPR:
503 case TRUNC_DIV_EXPR:
504 case CEIL_DIV_EXPR:
505 case FLOOR_DIV_EXPR:
506 case ROUND_DIV_EXPR:
507 case EXACT_DIV_EXPR:
508 case CEIL_MOD_EXPR:
509 case FLOOR_MOD_EXPR:
510 case ROUND_MOD_EXPR:
511 case TRUNC_MOD_EXPR:
512 case RDIV_EXPR:
513 /* Division and multiplication are usually expensive. */
514 return LIM_EXPENSIVE;
515
516 case LSHIFT_EXPR:
517 case RSHIFT_EXPR:
518 case WIDEN_LSHIFT_EXPR:
519 case LROTATE_EXPR:
520 case RROTATE_EXPR:
521 /* Shifts and rotates are usually expensive. */
522 return LIM_EXPENSIVE;
523
524 case CONSTRUCTOR:
525 /* Make vector construction cost proportional to the number
526 of elements. */
527 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
528
529 case SSA_NAME:
530 case PAREN_EXPR:
531 /* Whether or not something is wrapped inside a PAREN_EXPR
532 should not change move cost. Nor should an intermediate
533 unpropagated SSA name copy. */
534 return 0;
535
536 default:
537 return 1;
538 }
539 }
540
541 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
542 REF is independent. If REF is not independent in LOOP, NULL is returned
543 instead. */
544
545 static struct loop *
546 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
547 {
548 struct loop *aloop;
549
550 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
551 return NULL;
552
553 for (aloop = outer;
554 aloop != loop;
555 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
556 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
557 && ref_indep_loop_p (aloop, ref))
558 return aloop;
559
560 if (ref_indep_loop_p (loop, ref))
561 return loop;
562 else
563 return NULL;
564 }
565
566 /* If there is a simple load or store to a memory reference in STMT, returns
567 the location of the memory reference, and sets IS_STORE according to whether
568 it is a store or load. Otherwise, returns NULL. */
569
570 static tree *
571 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
572 {
573 tree *lhs, *rhs;
574
575 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
576 if (!gimple_assign_single_p (stmt))
577 return NULL;
578
579 lhs = gimple_assign_lhs_ptr (stmt);
580 rhs = gimple_assign_rhs1_ptr (stmt);
581
582 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
583 {
584 *is_store = false;
585 return rhs;
586 }
587 else if (gimple_vdef (stmt)
588 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
589 {
590 *is_store = true;
591 return lhs;
592 }
593 else
594 return NULL;
595 }
596
597 /* Returns the memory reference contained in STMT. */
598
599 static mem_ref_p
600 mem_ref_in_stmt (gimple stmt)
601 {
602 bool store;
603 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
604 hashval_t hash;
605 mem_ref_p ref;
606
607 if (!mem)
608 return NULL;
609 gcc_assert (!store);
610
611 hash = iterative_hash_expr (*mem, 0);
612 ref = memory_accesses.refs.find_with_hash (*mem, hash);
613
614 gcc_assert (ref != NULL);
615 return ref;
616 }
617
618 /* From a controlling predicate in DOM determine the arguments from
619 the PHI node PHI that are chosen if the predicate evaluates to
620 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
621 they are non-NULL. Returns true if the arguments can be determined,
622 else return false. */
623
624 static bool
625 extract_true_false_args_from_phi (basic_block dom, gimple phi,
626 tree *true_arg_p, tree *false_arg_p)
627 {
628 basic_block bb = gimple_bb (phi);
629 edge true_edge, false_edge, tem;
630 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
631
632 /* We have to verify that one edge into the PHI node is dominated
633 by the true edge of the predicate block and the other edge
634 dominated by the false edge. This ensures that the PHI argument
635 we are going to take is completely determined by the path we
636 take from the predicate block.
637 We can only use BB dominance checks below if the destination of
638 the true/false edges are dominated by their edge, thus only
639 have a single predecessor. */
640 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
641 tem = EDGE_PRED (bb, 0);
642 if (tem == true_edge
643 || (single_pred_p (true_edge->dest)
644 && (tem->src == true_edge->dest
645 || dominated_by_p (CDI_DOMINATORS,
646 tem->src, true_edge->dest))))
647 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
648 else if (tem == false_edge
649 || (single_pred_p (false_edge->dest)
650 && (tem->src == false_edge->dest
651 || dominated_by_p (CDI_DOMINATORS,
652 tem->src, false_edge->dest))))
653 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
654 else
655 return false;
656 tem = EDGE_PRED (bb, 1);
657 if (tem == true_edge
658 || (single_pred_p (true_edge->dest)
659 && (tem->src == true_edge->dest
660 || dominated_by_p (CDI_DOMINATORS,
661 tem->src, true_edge->dest))))
662 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
663 else if (tem == false_edge
664 || (single_pred_p (false_edge->dest)
665 && (tem->src == false_edge->dest
666 || dominated_by_p (CDI_DOMINATORS,
667 tem->src, false_edge->dest))))
668 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
669 else
670 return false;
671 if (!arg0 || !arg1)
672 return false;
673
674 if (true_arg_p)
675 *true_arg_p = arg0;
676 if (false_arg_p)
677 *false_arg_p = arg1;
678
679 return true;
680 }
681
682 /* Determine the outermost loop to that it is possible to hoist a statement
683 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
684 the outermost loop in that the value computed by STMT is invariant.
685 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
686 we preserve the fact whether STMT is executed. It also fills other related
687 information to LIM_DATA (STMT).
688
689 The function returns false if STMT cannot be hoisted outside of the loop it
690 is defined in, and true otherwise. */
691
692 static bool
693 determine_max_movement (gimple stmt, bool must_preserve_exec)
694 {
695 basic_block bb = gimple_bb (stmt);
696 struct loop *loop = bb->loop_father;
697 struct loop *level;
698 struct lim_aux_data *lim_data = get_lim_data (stmt);
699 tree val;
700 ssa_op_iter iter;
701
702 if (must_preserve_exec)
703 level = ALWAYS_EXECUTED_IN (bb);
704 else
705 level = superloop_at_depth (loop, 1);
706 lim_data->max_loop = level;
707
708 if (gimple_code (stmt) == GIMPLE_PHI)
709 {
710 use_operand_p use_p;
711 unsigned min_cost = UINT_MAX;
712 unsigned total_cost = 0;
713 struct lim_aux_data *def_data;
714
715 /* We will end up promoting dependencies to be unconditionally
716 evaluated. For this reason the PHI cost (and thus the
717 cost we remove from the loop by doing the invariant motion)
718 is that of the cheapest PHI argument dependency chain. */
719 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
720 {
721 val = USE_FROM_PTR (use_p);
722 if (TREE_CODE (val) != SSA_NAME)
723 continue;
724 if (!add_dependency (val, lim_data, loop, false))
725 return false;
726 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
727 if (def_data)
728 {
729 min_cost = MIN (min_cost, def_data->cost);
730 total_cost += def_data->cost;
731 }
732 }
733
734 lim_data->cost += min_cost;
735
736 if (gimple_phi_num_args (stmt) > 1)
737 {
738 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
739 gimple cond;
740 if (gsi_end_p (gsi_last_bb (dom)))
741 return false;
742 cond = gsi_stmt (gsi_last_bb (dom));
743 if (gimple_code (cond) != GIMPLE_COND)
744 return false;
745 /* Verify that this is an extended form of a diamond and
746 the PHI arguments are completely controlled by the
747 predicate in DOM. */
748 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
749 return false;
750
751 /* Fold in dependencies and cost of the condition. */
752 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
753 {
754 if (!add_dependency (val, lim_data, loop, false))
755 return false;
756 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
757 if (def_data)
758 total_cost += def_data->cost;
759 }
760
761 /* We want to avoid unconditionally executing very expensive
762 operations. As costs for our dependencies cannot be
763 negative just claim we are not invariand for this case.
764 We also are not sure whether the control-flow inside the
765 loop will vanish. */
766 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
767 && !(min_cost != 0
768 && total_cost / min_cost <= 2))
769 return false;
770
771 /* Assume that the control-flow in the loop will vanish.
772 ??? We should verify this and not artificially increase
773 the cost if that is not the case. */
774 lim_data->cost += stmt_cost (stmt);
775 }
776
777 return true;
778 }
779 else
780 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
781 if (!add_dependency (val, lim_data, loop, true))
782 return false;
783
784 if (gimple_vuse (stmt))
785 {
786 mem_ref_p ref = mem_ref_in_stmt (stmt);
787
788 if (ref)
789 {
790 lim_data->max_loop
791 = outermost_indep_loop (lim_data->max_loop, loop, ref);
792 if (!lim_data->max_loop)
793 return false;
794 }
795 else
796 {
797 if ((val = gimple_vuse (stmt)) != NULL_TREE)
798 {
799 if (!add_dependency (val, lim_data, loop, false))
800 return false;
801 }
802 }
803 }
804
805 lim_data->cost += stmt_cost (stmt);
806
807 return true;
808 }
809
810 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
811 and that one of the operands of this statement is computed by STMT.
812 Ensure that STMT (together with all the statements that define its
813 operands) is hoisted at least out of the loop LEVEL. */
814
815 static void
816 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
817 {
818 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
819 struct lim_aux_data *lim_data;
820 gimple dep_stmt;
821 unsigned i;
822
823 stmt_loop = find_common_loop (orig_loop, stmt_loop);
824 lim_data = get_lim_data (stmt);
825 if (lim_data != NULL && lim_data->tgt_loop != NULL)
826 stmt_loop = find_common_loop (stmt_loop,
827 loop_outer (lim_data->tgt_loop));
828 if (flow_loop_nested_p (stmt_loop, level))
829 return;
830
831 gcc_assert (level == lim_data->max_loop
832 || flow_loop_nested_p (lim_data->max_loop, level));
833
834 lim_data->tgt_loop = level;
835 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
836 set_level (dep_stmt, orig_loop, level);
837 }
838
839 /* Determines an outermost loop from that we want to hoist the statement STMT.
840 For now we chose the outermost possible loop. TODO -- use profiling
841 information to set it more sanely. */
842
843 static void
844 set_profitable_level (gimple stmt)
845 {
846 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
847 }
848
849 /* Returns true if STMT is a call that has side effects. */
850
851 static bool
852 nonpure_call_p (gimple stmt)
853 {
854 if (gimple_code (stmt) != GIMPLE_CALL)
855 return false;
856
857 return gimple_has_side_effects (stmt);
858 }
859
860 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
861
862 static gimple
863 rewrite_reciprocal (gimple_stmt_iterator *bsi)
864 {
865 gimple stmt, stmt1, stmt2;
866 tree name, lhs, type;
867 tree real_one;
868 gimple_stmt_iterator gsi;
869
870 stmt = gsi_stmt (*bsi);
871 lhs = gimple_assign_lhs (stmt);
872 type = TREE_TYPE (lhs);
873
874 real_one = build_one_cst (type);
875
876 name = make_temp_ssa_name (type, NULL, "reciptmp");
877 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
878 gimple_assign_rhs2 (stmt));
879
880 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
881 gimple_assign_rhs1 (stmt));
882
883 /* Replace division stmt with reciprocal and multiply stmts.
884 The multiply stmt is not invariant, so update iterator
885 and avoid rescanning. */
886 gsi = *bsi;
887 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
888 gsi_replace (&gsi, stmt2, true);
889
890 /* Continue processing with invariant reciprocal statement. */
891 return stmt1;
892 }
893
894 /* Check if the pattern at *BSI is a bittest of the form
895 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
896
897 static gimple
898 rewrite_bittest (gimple_stmt_iterator *bsi)
899 {
900 gimple stmt, use_stmt, stmt1, stmt2;
901 tree lhs, name, t, a, b;
902 use_operand_p use;
903
904 stmt = gsi_stmt (*bsi);
905 lhs = gimple_assign_lhs (stmt);
906
907 /* Verify that the single use of lhs is a comparison against zero. */
908 if (TREE_CODE (lhs) != SSA_NAME
909 || !single_imm_use (lhs, &use, &use_stmt)
910 || gimple_code (use_stmt) != GIMPLE_COND)
911 return stmt;
912 if (gimple_cond_lhs (use_stmt) != lhs
913 || (gimple_cond_code (use_stmt) != NE_EXPR
914 && gimple_cond_code (use_stmt) != EQ_EXPR)
915 || !integer_zerop (gimple_cond_rhs (use_stmt)))
916 return stmt;
917
918 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
919 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
920 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
921 return stmt;
922
923 /* There is a conversion in between possibly inserted by fold. */
924 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
925 {
926 t = gimple_assign_rhs1 (stmt1);
927 if (TREE_CODE (t) != SSA_NAME
928 || !has_single_use (t))
929 return stmt;
930 stmt1 = SSA_NAME_DEF_STMT (t);
931 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
932 return stmt;
933 }
934
935 /* Verify that B is loop invariant but A is not. Verify that with
936 all the stmt walking we are still in the same loop. */
937 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
938 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
939 return stmt;
940
941 a = gimple_assign_rhs1 (stmt1);
942 b = gimple_assign_rhs2 (stmt1);
943
944 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
945 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
946 {
947 gimple_stmt_iterator rsi;
948
949 /* 1 << B */
950 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
951 build_int_cst (TREE_TYPE (a), 1), b);
952 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
953 stmt1 = gimple_build_assign (name, t);
954
955 /* A & (1 << B) */
956 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
957 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
958 stmt2 = gimple_build_assign (name, t);
959
960 /* Replace the SSA_NAME we compare against zero. Adjust
961 the type of zero accordingly. */
962 SET_USE (use, name);
963 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
964
965 /* Don't use gsi_replace here, none of the new assignments sets
966 the variable originally set in stmt. Move bsi to stmt1, and
967 then remove the original stmt, so that we get a chance to
968 retain debug info for it. */
969 rsi = *bsi;
970 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
971 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
972 gsi_remove (&rsi, true);
973
974 return stmt1;
975 }
976
977 return stmt;
978 }
979
980 /* For each statement determines the outermost loop in that it is invariant,
981 - statements on whose motion it depends and the cost of the computation.
982 - This information is stored to the LIM_DATA structure associated with
983 - each statement. */
984 class invariantness_dom_walker : public dom_walker
985 {
986 public:
987 invariantness_dom_walker (cdi_direction direction)
988 : dom_walker (direction) {}
989
990 virtual void before_dom_children (basic_block);
991 };
992
993 /* Determine the outermost loops in that statements in basic block BB are
994 invariant, and record them to the LIM_DATA associated with the statements.
995 Callback for dom_walker. */
996
997 void
998 invariantness_dom_walker::before_dom_children (basic_block bb)
999 {
1000 enum move_pos pos;
1001 gimple_stmt_iterator bsi;
1002 gimple stmt;
1003 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1004 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1005 struct lim_aux_data *lim_data;
1006
1007 if (!loop_outer (bb->loop_father))
1008 return;
1009
1010 if (dump_file && (dump_flags & TDF_DETAILS))
1011 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1012 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1013
1014 /* Look at PHI nodes, but only if there is at most two.
1015 ??? We could relax this further by post-processing the inserted
1016 code and transforming adjacent cond-exprs with the same predicate
1017 to control flow again. */
1018 bsi = gsi_start_phis (bb);
1019 if (!gsi_end_p (bsi)
1020 && ((gsi_next (&bsi), gsi_end_p (bsi))
1021 || (gsi_next (&bsi), gsi_end_p (bsi))))
1022 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1023 {
1024 stmt = gsi_stmt (bsi);
1025
1026 pos = movement_possibility (stmt);
1027 if (pos == MOVE_IMPOSSIBLE)
1028 continue;
1029
1030 lim_data = init_lim_data (stmt);
1031 lim_data->always_executed_in = outermost;
1032
1033 if (!determine_max_movement (stmt, false))
1034 {
1035 lim_data->max_loop = NULL;
1036 continue;
1037 }
1038
1039 if (dump_file && (dump_flags & TDF_DETAILS))
1040 {
1041 print_gimple_stmt (dump_file, stmt, 2, 0);
1042 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1043 loop_depth (lim_data->max_loop),
1044 lim_data->cost);
1045 }
1046
1047 if (lim_data->cost >= LIM_EXPENSIVE)
1048 set_profitable_level (stmt);
1049 }
1050
1051 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1052 {
1053 stmt = gsi_stmt (bsi);
1054
1055 pos = movement_possibility (stmt);
1056 if (pos == MOVE_IMPOSSIBLE)
1057 {
1058 if (nonpure_call_p (stmt))
1059 {
1060 maybe_never = true;
1061 outermost = NULL;
1062 }
1063 /* Make sure to note always_executed_in for stores to make
1064 store-motion work. */
1065 else if (stmt_makes_single_store (stmt))
1066 {
1067 struct lim_aux_data *lim_data = init_lim_data (stmt);
1068 lim_data->always_executed_in = outermost;
1069 }
1070 continue;
1071 }
1072
1073 if (is_gimple_assign (stmt)
1074 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1075 == GIMPLE_BINARY_RHS))
1076 {
1077 tree op0 = gimple_assign_rhs1 (stmt);
1078 tree op1 = gimple_assign_rhs2 (stmt);
1079 struct loop *ol1 = outermost_invariant_loop (op1,
1080 loop_containing_stmt (stmt));
1081
1082 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1083 to be hoisted out of loop, saving expensive divide. */
1084 if (pos == MOVE_POSSIBLE
1085 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1086 && flag_unsafe_math_optimizations
1087 && !flag_trapping_math
1088 && ol1 != NULL
1089 && outermost_invariant_loop (op0, ol1) == NULL)
1090 stmt = rewrite_reciprocal (&bsi);
1091
1092 /* If the shift count is invariant, convert (A >> B) & 1 to
1093 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1094 saving an expensive shift. */
1095 if (pos == MOVE_POSSIBLE
1096 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1097 && integer_onep (op1)
1098 && TREE_CODE (op0) == SSA_NAME
1099 && has_single_use (op0))
1100 stmt = rewrite_bittest (&bsi);
1101 }
1102
1103 lim_data = init_lim_data (stmt);
1104 lim_data->always_executed_in = outermost;
1105
1106 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1107 continue;
1108
1109 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1110 {
1111 lim_data->max_loop = NULL;
1112 continue;
1113 }
1114
1115 if (dump_file && (dump_flags & TDF_DETAILS))
1116 {
1117 print_gimple_stmt (dump_file, stmt, 2, 0);
1118 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1119 loop_depth (lim_data->max_loop),
1120 lim_data->cost);
1121 }
1122
1123 if (lim_data->cost >= LIM_EXPENSIVE)
1124 set_profitable_level (stmt);
1125 }
1126 }
1127
1128 class move_computations_dom_walker : public dom_walker
1129 {
1130 public:
1131 move_computations_dom_walker (cdi_direction direction)
1132 : dom_walker (direction), todo_ (0) {}
1133
1134 virtual void before_dom_children (basic_block);
1135
1136 unsigned int todo_;
1137 };
1138
1139 /* Hoist the statements in basic block BB out of the loops prescribed by
1140 data stored in LIM_DATA structures associated with each statement. Callback
1141 for walk_dominator_tree. */
1142
1143 void
1144 move_computations_dom_walker::before_dom_children (basic_block bb)
1145 {
1146 struct loop *level;
1147 gimple_stmt_iterator bsi;
1148 gimple stmt;
1149 unsigned cost = 0;
1150 struct lim_aux_data *lim_data;
1151
1152 if (!loop_outer (bb->loop_father))
1153 return;
1154
1155 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1156 {
1157 gimple new_stmt;
1158 stmt = gsi_stmt (bsi);
1159
1160 lim_data = get_lim_data (stmt);
1161 if (lim_data == NULL)
1162 {
1163 gsi_next (&bsi);
1164 continue;
1165 }
1166
1167 cost = lim_data->cost;
1168 level = lim_data->tgt_loop;
1169 clear_lim_data (stmt);
1170
1171 if (!level)
1172 {
1173 gsi_next (&bsi);
1174 continue;
1175 }
1176
1177 if (dump_file && (dump_flags & TDF_DETAILS))
1178 {
1179 fprintf (dump_file, "Moving PHI node\n");
1180 print_gimple_stmt (dump_file, stmt, 0, 0);
1181 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1182 cost, level->num);
1183 }
1184
1185 if (gimple_phi_num_args (stmt) == 1)
1186 {
1187 tree arg = PHI_ARG_DEF (stmt, 0);
1188 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1189 gimple_phi_result (stmt),
1190 arg, NULL_TREE);
1191 }
1192 else
1193 {
1194 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1195 gimple cond = gsi_stmt (gsi_last_bb (dom));
1196 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1197 /* Get the PHI arguments corresponding to the true and false
1198 edges of COND. */
1199 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1200 gcc_assert (arg0 && arg1);
1201 t = build2 (gimple_cond_code (cond), boolean_type_node,
1202 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1203 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1204 gimple_phi_result (stmt),
1205 t, arg0, arg1);
1206 todo_ |= TODO_cleanup_cfg;
1207 }
1208 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1209 remove_phi_node (&bsi, false);
1210 }
1211
1212 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1213 {
1214 edge e;
1215
1216 stmt = gsi_stmt (bsi);
1217
1218 lim_data = get_lim_data (stmt);
1219 if (lim_data == NULL)
1220 {
1221 gsi_next (&bsi);
1222 continue;
1223 }
1224
1225 cost = lim_data->cost;
1226 level = lim_data->tgt_loop;
1227 clear_lim_data (stmt);
1228
1229 if (!level)
1230 {
1231 gsi_next (&bsi);
1232 continue;
1233 }
1234
1235 /* We do not really want to move conditionals out of the loop; we just
1236 placed it here to force its operands to be moved if necessary. */
1237 if (gimple_code (stmt) == GIMPLE_COND)
1238 continue;
1239
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 {
1242 fprintf (dump_file, "Moving statement\n");
1243 print_gimple_stmt (dump_file, stmt, 0, 0);
1244 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1245 cost, level->num);
1246 }
1247
1248 e = loop_preheader_edge (level);
1249 gcc_assert (!gimple_vdef (stmt));
1250 if (gimple_vuse (stmt))
1251 {
1252 /* The new VUSE is the one from the virtual PHI in the loop
1253 header or the one already present. */
1254 gimple_stmt_iterator gsi2;
1255 for (gsi2 = gsi_start_phis (e->dest);
1256 !gsi_end_p (gsi2); gsi_next (&gsi2))
1257 {
1258 gimple phi = gsi_stmt (gsi2);
1259 if (virtual_operand_p (gimple_phi_result (phi)))
1260 {
1261 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1262 break;
1263 }
1264 }
1265 }
1266 gsi_remove (&bsi, false);
1267 /* In case this is a stmt that is not unconditionally executed
1268 when the target loop header is executed and the stmt may
1269 invoke undefined integer or pointer overflow rewrite it to
1270 unsigned arithmetic. */
1271 if (is_gimple_assign (stmt)
1272 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1273 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1274 && arith_code_with_undefined_signed_overflow
1275 (gimple_assign_rhs_code (stmt))
1276 && (!ALWAYS_EXECUTED_IN (bb)
1277 || !(ALWAYS_EXECUTED_IN (bb) == level
1278 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1279 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1280 else
1281 gsi_insert_on_edge (e, stmt);
1282 }
1283 }
1284
1285 /* Hoist the statements out of the loops prescribed by data stored in
1286 LIM_DATA structures associated with each statement.*/
1287
1288 static unsigned int
1289 move_computations (void)
1290 {
1291 move_computations_dom_walker walker (CDI_DOMINATORS);
1292 walker.walk (cfun->cfg->x_entry_block_ptr);
1293
1294 gsi_commit_edge_inserts ();
1295 if (need_ssa_update_p (cfun))
1296 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1297
1298 return walker.todo_;
1299 }
1300
1301 /* Checks whether the statement defining variable *INDEX can be hoisted
1302 out of the loop passed in DATA. Callback for for_each_index. */
1303
1304 static bool
1305 may_move_till (tree ref, tree *index, void *data)
1306 {
1307 struct loop *loop = (struct loop *) data, *max_loop;
1308
1309 /* If REF is an array reference, check also that the step and the lower
1310 bound is invariant in LOOP. */
1311 if (TREE_CODE (ref) == ARRAY_REF)
1312 {
1313 tree step = TREE_OPERAND (ref, 3);
1314 tree lbound = TREE_OPERAND (ref, 2);
1315
1316 max_loop = outermost_invariant_loop (step, loop);
1317 if (!max_loop)
1318 return false;
1319
1320 max_loop = outermost_invariant_loop (lbound, loop);
1321 if (!max_loop)
1322 return false;
1323 }
1324
1325 max_loop = outermost_invariant_loop (*index, loop);
1326 if (!max_loop)
1327 return false;
1328
1329 return true;
1330 }
1331
1332 /* If OP is SSA NAME, force the statement that defines it to be
1333 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1334
1335 static void
1336 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1337 {
1338 gimple stmt;
1339
1340 if (!op
1341 || is_gimple_min_invariant (op))
1342 return;
1343
1344 gcc_assert (TREE_CODE (op) == SSA_NAME);
1345
1346 stmt = SSA_NAME_DEF_STMT (op);
1347 if (gimple_nop_p (stmt))
1348 return;
1349
1350 set_level (stmt, orig_loop, loop);
1351 }
1352
1353 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1354 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1355 for_each_index. */
1356
1357 struct fmt_data
1358 {
1359 struct loop *loop;
1360 struct loop *orig_loop;
1361 };
1362
1363 static bool
1364 force_move_till (tree ref, tree *index, void *data)
1365 {
1366 struct fmt_data *fmt_data = (struct fmt_data *) data;
1367
1368 if (TREE_CODE (ref) == ARRAY_REF)
1369 {
1370 tree step = TREE_OPERAND (ref, 3);
1371 tree lbound = TREE_OPERAND (ref, 2);
1372
1373 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1374 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1375 }
1376
1377 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1378
1379 return true;
1380 }
1381
1382 /* A function to free the mem_ref object OBJ. */
1383
1384 static void
1385 memref_free (struct mem_ref *mem)
1386 {
1387 mem->accesses_in_loop.release ();
1388 }
1389
1390 /* Allocates and returns a memory reference description for MEM whose hash
1391 value is HASH and id is ID. */
1392
1393 static mem_ref_p
1394 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1395 {
1396 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct mem_ref);
1397 ao_ref_init (&ref->mem, mem);
1398 ref->id = id;
1399 ref->hash = hash;
1400 ref->stored = NULL;
1401 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1402 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1403 ref->accesses_in_loop.create (1);
1404
1405 return ref;
1406 }
1407
1408 /* Records memory reference location *LOC in LOOP to the memory reference
1409 description REF. The reference occurs in statement STMT. */
1410
1411 static void
1412 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1413 {
1414 mem_ref_loc aref;
1415 aref.stmt = stmt;
1416 aref.ref = loc;
1417 ref->accesses_in_loop.safe_push (aref);
1418 }
1419
1420 /* Set the LOOP bit in REF stored bitmap and allocate that if
1421 necessary. Return whether a bit was changed. */
1422
1423 static bool
1424 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1425 {
1426 if (!ref->stored)
1427 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1428 return bitmap_set_bit (ref->stored, loop->num);
1429 }
1430
1431 /* Marks reference REF as stored in LOOP. */
1432
1433 static void
1434 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1435 {
1436 while (loop != current_loops->tree_root
1437 && set_ref_stored_in_loop (ref, loop))
1438 loop = loop_outer (loop);
1439 }
1440
1441 /* Gathers memory references in statement STMT in LOOP, storing the
1442 information about them in the memory_accesses structure. Marks
1443 the vops accessed through unrecognized statements there as
1444 well. */
1445
1446 static void
1447 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1448 {
1449 tree *mem = NULL;
1450 hashval_t hash;
1451 mem_ref **slot;
1452 mem_ref_p ref;
1453 bool is_stored;
1454 unsigned id;
1455
1456 if (!gimple_vuse (stmt))
1457 return;
1458
1459 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1460 if (!mem)
1461 {
1462 /* We use the shared mem_ref for all unanalyzable refs. */
1463 id = UNANALYZABLE_MEM_ID;
1464 ref = memory_accesses.refs_list[id];
1465 if (dump_file && (dump_flags & TDF_DETAILS))
1466 {
1467 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1468 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1469 }
1470 is_stored = gimple_vdef (stmt);
1471 }
1472 else
1473 {
1474 hash = iterative_hash_expr (*mem, 0);
1475 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1476 if (*slot)
1477 {
1478 ref = (mem_ref_p) *slot;
1479 id = ref->id;
1480 }
1481 else
1482 {
1483 id = memory_accesses.refs_list.length ();
1484 ref = mem_ref_alloc (*mem, hash, id);
1485 memory_accesses.refs_list.safe_push (ref);
1486 *slot = ref;
1487
1488 if (dump_file && (dump_flags & TDF_DETAILS))
1489 {
1490 fprintf (dump_file, "Memory reference %u: ", id);
1491 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1492 fprintf (dump_file, "\n");
1493 }
1494 }
1495
1496 record_mem_ref_loc (ref, stmt, mem);
1497 }
1498 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1499 if (is_stored)
1500 {
1501 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1502 mark_ref_stored (ref, loop);
1503 }
1504 return;
1505 }
1506
1507 static unsigned *bb_loop_postorder;
1508
1509 /* qsort sort function to sort blocks after their loop fathers postorder. */
1510
1511 static int
1512 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1513 {
1514 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1515 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1516 struct loop *loop1 = bb1->loop_father;
1517 struct loop *loop2 = bb2->loop_father;
1518 if (loop1->num == loop2->num)
1519 return 0;
1520 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1521 }
1522
1523 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1524
1525 static int
1526 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1527 {
1528 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1529 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1530 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1531 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1532 if (loop1->num == loop2->num)
1533 return 0;
1534 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1535 }
1536
1537 /* Gathers memory references in loops. */
1538
1539 static void
1540 analyze_memory_references (void)
1541 {
1542 gimple_stmt_iterator bsi;
1543 basic_block bb, *bbs;
1544 struct loop *loop, *outer;
1545 unsigned i, n;
1546
1547 #if 0
1548 /* Initialize bb_loop_postorder with a mapping from loop->num to
1549 its postorder index. */
1550 i = 0;
1551 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
1552 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1553 bb_loop_postorder[loop->num] = i++;
1554 #endif
1555
1556 /* Collect all basic-blocks in loops and sort them after their
1557 loops postorder. */
1558 i = 0;
1559 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1560 FOR_EACH_BB_FN (bb, cfun)
1561 if (bb->loop_father != current_loops->tree_root)
1562 bbs[i++] = bb;
1563 n = i;
1564 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1565
1566 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1567 That results in better locality for all the bitmaps. */
1568 for (i = 0; i < n; ++i)
1569 {
1570 basic_block bb = bbs[i];
1571 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1572 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1573 }
1574
1575 /* Sort the location list of gathered memory references after their
1576 loop postorder number. */
1577 mem_ref *ref;
1578 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1579 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1580
1581 free (bbs);
1582 // free (bb_loop_postorder);
1583
1584 /* Propagate the information about accessed memory references up
1585 the loop hierarchy. */
1586 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1587 {
1588 /* Finalize the overall touched references (including subloops). */
1589 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1590 &memory_accesses.refs_stored_in_loop[loop->num]);
1591
1592 /* Propagate the information about accessed memory references up
1593 the loop hierarchy. */
1594 outer = loop_outer (loop);
1595 if (outer == current_loops->tree_root)
1596 continue;
1597
1598 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1599 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1600 }
1601 }
1602
1603 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1604 tree_to_aff_combination_expand. */
1605
1606 static bool
1607 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1608 struct pointer_map_t **ttae_cache)
1609 {
1610 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1611 object and their offset differ in such a way that the locations cannot
1612 overlap, then they cannot alias. */
1613 double_int size1, size2;
1614 aff_tree off1, off2;
1615
1616 /* Perform basic offset and type-based disambiguation. */
1617 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1618 return false;
1619
1620 /* The expansion of addresses may be a bit expensive, thus we only do
1621 the check at -O2 and higher optimization levels. */
1622 if (optimize < 2)
1623 return true;
1624
1625 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1626 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1627 aff_combination_expand (&off1, ttae_cache);
1628 aff_combination_expand (&off2, ttae_cache);
1629 aff_combination_scale (&off1, double_int_minus_one);
1630 aff_combination_add (&off2, &off1);
1631
1632 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1633 return false;
1634
1635 return true;
1636 }
1637
1638 /* Compare function for bsearch searching for reference locations
1639 in a loop. */
1640
1641 static int
1642 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1643 {
1644 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1645 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1646 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1647 if (loop->num == loc_loop->num
1648 || flow_loop_nested_p (loop, loc_loop))
1649 return 0;
1650 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1651 ? -1 : 1);
1652 }
1653
1654 /* Iterates over all locations of REF in LOOP and its subloops calling
1655 fn.operator() with the location as argument. When that operator
1656 returns true the iteration is stopped and true is returned.
1657 Otherwise false is returned. */
1658
1659 template <typename FN>
1660 static bool
1661 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1662 {
1663 unsigned i;
1664 mem_ref_loc_p loc;
1665
1666 /* Search for the cluster of locs in the accesses_in_loop vector
1667 which is sorted after postorder index of the loop father. */
1668 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1669 if (!loc)
1670 return false;
1671
1672 /* We have found one location inside loop or its sub-loops. Iterate
1673 both forward and backward to cover the whole cluster. */
1674 i = loc - ref->accesses_in_loop.address ();
1675 while (i > 0)
1676 {
1677 --i;
1678 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1679 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1680 break;
1681 if (fn (l))
1682 return true;
1683 }
1684 for (i = loc - ref->accesses_in_loop.address ();
1685 i < ref->accesses_in_loop.length (); ++i)
1686 {
1687 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1688 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1689 break;
1690 if (fn (l))
1691 return true;
1692 }
1693
1694 return false;
1695 }
1696
1697 /* Rewrites location LOC by TMP_VAR. */
1698
1699 struct rewrite_mem_ref_loc
1700 {
1701 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1702 bool operator () (mem_ref_loc_p loc);
1703 tree tmp_var;
1704 };
1705
1706 bool
1707 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1708 {
1709 *loc->ref = tmp_var;
1710 update_stmt (loc->stmt);
1711 return false;
1712 }
1713
1714 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1715
1716 static void
1717 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1718 {
1719 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1720 }
1721
1722 /* Stores the first reference location in LOCP. */
1723
1724 struct first_mem_ref_loc_1
1725 {
1726 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1727 bool operator () (mem_ref_loc_p loc);
1728 mem_ref_loc_p *locp;
1729 };
1730
1731 bool
1732 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1733 {
1734 *locp = loc;
1735 return true;
1736 }
1737
1738 /* Returns the first reference location to REF in LOOP. */
1739
1740 static mem_ref_loc_p
1741 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1742 {
1743 mem_ref_loc_p locp = NULL;
1744 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1745 return locp;
1746 }
1747
1748 struct prev_flag_edges {
1749 /* Edge to insert new flag comparison code. */
1750 edge append_cond_position;
1751
1752 /* Edge for fall through from previous flag comparison. */
1753 edge last_cond_fallthru;
1754 };
1755
1756 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1757 MEM along edge EX.
1758
1759 The store is only done if MEM has changed. We do this so no
1760 changes to MEM occur on code paths that did not originally store
1761 into it.
1762
1763 The common case for execute_sm will transform:
1764
1765 for (...) {
1766 if (foo)
1767 stuff;
1768 else
1769 MEM = TMP_VAR;
1770 }
1771
1772 into:
1773
1774 lsm = MEM;
1775 for (...) {
1776 if (foo)
1777 stuff;
1778 else
1779 lsm = TMP_VAR;
1780 }
1781 MEM = lsm;
1782
1783 This function will generate:
1784
1785 lsm = MEM;
1786
1787 lsm_flag = false;
1788 ...
1789 for (...) {
1790 if (foo)
1791 stuff;
1792 else {
1793 lsm = TMP_VAR;
1794 lsm_flag = true;
1795 }
1796 }
1797 if (lsm_flag) <--
1798 MEM = lsm; <--
1799 */
1800
1801 static void
1802 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1803 {
1804 basic_block new_bb, then_bb, old_dest;
1805 bool loop_has_only_one_exit;
1806 edge then_old_edge, orig_ex = ex;
1807 gimple_stmt_iterator gsi;
1808 gimple stmt;
1809 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1810
1811 /* ?? Insert store after previous store if applicable. See note
1812 below. */
1813 if (prev_edges)
1814 ex = prev_edges->append_cond_position;
1815
1816 loop_has_only_one_exit = single_pred_p (ex->dest);
1817
1818 if (loop_has_only_one_exit)
1819 ex = split_block_after_labels (ex->dest);
1820
1821 old_dest = ex->dest;
1822 new_bb = split_edge (ex);
1823 then_bb = create_empty_bb (new_bb);
1824 if (current_loops && new_bb->loop_father)
1825 add_bb_to_loop (then_bb, new_bb->loop_father);
1826
1827 gsi = gsi_start_bb (new_bb);
1828 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1829 NULL_TREE, NULL_TREE);
1830 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1831
1832 gsi = gsi_start_bb (then_bb);
1833 /* Insert actual store. */
1834 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1835 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1836
1837 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
1838 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
1839 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
1840
1841 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1842
1843 if (prev_edges)
1844 {
1845 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1846 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1847 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1848 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1849 recompute_dominator (CDI_DOMINATORS, old_dest));
1850 }
1851
1852 /* ?? Because stores may alias, they must happen in the exact
1853 sequence they originally happened. Save the position right after
1854 the (_lsm) store we just created so we can continue appending after
1855 it and maintain the original order. */
1856 {
1857 struct prev_flag_edges *p;
1858
1859 if (orig_ex->aux)
1860 orig_ex->aux = NULL;
1861 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1862 p = (struct prev_flag_edges *) orig_ex->aux;
1863 p->append_cond_position = then_old_edge;
1864 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1865 orig_ex->aux = (void *) p;
1866 }
1867
1868 if (!loop_has_only_one_exit)
1869 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1870 {
1871 gimple phi = gsi_stmt (gsi);
1872 unsigned i;
1873
1874 for (i = 0; i < gimple_phi_num_args (phi); i++)
1875 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1876 {
1877 tree arg = gimple_phi_arg_def (phi, i);
1878 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1879 update_stmt (phi);
1880 }
1881 }
1882 /* Remove the original fall through edge. This was the
1883 single_succ_edge (new_bb). */
1884 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1885 }
1886
1887 /* When REF is set on the location, set flag indicating the store. */
1888
1889 struct sm_set_flag_if_changed
1890 {
1891 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1892 bool operator () (mem_ref_loc_p loc);
1893 tree flag;
1894 };
1895
1896 bool
1897 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1898 {
1899 /* Only set the flag for writes. */
1900 if (is_gimple_assign (loc->stmt)
1901 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1902 {
1903 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1904 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1905 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1906 }
1907 return false;
1908 }
1909
1910 /* Helper function for execute_sm. On every location where REF is
1911 set, set an appropriate flag indicating the store. */
1912
1913 static tree
1914 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1915 {
1916 tree flag;
1917 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1918 flag = create_tmp_reg (boolean_type_node, str);
1919 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1920 return flag;
1921 }
1922
1923 /* Executes store motion of memory reference REF from LOOP.
1924 Exits from the LOOP are stored in EXITS. The initialization of the
1925 temporary variable is put to the preheader of the loop, and assignments
1926 to the reference from the temporary variable are emitted to exits. */
1927
1928 static void
1929 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1930 {
1931 tree tmp_var, store_flag = NULL_TREE;
1932 unsigned i;
1933 gimple load;
1934 struct fmt_data fmt_data;
1935 edge ex;
1936 struct lim_aux_data *lim_data;
1937 bool multi_threaded_model_p = false;
1938 gimple_stmt_iterator gsi;
1939
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1941 {
1942 fprintf (dump_file, "Executing store motion of ");
1943 print_generic_expr (dump_file, ref->mem.ref, 0);
1944 fprintf (dump_file, " from loop %d\n", loop->num);
1945 }
1946
1947 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1948 get_lsm_tmp_name (ref->mem.ref, ~0));
1949
1950 fmt_data.loop = loop;
1951 fmt_data.orig_loop = loop;
1952 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1953
1954 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1955 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1956 multi_threaded_model_p = true;
1957
1958 if (multi_threaded_model_p)
1959 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1960
1961 rewrite_mem_refs (loop, ref, tmp_var);
1962
1963 /* Emit the load code on a random exit edge or into the latch if
1964 the loop does not exit, so that we are sure it will be processed
1965 by move_computations after all dependencies. */
1966 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1967
1968 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1969 load altogether, since the store is predicated by a flag. We
1970 could, do the load only if it was originally in the loop. */
1971 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1972 lim_data = init_lim_data (load);
1973 lim_data->max_loop = loop;
1974 lim_data->tgt_loop = loop;
1975 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1976
1977 if (multi_threaded_model_p)
1978 {
1979 load = gimple_build_assign (store_flag, boolean_false_node);
1980 lim_data = init_lim_data (load);
1981 lim_data->max_loop = loop;
1982 lim_data->tgt_loop = loop;
1983 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1984 }
1985
1986 /* Sink the store to every exit from the loop. */
1987 FOR_EACH_VEC_ELT (exits, i, ex)
1988 if (!multi_threaded_model_p)
1989 {
1990 gimple store;
1991 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
1992 gsi_insert_on_edge (ex, store);
1993 }
1994 else
1995 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
1996 }
1997
1998 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1999 edges of the LOOP. */
2000
2001 static void
2002 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2003 vec<edge> exits)
2004 {
2005 mem_ref_p ref;
2006 unsigned i;
2007 bitmap_iterator bi;
2008
2009 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2010 {
2011 ref = memory_accesses.refs_list[i];
2012 execute_sm (loop, exits, ref);
2013 }
2014 }
2015
2016 struct ref_always_accessed
2017 {
2018 ref_always_accessed (struct loop *loop_, bool stored_p_)
2019 : loop (loop_), stored_p (stored_p_) {}
2020 bool operator () (mem_ref_loc_p loc);
2021 struct loop *loop;
2022 bool stored_p;
2023 };
2024
2025 bool
2026 ref_always_accessed::operator () (mem_ref_loc_p loc)
2027 {
2028 struct loop *must_exec;
2029
2030 if (!get_lim_data (loc->stmt))
2031 return false;
2032
2033 /* If we require an always executed store make sure the statement
2034 stores to the reference. */
2035 if (stored_p)
2036 {
2037 tree lhs = gimple_get_lhs (loc->stmt);
2038 if (!lhs
2039 || lhs != *loc->ref)
2040 return false;
2041 }
2042
2043 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2044 if (!must_exec)
2045 return false;
2046
2047 if (must_exec == loop
2048 || flow_loop_nested_p (must_exec, loop))
2049 return true;
2050
2051 return false;
2052 }
2053
2054 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2055 make sure REF is always stored to in LOOP. */
2056
2057 static bool
2058 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2059 {
2060 return for_all_locs_in_loop (loop, ref,
2061 ref_always_accessed (loop, stored_p));
2062 }
2063
2064 /* Returns true if REF1 and REF2 are independent. */
2065
2066 static bool
2067 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2068 {
2069 if (ref1 == ref2)
2070 return true;
2071
2072 if (dump_file && (dump_flags & TDF_DETAILS))
2073 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2074 ref1->id, ref2->id);
2075
2076 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2077 {
2078 if (dump_file && (dump_flags & TDF_DETAILS))
2079 fprintf (dump_file, "dependent.\n");
2080 return false;
2081 }
2082 else
2083 {
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file, "independent.\n");
2086 return true;
2087 }
2088 }
2089
2090 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2091 and its super-loops. */
2092
2093 static void
2094 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2095 {
2096 /* We can propagate dependent-in-loop bits up the loop
2097 hierarchy to all outer loops. */
2098 while (loop != current_loops->tree_root
2099 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2100 loop = loop_outer (loop);
2101 }
2102
2103 /* Returns true if REF is independent on all other memory references in
2104 LOOP. */
2105
2106 static bool
2107 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2108 {
2109 bitmap refs_to_check;
2110 unsigned i;
2111 bitmap_iterator bi;
2112 mem_ref_p aref;
2113
2114 if (stored_p)
2115 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2116 else
2117 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2118
2119 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2120 return false;
2121
2122 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2123 {
2124 aref = memory_accesses.refs_list[i];
2125 if (!refs_independent_p (ref, aref))
2126 return false;
2127 }
2128
2129 return true;
2130 }
2131
2132 /* Returns true if REF is independent on all other memory references in
2133 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2134
2135 static bool
2136 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2137 {
2138 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2139
2140 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2141 return true;
2142 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2143 return false;
2144
2145 struct loop *inner = loop->inner;
2146 while (inner)
2147 {
2148 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2149 return false;
2150 inner = inner->next;
2151 }
2152
2153 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2154
2155 if (dump_file && (dump_flags & TDF_DETAILS))
2156 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2157 ref->id, loop->num, indep_p ? "independent" : "dependent");
2158
2159 /* Record the computed result in the cache. */
2160 if (indep_p)
2161 {
2162 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2163 && stored_p)
2164 {
2165 /* If it's independend against all refs then it's independent
2166 against stores, too. */
2167 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2168 }
2169 }
2170 else
2171 {
2172 record_dep_loop (loop, ref, stored_p);
2173 if (!stored_p)
2174 {
2175 /* If it's dependent against stores it's dependent against
2176 all refs, too. */
2177 record_dep_loop (loop, ref, true);
2178 }
2179 }
2180
2181 return indep_p;
2182 }
2183
2184 /* Returns true if REF is independent on all other memory references in
2185 LOOP. */
2186
2187 static bool
2188 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2189 {
2190 gcc_checking_assert (MEM_ANALYZABLE (ref));
2191
2192 return ref_indep_loop_p_2 (loop, ref, false);
2193 }
2194
2195 /* Returns true if we can perform store motion of REF from LOOP. */
2196
2197 static bool
2198 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2199 {
2200 tree base;
2201
2202 /* Can't hoist unanalyzable refs. */
2203 if (!MEM_ANALYZABLE (ref))
2204 return false;
2205
2206 /* It should be movable. */
2207 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2208 || TREE_THIS_VOLATILE (ref->mem.ref)
2209 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2210 return false;
2211
2212 /* If it can throw fail, we do not properly update EH info. */
2213 if (tree_could_throw_p (ref->mem.ref))
2214 return false;
2215
2216 /* If it can trap, it must be always executed in LOOP.
2217 Readonly memory locations may trap when storing to them, but
2218 tree_could_trap_p is a predicate for rvalues, so check that
2219 explicitly. */
2220 base = get_base_address (ref->mem.ref);
2221 if ((tree_could_trap_p (ref->mem.ref)
2222 || (DECL_P (base) && TREE_READONLY (base)))
2223 && !ref_always_accessed_p (loop, ref, true))
2224 return false;
2225
2226 /* And it must be independent on all other memory references
2227 in LOOP. */
2228 if (!ref_indep_loop_p (loop, ref))
2229 return false;
2230
2231 return true;
2232 }
2233
2234 /* Marks the references in LOOP for that store motion should be performed
2235 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2236 motion was performed in one of the outer loops. */
2237
2238 static void
2239 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2240 {
2241 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2242 unsigned i;
2243 bitmap_iterator bi;
2244 mem_ref_p ref;
2245
2246 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2247 {
2248 ref = memory_accesses.refs_list[i];
2249 if (can_sm_ref_p (loop, ref))
2250 bitmap_set_bit (refs_to_sm, i);
2251 }
2252 }
2253
2254 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2255 for a store motion optimization (i.e. whether we can insert statement
2256 on its exits). */
2257
2258 static bool
2259 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2260 vec<edge> exits)
2261 {
2262 unsigned i;
2263 edge ex;
2264
2265 FOR_EACH_VEC_ELT (exits, i, ex)
2266 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2267 return false;
2268
2269 return true;
2270 }
2271
2272 /* Try to perform store motion for all memory references modified inside
2273 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2274 store motion was executed in one of the outer loops. */
2275
2276 static void
2277 store_motion_loop (struct loop *loop, bitmap sm_executed)
2278 {
2279 vec<edge> exits = get_loop_exit_edges (loop);
2280 struct loop *subloop;
2281 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2282
2283 if (loop_suitable_for_sm (loop, exits))
2284 {
2285 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2286 hoist_memory_references (loop, sm_in_loop, exits);
2287 }
2288 exits.release ();
2289
2290 bitmap_ior_into (sm_executed, sm_in_loop);
2291 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2292 store_motion_loop (subloop, sm_executed);
2293 bitmap_and_compl_into (sm_executed, sm_in_loop);
2294 BITMAP_FREE (sm_in_loop);
2295 }
2296
2297 /* Try to perform store motion for all memory references modified inside
2298 loops. */
2299
2300 static void
2301 store_motion (void)
2302 {
2303 struct loop *loop;
2304 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2305
2306 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2307 store_motion_loop (loop, sm_executed);
2308
2309 BITMAP_FREE (sm_executed);
2310 gsi_commit_edge_inserts ();
2311 }
2312
2313 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2314 for each such basic block bb records the outermost loop for that execution
2315 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2316 blocks that contain a nonpure call. */
2317
2318 static void
2319 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2320 {
2321 basic_block bb = NULL, *bbs, last = NULL;
2322 unsigned i;
2323 edge e;
2324 struct loop *inn_loop = loop;
2325
2326 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2327 {
2328 bbs = get_loop_body_in_dom_order (loop);
2329
2330 for (i = 0; i < loop->num_nodes; i++)
2331 {
2332 edge_iterator ei;
2333 bb = bbs[i];
2334
2335 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2336 last = bb;
2337
2338 if (bitmap_bit_p (contains_call, bb->index))
2339 break;
2340
2341 FOR_EACH_EDGE (e, ei, bb->succs)
2342 if (!flow_bb_inside_loop_p (loop, e->dest))
2343 break;
2344 if (e)
2345 break;
2346
2347 /* A loop might be infinite (TODO use simple loop analysis
2348 to disprove this if possible). */
2349 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2350 break;
2351
2352 if (!flow_bb_inside_loop_p (inn_loop, bb))
2353 break;
2354
2355 if (bb->loop_father->header == bb)
2356 {
2357 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2358 break;
2359
2360 /* In a loop that is always entered we may proceed anyway.
2361 But record that we entered it and stop once we leave it. */
2362 inn_loop = bb->loop_father;
2363 }
2364 }
2365
2366 while (1)
2367 {
2368 SET_ALWAYS_EXECUTED_IN (last, loop);
2369 if (last == loop->header)
2370 break;
2371 last = get_immediate_dominator (CDI_DOMINATORS, last);
2372 }
2373
2374 free (bbs);
2375 }
2376
2377 for (loop = loop->inner; loop; loop = loop->next)
2378 fill_always_executed_in_1 (loop, contains_call);
2379 }
2380
2381 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2382 for each such basic block bb records the outermost loop for that execution
2383 of its header implies execution of bb. */
2384
2385 static void
2386 fill_always_executed_in (void)
2387 {
2388 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2389 basic_block bb;
2390 struct loop *loop;
2391
2392 bitmap_clear (contains_call);
2393 FOR_EACH_BB_FN (bb, cfun)
2394 {
2395 gimple_stmt_iterator gsi;
2396 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2397 {
2398 if (nonpure_call_p (gsi_stmt (gsi)))
2399 break;
2400 }
2401
2402 if (!gsi_end_p (gsi))
2403 bitmap_set_bit (contains_call, bb->index);
2404 }
2405
2406 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2407 fill_always_executed_in_1 (loop, contains_call);
2408
2409 sbitmap_free (contains_call);
2410 }
2411
2412
2413 /* Compute the global information needed by the loop invariant motion pass. */
2414
2415 static void
2416 tree_ssa_lim_initialize (void)
2417 {
2418 struct loop *loop;
2419 unsigned i;
2420
2421 bitmap_obstack_initialize (&lim_bitmap_obstack);
2422 gcc_obstack_init (&mem_ref_obstack);
2423 lim_aux_data_map = pointer_map_create ();
2424
2425 if (flag_tm)
2426 compute_transaction_bits ();
2427
2428 alloc_aux_for_edges (0);
2429
2430 memory_accesses.refs.create (100);
2431 memory_accesses.refs_list.create (100);
2432 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2433 memory_accesses.refs_list.quick_push
2434 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2435
2436 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2437 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2438 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2439 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2440 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2441 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2442
2443 for (i = 0; i < number_of_loops (cfun); i++)
2444 {
2445 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2446 &lim_bitmap_obstack);
2447 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2448 &lim_bitmap_obstack);
2449 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2450 &lim_bitmap_obstack);
2451 }
2452
2453 memory_accesses.ttae_cache = NULL;
2454
2455 /* Initialize bb_loop_postorder with a mapping from loop->num to
2456 its postorder index. */
2457 i = 0;
2458 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2459 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2460 bb_loop_postorder[loop->num] = i++;
2461 }
2462
2463 /* Cleans up after the invariant motion pass. */
2464
2465 static void
2466 tree_ssa_lim_finalize (void)
2467 {
2468 basic_block bb;
2469 unsigned i;
2470 mem_ref_p ref;
2471
2472 free_aux_for_edges ();
2473
2474 FOR_EACH_BB_FN (bb, cfun)
2475 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2476
2477 bitmap_obstack_release (&lim_bitmap_obstack);
2478 pointer_map_destroy (lim_aux_data_map);
2479
2480 memory_accesses.refs.dispose ();
2481
2482 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2483 memref_free (ref);
2484 memory_accesses.refs_list.release ();
2485 obstack_free (&mem_ref_obstack, NULL);
2486
2487 memory_accesses.refs_in_loop.release ();
2488 memory_accesses.refs_stored_in_loop.release ();
2489 memory_accesses.all_refs_stored_in_loop.release ();
2490
2491 if (memory_accesses.ttae_cache)
2492 free_affine_expand_cache (&memory_accesses.ttae_cache);
2493
2494 free (bb_loop_postorder);
2495 }
2496
2497 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2498 i.e. those that are likely to be win regardless of the register pressure. */
2499
2500 unsigned int
2501 tree_ssa_lim (void)
2502 {
2503 unsigned int todo;
2504
2505 tree_ssa_lim_initialize ();
2506
2507 /* Gathers information about memory accesses in the loops. */
2508 analyze_memory_references ();
2509
2510 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2511 fill_always_executed_in ();
2512
2513 /* For each statement determine the outermost loop in that it is
2514 invariant and cost for computing the invariant. */
2515 invariantness_dom_walker (CDI_DOMINATORS)
2516 .walk (cfun->cfg->x_entry_block_ptr);
2517
2518 /* Execute store motion. Force the necessary invariants to be moved
2519 out of the loops as well. */
2520 store_motion ();
2521
2522 /* Move the expressions that are expensive enough. */
2523 todo = move_computations ();
2524
2525 tree_ssa_lim_finalize ();
2526
2527 return todo;
2528 }
2529
2530 /* Loop invariant motion pass. */
2531
2532 static unsigned int
2533 tree_ssa_loop_im (void)
2534 {
2535 if (number_of_loops (cfun) <= 1)
2536 return 0;
2537
2538 return tree_ssa_lim ();
2539 }
2540
2541 static bool
2542 gate_tree_ssa_loop_im (void)
2543 {
2544 return flag_tree_loop_im != 0;
2545 }
2546
2547 namespace {
2548
2549 const pass_data pass_data_lim =
2550 {
2551 GIMPLE_PASS, /* type */
2552 "lim", /* name */
2553 OPTGROUP_LOOP, /* optinfo_flags */
2554 true, /* has_gate */
2555 true, /* has_execute */
2556 TV_LIM, /* tv_id */
2557 PROP_cfg, /* properties_required */
2558 0, /* properties_provided */
2559 0, /* properties_destroyed */
2560 0, /* todo_flags_start */
2561 0, /* todo_flags_finish */
2562 };
2563
2564 class pass_lim : public gimple_opt_pass
2565 {
2566 public:
2567 pass_lim (gcc::context *ctxt)
2568 : gimple_opt_pass (pass_data_lim, ctxt)
2569 {}
2570
2571 /* opt_pass methods: */
2572 opt_pass * clone () { return new pass_lim (m_ctxt); }
2573 bool gate () { return gate_tree_ssa_loop_im (); }
2574 unsigned int execute () { return tree_ssa_loop_im (); }
2575
2576 }; // class pass_lim
2577
2578 } // anon namespace
2579
2580 gimple_opt_pass *
2581 make_pass_lim (gcc::context *ctxt)
2582 {
2583 return new pass_lim (ctxt);
2584 }
2585
2586