re PR middle-end/54146 (Very slow compile with attribute((flatten)))
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "tree-flow.h"
30 #include "cfgloop.h"
31 #include "domwalk.h"
32 #include "params.h"
33 #include "tree-pass.h"
34 #include "flags.h"
35 #include "hashtab.h"
36 #include "tree-affine.h"
37 #include "pointer-set.h"
38 #include "tree-ssa-propagate.h"
39
40 /* TODO: Support for predicated code motion. I.e.
41
42 while (1)
43 {
44 if (cond)
45 {
46 a = inv;
47 something;
48 }
49 }
50
51 Where COND and INV are invariants, but evaluating INV may trap or be
52 invalid from some other reason if !COND. This may be transformed to
53
54 if (cond)
55 a = inv;
56 while (1)
57 {
58 if (cond)
59 something;
60 } */
61
62 /* A type for the list of statements that have to be moved in order to be able
63 to hoist an invariant computation. */
64
65 struct depend
66 {
67 gimple stmt;
68 struct depend *next;
69 };
70
71 /* The auxiliary data kept for each statement. */
72
73 struct lim_aux_data
74 {
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
77
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
80
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
85
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
88
89 struct depend *depends; /* List of statements that must be also hoisted
90 out of the loop when this statement is
91 hoisted; i.e. those that define the operands
92 of the statement and are inside of the
93 MAX_LOOP loop. */
94 };
95
96 /* Maps statements to their lim_aux_data. */
97
98 static struct pointer_map_t *lim_aux_data_map;
99
100 /* Description of a memory reference location. */
101
102 typedef struct mem_ref_loc
103 {
104 tree *ref; /* The reference itself. */
105 gimple stmt; /* The statement in that it occurs. */
106 } *mem_ref_loc_p;
107
108 DEF_VEC_P(mem_ref_loc_p);
109 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
110
111 /* The list of memory reference locations in a loop. */
112
113 typedef struct mem_ref_locs
114 {
115 VEC (mem_ref_loc_p, heap) *locs;
116 } *mem_ref_locs_p;
117
118 DEF_VEC_P(mem_ref_locs_p);
119 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
120
121 /* Description of a memory reference. */
122
123 typedef struct mem_ref
124 {
125 tree mem; /* The memory itself. */
126 unsigned id; /* ID assigned to the memory reference
127 (its index in memory_accesses.refs_list) */
128 hashval_t hash; /* Its hash value. */
129 bitmap stored; /* The set of loops in that this memory location
130 is stored to. */
131 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
132 /* The locations of the accesses. Vector
133 indexed by the loop number. */
134
135 /* The following sets are computed on demand. We keep both set and
136 its complement, so that we know whether the information was
137 already computed or not. */
138 bitmap indep_loop; /* The set of loops in that the memory
139 reference is independent, meaning:
140 If it is stored in the loop, this store
141 is independent on all other loads and
142 stores.
143 If it is only loaded, then it is independent
144 on all stores in the loop. */
145 bitmap dep_loop; /* The complement of INDEP_LOOP. */
146
147 bitmap indep_ref; /* The set of memory references on that
148 this reference is independent. */
149 bitmap dep_ref; /* The complement of INDEP_REF. */
150 } *mem_ref_p;
151
152 DEF_VEC_P(mem_ref_p);
153 DEF_VEC_ALLOC_P(mem_ref_p, heap);
154
155 DEF_VEC_P(bitmap);
156 DEF_VEC_ALLOC_P(bitmap, heap);
157
158 DEF_VEC_P(htab_t);
159 DEF_VEC_ALLOC_P(htab_t, heap);
160
161 /* Description of memory accesses in loops. */
162
163 static struct
164 {
165 /* The hash table of memory references accessed in loops. */
166 htab_t refs;
167
168 /* The list of memory references. */
169 VEC (mem_ref_p, heap) *refs_list;
170
171 /* The set of memory references accessed in each loop. */
172 VEC (bitmap, heap) *refs_in_loop;
173
174 /* The set of memory references accessed in each loop, including
175 subloops. */
176 VEC (bitmap, heap) *all_refs_in_loop;
177
178 /* The set of memory references stored in each loop, including
179 subloops. */
180 VEC (bitmap, heap) *all_refs_stored_in_loop;
181
182 /* Cache for expanding memory addresses. */
183 struct pointer_map_t *ttae_cache;
184 } memory_accesses;
185
186 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
187
188 /* Minimum cost of an expensive expression. */
189 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
190
191 /* The outermost loop for which execution of the header guarantees that the
192 block will be executed. */
193 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
194 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
195
196 /* Whether the reference was analyzable. */
197 #define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
198
199 static struct lim_aux_data *
200 init_lim_data (gimple stmt)
201 {
202 void **p = pointer_map_insert (lim_aux_data_map, stmt);
203
204 *p = XCNEW (struct lim_aux_data);
205 return (struct lim_aux_data *) *p;
206 }
207
208 static struct lim_aux_data *
209 get_lim_data (gimple stmt)
210 {
211 void **p = pointer_map_contains (lim_aux_data_map, stmt);
212 if (!p)
213 return NULL;
214
215 return (struct lim_aux_data *) *p;
216 }
217
218 /* Releases the memory occupied by DATA. */
219
220 static void
221 free_lim_aux_data (struct lim_aux_data *data)
222 {
223 struct depend *dep, *next;
224
225 for (dep = data->depends; dep; dep = next)
226 {
227 next = dep->next;
228 free (dep);
229 }
230 free (data);
231 }
232
233 static void
234 clear_lim_data (gimple stmt)
235 {
236 void **p = pointer_map_contains (lim_aux_data_map, stmt);
237 if (!p)
238 return;
239
240 free_lim_aux_data ((struct lim_aux_data *) *p);
241 *p = NULL;
242 }
243
244 /* Calls CBCK for each index in memory reference ADDR_P. There are two
245 kinds situations handled; in each of these cases, the memory reference
246 and DATA are passed to the callback:
247
248 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
249 pass the pointer to the index to the callback.
250
251 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
252 pointer to addr to the callback.
253
254 If the callback returns false, the whole search stops and false is returned.
255 Otherwise the function returns true after traversing through the whole
256 reference *ADDR_P. */
257
258 bool
259 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
260 {
261 tree *nxt, *idx;
262
263 for (; ; addr_p = nxt)
264 {
265 switch (TREE_CODE (*addr_p))
266 {
267 case SSA_NAME:
268 return cbck (*addr_p, addr_p, data);
269
270 case MEM_REF:
271 nxt = &TREE_OPERAND (*addr_p, 0);
272 return cbck (*addr_p, nxt, data);
273
274 case BIT_FIELD_REF:
275 case VIEW_CONVERT_EXPR:
276 case REALPART_EXPR:
277 case IMAGPART_EXPR:
278 nxt = &TREE_OPERAND (*addr_p, 0);
279 break;
280
281 case COMPONENT_REF:
282 /* If the component has varying offset, it behaves like index
283 as well. */
284 idx = &TREE_OPERAND (*addr_p, 2);
285 if (*idx
286 && !cbck (*addr_p, idx, data))
287 return false;
288
289 nxt = &TREE_OPERAND (*addr_p, 0);
290 break;
291
292 case ARRAY_REF:
293 case ARRAY_RANGE_REF:
294 nxt = &TREE_OPERAND (*addr_p, 0);
295 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
296 return false;
297 break;
298
299 case VAR_DECL:
300 case PARM_DECL:
301 case STRING_CST:
302 case RESULT_DECL:
303 case VECTOR_CST:
304 case COMPLEX_CST:
305 case INTEGER_CST:
306 case REAL_CST:
307 case FIXED_CST:
308 case CONSTRUCTOR:
309 return true;
310
311 case ADDR_EXPR:
312 gcc_assert (is_gimple_min_invariant (*addr_p));
313 return true;
314
315 case TARGET_MEM_REF:
316 idx = &TMR_BASE (*addr_p);
317 if (*idx
318 && !cbck (*addr_p, idx, data))
319 return false;
320 idx = &TMR_INDEX (*addr_p);
321 if (*idx
322 && !cbck (*addr_p, idx, data))
323 return false;
324 idx = &TMR_INDEX2 (*addr_p);
325 if (*idx
326 && !cbck (*addr_p, idx, data))
327 return false;
328 return true;
329
330 default:
331 gcc_unreachable ();
332 }
333 }
334 }
335
336 /* If it is possible to hoist the statement STMT unconditionally,
337 returns MOVE_POSSIBLE.
338 If it is possible to hoist the statement STMT, but we must avoid making
339 it executed if it would not be executed in the original program (e.g.
340 because it may trap), return MOVE_PRESERVE_EXECUTION.
341 Otherwise return MOVE_IMPOSSIBLE. */
342
343 enum move_pos
344 movement_possibility (gimple stmt)
345 {
346 tree lhs;
347 enum move_pos ret = MOVE_POSSIBLE;
348
349 if (flag_unswitch_loops
350 && gimple_code (stmt) == GIMPLE_COND)
351 {
352 /* If we perform unswitching, force the operands of the invariant
353 condition to be moved out of the loop. */
354 return MOVE_POSSIBLE;
355 }
356
357 if (gimple_code (stmt) == GIMPLE_PHI
358 && gimple_phi_num_args (stmt) <= 2
359 && !virtual_operand_p (gimple_phi_result (stmt))
360 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
361 return MOVE_POSSIBLE;
362
363 if (gimple_get_lhs (stmt) == NULL_TREE)
364 return MOVE_IMPOSSIBLE;
365
366 if (gimple_vdef (stmt))
367 return MOVE_IMPOSSIBLE;
368
369 if (stmt_ends_bb_p (stmt)
370 || gimple_has_volatile_ops (stmt)
371 || gimple_has_side_effects (stmt)
372 || stmt_could_throw_p (stmt))
373 return MOVE_IMPOSSIBLE;
374
375 if (is_gimple_call (stmt))
376 {
377 /* While pure or const call is guaranteed to have no side effects, we
378 cannot move it arbitrarily. Consider code like
379
380 char *s = something ();
381
382 while (1)
383 {
384 if (s)
385 t = strlen (s);
386 else
387 t = 0;
388 }
389
390 Here the strlen call cannot be moved out of the loop, even though
391 s is invariant. In addition to possibly creating a call with
392 invalid arguments, moving out a function call that is not executed
393 may cause performance regressions in case the call is costly and
394 not executed at all. */
395 ret = MOVE_PRESERVE_EXECUTION;
396 lhs = gimple_call_lhs (stmt);
397 }
398 else if (is_gimple_assign (stmt))
399 lhs = gimple_assign_lhs (stmt);
400 else
401 return MOVE_IMPOSSIBLE;
402
403 if (TREE_CODE (lhs) == SSA_NAME
404 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
405 return MOVE_IMPOSSIBLE;
406
407 if (TREE_CODE (lhs) != SSA_NAME
408 || gimple_could_trap_p (stmt))
409 return MOVE_PRESERVE_EXECUTION;
410
411 /* Non local loads in a transaction cannot be hoisted out. Well,
412 unless the load happens on every path out of the loop, but we
413 don't take this into account yet. */
414 if (flag_tm
415 && gimple_in_transaction (stmt)
416 && gimple_assign_single_p (stmt))
417 {
418 tree rhs = gimple_assign_rhs1 (stmt);
419 if (DECL_P (rhs) && is_global_var (rhs))
420 {
421 if (dump_file)
422 {
423 fprintf (dump_file, "Cannot hoist conditional load of ");
424 print_generic_expr (dump_file, rhs, TDF_SLIM);
425 fprintf (dump_file, " because it is in a transaction.\n");
426 }
427 return MOVE_IMPOSSIBLE;
428 }
429 }
430
431 return ret;
432 }
433
434 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
435 loop to that we could move the expression using DEF if it did not have
436 other operands, i.e. the outermost loop enclosing LOOP in that the value
437 of DEF is invariant. */
438
439 static struct loop *
440 outermost_invariant_loop (tree def, struct loop *loop)
441 {
442 gimple def_stmt;
443 basic_block def_bb;
444 struct loop *max_loop;
445 struct lim_aux_data *lim_data;
446
447 if (!def)
448 return superloop_at_depth (loop, 1);
449
450 if (TREE_CODE (def) != SSA_NAME)
451 {
452 gcc_assert (is_gimple_min_invariant (def));
453 return superloop_at_depth (loop, 1);
454 }
455
456 def_stmt = SSA_NAME_DEF_STMT (def);
457 def_bb = gimple_bb (def_stmt);
458 if (!def_bb)
459 return superloop_at_depth (loop, 1);
460
461 max_loop = find_common_loop (loop, def_bb->loop_father);
462
463 lim_data = get_lim_data (def_stmt);
464 if (lim_data != NULL && lim_data->max_loop != NULL)
465 max_loop = find_common_loop (max_loop,
466 loop_outer (lim_data->max_loop));
467 if (max_loop == loop)
468 return NULL;
469 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
470
471 return max_loop;
472 }
473
474 /* DATA is a structure containing information associated with a statement
475 inside LOOP. DEF is one of the operands of this statement.
476
477 Find the outermost loop enclosing LOOP in that value of DEF is invariant
478 and record this in DATA->max_loop field. If DEF itself is defined inside
479 this loop as well (i.e. we need to hoist it out of the loop if we want
480 to hoist the statement represented by DATA), record the statement in that
481 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
482 add the cost of the computation of DEF to the DATA->cost.
483
484 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
485
486 static bool
487 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
488 bool add_cost)
489 {
490 gimple def_stmt = SSA_NAME_DEF_STMT (def);
491 basic_block def_bb = gimple_bb (def_stmt);
492 struct loop *max_loop;
493 struct depend *dep;
494 struct lim_aux_data *def_data;
495
496 if (!def_bb)
497 return true;
498
499 max_loop = outermost_invariant_loop (def, loop);
500 if (!max_loop)
501 return false;
502
503 if (flow_loop_nested_p (data->max_loop, max_loop))
504 data->max_loop = max_loop;
505
506 def_data = get_lim_data (def_stmt);
507 if (!def_data)
508 return true;
509
510 if (add_cost
511 /* Only add the cost if the statement defining DEF is inside LOOP,
512 i.e. if it is likely that by moving the invariants dependent
513 on it, we will be able to avoid creating a new register for
514 it (since it will be only used in these dependent invariants). */
515 && def_bb->loop_father == loop)
516 data->cost += def_data->cost;
517
518 dep = XNEW (struct depend);
519 dep->stmt = def_stmt;
520 dep->next = data->depends;
521 data->depends = dep;
522
523 return true;
524 }
525
526 /* Returns an estimate for a cost of statement STMT. The values here
527 are just ad-hoc constants, similar to costs for inlining. */
528
529 static unsigned
530 stmt_cost (gimple stmt)
531 {
532 /* Always try to create possibilities for unswitching. */
533 if (gimple_code (stmt) == GIMPLE_COND
534 || gimple_code (stmt) == GIMPLE_PHI)
535 return LIM_EXPENSIVE;
536
537 /* We should be hoisting calls if possible. */
538 if (is_gimple_call (stmt))
539 {
540 tree fndecl;
541
542 /* Unless the call is a builtin_constant_p; this always folds to a
543 constant, so moving it is useless. */
544 fndecl = gimple_call_fndecl (stmt);
545 if (fndecl
546 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
547 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
548 return 0;
549
550 return LIM_EXPENSIVE;
551 }
552
553 /* Hoisting memory references out should almost surely be a win. */
554 if (gimple_references_memory_p (stmt))
555 return LIM_EXPENSIVE;
556
557 if (gimple_code (stmt) != GIMPLE_ASSIGN)
558 return 1;
559
560 switch (gimple_assign_rhs_code (stmt))
561 {
562 case MULT_EXPR:
563 case WIDEN_MULT_EXPR:
564 case WIDEN_MULT_PLUS_EXPR:
565 case WIDEN_MULT_MINUS_EXPR:
566 case DOT_PROD_EXPR:
567 case FMA_EXPR:
568 case TRUNC_DIV_EXPR:
569 case CEIL_DIV_EXPR:
570 case FLOOR_DIV_EXPR:
571 case ROUND_DIV_EXPR:
572 case EXACT_DIV_EXPR:
573 case CEIL_MOD_EXPR:
574 case FLOOR_MOD_EXPR:
575 case ROUND_MOD_EXPR:
576 case TRUNC_MOD_EXPR:
577 case RDIV_EXPR:
578 /* Division and multiplication are usually expensive. */
579 return LIM_EXPENSIVE;
580
581 case LSHIFT_EXPR:
582 case RSHIFT_EXPR:
583 case WIDEN_LSHIFT_EXPR:
584 case LROTATE_EXPR:
585 case RROTATE_EXPR:
586 /* Shifts and rotates are usually expensive. */
587 return LIM_EXPENSIVE;
588
589 case CONSTRUCTOR:
590 /* Make vector construction cost proportional to the number
591 of elements. */
592 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
593
594 case SSA_NAME:
595 case PAREN_EXPR:
596 /* Whether or not something is wrapped inside a PAREN_EXPR
597 should not change move cost. Nor should an intermediate
598 unpropagated SSA name copy. */
599 return 0;
600
601 default:
602 return 1;
603 }
604 }
605
606 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
607 REF is independent. If REF is not independent in LOOP, NULL is returned
608 instead. */
609
610 static struct loop *
611 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
612 {
613 struct loop *aloop;
614
615 if (bitmap_bit_p (ref->stored, loop->num))
616 return NULL;
617
618 for (aloop = outer;
619 aloop != loop;
620 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
621 if (!bitmap_bit_p (ref->stored, aloop->num)
622 && ref_indep_loop_p (aloop, ref))
623 return aloop;
624
625 if (ref_indep_loop_p (loop, ref))
626 return loop;
627 else
628 return NULL;
629 }
630
631 /* If there is a simple load or store to a memory reference in STMT, returns
632 the location of the memory reference, and sets IS_STORE according to whether
633 it is a store or load. Otherwise, returns NULL. */
634
635 static tree *
636 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
637 {
638 tree *lhs;
639 enum tree_code code;
640
641 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
642 if (gimple_code (stmt) != GIMPLE_ASSIGN)
643 return NULL;
644
645 code = gimple_assign_rhs_code (stmt);
646
647 lhs = gimple_assign_lhs_ptr (stmt);
648
649 if (TREE_CODE (*lhs) == SSA_NAME)
650 {
651 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
652 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
653 return NULL;
654
655 *is_store = false;
656 return gimple_assign_rhs1_ptr (stmt);
657 }
658 else if (code == SSA_NAME
659 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
660 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
661 {
662 *is_store = true;
663 return lhs;
664 }
665 else
666 return NULL;
667 }
668
669 /* Returns the memory reference contained in STMT. */
670
671 static mem_ref_p
672 mem_ref_in_stmt (gimple stmt)
673 {
674 bool store;
675 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
676 hashval_t hash;
677 mem_ref_p ref;
678
679 if (!mem)
680 return NULL;
681 gcc_assert (!store);
682
683 hash = iterative_hash_expr (*mem, 0);
684 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
685
686 gcc_assert (ref != NULL);
687 return ref;
688 }
689
690 /* From a controlling predicate in DOM determine the arguments from
691 the PHI node PHI that are chosen if the predicate evaluates to
692 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
693 they are non-NULL. Returns true if the arguments can be determined,
694 else return false. */
695
696 static bool
697 extract_true_false_args_from_phi (basic_block dom, gimple phi,
698 tree *true_arg_p, tree *false_arg_p)
699 {
700 basic_block bb = gimple_bb (phi);
701 edge true_edge, false_edge, tem;
702 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
703
704 /* We have to verify that one edge into the PHI node is dominated
705 by the true edge of the predicate block and the other edge
706 dominated by the false edge. This ensures that the PHI argument
707 we are going to take is completely determined by the path we
708 take from the predicate block.
709 We can only use BB dominance checks below if the destination of
710 the true/false edges are dominated by their edge, thus only
711 have a single predecessor. */
712 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
713 tem = EDGE_PRED (bb, 0);
714 if (tem == true_edge
715 || (single_pred_p (true_edge->dest)
716 && (tem->src == true_edge->dest
717 || dominated_by_p (CDI_DOMINATORS,
718 tem->src, true_edge->dest))))
719 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
720 else if (tem == false_edge
721 || (single_pred_p (false_edge->dest)
722 && (tem->src == false_edge->dest
723 || dominated_by_p (CDI_DOMINATORS,
724 tem->src, false_edge->dest))))
725 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
726 else
727 return false;
728 tem = EDGE_PRED (bb, 1);
729 if (tem == true_edge
730 || (single_pred_p (true_edge->dest)
731 && (tem->src == true_edge->dest
732 || dominated_by_p (CDI_DOMINATORS,
733 tem->src, true_edge->dest))))
734 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
735 else if (tem == false_edge
736 || (single_pred_p (false_edge->dest)
737 && (tem->src == false_edge->dest
738 || dominated_by_p (CDI_DOMINATORS,
739 tem->src, false_edge->dest))))
740 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
741 else
742 return false;
743 if (!arg0 || !arg1)
744 return false;
745
746 if (true_arg_p)
747 *true_arg_p = arg0;
748 if (false_arg_p)
749 *false_arg_p = arg1;
750
751 return true;
752 }
753
754 /* Determine the outermost loop to that it is possible to hoist a statement
755 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
756 the outermost loop in that the value computed by STMT is invariant.
757 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
758 we preserve the fact whether STMT is executed. It also fills other related
759 information to LIM_DATA (STMT).
760
761 The function returns false if STMT cannot be hoisted outside of the loop it
762 is defined in, and true otherwise. */
763
764 static bool
765 determine_max_movement (gimple stmt, bool must_preserve_exec)
766 {
767 basic_block bb = gimple_bb (stmt);
768 struct loop *loop = bb->loop_father;
769 struct loop *level;
770 struct lim_aux_data *lim_data = get_lim_data (stmt);
771 tree val;
772 ssa_op_iter iter;
773
774 if (must_preserve_exec)
775 level = ALWAYS_EXECUTED_IN (bb);
776 else
777 level = superloop_at_depth (loop, 1);
778 lim_data->max_loop = level;
779
780 if (gimple_code (stmt) == GIMPLE_PHI)
781 {
782 use_operand_p use_p;
783 unsigned min_cost = UINT_MAX;
784 unsigned total_cost = 0;
785 struct lim_aux_data *def_data;
786
787 /* We will end up promoting dependencies to be unconditionally
788 evaluated. For this reason the PHI cost (and thus the
789 cost we remove from the loop by doing the invariant motion)
790 is that of the cheapest PHI argument dependency chain. */
791 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
792 {
793 val = USE_FROM_PTR (use_p);
794 if (TREE_CODE (val) != SSA_NAME)
795 continue;
796 if (!add_dependency (val, lim_data, loop, false))
797 return false;
798 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
799 if (def_data)
800 {
801 min_cost = MIN (min_cost, def_data->cost);
802 total_cost += def_data->cost;
803 }
804 }
805
806 lim_data->cost += min_cost;
807
808 if (gimple_phi_num_args (stmt) > 1)
809 {
810 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
811 gimple cond;
812 if (gsi_end_p (gsi_last_bb (dom)))
813 return false;
814 cond = gsi_stmt (gsi_last_bb (dom));
815 if (gimple_code (cond) != GIMPLE_COND)
816 return false;
817 /* Verify that this is an extended form of a diamond and
818 the PHI arguments are completely controlled by the
819 predicate in DOM. */
820 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
821 return false;
822
823 /* Fold in dependencies and cost of the condition. */
824 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
825 {
826 if (!add_dependency (val, lim_data, loop, false))
827 return false;
828 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
829 if (def_data)
830 total_cost += def_data->cost;
831 }
832
833 /* We want to avoid unconditionally executing very expensive
834 operations. As costs for our dependencies cannot be
835 negative just claim we are not invariand for this case.
836 We also are not sure whether the control-flow inside the
837 loop will vanish. */
838 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
839 && !(min_cost != 0
840 && total_cost / min_cost <= 2))
841 return false;
842
843 /* Assume that the control-flow in the loop will vanish.
844 ??? We should verify this and not artificially increase
845 the cost if that is not the case. */
846 lim_data->cost += stmt_cost (stmt);
847 }
848
849 return true;
850 }
851 else
852 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
853 if (!add_dependency (val, lim_data, loop, true))
854 return false;
855
856 if (gimple_vuse (stmt))
857 {
858 mem_ref_p ref = mem_ref_in_stmt (stmt);
859
860 if (ref)
861 {
862 lim_data->max_loop
863 = outermost_indep_loop (lim_data->max_loop, loop, ref);
864 if (!lim_data->max_loop)
865 return false;
866 }
867 else
868 {
869 if ((val = gimple_vuse (stmt)) != NULL_TREE)
870 {
871 if (!add_dependency (val, lim_data, loop, false))
872 return false;
873 }
874 }
875 }
876
877 lim_data->cost += stmt_cost (stmt);
878
879 return true;
880 }
881
882 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
883 and that one of the operands of this statement is computed by STMT.
884 Ensure that STMT (together with all the statements that define its
885 operands) is hoisted at least out of the loop LEVEL. */
886
887 static void
888 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
889 {
890 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
891 struct depend *dep;
892 struct lim_aux_data *lim_data;
893
894 stmt_loop = find_common_loop (orig_loop, stmt_loop);
895 lim_data = get_lim_data (stmt);
896 if (lim_data != NULL && lim_data->tgt_loop != NULL)
897 stmt_loop = find_common_loop (stmt_loop,
898 loop_outer (lim_data->tgt_loop));
899 if (flow_loop_nested_p (stmt_loop, level))
900 return;
901
902 gcc_assert (level == lim_data->max_loop
903 || flow_loop_nested_p (lim_data->max_loop, level));
904
905 lim_data->tgt_loop = level;
906 for (dep = lim_data->depends; dep; dep = dep->next)
907 set_level (dep->stmt, orig_loop, level);
908 }
909
910 /* Determines an outermost loop from that we want to hoist the statement STMT.
911 For now we chose the outermost possible loop. TODO -- use profiling
912 information to set it more sanely. */
913
914 static void
915 set_profitable_level (gimple stmt)
916 {
917 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
918 }
919
920 /* Returns true if STMT is a call that has side effects. */
921
922 static bool
923 nonpure_call_p (gimple stmt)
924 {
925 if (gimple_code (stmt) != GIMPLE_CALL)
926 return false;
927
928 return gimple_has_side_effects (stmt);
929 }
930
931 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
932
933 static gimple
934 rewrite_reciprocal (gimple_stmt_iterator *bsi)
935 {
936 gimple stmt, stmt1, stmt2;
937 tree name, lhs, type;
938 tree real_one;
939 gimple_stmt_iterator gsi;
940
941 stmt = gsi_stmt (*bsi);
942 lhs = gimple_assign_lhs (stmt);
943 type = TREE_TYPE (lhs);
944
945 real_one = build_one_cst (type);
946
947 name = make_temp_ssa_name (type, NULL, "reciptmp");
948 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
949 gimple_assign_rhs2 (stmt));
950
951 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
952 gimple_assign_rhs1 (stmt));
953
954 /* Replace division stmt with reciprocal and multiply stmts.
955 The multiply stmt is not invariant, so update iterator
956 and avoid rescanning. */
957 gsi = *bsi;
958 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
959 gsi_replace (&gsi, stmt2, true);
960
961 /* Continue processing with invariant reciprocal statement. */
962 return stmt1;
963 }
964
965 /* Check if the pattern at *BSI is a bittest of the form
966 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
967
968 static gimple
969 rewrite_bittest (gimple_stmt_iterator *bsi)
970 {
971 gimple stmt, use_stmt, stmt1, stmt2;
972 tree lhs, name, t, a, b;
973 use_operand_p use;
974
975 stmt = gsi_stmt (*bsi);
976 lhs = gimple_assign_lhs (stmt);
977
978 /* Verify that the single use of lhs is a comparison against zero. */
979 if (TREE_CODE (lhs) != SSA_NAME
980 || !single_imm_use (lhs, &use, &use_stmt)
981 || gimple_code (use_stmt) != GIMPLE_COND)
982 return stmt;
983 if (gimple_cond_lhs (use_stmt) != lhs
984 || (gimple_cond_code (use_stmt) != NE_EXPR
985 && gimple_cond_code (use_stmt) != EQ_EXPR)
986 || !integer_zerop (gimple_cond_rhs (use_stmt)))
987 return stmt;
988
989 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
990 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
991 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
992 return stmt;
993
994 /* There is a conversion in between possibly inserted by fold. */
995 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
996 {
997 t = gimple_assign_rhs1 (stmt1);
998 if (TREE_CODE (t) != SSA_NAME
999 || !has_single_use (t))
1000 return stmt;
1001 stmt1 = SSA_NAME_DEF_STMT (t);
1002 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
1003 return stmt;
1004 }
1005
1006 /* Verify that B is loop invariant but A is not. Verify that with
1007 all the stmt walking we are still in the same loop. */
1008 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
1009 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
1010 return stmt;
1011
1012 a = gimple_assign_rhs1 (stmt1);
1013 b = gimple_assign_rhs2 (stmt1);
1014
1015 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
1016 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
1017 {
1018 gimple_stmt_iterator rsi;
1019
1020 /* 1 << B */
1021 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1022 build_int_cst (TREE_TYPE (a), 1), b);
1023 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1024 stmt1 = gimple_build_assign (name, t);
1025
1026 /* A & (1 << B) */
1027 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1028 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1029 stmt2 = gimple_build_assign (name, t);
1030
1031 /* Replace the SSA_NAME we compare against zero. Adjust
1032 the type of zero accordingly. */
1033 SET_USE (use, name);
1034 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1035
1036 /* Don't use gsi_replace here, none of the new assignments sets
1037 the variable originally set in stmt. Move bsi to stmt1, and
1038 then remove the original stmt, so that we get a chance to
1039 retain debug info for it. */
1040 rsi = *bsi;
1041 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1042 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1043 gsi_remove (&rsi, true);
1044
1045 return stmt1;
1046 }
1047
1048 return stmt;
1049 }
1050
1051
1052 /* Determine the outermost loops in that statements in basic block BB are
1053 invariant, and record them to the LIM_DATA associated with the statements.
1054 Callback for walk_dominator_tree. */
1055
1056 static void
1057 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1058 basic_block bb)
1059 {
1060 enum move_pos pos;
1061 gimple_stmt_iterator bsi;
1062 gimple stmt;
1063 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1064 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1065 struct lim_aux_data *lim_data;
1066
1067 if (!loop_outer (bb->loop_father))
1068 return;
1069
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1071 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1072 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1073
1074 /* Look at PHI nodes, but only if there is at most two.
1075 ??? We could relax this further by post-processing the inserted
1076 code and transforming adjacent cond-exprs with the same predicate
1077 to control flow again. */
1078 bsi = gsi_start_phis (bb);
1079 if (!gsi_end_p (bsi)
1080 && ((gsi_next (&bsi), gsi_end_p (bsi))
1081 || (gsi_next (&bsi), gsi_end_p (bsi))))
1082 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1083 {
1084 stmt = gsi_stmt (bsi);
1085
1086 pos = movement_possibility (stmt);
1087 if (pos == MOVE_IMPOSSIBLE)
1088 continue;
1089
1090 lim_data = init_lim_data (stmt);
1091 lim_data->always_executed_in = outermost;
1092
1093 if (!determine_max_movement (stmt, false))
1094 {
1095 lim_data->max_loop = NULL;
1096 continue;
1097 }
1098
1099 if (dump_file && (dump_flags & TDF_DETAILS))
1100 {
1101 print_gimple_stmt (dump_file, stmt, 2, 0);
1102 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1103 loop_depth (lim_data->max_loop),
1104 lim_data->cost);
1105 }
1106
1107 if (lim_data->cost >= LIM_EXPENSIVE)
1108 set_profitable_level (stmt);
1109 }
1110
1111 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1112 {
1113 stmt = gsi_stmt (bsi);
1114
1115 pos = movement_possibility (stmt);
1116 if (pos == MOVE_IMPOSSIBLE)
1117 {
1118 if (nonpure_call_p (stmt))
1119 {
1120 maybe_never = true;
1121 outermost = NULL;
1122 }
1123 /* Make sure to note always_executed_in for stores to make
1124 store-motion work. */
1125 else if (stmt_makes_single_store (stmt))
1126 {
1127 struct lim_aux_data *lim_data = init_lim_data (stmt);
1128 lim_data->always_executed_in = outermost;
1129 }
1130 continue;
1131 }
1132
1133 if (is_gimple_assign (stmt)
1134 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1135 == GIMPLE_BINARY_RHS))
1136 {
1137 tree op0 = gimple_assign_rhs1 (stmt);
1138 tree op1 = gimple_assign_rhs2 (stmt);
1139 struct loop *ol1 = outermost_invariant_loop (op1,
1140 loop_containing_stmt (stmt));
1141
1142 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1143 to be hoisted out of loop, saving expensive divide. */
1144 if (pos == MOVE_POSSIBLE
1145 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1146 && flag_unsafe_math_optimizations
1147 && !flag_trapping_math
1148 && ol1 != NULL
1149 && outermost_invariant_loop (op0, ol1) == NULL)
1150 stmt = rewrite_reciprocal (&bsi);
1151
1152 /* If the shift count is invariant, convert (A >> B) & 1 to
1153 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1154 saving an expensive shift. */
1155 if (pos == MOVE_POSSIBLE
1156 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1157 && integer_onep (op1)
1158 && TREE_CODE (op0) == SSA_NAME
1159 && has_single_use (op0))
1160 stmt = rewrite_bittest (&bsi);
1161 }
1162
1163 lim_data = init_lim_data (stmt);
1164 lim_data->always_executed_in = outermost;
1165
1166 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1167 continue;
1168
1169 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1170 {
1171 lim_data->max_loop = NULL;
1172 continue;
1173 }
1174
1175 if (dump_file && (dump_flags & TDF_DETAILS))
1176 {
1177 print_gimple_stmt (dump_file, stmt, 2, 0);
1178 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1179 loop_depth (lim_data->max_loop),
1180 lim_data->cost);
1181 }
1182
1183 if (lim_data->cost >= LIM_EXPENSIVE)
1184 set_profitable_level (stmt);
1185 }
1186 }
1187
1188 /* For each statement determines the outermost loop in that it is invariant,
1189 statements on whose motion it depends and the cost of the computation.
1190 This information is stored to the LIM_DATA structure associated with
1191 each statement. */
1192
1193 static void
1194 determine_invariantness (void)
1195 {
1196 struct dom_walk_data walk_data;
1197
1198 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1199 walk_data.dom_direction = CDI_DOMINATORS;
1200 walk_data.before_dom_children = determine_invariantness_stmt;
1201
1202 init_walk_dominator_tree (&walk_data);
1203 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1204 fini_walk_dominator_tree (&walk_data);
1205 }
1206
1207 /* Hoist the statements in basic block BB out of the loops prescribed by
1208 data stored in LIM_DATA structures associated with each statement. Callback
1209 for walk_dominator_tree. */
1210
1211 static void
1212 move_computations_stmt (struct dom_walk_data *dw_data,
1213 basic_block bb)
1214 {
1215 struct loop *level;
1216 gimple_stmt_iterator bsi;
1217 gimple stmt;
1218 unsigned cost = 0;
1219 struct lim_aux_data *lim_data;
1220
1221 if (!loop_outer (bb->loop_father))
1222 return;
1223
1224 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1225 {
1226 gimple new_stmt;
1227 stmt = gsi_stmt (bsi);
1228
1229 lim_data = get_lim_data (stmt);
1230 if (lim_data == NULL)
1231 {
1232 gsi_next (&bsi);
1233 continue;
1234 }
1235
1236 cost = lim_data->cost;
1237 level = lim_data->tgt_loop;
1238 clear_lim_data (stmt);
1239
1240 if (!level)
1241 {
1242 gsi_next (&bsi);
1243 continue;
1244 }
1245
1246 if (dump_file && (dump_flags & TDF_DETAILS))
1247 {
1248 fprintf (dump_file, "Moving PHI node\n");
1249 print_gimple_stmt (dump_file, stmt, 0, 0);
1250 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1251 cost, level->num);
1252 }
1253
1254 if (gimple_phi_num_args (stmt) == 1)
1255 {
1256 tree arg = PHI_ARG_DEF (stmt, 0);
1257 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1258 gimple_phi_result (stmt),
1259 arg, NULL_TREE);
1260 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1261 }
1262 else
1263 {
1264 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1265 gimple cond = gsi_stmt (gsi_last_bb (dom));
1266 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1267 /* Get the PHI arguments corresponding to the true and false
1268 edges of COND. */
1269 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1270 gcc_assert (arg0 && arg1);
1271 t = build2 (gimple_cond_code (cond), boolean_type_node,
1272 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1273 new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
1274 gimple_phi_result (stmt),
1275 t, arg0, arg1);
1276 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1277 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1278 }
1279 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1280 remove_phi_node (&bsi, false);
1281 }
1282
1283 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1284 {
1285 edge e;
1286
1287 stmt = gsi_stmt (bsi);
1288
1289 lim_data = get_lim_data (stmt);
1290 if (lim_data == NULL)
1291 {
1292 gsi_next (&bsi);
1293 continue;
1294 }
1295
1296 cost = lim_data->cost;
1297 level = lim_data->tgt_loop;
1298 clear_lim_data (stmt);
1299
1300 if (!level)
1301 {
1302 gsi_next (&bsi);
1303 continue;
1304 }
1305
1306 /* We do not really want to move conditionals out of the loop; we just
1307 placed it here to force its operands to be moved if necessary. */
1308 if (gimple_code (stmt) == GIMPLE_COND)
1309 continue;
1310
1311 if (dump_file && (dump_flags & TDF_DETAILS))
1312 {
1313 fprintf (dump_file, "Moving statement\n");
1314 print_gimple_stmt (dump_file, stmt, 0, 0);
1315 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1316 cost, level->num);
1317 }
1318
1319 e = loop_preheader_edge (level);
1320 gcc_assert (!gimple_vdef (stmt));
1321 if (gimple_vuse (stmt))
1322 {
1323 /* The new VUSE is the one from the virtual PHI in the loop
1324 header or the one already present. */
1325 gimple_stmt_iterator gsi2;
1326 for (gsi2 = gsi_start_phis (e->dest);
1327 !gsi_end_p (gsi2); gsi_next (&gsi2))
1328 {
1329 gimple phi = gsi_stmt (gsi2);
1330 if (virtual_operand_p (gimple_phi_result (phi)))
1331 {
1332 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1333 break;
1334 }
1335 }
1336 }
1337 gsi_remove (&bsi, false);
1338 gsi_insert_on_edge (e, stmt);
1339 }
1340 }
1341
1342 /* Hoist the statements out of the loops prescribed by data stored in
1343 LIM_DATA structures associated with each statement.*/
1344
1345 static unsigned int
1346 move_computations (void)
1347 {
1348 struct dom_walk_data walk_data;
1349 unsigned int todo = 0;
1350
1351 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1352 walk_data.global_data = &todo;
1353 walk_data.dom_direction = CDI_DOMINATORS;
1354 walk_data.before_dom_children = move_computations_stmt;
1355
1356 init_walk_dominator_tree (&walk_data);
1357 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1358 fini_walk_dominator_tree (&walk_data);
1359
1360 gsi_commit_edge_inserts ();
1361 if (need_ssa_update_p (cfun))
1362 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1363
1364 return todo;
1365 }
1366
1367 /* Checks whether the statement defining variable *INDEX can be hoisted
1368 out of the loop passed in DATA. Callback for for_each_index. */
1369
1370 static bool
1371 may_move_till (tree ref, tree *index, void *data)
1372 {
1373 struct loop *loop = (struct loop *) data, *max_loop;
1374
1375 /* If REF is an array reference, check also that the step and the lower
1376 bound is invariant in LOOP. */
1377 if (TREE_CODE (ref) == ARRAY_REF)
1378 {
1379 tree step = TREE_OPERAND (ref, 3);
1380 tree lbound = TREE_OPERAND (ref, 2);
1381
1382 max_loop = outermost_invariant_loop (step, loop);
1383 if (!max_loop)
1384 return false;
1385
1386 max_loop = outermost_invariant_loop (lbound, loop);
1387 if (!max_loop)
1388 return false;
1389 }
1390
1391 max_loop = outermost_invariant_loop (*index, loop);
1392 if (!max_loop)
1393 return false;
1394
1395 return true;
1396 }
1397
1398 /* If OP is SSA NAME, force the statement that defines it to be
1399 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1400
1401 static void
1402 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1403 {
1404 gimple stmt;
1405
1406 if (!op
1407 || is_gimple_min_invariant (op))
1408 return;
1409
1410 gcc_assert (TREE_CODE (op) == SSA_NAME);
1411
1412 stmt = SSA_NAME_DEF_STMT (op);
1413 if (gimple_nop_p (stmt))
1414 return;
1415
1416 set_level (stmt, orig_loop, loop);
1417 }
1418
1419 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1420 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1421 for_each_index. */
1422
1423 struct fmt_data
1424 {
1425 struct loop *loop;
1426 struct loop *orig_loop;
1427 };
1428
1429 static bool
1430 force_move_till (tree ref, tree *index, void *data)
1431 {
1432 struct fmt_data *fmt_data = (struct fmt_data *) data;
1433
1434 if (TREE_CODE (ref) == ARRAY_REF)
1435 {
1436 tree step = TREE_OPERAND (ref, 3);
1437 tree lbound = TREE_OPERAND (ref, 2);
1438
1439 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1440 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1441 }
1442
1443 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1444
1445 return true;
1446 }
1447
1448 /* A hash function for struct mem_ref object OBJ. */
1449
1450 static hashval_t
1451 memref_hash (const void *obj)
1452 {
1453 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1454
1455 return mem->hash;
1456 }
1457
1458 /* An equality function for struct mem_ref object OBJ1 with
1459 memory reference OBJ2. */
1460
1461 static int
1462 memref_eq (const void *obj1, const void *obj2)
1463 {
1464 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1465
1466 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1467 }
1468
1469 /* Releases list of memory reference locations ACCS. */
1470
1471 static void
1472 free_mem_ref_locs (mem_ref_locs_p accs)
1473 {
1474 unsigned i;
1475 mem_ref_loc_p loc;
1476
1477 if (!accs)
1478 return;
1479
1480 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1481 free (loc);
1482 VEC_free (mem_ref_loc_p, heap, accs->locs);
1483 free (accs);
1484 }
1485
1486 /* A function to free the mem_ref object OBJ. */
1487
1488 static void
1489 memref_free (struct mem_ref *mem)
1490 {
1491 unsigned i;
1492 mem_ref_locs_p accs;
1493
1494 BITMAP_FREE (mem->stored);
1495 BITMAP_FREE (mem->indep_loop);
1496 BITMAP_FREE (mem->dep_loop);
1497 BITMAP_FREE (mem->indep_ref);
1498 BITMAP_FREE (mem->dep_ref);
1499
1500 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1501 free_mem_ref_locs (accs);
1502 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1503
1504 free (mem);
1505 }
1506
1507 /* Allocates and returns a memory reference description for MEM whose hash
1508 value is HASH and id is ID. */
1509
1510 static mem_ref_p
1511 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1512 {
1513 mem_ref_p ref = XNEW (struct mem_ref);
1514 ref->mem = mem;
1515 ref->id = id;
1516 ref->hash = hash;
1517 ref->stored = BITMAP_ALLOC (NULL);
1518 ref->indep_loop = BITMAP_ALLOC (NULL);
1519 ref->dep_loop = BITMAP_ALLOC (NULL);
1520 ref->indep_ref = BITMAP_ALLOC (NULL);
1521 ref->dep_ref = BITMAP_ALLOC (NULL);
1522 ref->accesses_in_loop = NULL;
1523
1524 return ref;
1525 }
1526
1527 /* Allocates and returns the new list of locations. */
1528
1529 static mem_ref_locs_p
1530 mem_ref_locs_alloc (void)
1531 {
1532 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1533 accs->locs = NULL;
1534 return accs;
1535 }
1536
1537 /* Records memory reference location *LOC in LOOP to the memory reference
1538 description REF. The reference occurs in statement STMT. */
1539
1540 static void
1541 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1542 {
1543 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1544 mem_ref_locs_p accs;
1545 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1546
1547 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1548 <= (unsigned) loop->num)
1549 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1550 loop->num + 1);
1551 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1552 if (!accs)
1553 {
1554 accs = mem_ref_locs_alloc ();
1555 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1556 }
1557
1558 aref->stmt = stmt;
1559 aref->ref = loc;
1560
1561 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1562 bitmap_set_bit (ril, ref->id);
1563 }
1564
1565 /* Marks reference REF as stored in LOOP. */
1566
1567 static void
1568 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1569 {
1570 for (;
1571 loop != current_loops->tree_root
1572 && !bitmap_bit_p (ref->stored, loop->num);
1573 loop = loop_outer (loop))
1574 bitmap_set_bit (ref->stored, loop->num);
1575 }
1576
1577 /* Gathers memory references in statement STMT in LOOP, storing the
1578 information about them in the memory_accesses structure. Marks
1579 the vops accessed through unrecognized statements there as
1580 well. */
1581
1582 static void
1583 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1584 {
1585 tree *mem = NULL;
1586 hashval_t hash;
1587 PTR *slot;
1588 mem_ref_p ref;
1589 bool is_stored;
1590 unsigned id;
1591
1592 if (!gimple_vuse (stmt))
1593 return;
1594
1595 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1596 if (!mem)
1597 {
1598 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1599 ref = mem_ref_alloc (error_mark_node, 0, id);
1600 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1601 if (dump_file && (dump_flags & TDF_DETAILS))
1602 {
1603 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1604 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1605 }
1606 if (gimple_vdef (stmt))
1607 mark_ref_stored (ref, loop);
1608 record_mem_ref_loc (ref, loop, stmt, mem);
1609 return;
1610 }
1611
1612 hash = iterative_hash_expr (*mem, 0);
1613 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1614
1615 if (*slot)
1616 {
1617 ref = (mem_ref_p) *slot;
1618 id = ref->id;
1619 }
1620 else
1621 {
1622 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1623 ref = mem_ref_alloc (*mem, hash, id);
1624 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1625 *slot = ref;
1626
1627 if (dump_file && (dump_flags & TDF_DETAILS))
1628 {
1629 fprintf (dump_file, "Memory reference %u: ", id);
1630 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1631 fprintf (dump_file, "\n");
1632 }
1633 }
1634
1635 if (is_stored)
1636 mark_ref_stored (ref, loop);
1637
1638 record_mem_ref_loc (ref, loop, stmt, mem);
1639 return;
1640 }
1641
1642 /* Gathers memory references in loops. */
1643
1644 static void
1645 gather_mem_refs_in_loops (void)
1646 {
1647 gimple_stmt_iterator bsi;
1648 basic_block bb;
1649 struct loop *loop;
1650 loop_iterator li;
1651 bitmap lrefs, alrefs, alrefso;
1652
1653 FOR_EACH_BB (bb)
1654 {
1655 loop = bb->loop_father;
1656 if (loop == current_loops->tree_root)
1657 continue;
1658
1659 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1660 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1661 }
1662
1663 /* Propagate the information about accessed memory references up
1664 the loop hierarchy. */
1665 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1666 {
1667 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1668 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1669 bitmap_ior_into (alrefs, lrefs);
1670
1671 if (loop_outer (loop) == current_loops->tree_root)
1672 continue;
1673
1674 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1675 loop_outer (loop)->num);
1676 bitmap_ior_into (alrefso, alrefs);
1677 }
1678 }
1679
1680 /* Create a mapping from virtual operands to references that touch them
1681 in LOOP. */
1682
1683 static void
1684 create_vop_ref_mapping_loop (struct loop *loop)
1685 {
1686 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1687 struct loop *sloop;
1688 bitmap_iterator bi;
1689 unsigned i;
1690 mem_ref_p ref;
1691
1692 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1693 {
1694 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1695 for (sloop = loop; sloop != current_loops->tree_root;
1696 sloop = loop_outer (sloop))
1697 if (bitmap_bit_p (ref->stored, loop->num))
1698 {
1699 bitmap refs_stored
1700 = VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
1701 sloop->num);
1702 bitmap_set_bit (refs_stored, ref->id);
1703 }
1704 }
1705 }
1706
1707 /* For each non-clobbered virtual operand and each loop, record the memory
1708 references in this loop that touch the operand. */
1709
1710 static void
1711 create_vop_ref_mapping (void)
1712 {
1713 loop_iterator li;
1714 struct loop *loop;
1715
1716 FOR_EACH_LOOP (li, loop, 0)
1717 {
1718 create_vop_ref_mapping_loop (loop);
1719 }
1720 }
1721
1722 /* Gathers information about memory accesses in the loops. */
1723
1724 static void
1725 analyze_memory_references (void)
1726 {
1727 unsigned i;
1728 bitmap empty;
1729
1730 memory_accesses.refs = htab_create (100, memref_hash, memref_eq, NULL);
1731 memory_accesses.refs_list = NULL;
1732 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1733 number_of_loops ());
1734 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1735 number_of_loops ());
1736 memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
1737 number_of_loops ());
1738
1739 for (i = 0; i < number_of_loops (); i++)
1740 {
1741 empty = BITMAP_ALLOC (NULL);
1742 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1743 empty = BITMAP_ALLOC (NULL);
1744 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1745 empty = BITMAP_ALLOC (NULL);
1746 VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
1747 }
1748
1749 memory_accesses.ttae_cache = NULL;
1750
1751 gather_mem_refs_in_loops ();
1752 create_vop_ref_mapping ();
1753 }
1754
1755 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1756 tree_to_aff_combination_expand. */
1757
1758 static bool
1759 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1760 {
1761 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1762 object and their offset differ in such a way that the locations cannot
1763 overlap, then they cannot alias. */
1764 double_int size1, size2;
1765 aff_tree off1, off2;
1766
1767 /* Perform basic offset and type-based disambiguation. */
1768 if (!refs_may_alias_p (mem1, mem2))
1769 return false;
1770
1771 /* The expansion of addresses may be a bit expensive, thus we only do
1772 the check at -O2 and higher optimization levels. */
1773 if (optimize < 2)
1774 return true;
1775
1776 get_inner_reference_aff (mem1, &off1, &size1);
1777 get_inner_reference_aff (mem2, &off2, &size2);
1778 aff_combination_expand (&off1, ttae_cache);
1779 aff_combination_expand (&off2, ttae_cache);
1780 aff_combination_scale (&off1, double_int_minus_one);
1781 aff_combination_add (&off2, &off1);
1782
1783 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1784 return false;
1785
1786 return true;
1787 }
1788
1789 /* Rewrites location LOC by TMP_VAR. */
1790
1791 static void
1792 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1793 {
1794 *loc->ref = tmp_var;
1795 update_stmt (loc->stmt);
1796 }
1797
1798 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1799
1800 static void
1801 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1802 VEC (mem_ref_loc_p, heap) **locs)
1803 {
1804 mem_ref_locs_p accs;
1805 unsigned i;
1806 mem_ref_loc_p loc;
1807 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1808 loop->num);
1809 struct loop *subloop;
1810
1811 if (!bitmap_bit_p (refs, ref->id))
1812 return;
1813
1814 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1815 > (unsigned) loop->num)
1816 {
1817 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1818 if (accs)
1819 {
1820 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1821 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1822 }
1823 }
1824
1825 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1826 get_all_locs_in_loop (subloop, ref, locs);
1827 }
1828
1829 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1830
1831 static void
1832 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1833 {
1834 unsigned i;
1835 mem_ref_loc_p loc;
1836 VEC (mem_ref_loc_p, heap) *locs = NULL;
1837
1838 get_all_locs_in_loop (loop, ref, &locs);
1839 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1840 rewrite_mem_ref_loc (loc, tmp_var);
1841 VEC_free (mem_ref_loc_p, heap, locs);
1842 }
1843
1844 /* The name and the length of the currently generated variable
1845 for lsm. */
1846 #define MAX_LSM_NAME_LENGTH 40
1847 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1848 static int lsm_tmp_name_length;
1849
1850 /* Adds S to lsm_tmp_name. */
1851
1852 static void
1853 lsm_tmp_name_add (const char *s)
1854 {
1855 int l = strlen (s) + lsm_tmp_name_length;
1856 if (l > MAX_LSM_NAME_LENGTH)
1857 return;
1858
1859 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1860 lsm_tmp_name_length = l;
1861 }
1862
1863 /* Stores the name for temporary variable that replaces REF to
1864 lsm_tmp_name. */
1865
1866 static void
1867 gen_lsm_tmp_name (tree ref)
1868 {
1869 const char *name;
1870
1871 switch (TREE_CODE (ref))
1872 {
1873 case MEM_REF:
1874 case TARGET_MEM_REF:
1875 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1876 lsm_tmp_name_add ("_");
1877 break;
1878
1879 case ADDR_EXPR:
1880 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1881 break;
1882
1883 case BIT_FIELD_REF:
1884 case VIEW_CONVERT_EXPR:
1885 case ARRAY_RANGE_REF:
1886 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1887 break;
1888
1889 case REALPART_EXPR:
1890 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1891 lsm_tmp_name_add ("_RE");
1892 break;
1893
1894 case IMAGPART_EXPR:
1895 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1896 lsm_tmp_name_add ("_IM");
1897 break;
1898
1899 case COMPONENT_REF:
1900 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1901 lsm_tmp_name_add ("_");
1902 name = get_name (TREE_OPERAND (ref, 1));
1903 if (!name)
1904 name = "F";
1905 lsm_tmp_name_add (name);
1906 break;
1907
1908 case ARRAY_REF:
1909 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1910 lsm_tmp_name_add ("_I");
1911 break;
1912
1913 case SSA_NAME:
1914 case VAR_DECL:
1915 case PARM_DECL:
1916 name = get_name (ref);
1917 if (!name)
1918 name = "D";
1919 lsm_tmp_name_add (name);
1920 break;
1921
1922 case STRING_CST:
1923 lsm_tmp_name_add ("S");
1924 break;
1925
1926 case RESULT_DECL:
1927 lsm_tmp_name_add ("R");
1928 break;
1929
1930 case INTEGER_CST:
1931 /* Nothing. */
1932 break;
1933
1934 default:
1935 gcc_unreachable ();
1936 }
1937 }
1938
1939 /* Determines name for temporary variable that replaces REF.
1940 The name is accumulated into the lsm_tmp_name variable.
1941 N is added to the name of the temporary. */
1942
1943 char *
1944 get_lsm_tmp_name (tree ref, unsigned n)
1945 {
1946 char ns[2];
1947
1948 lsm_tmp_name_length = 0;
1949 gen_lsm_tmp_name (ref);
1950 lsm_tmp_name_add ("_lsm");
1951 if (n < 10)
1952 {
1953 ns[0] = '0' + n;
1954 ns[1] = 0;
1955 lsm_tmp_name_add (ns);
1956 }
1957 return lsm_tmp_name;
1958 }
1959
1960 struct prev_flag_edges {
1961 /* Edge to insert new flag comparison code. */
1962 edge append_cond_position;
1963
1964 /* Edge for fall through from previous flag comparison. */
1965 edge last_cond_fallthru;
1966 };
1967
1968 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1969 MEM along edge EX.
1970
1971 The store is only done if MEM has changed. We do this so no
1972 changes to MEM occur on code paths that did not originally store
1973 into it.
1974
1975 The common case for execute_sm will transform:
1976
1977 for (...) {
1978 if (foo)
1979 stuff;
1980 else
1981 MEM = TMP_VAR;
1982 }
1983
1984 into:
1985
1986 lsm = MEM;
1987 for (...) {
1988 if (foo)
1989 stuff;
1990 else
1991 lsm = TMP_VAR;
1992 }
1993 MEM = lsm;
1994
1995 This function will generate:
1996
1997 lsm = MEM;
1998
1999 lsm_flag = false;
2000 ...
2001 for (...) {
2002 if (foo)
2003 stuff;
2004 else {
2005 lsm = TMP_VAR;
2006 lsm_flag = true;
2007 }
2008 }
2009 if (lsm_flag) <--
2010 MEM = lsm; <--
2011 */
2012
2013 static void
2014 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
2015 {
2016 basic_block new_bb, then_bb, old_dest;
2017 bool loop_has_only_one_exit;
2018 edge then_old_edge, orig_ex = ex;
2019 gimple_stmt_iterator gsi;
2020 gimple stmt;
2021 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
2022
2023 /* ?? Insert store after previous store if applicable. See note
2024 below. */
2025 if (prev_edges)
2026 ex = prev_edges->append_cond_position;
2027
2028 loop_has_only_one_exit = single_pred_p (ex->dest);
2029
2030 if (loop_has_only_one_exit)
2031 ex = split_block_after_labels (ex->dest);
2032
2033 old_dest = ex->dest;
2034 new_bb = split_edge (ex);
2035 then_bb = create_empty_bb (new_bb);
2036 if (current_loops && new_bb->loop_father)
2037 add_bb_to_loop (then_bb, new_bb->loop_father);
2038
2039 gsi = gsi_start_bb (new_bb);
2040 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2041 NULL_TREE, NULL_TREE);
2042 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2043
2044 gsi = gsi_start_bb (then_bb);
2045 /* Insert actual store. */
2046 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2047 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2048
2049 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
2050 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
2051 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
2052
2053 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2054
2055 if (prev_edges)
2056 {
2057 basic_block prevbb = prev_edges->last_cond_fallthru->src;
2058 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
2059 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2060 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2061 recompute_dominator (CDI_DOMINATORS, old_dest));
2062 }
2063
2064 /* ?? Because stores may alias, they must happen in the exact
2065 sequence they originally happened. Save the position right after
2066 the (_lsm) store we just created so we can continue appending after
2067 it and maintain the original order. */
2068 {
2069 struct prev_flag_edges *p;
2070
2071 if (orig_ex->aux)
2072 orig_ex->aux = NULL;
2073 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
2074 p = (struct prev_flag_edges *) orig_ex->aux;
2075 p->append_cond_position = then_old_edge;
2076 p->last_cond_fallthru = find_edge (new_bb, old_dest);
2077 orig_ex->aux = (void *) p;
2078 }
2079
2080 if (!loop_has_only_one_exit)
2081 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
2082 {
2083 gimple phi = gsi_stmt (gsi);
2084 unsigned i;
2085
2086 for (i = 0; i < gimple_phi_num_args (phi); i++)
2087 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2088 {
2089 tree arg = gimple_phi_arg_def (phi, i);
2090 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2091 update_stmt (phi);
2092 }
2093 }
2094 /* Remove the original fall through edge. This was the
2095 single_succ_edge (new_bb). */
2096 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
2097 }
2098
2099 /* Helper function for execute_sm. On every location where REF is
2100 set, set an appropriate flag indicating the store. */
2101
2102 static tree
2103 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
2104 {
2105 unsigned i;
2106 mem_ref_loc_p loc;
2107 tree flag;
2108 VEC (mem_ref_loc_p, heap) *locs = NULL;
2109 char *str = get_lsm_tmp_name (ref->mem, ~0);
2110
2111 lsm_tmp_name_add ("_flag");
2112 flag = create_tmp_reg (boolean_type_node, str);
2113 get_all_locs_in_loop (loop, ref, &locs);
2114 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2115 {
2116 gimple_stmt_iterator gsi;
2117 gimple stmt;
2118
2119 gsi = gsi_for_stmt (loc->stmt);
2120 stmt = gimple_build_assign (flag, boolean_true_node);
2121 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2122 }
2123 VEC_free (mem_ref_loc_p, heap, locs);
2124 return flag;
2125 }
2126
2127 /* Executes store motion of memory reference REF from LOOP.
2128 Exits from the LOOP are stored in EXITS. The initialization of the
2129 temporary variable is put to the preheader of the loop, and assignments
2130 to the reference from the temporary variable are emitted to exits. */
2131
2132 static void
2133 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2134 {
2135 tree tmp_var, store_flag;
2136 unsigned i;
2137 gimple load;
2138 struct fmt_data fmt_data;
2139 edge ex, latch_edge;
2140 struct lim_aux_data *lim_data;
2141 bool multi_threaded_model_p = false;
2142
2143 if (dump_file && (dump_flags & TDF_DETAILS))
2144 {
2145 fprintf (dump_file, "Executing store motion of ");
2146 print_generic_expr (dump_file, ref->mem, 0);
2147 fprintf (dump_file, " from loop %d\n", loop->num);
2148 }
2149
2150 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem),
2151 get_lsm_tmp_name (ref->mem, ~0));
2152
2153 fmt_data.loop = loop;
2154 fmt_data.orig_loop = loop;
2155 for_each_index (&ref->mem, force_move_till, &fmt_data);
2156
2157 if (block_in_transaction (loop_preheader_edge (loop)->src)
2158 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2159 multi_threaded_model_p = true;
2160
2161 if (multi_threaded_model_p)
2162 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2163
2164 rewrite_mem_refs (loop, ref, tmp_var);
2165
2166 /* Emit the load code into the latch, so that we are sure it will
2167 be processed after all dependencies. */
2168 latch_edge = loop_latch_edge (loop);
2169
2170 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2171 load altogether, since the store is predicated by a flag. We
2172 could, do the load only if it was originally in the loop. */
2173 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2174 lim_data = init_lim_data (load);
2175 lim_data->max_loop = loop;
2176 lim_data->tgt_loop = loop;
2177 gsi_insert_on_edge (latch_edge, load);
2178
2179 if (multi_threaded_model_p)
2180 {
2181 load = gimple_build_assign (store_flag, boolean_false_node);
2182 lim_data = init_lim_data (load);
2183 lim_data->max_loop = loop;
2184 lim_data->tgt_loop = loop;
2185 gsi_insert_on_edge (latch_edge, load);
2186 }
2187
2188 /* Sink the store to every exit from the loop. */
2189 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2190 if (!multi_threaded_model_p)
2191 {
2192 gimple store;
2193 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2194 gsi_insert_on_edge (ex, store);
2195 }
2196 else
2197 execute_sm_if_changed (ex, ref->mem, tmp_var, store_flag);
2198 }
2199
2200 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2201 edges of the LOOP. */
2202
2203 static void
2204 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2205 VEC (edge, heap) *exits)
2206 {
2207 mem_ref_p ref;
2208 unsigned i;
2209 bitmap_iterator bi;
2210
2211 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2212 {
2213 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2214 execute_sm (loop, exits, ref);
2215 }
2216 }
2217
2218 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2219 make sure REF is always stored to in LOOP. */
2220
2221 static bool
2222 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2223 {
2224 VEC (mem_ref_loc_p, heap) *locs = NULL;
2225 unsigned i;
2226 mem_ref_loc_p loc;
2227 bool ret = false;
2228 struct loop *must_exec;
2229 tree base;
2230
2231 base = get_base_address (ref->mem);
2232 if (INDIRECT_REF_P (base)
2233 || TREE_CODE (base) == MEM_REF)
2234 base = TREE_OPERAND (base, 0);
2235
2236 get_all_locs_in_loop (loop, ref, &locs);
2237 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2238 {
2239 if (!get_lim_data (loc->stmt))
2240 continue;
2241
2242 /* If we require an always executed store make sure the statement
2243 stores to the reference. */
2244 if (stored_p)
2245 {
2246 tree lhs;
2247 if (!gimple_get_lhs (loc->stmt))
2248 continue;
2249 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2250 if (!lhs)
2251 continue;
2252 if (INDIRECT_REF_P (lhs)
2253 || TREE_CODE (lhs) == MEM_REF)
2254 lhs = TREE_OPERAND (lhs, 0);
2255 if (lhs != base)
2256 continue;
2257 }
2258
2259 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2260 if (!must_exec)
2261 continue;
2262
2263 if (must_exec == loop
2264 || flow_loop_nested_p (must_exec, loop))
2265 {
2266 ret = true;
2267 break;
2268 }
2269 }
2270 VEC_free (mem_ref_loc_p, heap, locs);
2271
2272 return ret;
2273 }
2274
2275 /* Returns true if REF1 and REF2 are independent. */
2276
2277 static bool
2278 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2279 {
2280 if (ref1 == ref2
2281 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2282 return true;
2283 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2284 return false;
2285 if (!MEM_ANALYZABLE (ref1)
2286 || !MEM_ANALYZABLE (ref2))
2287 return false;
2288
2289 if (dump_file && (dump_flags & TDF_DETAILS))
2290 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2291 ref1->id, ref2->id);
2292
2293 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2294 &memory_accesses.ttae_cache))
2295 {
2296 bitmap_set_bit (ref1->dep_ref, ref2->id);
2297 bitmap_set_bit (ref2->dep_ref, ref1->id);
2298 if (dump_file && (dump_flags & TDF_DETAILS))
2299 fprintf (dump_file, "dependent.\n");
2300 return false;
2301 }
2302 else
2303 {
2304 bitmap_set_bit (ref1->indep_ref, ref2->id);
2305 bitmap_set_bit (ref2->indep_ref, ref1->id);
2306 if (dump_file && (dump_flags & TDF_DETAILS))
2307 fprintf (dump_file, "independent.\n");
2308 return true;
2309 }
2310 }
2311
2312 /* Records the information whether REF is independent in LOOP (according
2313 to INDEP). */
2314
2315 static void
2316 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2317 {
2318 if (indep)
2319 bitmap_set_bit (ref->indep_loop, loop->num);
2320 else
2321 bitmap_set_bit (ref->dep_loop, loop->num);
2322 }
2323
2324 /* Returns true if REF is independent on all other memory references in
2325 LOOP. */
2326
2327 static bool
2328 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2329 {
2330 bitmap refs_to_check;
2331 unsigned i;
2332 bitmap_iterator bi;
2333 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2334 mem_ref_p aref;
2335
2336 if (stored)
2337 refs_to_check = VEC_index (bitmap,
2338 memory_accesses.all_refs_in_loop, loop->num);
2339 else
2340 refs_to_check = VEC_index (bitmap,
2341 memory_accesses.all_refs_stored_in_loop,
2342 loop->num);
2343
2344 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2345 {
2346 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2347 if (!MEM_ANALYZABLE (aref)
2348 || !refs_independent_p (ref, aref))
2349 {
2350 ret = false;
2351 record_indep_loop (loop, aref, false);
2352 break;
2353 }
2354 }
2355
2356 return ret;
2357 }
2358
2359 /* Returns true if REF is independent on all other memory references in
2360 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2361
2362 static bool
2363 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2364 {
2365 bool ret;
2366
2367 if (bitmap_bit_p (ref->indep_loop, loop->num))
2368 return true;
2369 if (bitmap_bit_p (ref->dep_loop, loop->num))
2370 return false;
2371
2372 ret = ref_indep_loop_p_1 (loop, ref);
2373
2374 if (dump_file && (dump_flags & TDF_DETAILS))
2375 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2376 ref->id, loop->num, ret ? "independent" : "dependent");
2377
2378 record_indep_loop (loop, ref, ret);
2379
2380 return ret;
2381 }
2382
2383 /* Returns true if we can perform store motion of REF from LOOP. */
2384
2385 static bool
2386 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2387 {
2388 tree base;
2389
2390 /* Can't hoist unanalyzable refs. */
2391 if (!MEM_ANALYZABLE (ref))
2392 return false;
2393
2394 /* Unless the reference is stored in the loop, there is nothing to do. */
2395 if (!bitmap_bit_p (ref->stored, loop->num))
2396 return false;
2397
2398 /* It should be movable. */
2399 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2400 || TREE_THIS_VOLATILE (ref->mem)
2401 || !for_each_index (&ref->mem, may_move_till, loop))
2402 return false;
2403
2404 /* If it can throw fail, we do not properly update EH info. */
2405 if (tree_could_throw_p (ref->mem))
2406 return false;
2407
2408 /* If it can trap, it must be always executed in LOOP.
2409 Readonly memory locations may trap when storing to them, but
2410 tree_could_trap_p is a predicate for rvalues, so check that
2411 explicitly. */
2412 base = get_base_address (ref->mem);
2413 if ((tree_could_trap_p (ref->mem)
2414 || (DECL_P (base) && TREE_READONLY (base)))
2415 && !ref_always_accessed_p (loop, ref, true))
2416 return false;
2417
2418 /* And it must be independent on all other memory references
2419 in LOOP. */
2420 if (!ref_indep_loop_p (loop, ref))
2421 return false;
2422
2423 return true;
2424 }
2425
2426 /* Marks the references in LOOP for that store motion should be performed
2427 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2428 motion was performed in one of the outer loops. */
2429
2430 static void
2431 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2432 {
2433 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2434 loop->num);
2435 unsigned i;
2436 bitmap_iterator bi;
2437 mem_ref_p ref;
2438
2439 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2440 {
2441 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2442 if (can_sm_ref_p (loop, ref))
2443 bitmap_set_bit (refs_to_sm, i);
2444 }
2445 }
2446
2447 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2448 for a store motion optimization (i.e. whether we can insert statement
2449 on its exits). */
2450
2451 static bool
2452 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2453 VEC (edge, heap) *exits)
2454 {
2455 unsigned i;
2456 edge ex;
2457
2458 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2459 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2460 return false;
2461
2462 return true;
2463 }
2464
2465 /* Try to perform store motion for all memory references modified inside
2466 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2467 store motion was executed in one of the outer loops. */
2468
2469 static void
2470 store_motion_loop (struct loop *loop, bitmap sm_executed)
2471 {
2472 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2473 struct loop *subloop;
2474 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2475
2476 if (loop_suitable_for_sm (loop, exits))
2477 {
2478 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2479 hoist_memory_references (loop, sm_in_loop, exits);
2480 }
2481 VEC_free (edge, heap, exits);
2482
2483 bitmap_ior_into (sm_executed, sm_in_loop);
2484 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2485 store_motion_loop (subloop, sm_executed);
2486 bitmap_and_compl_into (sm_executed, sm_in_loop);
2487 BITMAP_FREE (sm_in_loop);
2488 }
2489
2490 /* Try to perform store motion for all memory references modified inside
2491 loops. */
2492
2493 static void
2494 store_motion (void)
2495 {
2496 struct loop *loop;
2497 bitmap sm_executed = BITMAP_ALLOC (NULL);
2498
2499 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2500 store_motion_loop (loop, sm_executed);
2501
2502 BITMAP_FREE (sm_executed);
2503 gsi_commit_edge_inserts ();
2504 }
2505
2506 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2507 for each such basic block bb records the outermost loop for that execution
2508 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2509 blocks that contain a nonpure call. */
2510
2511 static void
2512 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2513 {
2514 basic_block bb = NULL, *bbs, last = NULL;
2515 unsigned i;
2516 edge e;
2517 struct loop *inn_loop = loop;
2518
2519 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2520 {
2521 bbs = get_loop_body_in_dom_order (loop);
2522
2523 for (i = 0; i < loop->num_nodes; i++)
2524 {
2525 edge_iterator ei;
2526 bb = bbs[i];
2527
2528 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2529 last = bb;
2530
2531 if (TEST_BIT (contains_call, bb->index))
2532 break;
2533
2534 FOR_EACH_EDGE (e, ei, bb->succs)
2535 if (!flow_bb_inside_loop_p (loop, e->dest))
2536 break;
2537 if (e)
2538 break;
2539
2540 /* A loop might be infinite (TODO use simple loop analysis
2541 to disprove this if possible). */
2542 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2543 break;
2544
2545 if (!flow_bb_inside_loop_p (inn_loop, bb))
2546 break;
2547
2548 if (bb->loop_father->header == bb)
2549 {
2550 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2551 break;
2552
2553 /* In a loop that is always entered we may proceed anyway.
2554 But record that we entered it and stop once we leave it. */
2555 inn_loop = bb->loop_father;
2556 }
2557 }
2558
2559 while (1)
2560 {
2561 SET_ALWAYS_EXECUTED_IN (last, loop);
2562 if (last == loop->header)
2563 break;
2564 last = get_immediate_dominator (CDI_DOMINATORS, last);
2565 }
2566
2567 free (bbs);
2568 }
2569
2570 for (loop = loop->inner; loop; loop = loop->next)
2571 fill_always_executed_in (loop, contains_call);
2572 }
2573
2574 /* Compute the global information needed by the loop invariant motion pass. */
2575
2576 static void
2577 tree_ssa_lim_initialize (void)
2578 {
2579 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2580 gimple_stmt_iterator bsi;
2581 struct loop *loop;
2582 basic_block bb;
2583
2584 sbitmap_zero (contains_call);
2585 FOR_EACH_BB (bb)
2586 {
2587 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2588 {
2589 if (nonpure_call_p (gsi_stmt (bsi)))
2590 break;
2591 }
2592
2593 if (!gsi_end_p (bsi))
2594 SET_BIT (contains_call, bb->index);
2595 }
2596
2597 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2598 fill_always_executed_in (loop, contains_call);
2599
2600 sbitmap_free (contains_call);
2601
2602 lim_aux_data_map = pointer_map_create ();
2603
2604 if (flag_tm)
2605 compute_transaction_bits ();
2606
2607 alloc_aux_for_edges (0);
2608 }
2609
2610 /* Cleans up after the invariant motion pass. */
2611
2612 static void
2613 tree_ssa_lim_finalize (void)
2614 {
2615 basic_block bb;
2616 unsigned i;
2617 bitmap b;
2618 mem_ref_p ref;
2619
2620 free_aux_for_edges ();
2621
2622 FOR_EACH_BB (bb)
2623 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2624
2625 pointer_map_destroy (lim_aux_data_map);
2626
2627 htab_delete (memory_accesses.refs);
2628
2629 FOR_EACH_VEC_ELT (mem_ref_p, memory_accesses.refs_list, i, ref)
2630 memref_free (ref);
2631 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2632
2633 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
2634 BITMAP_FREE (b);
2635 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2636
2637 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
2638 BITMAP_FREE (b);
2639 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2640
2641 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_stored_in_loop, i, b)
2642 BITMAP_FREE (b);
2643 VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
2644
2645 if (memory_accesses.ttae_cache)
2646 pointer_map_destroy (memory_accesses.ttae_cache);
2647 }
2648
2649 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2650 i.e. those that are likely to be win regardless of the register pressure. */
2651
2652 unsigned int
2653 tree_ssa_lim (void)
2654 {
2655 unsigned int todo;
2656
2657 tree_ssa_lim_initialize ();
2658
2659 /* Gathers information about memory accesses in the loops. */
2660 analyze_memory_references ();
2661
2662 /* For each statement determine the outermost loop in that it is
2663 invariant and cost for computing the invariant. */
2664 determine_invariantness ();
2665
2666 /* Execute store motion. Force the necessary invariants to be moved
2667 out of the loops as well. */
2668 store_motion ();
2669
2670 /* Move the expressions that are expensive enough. */
2671 todo = move_computations ();
2672
2673 tree_ssa_lim_finalize ();
2674
2675 return todo;
2676 }