Daily bump.
[gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "alias.h"
47 #include "builtins.h"
48 #include "tree-dfa.h"
49 #include "dbgcnt.h"
50
51 /* TODO: Support for predicated code motion. I.e.
52
53 while (1)
54 {
55 if (cond)
56 {
57 a = inv;
58 something;
59 }
60 }
61
62 Where COND and INV are invariants, but evaluating INV may trap or be
63 invalid from some other reason if !COND. This may be transformed to
64
65 if (cond)
66 a = inv;
67 while (1)
68 {
69 if (cond)
70 something;
71 } */
72
73 /* The auxiliary data kept for each statement. */
74
75 struct lim_aux_data
76 {
77 class loop *max_loop; /* The outermost loop in that the statement
78 is invariant. */
79
80 class loop *tgt_loop; /* The loop out of that we want to move the
81 invariant. */
82
83 class loop *always_executed_in;
84 /* The outermost loop for that we are sure
85 the statement is executed if the loop
86 is entered. */
87
88 unsigned cost; /* Cost of the computation performed by the
89 statement. */
90
91 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
92
93 vec<gimple *> depends; /* Vector of statements that must be also
94 hoisted out of the loop when this statement
95 is hoisted; i.e. those that define the
96 operands of the statement and are inside of
97 the MAX_LOOP loop. */
98 };
99
100 /* Maps statements to their lim_aux_data. */
101
102 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
103
104 /* Description of a memory reference location. */
105
106 struct mem_ref_loc
107 {
108 tree *ref; /* The reference itself. */
109 gimple *stmt; /* The statement in that it occurs. */
110 };
111
112
113 /* Description of a memory reference. */
114
115 class im_mem_ref
116 {
117 public:
118 unsigned id : 30; /* ID assigned to the memory reference
119 (its index in memory_accesses.refs_list) */
120 unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
121 unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
122 hashval_t hash; /* Its hash value. */
123
124 /* The memory access itself and associated caching of alias-oracle
125 query meta-data. */
126 ao_ref mem;
127
128 bitmap stored; /* The set of loops in that this memory location
129 is stored to. */
130 bitmap loaded; /* The set of loops in that this memory location
131 is loaded from. */
132 vec<mem_ref_loc> accesses_in_loop;
133 /* The locations of the accesses. Vector
134 indexed by the loop number. */
135
136 /* The following set is computed on demand. */
137 bitmap_head dep_loop; /* The set of loops in that the memory
138 reference is {in,}dependent in
139 different modes. */
140 };
141
142 /* We use six bits per loop in the ref->dep_loop bitmap to record
143 the dep_kind x dep_state combinations. */
144
145 enum dep_kind { lim_raw, sm_war, sm_waw };
146 enum dep_state { dep_unknown, dep_independent, dep_dependent };
147
148 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
149
150 static void
151 record_loop_dependence (class loop *loop, im_mem_ref *ref,
152 dep_kind kind, dep_state state)
153 {
154 gcc_assert (state != dep_unknown);
155 unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
156 bitmap_set_bit (&ref->dep_loop, bit);
157 }
158
159 /* Query the loop dependence cache of REF for LOOP, KIND. */
160
161 static dep_state
162 query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
163 {
164 unsigned first_bit = 6 * loop->num + kind * 2;
165 if (bitmap_bit_p (&ref->dep_loop, first_bit))
166 return dep_independent;
167 else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
168 return dep_dependent;
169 return dep_unknown;
170 }
171
172 /* Mem_ref hashtable helpers. */
173
174 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
175 {
176 typedef ao_ref *compare_type;
177 static inline hashval_t hash (const im_mem_ref *);
178 static inline bool equal (const im_mem_ref *, const ao_ref *);
179 };
180
181 /* A hash function for class im_mem_ref object OBJ. */
182
183 inline hashval_t
184 mem_ref_hasher::hash (const im_mem_ref *mem)
185 {
186 return mem->hash;
187 }
188
189 /* An equality function for class im_mem_ref object MEM1 with
190 memory reference OBJ2. */
191
192 inline bool
193 mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
194 {
195 if (obj2->max_size_known_p ())
196 return (mem1->ref_decomposed
197 && operand_equal_p (mem1->mem.base, obj2->base, 0)
198 && known_eq (mem1->mem.offset, obj2->offset)
199 && known_eq (mem1->mem.size, obj2->size)
200 && known_eq (mem1->mem.max_size, obj2->max_size)
201 && mem1->mem.volatile_p == obj2->volatile_p
202 && (mem1->mem.ref_alias_set == obj2->ref_alias_set
203 /* We are not canonicalizing alias-sets but for the
204 special-case we didn't canonicalize yet and the
205 incoming ref is a alias-set zero MEM we pick
206 the correct one already. */
207 || (!mem1->ref_canonical
208 && (TREE_CODE (obj2->ref) == MEM_REF
209 || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
210 && obj2->ref_alias_set == 0)
211 /* Likewise if there's a canonical ref with alias-set zero. */
212 || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
213 && types_compatible_p (TREE_TYPE (mem1->mem.ref),
214 TREE_TYPE (obj2->ref)));
215 else
216 return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
217 }
218
219
220 /* Description of memory accesses in loops. */
221
222 static struct
223 {
224 /* The hash table of memory references accessed in loops. */
225 hash_table<mem_ref_hasher> *refs;
226
227 /* The list of memory references. */
228 vec<im_mem_ref *> refs_list;
229
230 /* The set of memory references accessed in each loop. */
231 vec<bitmap_head> refs_loaded_in_loop;
232
233 /* The set of memory references stored in each loop. */
234 vec<bitmap_head> refs_stored_in_loop;
235
236 /* The set of memory references stored in each loop, including subloops . */
237 vec<bitmap_head> all_refs_stored_in_loop;
238
239 /* Cache for expanding memory addresses. */
240 hash_map<tree, name_expansion *> *ttae_cache;
241 } memory_accesses;
242
243 /* Obstack for the bitmaps in the above data structures. */
244 static bitmap_obstack lim_bitmap_obstack;
245 static obstack mem_ref_obstack;
246
247 static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
248 static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
249 static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
250
251 /* Minimum cost of an expensive expression. */
252 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
253
254 /* The outermost loop for which execution of the header guarantees that the
255 block will be executed. */
256 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
257 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
258
259 /* ID of the shared unanalyzable mem. */
260 #define UNANALYZABLE_MEM_ID 0
261
262 /* Whether the reference was analyzable. */
263 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
264
265 static struct lim_aux_data *
266 init_lim_data (gimple *stmt)
267 {
268 lim_aux_data *p = XCNEW (struct lim_aux_data);
269 lim_aux_data_map->put (stmt, p);
270
271 return p;
272 }
273
274 static struct lim_aux_data *
275 get_lim_data (gimple *stmt)
276 {
277 lim_aux_data **p = lim_aux_data_map->get (stmt);
278 if (!p)
279 return NULL;
280
281 return *p;
282 }
283
284 /* Releases the memory occupied by DATA. */
285
286 static void
287 free_lim_aux_data (struct lim_aux_data *data)
288 {
289 data->depends.release ();
290 free (data);
291 }
292
293 static void
294 clear_lim_data (gimple *stmt)
295 {
296 lim_aux_data **p = lim_aux_data_map->get (stmt);
297 if (!p)
298 return;
299
300 free_lim_aux_data (*p);
301 *p = NULL;
302 }
303
304
305 /* The possibilities of statement movement. */
306 enum move_pos
307 {
308 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
309 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
310 become executed -- memory accesses, ... */
311 MOVE_POSSIBLE /* Unlimited movement. */
312 };
313
314
315 /* If it is possible to hoist the statement STMT unconditionally,
316 returns MOVE_POSSIBLE.
317 If it is possible to hoist the statement STMT, but we must avoid making
318 it executed if it would not be executed in the original program (e.g.
319 because it may trap), return MOVE_PRESERVE_EXECUTION.
320 Otherwise return MOVE_IMPOSSIBLE. */
321
322 enum move_pos
323 movement_possibility (gimple *stmt)
324 {
325 tree lhs;
326 enum move_pos ret = MOVE_POSSIBLE;
327
328 if (flag_unswitch_loops
329 && gimple_code (stmt) == GIMPLE_COND)
330 {
331 /* If we perform unswitching, force the operands of the invariant
332 condition to be moved out of the loop. */
333 return MOVE_POSSIBLE;
334 }
335
336 if (gimple_code (stmt) == GIMPLE_PHI
337 && gimple_phi_num_args (stmt) <= 2
338 && !virtual_operand_p (gimple_phi_result (stmt))
339 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
340 return MOVE_POSSIBLE;
341
342 if (gimple_get_lhs (stmt) == NULL_TREE)
343 return MOVE_IMPOSSIBLE;
344
345 if (gimple_vdef (stmt))
346 return MOVE_IMPOSSIBLE;
347
348 if (stmt_ends_bb_p (stmt)
349 || gimple_has_volatile_ops (stmt)
350 || gimple_has_side_effects (stmt)
351 || stmt_could_throw_p (cfun, stmt))
352 return MOVE_IMPOSSIBLE;
353
354 if (is_gimple_call (stmt))
355 {
356 /* While pure or const call is guaranteed to have no side effects, we
357 cannot move it arbitrarily. Consider code like
358
359 char *s = something ();
360
361 while (1)
362 {
363 if (s)
364 t = strlen (s);
365 else
366 t = 0;
367 }
368
369 Here the strlen call cannot be moved out of the loop, even though
370 s is invariant. In addition to possibly creating a call with
371 invalid arguments, moving out a function call that is not executed
372 may cause performance regressions in case the call is costly and
373 not executed at all. */
374 ret = MOVE_PRESERVE_EXECUTION;
375 lhs = gimple_call_lhs (stmt);
376 }
377 else if (is_gimple_assign (stmt))
378 lhs = gimple_assign_lhs (stmt);
379 else
380 return MOVE_IMPOSSIBLE;
381
382 if (TREE_CODE (lhs) == SSA_NAME
383 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
384 return MOVE_IMPOSSIBLE;
385
386 if (TREE_CODE (lhs) != SSA_NAME
387 || gimple_could_trap_p (stmt))
388 return MOVE_PRESERVE_EXECUTION;
389
390 /* Non local loads in a transaction cannot be hoisted out. Well,
391 unless the load happens on every path out of the loop, but we
392 don't take this into account yet. */
393 if (flag_tm
394 && gimple_in_transaction (stmt)
395 && gimple_assign_single_p (stmt))
396 {
397 tree rhs = gimple_assign_rhs1 (stmt);
398 if (DECL_P (rhs) && is_global_var (rhs))
399 {
400 if (dump_file)
401 {
402 fprintf (dump_file, "Cannot hoist conditional load of ");
403 print_generic_expr (dump_file, rhs, TDF_SLIM);
404 fprintf (dump_file, " because it is in a transaction.\n");
405 }
406 return MOVE_IMPOSSIBLE;
407 }
408 }
409
410 return ret;
411 }
412
413 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
414 loop to that we could move the expression using DEF if it did not have
415 other operands, i.e. the outermost loop enclosing LOOP in that the value
416 of DEF is invariant. */
417
418 static class loop *
419 outermost_invariant_loop (tree def, class loop *loop)
420 {
421 gimple *def_stmt;
422 basic_block def_bb;
423 class loop *max_loop;
424 struct lim_aux_data *lim_data;
425
426 if (!def)
427 return superloop_at_depth (loop, 1);
428
429 if (TREE_CODE (def) != SSA_NAME)
430 {
431 gcc_assert (is_gimple_min_invariant (def));
432 return superloop_at_depth (loop, 1);
433 }
434
435 def_stmt = SSA_NAME_DEF_STMT (def);
436 def_bb = gimple_bb (def_stmt);
437 if (!def_bb)
438 return superloop_at_depth (loop, 1);
439
440 max_loop = find_common_loop (loop, def_bb->loop_father);
441
442 lim_data = get_lim_data (def_stmt);
443 if (lim_data != NULL && lim_data->max_loop != NULL)
444 max_loop = find_common_loop (max_loop,
445 loop_outer (lim_data->max_loop));
446 if (max_loop == loop)
447 return NULL;
448 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
449
450 return max_loop;
451 }
452
453 /* DATA is a structure containing information associated with a statement
454 inside LOOP. DEF is one of the operands of this statement.
455
456 Find the outermost loop enclosing LOOP in that value of DEF is invariant
457 and record this in DATA->max_loop field. If DEF itself is defined inside
458 this loop as well (i.e. we need to hoist it out of the loop if we want
459 to hoist the statement represented by DATA), record the statement in that
460 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
461 add the cost of the computation of DEF to the DATA->cost.
462
463 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
464
465 static bool
466 add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
467 bool add_cost)
468 {
469 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
470 basic_block def_bb = gimple_bb (def_stmt);
471 class loop *max_loop;
472 struct lim_aux_data *def_data;
473
474 if (!def_bb)
475 return true;
476
477 max_loop = outermost_invariant_loop (def, loop);
478 if (!max_loop)
479 return false;
480
481 if (flow_loop_nested_p (data->max_loop, max_loop))
482 data->max_loop = max_loop;
483
484 def_data = get_lim_data (def_stmt);
485 if (!def_data)
486 return true;
487
488 if (add_cost
489 /* Only add the cost if the statement defining DEF is inside LOOP,
490 i.e. if it is likely that by moving the invariants dependent
491 on it, we will be able to avoid creating a new register for
492 it (since it will be only used in these dependent invariants). */
493 && def_bb->loop_father == loop)
494 data->cost += def_data->cost;
495
496 data->depends.safe_push (def_stmt);
497
498 return true;
499 }
500
501 /* Returns an estimate for a cost of statement STMT. The values here
502 are just ad-hoc constants, similar to costs for inlining. */
503
504 static unsigned
505 stmt_cost (gimple *stmt)
506 {
507 /* Always try to create possibilities for unswitching. */
508 if (gimple_code (stmt) == GIMPLE_COND
509 || gimple_code (stmt) == GIMPLE_PHI)
510 return LIM_EXPENSIVE;
511
512 /* We should be hoisting calls if possible. */
513 if (is_gimple_call (stmt))
514 {
515 tree fndecl;
516
517 /* Unless the call is a builtin_constant_p; this always folds to a
518 constant, so moving it is useless. */
519 fndecl = gimple_call_fndecl (stmt);
520 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
521 return 0;
522
523 return LIM_EXPENSIVE;
524 }
525
526 /* Hoisting memory references out should almost surely be a win. */
527 if (gimple_references_memory_p (stmt))
528 return LIM_EXPENSIVE;
529
530 if (gimple_code (stmt) != GIMPLE_ASSIGN)
531 return 1;
532
533 switch (gimple_assign_rhs_code (stmt))
534 {
535 case MULT_EXPR:
536 case WIDEN_MULT_EXPR:
537 case WIDEN_MULT_PLUS_EXPR:
538 case WIDEN_MULT_MINUS_EXPR:
539 case DOT_PROD_EXPR:
540 case TRUNC_DIV_EXPR:
541 case CEIL_DIV_EXPR:
542 case FLOOR_DIV_EXPR:
543 case ROUND_DIV_EXPR:
544 case EXACT_DIV_EXPR:
545 case CEIL_MOD_EXPR:
546 case FLOOR_MOD_EXPR:
547 case ROUND_MOD_EXPR:
548 case TRUNC_MOD_EXPR:
549 case RDIV_EXPR:
550 /* Division and multiplication are usually expensive. */
551 return LIM_EXPENSIVE;
552
553 case LSHIFT_EXPR:
554 case RSHIFT_EXPR:
555 case WIDEN_LSHIFT_EXPR:
556 case LROTATE_EXPR:
557 case RROTATE_EXPR:
558 /* Shifts and rotates are usually expensive. */
559 return LIM_EXPENSIVE;
560
561 case CONSTRUCTOR:
562 /* Make vector construction cost proportional to the number
563 of elements. */
564 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
565
566 case SSA_NAME:
567 case PAREN_EXPR:
568 /* Whether or not something is wrapped inside a PAREN_EXPR
569 should not change move cost. Nor should an intermediate
570 unpropagated SSA name copy. */
571 return 0;
572
573 default:
574 return 1;
575 }
576 }
577
578 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
579 REF is independent. If REF is not independent in LOOP, NULL is returned
580 instead. */
581
582 static class loop *
583 outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
584 {
585 class loop *aloop;
586
587 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
588 return NULL;
589
590 for (aloop = outer;
591 aloop != loop;
592 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
593 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
594 && ref_indep_loop_p (aloop, ref, lim_raw))
595 return aloop;
596
597 if (ref_indep_loop_p (loop, ref, lim_raw))
598 return loop;
599 else
600 return NULL;
601 }
602
603 /* If there is a simple load or store to a memory reference in STMT, returns
604 the location of the memory reference, and sets IS_STORE according to whether
605 it is a store or load. Otherwise, returns NULL. */
606
607 static tree *
608 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
609 {
610 tree *lhs, *rhs;
611
612 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
613 if (!gimple_assign_single_p (stmt))
614 return NULL;
615
616 lhs = gimple_assign_lhs_ptr (stmt);
617 rhs = gimple_assign_rhs1_ptr (stmt);
618
619 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
620 {
621 *is_store = false;
622 return rhs;
623 }
624 else if (gimple_vdef (stmt)
625 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
626 {
627 *is_store = true;
628 return lhs;
629 }
630 else
631 return NULL;
632 }
633
634 /* From a controlling predicate in DOM determine the arguments from
635 the PHI node PHI that are chosen if the predicate evaluates to
636 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
637 they are non-NULL. Returns true if the arguments can be determined,
638 else return false. */
639
640 static bool
641 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
642 tree *true_arg_p, tree *false_arg_p)
643 {
644 edge te, fe;
645 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
646 &te, &fe))
647 return false;
648
649 if (true_arg_p)
650 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
651 if (false_arg_p)
652 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
653
654 return true;
655 }
656
657 /* Determine the outermost loop to that it is possible to hoist a statement
658 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
659 the outermost loop in that the value computed by STMT is invariant.
660 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
661 we preserve the fact whether STMT is executed. It also fills other related
662 information to LIM_DATA (STMT).
663
664 The function returns false if STMT cannot be hoisted outside of the loop it
665 is defined in, and true otherwise. */
666
667 static bool
668 determine_max_movement (gimple *stmt, bool must_preserve_exec)
669 {
670 basic_block bb = gimple_bb (stmt);
671 class loop *loop = bb->loop_father;
672 class loop *level;
673 struct lim_aux_data *lim_data = get_lim_data (stmt);
674 tree val;
675 ssa_op_iter iter;
676
677 if (must_preserve_exec)
678 level = ALWAYS_EXECUTED_IN (bb);
679 else
680 level = superloop_at_depth (loop, 1);
681 lim_data->max_loop = level;
682
683 if (gphi *phi = dyn_cast <gphi *> (stmt))
684 {
685 use_operand_p use_p;
686 unsigned min_cost = UINT_MAX;
687 unsigned total_cost = 0;
688 struct lim_aux_data *def_data;
689
690 /* We will end up promoting dependencies to be unconditionally
691 evaluated. For this reason the PHI cost (and thus the
692 cost we remove from the loop by doing the invariant motion)
693 is that of the cheapest PHI argument dependency chain. */
694 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
695 {
696 val = USE_FROM_PTR (use_p);
697
698 if (TREE_CODE (val) != SSA_NAME)
699 {
700 /* Assign const 1 to constants. */
701 min_cost = MIN (min_cost, 1);
702 total_cost += 1;
703 continue;
704 }
705 if (!add_dependency (val, lim_data, loop, false))
706 return false;
707
708 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
709 if (gimple_bb (def_stmt)
710 && gimple_bb (def_stmt)->loop_father == loop)
711 {
712 def_data = get_lim_data (def_stmt);
713 if (def_data)
714 {
715 min_cost = MIN (min_cost, def_data->cost);
716 total_cost += def_data->cost;
717 }
718 }
719 }
720
721 min_cost = MIN (min_cost, total_cost);
722 lim_data->cost += min_cost;
723
724 if (gimple_phi_num_args (phi) > 1)
725 {
726 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
727 gimple *cond;
728 if (gsi_end_p (gsi_last_bb (dom)))
729 return false;
730 cond = gsi_stmt (gsi_last_bb (dom));
731 if (gimple_code (cond) != GIMPLE_COND)
732 return false;
733 /* Verify that this is an extended form of a diamond and
734 the PHI arguments are completely controlled by the
735 predicate in DOM. */
736 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
737 return false;
738
739 /* Fold in dependencies and cost of the condition. */
740 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
741 {
742 if (!add_dependency (val, lim_data, loop, false))
743 return false;
744 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
745 if (def_data)
746 lim_data->cost += def_data->cost;
747 }
748
749 /* We want to avoid unconditionally executing very expensive
750 operations. As costs for our dependencies cannot be
751 negative just claim we are not invariand for this case.
752 We also are not sure whether the control-flow inside the
753 loop will vanish. */
754 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
755 && !(min_cost != 0
756 && total_cost / min_cost <= 2))
757 return false;
758
759 /* Assume that the control-flow in the loop will vanish.
760 ??? We should verify this and not artificially increase
761 the cost if that is not the case. */
762 lim_data->cost += stmt_cost (stmt);
763 }
764
765 return true;
766 }
767 else
768 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
769 if (!add_dependency (val, lim_data, loop, true))
770 return false;
771
772 if (gimple_vuse (stmt))
773 {
774 im_mem_ref *ref
775 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
776 if (ref
777 && MEM_ANALYZABLE (ref))
778 {
779 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
780 loop, ref);
781 if (!lim_data->max_loop)
782 return false;
783 }
784 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
785 return false;
786 }
787
788 lim_data->cost += stmt_cost (stmt);
789
790 return true;
791 }
792
793 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
794 and that one of the operands of this statement is computed by STMT.
795 Ensure that STMT (together with all the statements that define its
796 operands) is hoisted at least out of the loop LEVEL. */
797
798 static void
799 set_level (gimple *stmt, class loop *orig_loop, class loop *level)
800 {
801 class loop *stmt_loop = gimple_bb (stmt)->loop_father;
802 struct lim_aux_data *lim_data;
803 gimple *dep_stmt;
804 unsigned i;
805
806 stmt_loop = find_common_loop (orig_loop, stmt_loop);
807 lim_data = get_lim_data (stmt);
808 if (lim_data != NULL && lim_data->tgt_loop != NULL)
809 stmt_loop = find_common_loop (stmt_loop,
810 loop_outer (lim_data->tgt_loop));
811 if (flow_loop_nested_p (stmt_loop, level))
812 return;
813
814 gcc_assert (level == lim_data->max_loop
815 || flow_loop_nested_p (lim_data->max_loop, level));
816
817 lim_data->tgt_loop = level;
818 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
819 set_level (dep_stmt, orig_loop, level);
820 }
821
822 /* Determines an outermost loop from that we want to hoist the statement STMT.
823 For now we chose the outermost possible loop. TODO -- use profiling
824 information to set it more sanely. */
825
826 static void
827 set_profitable_level (gimple *stmt)
828 {
829 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
830 }
831
832 /* Returns true if STMT is a call that has side effects. */
833
834 static bool
835 nonpure_call_p (gimple *stmt)
836 {
837 if (gimple_code (stmt) != GIMPLE_CALL)
838 return false;
839
840 return gimple_has_side_effects (stmt);
841 }
842
843 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
844
845 static gimple *
846 rewrite_reciprocal (gimple_stmt_iterator *bsi)
847 {
848 gassign *stmt, *stmt1, *stmt2;
849 tree name, lhs, type;
850 tree real_one;
851 gimple_stmt_iterator gsi;
852
853 stmt = as_a <gassign *> (gsi_stmt (*bsi));
854 lhs = gimple_assign_lhs (stmt);
855 type = TREE_TYPE (lhs);
856
857 real_one = build_one_cst (type);
858
859 name = make_temp_ssa_name (type, NULL, "reciptmp");
860 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
861 gimple_assign_rhs2 (stmt));
862 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
863 gimple_assign_rhs1 (stmt));
864
865 /* Replace division stmt with reciprocal and multiply stmts.
866 The multiply stmt is not invariant, so update iterator
867 and avoid rescanning. */
868 gsi = *bsi;
869 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
870 gsi_replace (&gsi, stmt2, true);
871
872 /* Continue processing with invariant reciprocal statement. */
873 return stmt1;
874 }
875
876 /* Check if the pattern at *BSI is a bittest of the form
877 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
878
879 static gimple *
880 rewrite_bittest (gimple_stmt_iterator *bsi)
881 {
882 gassign *stmt;
883 gimple *stmt1;
884 gassign *stmt2;
885 gimple *use_stmt;
886 gcond *cond_stmt;
887 tree lhs, name, t, a, b;
888 use_operand_p use;
889
890 stmt = as_a <gassign *> (gsi_stmt (*bsi));
891 lhs = gimple_assign_lhs (stmt);
892
893 /* Verify that the single use of lhs is a comparison against zero. */
894 if (TREE_CODE (lhs) != SSA_NAME
895 || !single_imm_use (lhs, &use, &use_stmt))
896 return stmt;
897 cond_stmt = dyn_cast <gcond *> (use_stmt);
898 if (!cond_stmt)
899 return stmt;
900 if (gimple_cond_lhs (cond_stmt) != lhs
901 || (gimple_cond_code (cond_stmt) != NE_EXPR
902 && gimple_cond_code (cond_stmt) != EQ_EXPR)
903 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
904 return stmt;
905
906 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
907 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
908 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
909 return stmt;
910
911 /* There is a conversion in between possibly inserted by fold. */
912 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
913 {
914 t = gimple_assign_rhs1 (stmt1);
915 if (TREE_CODE (t) != SSA_NAME
916 || !has_single_use (t))
917 return stmt;
918 stmt1 = SSA_NAME_DEF_STMT (t);
919 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
920 return stmt;
921 }
922
923 /* Verify that B is loop invariant but A is not. Verify that with
924 all the stmt walking we are still in the same loop. */
925 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
926 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
927 return stmt;
928
929 a = gimple_assign_rhs1 (stmt1);
930 b = gimple_assign_rhs2 (stmt1);
931
932 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
933 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
934 {
935 gimple_stmt_iterator rsi;
936
937 /* 1 << B */
938 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
939 build_int_cst (TREE_TYPE (a), 1), b);
940 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
941 stmt1 = gimple_build_assign (name, t);
942
943 /* A & (1 << B) */
944 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
945 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
946 stmt2 = gimple_build_assign (name, t);
947
948 /* Replace the SSA_NAME we compare against zero. Adjust
949 the type of zero accordingly. */
950 SET_USE (use, name);
951 gimple_cond_set_rhs (cond_stmt,
952 build_int_cst_type (TREE_TYPE (name),
953 0));
954
955 /* Don't use gsi_replace here, none of the new assignments sets
956 the variable originally set in stmt. Move bsi to stmt1, and
957 then remove the original stmt, so that we get a chance to
958 retain debug info for it. */
959 rsi = *bsi;
960 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
961 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
962 gimple *to_release = gsi_stmt (rsi);
963 gsi_remove (&rsi, true);
964 release_defs (to_release);
965
966 return stmt1;
967 }
968
969 return stmt;
970 }
971
972 /* Determine the outermost loops in that statements in basic block BB are
973 invariant, and record them to the LIM_DATA associated with the
974 statements. */
975
976 static void
977 compute_invariantness (basic_block bb)
978 {
979 enum move_pos pos;
980 gimple_stmt_iterator bsi;
981 gimple *stmt;
982 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
983 class loop *outermost = ALWAYS_EXECUTED_IN (bb);
984 struct lim_aux_data *lim_data;
985
986 if (!loop_outer (bb->loop_father))
987 return;
988
989 if (dump_file && (dump_flags & TDF_DETAILS))
990 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
991 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
992
993 /* Look at PHI nodes, but only if there is at most two.
994 ??? We could relax this further by post-processing the inserted
995 code and transforming adjacent cond-exprs with the same predicate
996 to control flow again. */
997 bsi = gsi_start_phis (bb);
998 if (!gsi_end_p (bsi)
999 && ((gsi_next (&bsi), gsi_end_p (bsi))
1000 || (gsi_next (&bsi), gsi_end_p (bsi))))
1001 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1002 {
1003 stmt = gsi_stmt (bsi);
1004
1005 pos = movement_possibility (stmt);
1006 if (pos == MOVE_IMPOSSIBLE)
1007 continue;
1008
1009 lim_data = get_lim_data (stmt);
1010 if (! lim_data)
1011 lim_data = init_lim_data (stmt);
1012 lim_data->always_executed_in = outermost;
1013
1014 if (!determine_max_movement (stmt, false))
1015 {
1016 lim_data->max_loop = NULL;
1017 continue;
1018 }
1019
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1021 {
1022 print_gimple_stmt (dump_file, stmt, 2);
1023 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1024 loop_depth (lim_data->max_loop),
1025 lim_data->cost);
1026 }
1027
1028 if (lim_data->cost >= LIM_EXPENSIVE)
1029 set_profitable_level (stmt);
1030 }
1031
1032 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1033 {
1034 stmt = gsi_stmt (bsi);
1035
1036 pos = movement_possibility (stmt);
1037 if (pos == MOVE_IMPOSSIBLE)
1038 {
1039 if (nonpure_call_p (stmt))
1040 {
1041 maybe_never = true;
1042 outermost = NULL;
1043 }
1044 /* Make sure to note always_executed_in for stores to make
1045 store-motion work. */
1046 else if (stmt_makes_single_store (stmt))
1047 {
1048 struct lim_aux_data *lim_data = get_lim_data (stmt);
1049 if (! lim_data)
1050 lim_data = init_lim_data (stmt);
1051 lim_data->always_executed_in = outermost;
1052 }
1053 continue;
1054 }
1055
1056 if (is_gimple_assign (stmt)
1057 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1058 == GIMPLE_BINARY_RHS))
1059 {
1060 tree op0 = gimple_assign_rhs1 (stmt);
1061 tree op1 = gimple_assign_rhs2 (stmt);
1062 class loop *ol1 = outermost_invariant_loop (op1,
1063 loop_containing_stmt (stmt));
1064
1065 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1066 to be hoisted out of loop, saving expensive divide. */
1067 if (pos == MOVE_POSSIBLE
1068 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1069 && flag_unsafe_math_optimizations
1070 && !flag_trapping_math
1071 && ol1 != NULL
1072 && outermost_invariant_loop (op0, ol1) == NULL)
1073 stmt = rewrite_reciprocal (&bsi);
1074
1075 /* If the shift count is invariant, convert (A >> B) & 1 to
1076 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1077 saving an expensive shift. */
1078 if (pos == MOVE_POSSIBLE
1079 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1080 && integer_onep (op1)
1081 && TREE_CODE (op0) == SSA_NAME
1082 && has_single_use (op0))
1083 stmt = rewrite_bittest (&bsi);
1084 }
1085
1086 lim_data = get_lim_data (stmt);
1087 if (! lim_data)
1088 lim_data = init_lim_data (stmt);
1089 lim_data->always_executed_in = outermost;
1090
1091 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1092 continue;
1093
1094 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1095 {
1096 lim_data->max_loop = NULL;
1097 continue;
1098 }
1099
1100 if (dump_file && (dump_flags & TDF_DETAILS))
1101 {
1102 print_gimple_stmt (dump_file, stmt, 2);
1103 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1104 loop_depth (lim_data->max_loop),
1105 lim_data->cost);
1106 }
1107
1108 if (lim_data->cost >= LIM_EXPENSIVE)
1109 set_profitable_level (stmt);
1110 }
1111 }
1112
1113 /* Hoist the statements in basic block BB out of the loops prescribed by
1114 data stored in LIM_DATA structures associated with each statement. Callback
1115 for walk_dominator_tree. */
1116
1117 unsigned int
1118 move_computations_worker (basic_block bb)
1119 {
1120 class loop *level;
1121 unsigned cost = 0;
1122 struct lim_aux_data *lim_data;
1123 unsigned int todo = 0;
1124
1125 if (!loop_outer (bb->loop_father))
1126 return todo;
1127
1128 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1129 {
1130 gassign *new_stmt;
1131 gphi *stmt = bsi.phi ();
1132
1133 lim_data = get_lim_data (stmt);
1134 if (lim_data == NULL)
1135 {
1136 gsi_next (&bsi);
1137 continue;
1138 }
1139
1140 cost = lim_data->cost;
1141 level = lim_data->tgt_loop;
1142 clear_lim_data (stmt);
1143
1144 if (!level)
1145 {
1146 gsi_next (&bsi);
1147 continue;
1148 }
1149
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1151 {
1152 fprintf (dump_file, "Moving PHI node\n");
1153 print_gimple_stmt (dump_file, stmt, 0);
1154 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1155 cost, level->num);
1156 }
1157
1158 if (gimple_phi_num_args (stmt) == 1)
1159 {
1160 tree arg = PHI_ARG_DEF (stmt, 0);
1161 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1162 TREE_CODE (arg), arg);
1163 }
1164 else
1165 {
1166 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1167 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1168 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1169 /* Get the PHI arguments corresponding to the true and false
1170 edges of COND. */
1171 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1172 gcc_assert (arg0 && arg1);
1173 t = build2 (gimple_cond_code (cond), boolean_type_node,
1174 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1175 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1176 COND_EXPR, t, arg0, arg1);
1177 todo |= TODO_cleanup_cfg;
1178 }
1179 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1180 && (!ALWAYS_EXECUTED_IN (bb)
1181 || (ALWAYS_EXECUTED_IN (bb) != level
1182 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1183 {
1184 tree lhs = gimple_assign_lhs (new_stmt);
1185 SSA_NAME_RANGE_INFO (lhs) = NULL;
1186 }
1187 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1188 remove_phi_node (&bsi, false);
1189 }
1190
1191 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1192 {
1193 edge e;
1194
1195 gimple *stmt = gsi_stmt (bsi);
1196
1197 lim_data = get_lim_data (stmt);
1198 if (lim_data == NULL)
1199 {
1200 gsi_next (&bsi);
1201 continue;
1202 }
1203
1204 cost = lim_data->cost;
1205 level = lim_data->tgt_loop;
1206 clear_lim_data (stmt);
1207
1208 if (!level)
1209 {
1210 gsi_next (&bsi);
1211 continue;
1212 }
1213
1214 /* We do not really want to move conditionals out of the loop; we just
1215 placed it here to force its operands to be moved if necessary. */
1216 if (gimple_code (stmt) == GIMPLE_COND)
1217 continue;
1218
1219 if (dump_file && (dump_flags & TDF_DETAILS))
1220 {
1221 fprintf (dump_file, "Moving statement\n");
1222 print_gimple_stmt (dump_file, stmt, 0);
1223 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1224 cost, level->num);
1225 }
1226
1227 e = loop_preheader_edge (level);
1228 gcc_assert (!gimple_vdef (stmt));
1229 if (gimple_vuse (stmt))
1230 {
1231 /* The new VUSE is the one from the virtual PHI in the loop
1232 header or the one already present. */
1233 gphi_iterator gsi2;
1234 for (gsi2 = gsi_start_phis (e->dest);
1235 !gsi_end_p (gsi2); gsi_next (&gsi2))
1236 {
1237 gphi *phi = gsi2.phi ();
1238 if (virtual_operand_p (gimple_phi_result (phi)))
1239 {
1240 SET_USE (gimple_vuse_op (stmt),
1241 PHI_ARG_DEF_FROM_EDGE (phi, e));
1242 break;
1243 }
1244 }
1245 }
1246 gsi_remove (&bsi, false);
1247 if (gimple_has_lhs (stmt)
1248 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1249 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1250 && (!ALWAYS_EXECUTED_IN (bb)
1251 || !(ALWAYS_EXECUTED_IN (bb) == level
1252 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1253 {
1254 tree lhs = gimple_get_lhs (stmt);
1255 SSA_NAME_RANGE_INFO (lhs) = NULL;
1256 }
1257 /* In case this is a stmt that is not unconditionally executed
1258 when the target loop header is executed and the stmt may
1259 invoke undefined integer or pointer overflow rewrite it to
1260 unsigned arithmetic. */
1261 if (is_gimple_assign (stmt)
1262 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1264 && arith_code_with_undefined_signed_overflow
1265 (gimple_assign_rhs_code (stmt))
1266 && (!ALWAYS_EXECUTED_IN (bb)
1267 || !(ALWAYS_EXECUTED_IN (bb) == level
1268 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1269 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1270 else
1271 gsi_insert_on_edge (e, stmt);
1272 }
1273
1274 return todo;
1275 }
1276
1277 /* Checks whether the statement defining variable *INDEX can be hoisted
1278 out of the loop passed in DATA. Callback for for_each_index. */
1279
1280 static bool
1281 may_move_till (tree ref, tree *index, void *data)
1282 {
1283 class loop *loop = (class loop *) data, *max_loop;
1284
1285 /* If REF is an array reference, check also that the step and the lower
1286 bound is invariant in LOOP. */
1287 if (TREE_CODE (ref) == ARRAY_REF)
1288 {
1289 tree step = TREE_OPERAND (ref, 3);
1290 tree lbound = TREE_OPERAND (ref, 2);
1291
1292 max_loop = outermost_invariant_loop (step, loop);
1293 if (!max_loop)
1294 return false;
1295
1296 max_loop = outermost_invariant_loop (lbound, loop);
1297 if (!max_loop)
1298 return false;
1299 }
1300
1301 max_loop = outermost_invariant_loop (*index, loop);
1302 if (!max_loop)
1303 return false;
1304
1305 return true;
1306 }
1307
1308 /* If OP is SSA NAME, force the statement that defines it to be
1309 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1310
1311 static void
1312 force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
1313 {
1314 gimple *stmt;
1315
1316 if (!op
1317 || is_gimple_min_invariant (op))
1318 return;
1319
1320 gcc_assert (TREE_CODE (op) == SSA_NAME);
1321
1322 stmt = SSA_NAME_DEF_STMT (op);
1323 if (gimple_nop_p (stmt))
1324 return;
1325
1326 set_level (stmt, orig_loop, loop);
1327 }
1328
1329 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1330 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1331 for_each_index. */
1332
1333 struct fmt_data
1334 {
1335 class loop *loop;
1336 class loop *orig_loop;
1337 };
1338
1339 static bool
1340 force_move_till (tree ref, tree *index, void *data)
1341 {
1342 struct fmt_data *fmt_data = (struct fmt_data *) data;
1343
1344 if (TREE_CODE (ref) == ARRAY_REF)
1345 {
1346 tree step = TREE_OPERAND (ref, 3);
1347 tree lbound = TREE_OPERAND (ref, 2);
1348
1349 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1350 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1351 }
1352
1353 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1354
1355 return true;
1356 }
1357
1358 /* A function to free the mem_ref object OBJ. */
1359
1360 static void
1361 memref_free (class im_mem_ref *mem)
1362 {
1363 mem->accesses_in_loop.release ();
1364 }
1365
1366 /* Allocates and returns a memory reference description for MEM whose hash
1367 value is HASH and id is ID. */
1368
1369 static im_mem_ref *
1370 mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
1371 {
1372 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
1373 if (mem)
1374 ref->mem = *mem;
1375 else
1376 ao_ref_init (&ref->mem, error_mark_node);
1377 ref->id = id;
1378 ref->ref_canonical = false;
1379 ref->ref_decomposed = false;
1380 ref->hash = hash;
1381 ref->stored = NULL;
1382 ref->loaded = NULL;
1383 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1384 ref->accesses_in_loop.create (1);
1385
1386 return ref;
1387 }
1388
1389 /* Records memory reference location *LOC in LOOP to the memory reference
1390 description REF. The reference occurs in statement STMT. */
1391
1392 static void
1393 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1394 {
1395 mem_ref_loc aref;
1396 aref.stmt = stmt;
1397 aref.ref = loc;
1398 ref->accesses_in_loop.safe_push (aref);
1399 }
1400
1401 /* Set the LOOP bit in REF stored bitmap and allocate that if
1402 necessary. Return whether a bit was changed. */
1403
1404 static bool
1405 set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
1406 {
1407 if (!ref->stored)
1408 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1409 return bitmap_set_bit (ref->stored, loop->num);
1410 }
1411
1412 /* Marks reference REF as stored in LOOP. */
1413
1414 static void
1415 mark_ref_stored (im_mem_ref *ref, class loop *loop)
1416 {
1417 while (loop != current_loops->tree_root
1418 && set_ref_stored_in_loop (ref, loop))
1419 loop = loop_outer (loop);
1420 }
1421
1422 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1423 necessary. Return whether a bit was changed. */
1424
1425 static bool
1426 set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
1427 {
1428 if (!ref->loaded)
1429 ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
1430 return bitmap_set_bit (ref->loaded, loop->num);
1431 }
1432
1433 /* Marks reference REF as loaded in LOOP. */
1434
1435 static void
1436 mark_ref_loaded (im_mem_ref *ref, class loop *loop)
1437 {
1438 while (loop != current_loops->tree_root
1439 && set_ref_loaded_in_loop (ref, loop))
1440 loop = loop_outer (loop);
1441 }
1442
1443 /* Gathers memory references in statement STMT in LOOP, storing the
1444 information about them in the memory_accesses structure. Marks
1445 the vops accessed through unrecognized statements there as
1446 well. */
1447
1448 static void
1449 gather_mem_refs_stmt (class loop *loop, gimple *stmt)
1450 {
1451 tree *mem = NULL;
1452 hashval_t hash;
1453 im_mem_ref **slot;
1454 im_mem_ref *ref;
1455 bool is_stored;
1456 unsigned id;
1457
1458 if (!gimple_vuse (stmt))
1459 return;
1460
1461 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1462 if (!mem)
1463 {
1464 /* We use the shared mem_ref for all unanalyzable refs. */
1465 id = UNANALYZABLE_MEM_ID;
1466 ref = memory_accesses.refs_list[id];
1467 if (dump_file && (dump_flags & TDF_DETAILS))
1468 {
1469 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1470 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1471 }
1472 is_stored = gimple_vdef (stmt);
1473 }
1474 else
1475 {
1476 /* We are looking for equal refs that might differ in structure
1477 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1478 make sure we can canonicalize the ref in the hashtable if
1479 non-operand_equal_p refs are found. For the lookup we mark
1480 the case we want strict equality with aor.max_size == -1. */
1481 ao_ref aor;
1482 ao_ref_init (&aor, *mem);
1483 ao_ref_base (&aor);
1484 ao_ref_alias_set (&aor);
1485 HOST_WIDE_INT offset, size, max_size;
1486 poly_int64 saved_maxsize = aor.max_size, mem_off;
1487 tree mem_base;
1488 bool ref_decomposed;
1489 if (aor.max_size_known_p ()
1490 && aor.offset.is_constant (&offset)
1491 && aor.size.is_constant (&size)
1492 && aor.max_size.is_constant (&max_size)
1493 && size == max_size
1494 && (size % BITS_PER_UNIT) == 0
1495 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1496 size. Make sure this is consistent with the extraction. */
1497 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
1498 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
1499 aor.size)
1500 && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
1501 {
1502 ref_decomposed = true;
1503 hash = iterative_hash_expr (ao_ref_base (&aor), 0);
1504 hash = iterative_hash_host_wide_int (offset, hash);
1505 hash = iterative_hash_host_wide_int (size, hash);
1506 }
1507 else
1508 {
1509 ref_decomposed = false;
1510 hash = iterative_hash_expr (aor.ref, 0);
1511 aor.max_size = -1;
1512 }
1513 slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
1514 aor.max_size = saved_maxsize;
1515 if (*slot)
1516 {
1517 if (!(*slot)->ref_canonical
1518 && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
1519 {
1520 /* If we didn't yet canonicalize the hashtable ref (which
1521 we'll end up using for code insertion) and hit a second
1522 equal ref that is not structurally equivalent create
1523 a canonical ref which is a bare MEM_REF. */
1524 if (TREE_CODE (*mem) == MEM_REF
1525 || TREE_CODE (*mem) == TARGET_MEM_REF)
1526 {
1527 (*slot)->mem.ref = *mem;
1528 (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
1529 }
1530 else
1531 {
1532 tree ref_alias_type = reference_alias_ptr_type (*mem);
1533 unsigned int ref_align = get_object_alignment (*mem);
1534 tree ref_type = TREE_TYPE (*mem);
1535 tree tmp = build1 (ADDR_EXPR, ptr_type_node,
1536 unshare_expr (mem_base));
1537 if (TYPE_ALIGN (ref_type) != ref_align)
1538 ref_type = build_aligned_type (ref_type, ref_align);
1539 (*slot)->mem.ref
1540 = fold_build2 (MEM_REF, ref_type, tmp,
1541 build_int_cst (ref_alias_type, mem_off));
1542 if ((*slot)->mem.volatile_p)
1543 TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
1544 gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
1545 && is_gimple_mem_ref_addr
1546 (TREE_OPERAND ((*slot)->mem.ref,
1547 0)));
1548 (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
1549 }
1550 (*slot)->ref_canonical = true;
1551 }
1552 ref = *slot;
1553 id = ref->id;
1554 }
1555 else
1556 {
1557 id = memory_accesses.refs_list.length ();
1558 ref = mem_ref_alloc (&aor, hash, id);
1559 ref->ref_decomposed = ref_decomposed;
1560 memory_accesses.refs_list.safe_push (ref);
1561 *slot = ref;
1562
1563 if (dump_file && (dump_flags & TDF_DETAILS))
1564 {
1565 fprintf (dump_file, "Memory reference %u: ", id);
1566 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1567 fprintf (dump_file, "\n");
1568 }
1569 }
1570
1571 record_mem_ref_loc (ref, stmt, mem);
1572 }
1573 if (is_stored)
1574 {
1575 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1576 mark_ref_stored (ref, loop);
1577 }
1578 /* A not simple memory op is also a read when it is a write. */
1579 if (!is_stored || id == UNANALYZABLE_MEM_ID)
1580 {
1581 bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
1582 mark_ref_loaded (ref, loop);
1583 }
1584 init_lim_data (stmt)->ref = ref->id;
1585 return;
1586 }
1587
1588 static unsigned *bb_loop_postorder;
1589
1590 /* qsort sort function to sort blocks after their loop fathers postorder. */
1591
1592 static int
1593 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
1594 void *bb_loop_postorder_)
1595 {
1596 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1597 basic_block bb1 = *(const basic_block *)bb1_;
1598 basic_block bb2 = *(const basic_block *)bb2_;
1599 class loop *loop1 = bb1->loop_father;
1600 class loop *loop2 = bb2->loop_father;
1601 if (loop1->num == loop2->num)
1602 return bb1->index - bb2->index;
1603 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1604 }
1605
1606 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1607
1608 static int
1609 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
1610 void *bb_loop_postorder_)
1611 {
1612 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1613 const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
1614 const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
1615 class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1616 class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1617 if (loop1->num == loop2->num)
1618 return 0;
1619 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1620 }
1621
1622 /* Gathers memory references in loops. */
1623
1624 static void
1625 analyze_memory_references (bool store_motion)
1626 {
1627 gimple_stmt_iterator bsi;
1628 basic_block bb, *bbs;
1629 class loop *loop, *outer;
1630 unsigned i, n;
1631
1632 /* Collect all basic-blocks in loops and sort them after their
1633 loops postorder. */
1634 i = 0;
1635 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1636 FOR_EACH_BB_FN (bb, cfun)
1637 if (bb->loop_father != current_loops->tree_root)
1638 bbs[i++] = bb;
1639 n = i;
1640 gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
1641 bb_loop_postorder);
1642
1643 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1644 That results in better locality for all the bitmaps. It also
1645 automatically sorts the location list of gathered memory references
1646 after their loop postorder number allowing to binary-search it. */
1647 for (i = 0; i < n; ++i)
1648 {
1649 basic_block bb = bbs[i];
1650 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1651 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1652 }
1653
1654 /* Verify the list of gathered memory references is sorted after their
1655 loop postorder number. */
1656 if (flag_checking)
1657 {
1658 im_mem_ref *ref;
1659 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1660 for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
1661 gcc_assert (sort_locs_in_loop_postorder_cmp
1662 (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
1663 bb_loop_postorder) <= 0);
1664 }
1665
1666 free (bbs);
1667
1668 if (!store_motion)
1669 return;
1670
1671 /* Propagate the information about accessed memory references up
1672 the loop hierarchy. */
1673 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1674 {
1675 /* Finalize the overall touched references (including subloops). */
1676 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1677 &memory_accesses.refs_stored_in_loop[loop->num]);
1678
1679 /* Propagate the information about accessed memory references up
1680 the loop hierarchy. */
1681 outer = loop_outer (loop);
1682 if (outer == current_loops->tree_root)
1683 continue;
1684
1685 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1686 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1687 }
1688 }
1689
1690 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1691 tree_to_aff_combination_expand. */
1692
1693 static bool
1694 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1695 hash_map<tree, name_expansion *> **ttae_cache,
1696 bool tbaa_p)
1697 {
1698 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1699 object and their offset differ in such a way that the locations cannot
1700 overlap, then they cannot alias. */
1701 poly_widest_int size1, size2;
1702 aff_tree off1, off2;
1703
1704 /* Perform basic offset and type-based disambiguation. */
1705 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
1706 return false;
1707
1708 /* The expansion of addresses may be a bit expensive, thus we only do
1709 the check at -O2 and higher optimization levels. */
1710 if (optimize < 2)
1711 return true;
1712
1713 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1714 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1715 aff_combination_expand (&off1, ttae_cache);
1716 aff_combination_expand (&off2, ttae_cache);
1717 aff_combination_scale (&off1, -1);
1718 aff_combination_add (&off2, &off1);
1719
1720 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1721 return false;
1722
1723 return true;
1724 }
1725
1726 /* Compare function for bsearch searching for reference locations
1727 in a loop. */
1728
1729 static int
1730 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
1731 void *bb_loop_postorder_)
1732 {
1733 unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
1734 class loop *loop = (class loop *)const_cast<void *>(loop_);
1735 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1736 class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1737 if (loop->num == loc_loop->num
1738 || flow_loop_nested_p (loop, loc_loop))
1739 return 0;
1740 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1741 ? -1 : 1);
1742 }
1743
1744 /* Iterates over all locations of REF in LOOP and its subloops calling
1745 fn.operator() with the location as argument. When that operator
1746 returns true the iteration is stopped and true is returned.
1747 Otherwise false is returned. */
1748
1749 template <typename FN>
1750 static bool
1751 for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
1752 {
1753 unsigned i;
1754 mem_ref_loc *loc;
1755
1756 /* Search for the cluster of locs in the accesses_in_loop vector
1757 which is sorted after postorder index of the loop father. */
1758 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
1759 bb_loop_postorder);
1760 if (!loc)
1761 return false;
1762
1763 /* We have found one location inside loop or its sub-loops. Iterate
1764 both forward and backward to cover the whole cluster. */
1765 i = loc - ref->accesses_in_loop.address ();
1766 while (i > 0)
1767 {
1768 --i;
1769 mem_ref_loc *l = &ref->accesses_in_loop[i];
1770 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1771 break;
1772 if (fn (l))
1773 return true;
1774 }
1775 for (i = loc - ref->accesses_in_loop.address ();
1776 i < ref->accesses_in_loop.length (); ++i)
1777 {
1778 mem_ref_loc *l = &ref->accesses_in_loop[i];
1779 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1780 break;
1781 if (fn (l))
1782 return true;
1783 }
1784
1785 return false;
1786 }
1787
1788 /* Rewrites location LOC by TMP_VAR. */
1789
1790 class rewrite_mem_ref_loc
1791 {
1792 public:
1793 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1794 bool operator () (mem_ref_loc *loc);
1795 tree tmp_var;
1796 };
1797
1798 bool
1799 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1800 {
1801 *loc->ref = tmp_var;
1802 update_stmt (loc->stmt);
1803 return false;
1804 }
1805
1806 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1807
1808 static void
1809 rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
1810 {
1811 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1812 }
1813
1814 /* Stores the first reference location in LOCP. */
1815
1816 class first_mem_ref_loc_1
1817 {
1818 public:
1819 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1820 bool operator () (mem_ref_loc *loc);
1821 mem_ref_loc **locp;
1822 };
1823
1824 bool
1825 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1826 {
1827 *locp = loc;
1828 return true;
1829 }
1830
1831 /* Returns the first reference location to REF in LOOP. */
1832
1833 static mem_ref_loc *
1834 first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
1835 {
1836 mem_ref_loc *locp = NULL;
1837 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1838 return locp;
1839 }
1840
1841 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1842 MEM along edge EX.
1843
1844 The store is only done if MEM has changed. We do this so no
1845 changes to MEM occur on code paths that did not originally store
1846 into it.
1847
1848 The common case for execute_sm will transform:
1849
1850 for (...) {
1851 if (foo)
1852 stuff;
1853 else
1854 MEM = TMP_VAR;
1855 }
1856
1857 into:
1858
1859 lsm = MEM;
1860 for (...) {
1861 if (foo)
1862 stuff;
1863 else
1864 lsm = TMP_VAR;
1865 }
1866 MEM = lsm;
1867
1868 This function will generate:
1869
1870 lsm = MEM;
1871
1872 lsm_flag = false;
1873 ...
1874 for (...) {
1875 if (foo)
1876 stuff;
1877 else {
1878 lsm = TMP_VAR;
1879 lsm_flag = true;
1880 }
1881 }
1882 if (lsm_flag) <--
1883 MEM = lsm; <--
1884 */
1885
1886 static void
1887 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1888 edge preheader, hash_set <basic_block> *flag_bbs,
1889 edge &append_cond_position, edge &last_cond_fallthru)
1890 {
1891 basic_block new_bb, then_bb, old_dest;
1892 bool loop_has_only_one_exit;
1893 edge then_old_edge;
1894 gimple_stmt_iterator gsi;
1895 gimple *stmt;
1896 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1897
1898 profile_count count_sum = profile_count::zero ();
1899 int nbbs = 0, ncount = 0;
1900 profile_probability flag_probability = profile_probability::uninitialized ();
1901
1902 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1903 at loop exit.
1904
1905 This code may look fancy, but it cannot update profile very realistically
1906 because we do not know the probability that flag will be true at given
1907 loop exit.
1908
1909 We look for two interesting extremes
1910 - when exit is dominated by block setting the flag, we know it will
1911 always be true. This is a common case.
1912 - when all blocks setting the flag have very low frequency we know
1913 it will likely be false.
1914 In all other cases we default to 2/3 for flag being true. */
1915
1916 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1917 it != flag_bbs->end (); ++it)
1918 {
1919 if ((*it)->count.initialized_p ())
1920 count_sum += (*it)->count, ncount ++;
1921 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1922 flag_probability = profile_probability::always ();
1923 nbbs++;
1924 }
1925
1926 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1927
1928 if (flag_probability.initialized_p ())
1929 ;
1930 else if (ncount == nbbs
1931 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1932 {
1933 flag_probability = count_sum.probability_in (preheader->count ());
1934 if (flag_probability > cap)
1935 flag_probability = cap;
1936 }
1937
1938 if (!flag_probability.initialized_p ())
1939 flag_probability = cap;
1940
1941 /* ?? Insert store after previous store if applicable. See note
1942 below. */
1943 if (append_cond_position)
1944 ex = append_cond_position;
1945
1946 loop_has_only_one_exit = single_pred_p (ex->dest);
1947
1948 if (loop_has_only_one_exit)
1949 ex = split_block_after_labels (ex->dest);
1950 else
1951 {
1952 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1953 !gsi_end_p (gpi); gsi_next (&gpi))
1954 {
1955 gphi *phi = gpi.phi ();
1956 if (virtual_operand_p (gimple_phi_result (phi)))
1957 continue;
1958
1959 /* When the destination has a non-virtual PHI node with multiple
1960 predecessors make sure we preserve the PHI structure by
1961 forcing a forwarder block so that hoisting of that PHI will
1962 still work. */
1963 split_edge (ex);
1964 break;
1965 }
1966 }
1967
1968 old_dest = ex->dest;
1969 new_bb = split_edge (ex);
1970 then_bb = create_empty_bb (new_bb);
1971 then_bb->count = new_bb->count.apply_probability (flag_probability);
1972 if (irr)
1973 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1974 add_bb_to_loop (then_bb, new_bb->loop_father);
1975
1976 gsi = gsi_start_bb (new_bb);
1977 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1978 NULL_TREE, NULL_TREE);
1979 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1980
1981 gsi = gsi_start_bb (then_bb);
1982 /* Insert actual store. */
1983 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1984 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1985
1986 edge e1 = single_succ_edge (new_bb);
1987 edge e2 = make_edge (new_bb, then_bb,
1988 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1989 e2->probability = flag_probability;
1990
1991 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1992 e1->flags &= ~EDGE_FALLTHRU;
1993
1994 e1->probability = flag_probability.invert ();
1995
1996 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1997 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1998
1999 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2000
2001 if (append_cond_position)
2002 {
2003 basic_block prevbb = last_cond_fallthru->src;
2004 redirect_edge_succ (last_cond_fallthru, new_bb);
2005 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2006 set_immediate_dominator (CDI_DOMINATORS, old_dest,
2007 recompute_dominator (CDI_DOMINATORS, old_dest));
2008 }
2009
2010 /* ?? Because stores may alias, they must happen in the exact
2011 sequence they originally happened. Save the position right after
2012 the (_lsm) store we just created so we can continue appending after
2013 it and maintain the original order. */
2014 append_cond_position = then_old_edge;
2015 last_cond_fallthru = find_edge (new_bb, old_dest);
2016
2017 if (!loop_has_only_one_exit)
2018 for (gphi_iterator gpi = gsi_start_phis (old_dest);
2019 !gsi_end_p (gpi); gsi_next (&gpi))
2020 {
2021 gphi *phi = gpi.phi ();
2022 unsigned i;
2023
2024 for (i = 0; i < gimple_phi_num_args (phi); i++)
2025 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
2026 {
2027 tree arg = gimple_phi_arg_def (phi, i);
2028 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
2029 update_stmt (phi);
2030 }
2031 }
2032 }
2033
2034 /* When REF is set on the location, set flag indicating the store. */
2035
2036 class sm_set_flag_if_changed
2037 {
2038 public:
2039 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
2040 : flag (flag_), bbs (bbs_) {}
2041 bool operator () (mem_ref_loc *loc);
2042 tree flag;
2043 hash_set <basic_block> *bbs;
2044 };
2045
2046 bool
2047 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
2048 {
2049 /* Only set the flag for writes. */
2050 if (is_gimple_assign (loc->stmt)
2051 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
2052 {
2053 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
2054 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
2055 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2056 bbs->add (gimple_bb (stmt));
2057 }
2058 return false;
2059 }
2060
2061 /* Helper function for execute_sm. On every location where REF is
2062 set, set an appropriate flag indicating the store. */
2063
2064 static tree
2065 execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
2066 hash_set <basic_block> *bbs)
2067 {
2068 tree flag;
2069 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
2070 flag = create_tmp_reg (boolean_type_node, str);
2071 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
2072 return flag;
2073 }
2074
2075 struct sm_aux
2076 {
2077 tree tmp_var;
2078 tree store_flag;
2079 hash_set <basic_block> flag_bbs;
2080 };
2081
2082 /* Executes store motion of memory reference REF from LOOP.
2083 Exits from the LOOP are stored in EXITS. The initialization of the
2084 temporary variable is put to the preheader of the loop, and assignments
2085 to the reference from the temporary variable are emitted to exits. */
2086
2087 static void
2088 execute_sm (class loop *loop, im_mem_ref *ref,
2089 hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt)
2090 {
2091 gassign *load;
2092 struct fmt_data fmt_data;
2093 struct lim_aux_data *lim_data;
2094 bool multi_threaded_model_p = false;
2095 gimple_stmt_iterator gsi;
2096 sm_aux *aux = new sm_aux;
2097
2098 if (dump_file && (dump_flags & TDF_DETAILS))
2099 {
2100 fprintf (dump_file, "Executing store motion of ");
2101 print_generic_expr (dump_file, ref->mem.ref);
2102 fprintf (dump_file, " from loop %d\n", loop->num);
2103 }
2104
2105 aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2106 get_lsm_tmp_name (ref->mem.ref, ~0));
2107
2108 fmt_data.loop = loop;
2109 fmt_data.orig_loop = loop;
2110 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2111
2112 bool always_stored = ref_always_accessed_p (loop, ref, true);
2113 if (maybe_mt
2114 && (bb_in_transaction (loop_preheader_edge (loop)->src)
2115 || (! flag_store_data_races && ! always_stored)))
2116 multi_threaded_model_p = true;
2117
2118 if (multi_threaded_model_p)
2119 aux->store_flag
2120 = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
2121 else
2122 aux->store_flag = NULL_TREE;
2123
2124 /* Remember variable setup. */
2125 aux_map.put (ref, aux);
2126
2127 rewrite_mem_refs (loop, ref, aux->tmp_var);
2128
2129 /* Emit the load code on a random exit edge or into the latch if
2130 the loop does not exit, so that we are sure it will be processed
2131 by move_computations after all dependencies. */
2132 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2133
2134 /* Avoid doing a load if there was no load of the ref in the loop.
2135 Esp. when the ref is not always stored we cannot optimize it
2136 away later. But when it is not always stored we must use a conditional
2137 store then. */
2138 if ((!always_stored && !multi_threaded_model_p)
2139 || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
2140 load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
2141 else
2142 {
2143 /* If not emitting a load mark the uninitialized state on the
2144 loop entry as not to be warned for. */
2145 tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
2146 TREE_NO_WARNING (uninit) = 1;
2147 load = gimple_build_assign (aux->tmp_var, uninit);
2148 }
2149 lim_data = init_lim_data (load);
2150 lim_data->max_loop = loop;
2151 lim_data->tgt_loop = loop;
2152 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2153
2154 if (multi_threaded_model_p)
2155 {
2156 load = gimple_build_assign (aux->store_flag, boolean_false_node);
2157 lim_data = init_lim_data (load);
2158 lim_data->max_loop = loop;
2159 lim_data->tgt_loop = loop;
2160 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2161 }
2162 }
2163
2164 /* sm_ord is used for ordinary stores we can retain order with respect
2165 to other stores
2166 sm_unord is used for conditional executed stores which need to be
2167 able to execute in arbitrary order with respect to other stores
2168 sm_other is used for stores we do not try to apply store motion to. */
2169 enum sm_kind { sm_ord, sm_unord, sm_other };
2170 struct seq_entry
2171 {
2172 seq_entry (unsigned f, sm_kind k, tree fr = NULL)
2173 : first (f), second (k), from (fr) {}
2174 unsigned first;
2175 sm_kind second;
2176 tree from;
2177 };
2178
2179 static void
2180 execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
2181 hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
2182 edge &append_cond_position, edge &last_cond_fallthru)
2183 {
2184 /* Sink the stores to exit from the loop. */
2185 for (unsigned i = seq.length (); i > 0; --i)
2186 {
2187 im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
2188 if (seq[i-1].second == sm_other)
2189 {
2190 gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
2191 if (dump_file && (dump_flags & TDF_DETAILS))
2192 {
2193 fprintf (dump_file, "Re-issueing dependent store of ");
2194 print_generic_expr (dump_file, ref->mem.ref);
2195 fprintf (dump_file, " from loop %d on exit %d -> %d\n",
2196 loop->num, ex->src->index, ex->dest->index);
2197 }
2198 gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
2199 seq[i-1].from);
2200 gsi_insert_on_edge (ex, store);
2201 }
2202 else
2203 {
2204 sm_aux *aux = *aux_map.get (ref);
2205 if (!aux->store_flag || kind == sm_ord)
2206 {
2207 gassign *store;
2208 store = gimple_build_assign (unshare_expr (ref->mem.ref),
2209 aux->tmp_var);
2210 gsi_insert_on_edge (ex, store);
2211 }
2212 else
2213 execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
2214 aux->store_flag,
2215 loop_preheader_edge (loop), &aux->flag_bbs,
2216 append_cond_position, last_cond_fallthru);
2217 }
2218 }
2219 }
2220
2221 /* Push the SM candidate at index PTR in the sequence SEQ down until
2222 we hit the next SM candidate. Return true if that went OK and
2223 false if we could not disambiguate agains another unrelated ref.
2224 Update *AT to the index where the candidate now resides. */
2225
2226 static bool
2227 sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
2228 {
2229 *at = ptr;
2230 for (; ptr > 0; --ptr)
2231 {
2232 seq_entry &new_cand = seq[ptr];
2233 seq_entry &against = seq[ptr-1];
2234 if (against.second == sm_ord
2235 || (against.second == sm_other && against.from != NULL_TREE))
2236 /* Found the tail of the sequence. */
2237 break;
2238 /* We may not ignore self-dependences here. */
2239 if (new_cand.first == against.first
2240 || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
2241 memory_accesses.refs_list[against.first],
2242 false))
2243 /* ??? Prune new_cand from the list of refs to apply SM to. */
2244 return false;
2245 std::swap (new_cand, against);
2246 *at = ptr - 1;
2247 }
2248 return true;
2249 }
2250
2251 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2252 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2253
2254 static int
2255 sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
2256 vec<seq_entry> &seq, bitmap refs_not_in_seq,
2257 bitmap refs_not_supported, bool forked,
2258 bitmap fully_visited)
2259 {
2260 if (!vdef)
2261 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
2262 gsi_prev (&gsi))
2263 {
2264 vdef = gimple_vdef (gsi_stmt (gsi));
2265 if (vdef)
2266 break;
2267 }
2268 if (!vdef)
2269 {
2270 gphi *vphi = get_virtual_phi (bb);
2271 if (vphi)
2272 vdef = gimple_phi_result (vphi);
2273 }
2274 if (!vdef)
2275 {
2276 if (single_pred_p (bb))
2277 /* This handles the perfect nest case. */
2278 return sm_seq_valid_bb (loop, single_pred (bb), vdef,
2279 seq, refs_not_in_seq, refs_not_supported,
2280 forked, fully_visited);
2281 return 0;
2282 }
2283 do
2284 {
2285 gimple *def = SSA_NAME_DEF_STMT (vdef);
2286 if (gimple_bb (def) != bb)
2287 {
2288 /* If we forked by processing a PHI do not allow our walk to
2289 merge again until we handle that robustly. */
2290 if (forked)
2291 {
2292 /* Mark refs_not_in_seq as unsupported. */
2293 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2294 return 1;
2295 }
2296 /* Otherwise it doesn't really matter if we end up in different
2297 BBs. */
2298 bb = gimple_bb (def);
2299 }
2300 if (gphi *phi = dyn_cast <gphi *> (def))
2301 {
2302 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2303 this is still linear.
2304 Eventually we want to cache intermediate results per BB
2305 (but we can't easily cache for different exits?). */
2306 /* Stop at PHIs with possible backedges. */
2307 if (bb == bb->loop_father->header
2308 || bb->flags & BB_IRREDUCIBLE_LOOP)
2309 {
2310 /* Mark refs_not_in_seq as unsupported. */
2311 bitmap_ior_into (refs_not_supported, refs_not_in_seq);
2312 return 1;
2313 }
2314 if (gimple_phi_num_args (phi) == 1)
2315 return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2316 gimple_phi_arg_def (phi, 0), seq,
2317 refs_not_in_seq, refs_not_supported,
2318 false, fully_visited);
2319 if (bitmap_bit_p (fully_visited,
2320 SSA_NAME_VERSION (gimple_phi_result (phi))))
2321 return 1;
2322 auto_vec<seq_entry> first_edge_seq;
2323 auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
2324 int eret;
2325 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2326 eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
2327 gimple_phi_arg_def (phi, 0),
2328 first_edge_seq,
2329 tem_refs_not_in_seq, refs_not_supported,
2330 true, fully_visited);
2331 if (eret != 1)
2332 return -1;
2333 /* Simplify our lives by pruning the sequence of !sm_ord. */
2334 while (!first_edge_seq.is_empty ()
2335 && first_edge_seq.last ().second != sm_ord)
2336 first_edge_seq.pop ();
2337 for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
2338 {
2339 tree vuse = gimple_phi_arg_def (phi, i);
2340 edge e = gimple_phi_arg_edge (phi, i);
2341 auto_vec<seq_entry> edge_seq;
2342 bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
2343 eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
2344 tem_refs_not_in_seq, refs_not_supported,
2345 true, fully_visited);
2346 if (eret != 1)
2347 return -1;
2348 /* Simplify our lives by pruning the sequence of !sm_ord. */
2349 while (!edge_seq.is_empty ()
2350 && edge_seq.last ().second != sm_ord)
2351 edge_seq.pop ();
2352 unsigned min_len = MIN(first_edge_seq.length (),
2353 edge_seq.length ());
2354 /* Incrementally merge seqs into first_edge_seq. */
2355 for (unsigned int i = 0; i < min_len; ++i)
2356 {
2357 /* ??? We can more intelligently merge when we face different
2358 order by additional sinking operations in one sequence.
2359 For now we simply mark them as to be processed by the
2360 not order-preserving SM code. */
2361 if (first_edge_seq[i].first != edge_seq[i].first)
2362 {
2363 if (first_edge_seq[i].second == sm_ord)
2364 bitmap_set_bit (refs_not_supported,
2365 first_edge_seq[i].first);
2366 if (edge_seq[i].second == sm_ord)
2367 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2368 first_edge_seq[i].second = sm_other;
2369 first_edge_seq[i].from = NULL_TREE;
2370 }
2371 /* sm_other prevails. */
2372 else if (first_edge_seq[i].second != edge_seq[i].second)
2373 {
2374 /* This is just an optimization. */
2375 gcc_assert (bitmap_bit_p (refs_not_supported,
2376 first_edge_seq[i].first));
2377 first_edge_seq[i].second = sm_other;
2378 first_edge_seq[i].from = NULL_TREE;
2379 }
2380 else if (first_edge_seq[i].second == sm_other
2381 && first_edge_seq[i].from != NULL_TREE
2382 && (edge_seq[i].from == NULL_TREE
2383 || !operand_equal_p (first_edge_seq[i].from,
2384 edge_seq[i].from, 0)))
2385 first_edge_seq[i].from = NULL_TREE;
2386 }
2387 /* Any excess elements become sm_other since they are now
2388 coonditionally executed. */
2389 if (first_edge_seq.length () > edge_seq.length ())
2390 {
2391 for (unsigned i = edge_seq.length ();
2392 i < first_edge_seq.length (); ++i)
2393 {
2394 if (first_edge_seq[i].second == sm_ord)
2395 bitmap_set_bit (refs_not_supported,
2396 first_edge_seq[i].first);
2397 first_edge_seq[i].second = sm_other;
2398 }
2399 }
2400 else if (edge_seq.length () > first_edge_seq.length ())
2401 {
2402 for (unsigned i = first_edge_seq.length ();
2403 i < edge_seq.length (); ++i)
2404 if (edge_seq[i].second == sm_ord)
2405 bitmap_set_bit (refs_not_supported, edge_seq[i].first);
2406 }
2407 }
2408 /* Use the sequence from the first edge and push SMs down. */
2409 for (unsigned i = 0; i < first_edge_seq.length (); ++i)
2410 {
2411 unsigned id = first_edge_seq[i].first;
2412 seq.safe_push (first_edge_seq[i]);
2413 unsigned new_idx;
2414 if ((first_edge_seq[i].second == sm_ord
2415 || (first_edge_seq[i].second == sm_other
2416 && first_edge_seq[i].from != NULL_TREE))
2417 && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
2418 {
2419 if (first_edge_seq[i].second == sm_ord)
2420 bitmap_set_bit (refs_not_supported, id);
2421 /* Mark it sm_other. */
2422 seq[new_idx].second = sm_other;
2423 seq[new_idx].from = NULL_TREE;
2424 }
2425 }
2426 bitmap_set_bit (fully_visited,
2427 SSA_NAME_VERSION (gimple_phi_result (phi)));
2428 return 1;
2429 }
2430 lim_aux_data *data = get_lim_data (def);
2431 gcc_assert (data);
2432 if (data->ref == UNANALYZABLE_MEM_ID)
2433 return -1;
2434 /* One of the stores we want to apply SM to and we've not yet seen. */
2435 else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
2436 {
2437 seq.safe_push (seq_entry (data->ref, sm_ord));
2438
2439 /* 1) push it down the queue until a SMed
2440 and not ignored ref is reached, skipping all not SMed refs
2441 and ignored refs via non-TBAA disambiguation. */
2442 unsigned new_idx;
2443 if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
2444 /* If that fails but we did not fork yet continue, we'll see
2445 to re-materialize all of the stores in the sequence then.
2446 Further stores will only be pushed up to this one. */
2447 && forked)
2448 {
2449 bitmap_set_bit (refs_not_supported, data->ref);
2450 /* Mark it sm_other. */
2451 seq[new_idx].second = sm_other;
2452 }
2453
2454 /* 2) check whether we've seen all refs we want to SM and if so
2455 declare success for the active exit */
2456 if (bitmap_empty_p (refs_not_in_seq))
2457 return 1;
2458 }
2459 else
2460 /* Another store not part of the final sequence. Simply push it. */
2461 seq.safe_push (seq_entry (data->ref, sm_other,
2462 gimple_assign_rhs1 (def)));
2463
2464 vdef = gimple_vuse (def);
2465 }
2466 while (1);
2467 }
2468
2469 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2470 edges of the LOOP. */
2471
2472 static void
2473 hoist_memory_references (class loop *loop, bitmap mem_refs,
2474 vec<edge> exits)
2475 {
2476 im_mem_ref *ref;
2477 unsigned i;
2478 bitmap_iterator bi;
2479
2480 /* To address PR57359 before actually applying store-motion check
2481 the candidates found for validity with regards to reordering
2482 relative to other stores which we until here disambiguated using
2483 TBAA which isn't valid.
2484 What matters is the order of the last stores to the mem_refs
2485 with respect to the other stores of the loop at the point of the
2486 loop exits. */
2487
2488 /* For each exit compute the store order, pruning from mem_refs
2489 on the fly. */
2490 /* The complexity of this is at least
2491 O(number of exits * number of SM refs) but more approaching
2492 O(number of exits * number of SM refs * number of stores). */
2493 /* ??? Somehow do this in a single sweep over the loop body. */
2494 auto_vec<std::pair<edge, vec<seq_entry> > > sms;
2495 auto_bitmap refs_not_supported (&lim_bitmap_obstack);
2496 edge e;
2497 FOR_EACH_VEC_ELT (exits, i, e)
2498 {
2499 vec<seq_entry> seq;
2500 seq.create (4);
2501 auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
2502 bitmap_copy (refs_not_in_seq, mem_refs);
2503 auto_bitmap fully_visited;
2504 int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
2505 seq, refs_not_in_seq,
2506 refs_not_supported, false,
2507 fully_visited);
2508 if (res != 1)
2509 {
2510 bitmap_copy (refs_not_supported, mem_refs);
2511 break;
2512 }
2513 sms.safe_push (std::make_pair (e, seq));
2514 }
2515
2516 /* Prune pruned mem_refs from earlier processed exits. */
2517 bool changed = !bitmap_empty_p (refs_not_supported);
2518 while (changed)
2519 {
2520 changed = false;
2521 std::pair<edge, vec<seq_entry> > *seq;
2522 FOR_EACH_VEC_ELT (sms, i, seq)
2523 {
2524 bool need_to_push = false;
2525 for (unsigned i = 0; i < seq->second.length (); ++i)
2526 {
2527 sm_kind kind = seq->second[i].second;
2528 if (kind == sm_other && seq->second[i].from == NULL_TREE)
2529 break;
2530 unsigned id = seq->second[i].first;
2531 unsigned new_idx;
2532 if (kind == sm_ord
2533 && bitmap_bit_p (refs_not_supported, id))
2534 {
2535 seq->second[i].second = sm_other;
2536 gcc_assert (seq->second[i].from == NULL_TREE);
2537 need_to_push = true;
2538 }
2539 else if (need_to_push
2540 && !sm_seq_push_down (seq->second, i, &new_idx))
2541 {
2542 /* We need to push down both sm_ord and sm_other
2543 but for the latter we need to disqualify all
2544 following refs. */
2545 if (kind == sm_ord)
2546 {
2547 if (bitmap_set_bit (refs_not_supported, id))
2548 changed = true;
2549 seq->second[new_idx].second = sm_other;
2550 }
2551 else
2552 {
2553 for (unsigned j = seq->second.length () - 1;
2554 j > new_idx; --j)
2555 if (seq->second[j].second == sm_ord
2556 && bitmap_set_bit (refs_not_supported,
2557 seq->second[j].first))
2558 changed = true;
2559 seq->second.truncate (new_idx);
2560 break;
2561 }
2562 }
2563 }
2564 }
2565 }
2566 std::pair<edge, vec<seq_entry> > *seq;
2567 FOR_EACH_VEC_ELT (sms, i, seq)
2568 {
2569 /* Prune sm_other from the end. */
2570 while (!seq->second.is_empty ()
2571 && seq->second.last ().second == sm_other)
2572 seq->second.pop ();
2573 /* Prune duplicates from the start. */
2574 auto_bitmap seen (&lim_bitmap_obstack);
2575 unsigned j, k;
2576 for (j = k = 0; j < seq->second.length (); ++j)
2577 if (bitmap_set_bit (seen, seq->second[j].first))
2578 {
2579 if (k != j)
2580 seq->second[k] = seq->second[j];
2581 ++k;
2582 }
2583 seq->second.truncate (k);
2584 /* And verify. */
2585 seq_entry *e;
2586 FOR_EACH_VEC_ELT (seq->second, j, e)
2587 gcc_assert (e->second == sm_ord
2588 || (e->second == sm_other && e->from != NULL_TREE));
2589 }
2590
2591 /* Verify dependence for refs we cannot handle with the order preserving
2592 code (refs_not_supported) or prune them from mem_refs. */
2593 auto_vec<seq_entry> unord_refs;
2594 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
2595 {
2596 ref = memory_accesses.refs_list[i];
2597 if (!ref_indep_loop_p (loop, ref, sm_waw))
2598 bitmap_clear_bit (mem_refs, i);
2599 /* We've now verified store order for ref with respect to all other
2600 stores in the loop does not matter. */
2601 else
2602 unord_refs.safe_push (seq_entry (i, sm_unord));
2603 }
2604
2605 hash_map<im_mem_ref *, sm_aux *> aux_map;
2606
2607 /* Execute SM but delay the store materialization for ordered
2608 sequences on exit. */
2609 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2610 {
2611 ref = memory_accesses.refs_list[i];
2612 execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i));
2613 }
2614
2615 /* Materialize ordered store sequences on exits. */
2616 FOR_EACH_VEC_ELT (exits, i, e)
2617 {
2618 edge append_cond_position = NULL;
2619 edge last_cond_fallthru = NULL;
2620 if (i < sms.length ())
2621 {
2622 gcc_assert (sms[i].first == e);
2623 execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
2624 append_cond_position, last_cond_fallthru);
2625 sms[i].second.release ();
2626 }
2627 if (!unord_refs.is_empty ())
2628 execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
2629 append_cond_position, last_cond_fallthru);
2630 /* Commit edge inserts here to preserve the order of stores
2631 when an exit exits multiple loops. */
2632 gsi_commit_one_edge_insert (e, NULL);
2633 }
2634
2635 for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
2636 iter != aux_map.end (); ++iter)
2637 delete (*iter).second;
2638 }
2639
2640 class ref_always_accessed
2641 {
2642 public:
2643 ref_always_accessed (class loop *loop_, bool stored_p_)
2644 : loop (loop_), stored_p (stored_p_) {}
2645 bool operator () (mem_ref_loc *loc);
2646 class loop *loop;
2647 bool stored_p;
2648 };
2649
2650 bool
2651 ref_always_accessed::operator () (mem_ref_loc *loc)
2652 {
2653 class loop *must_exec;
2654
2655 struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
2656 if (!lim_data)
2657 return false;
2658
2659 /* If we require an always executed store make sure the statement
2660 is a store. */
2661 if (stored_p)
2662 {
2663 tree lhs = gimple_get_lhs (loc->stmt);
2664 if (!lhs
2665 || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
2666 return false;
2667 }
2668
2669 must_exec = lim_data->always_executed_in;
2670 if (!must_exec)
2671 return false;
2672
2673 if (must_exec == loop
2674 || flow_loop_nested_p (must_exec, loop))
2675 return true;
2676
2677 return false;
2678 }
2679
2680 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2681 make sure REF is always stored to in LOOP. */
2682
2683 static bool
2684 ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
2685 {
2686 return for_all_locs_in_loop (loop, ref,
2687 ref_always_accessed (loop, stored_p));
2688 }
2689
2690 /* Returns true if REF1 and REF2 are independent. */
2691
2692 static bool
2693 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
2694 {
2695 if (ref1 == ref2)
2696 return true;
2697
2698 if (dump_file && (dump_flags & TDF_DETAILS))
2699 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2700 ref1->id, ref2->id);
2701
2702 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
2703 {
2704 if (dump_file && (dump_flags & TDF_DETAILS))
2705 fprintf (dump_file, "dependent.\n");
2706 return false;
2707 }
2708 else
2709 {
2710 if (dump_file && (dump_flags & TDF_DETAILS))
2711 fprintf (dump_file, "independent.\n");
2712 return true;
2713 }
2714 }
2715
2716 /* Returns true if REF is independent on all other accessess in LOOP.
2717 KIND specifies the kind of dependence to consider.
2718 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
2719 dependences so if true REF can be hoisted out of LOOP
2720 sm_war disambiguates a store REF against all other loads to see
2721 whether the store can be sunk across loads out of LOOP
2722 sm_waw disambiguates a store REF against all other stores to see
2723 whether the store can be sunk across stores out of LOOP. */
2724
2725 static bool
2726 ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
2727 {
2728 bool indep_p = true;
2729 bitmap refs_to_check;
2730
2731 if (kind == sm_war)
2732 refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
2733 else
2734 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2735
2736 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2737 indep_p = false;
2738 else
2739 {
2740 /* tri-state, { unknown, independent, dependent } */
2741 dep_state state = query_loop_dependence (loop, ref, kind);
2742 if (state != dep_unknown)
2743 return state == dep_independent ? true : false;
2744
2745 class loop *inner = loop->inner;
2746 while (inner)
2747 {
2748 if (!ref_indep_loop_p (inner, ref, kind))
2749 {
2750 indep_p = false;
2751 break;
2752 }
2753 inner = inner->next;
2754 }
2755
2756 if (indep_p)
2757 {
2758 unsigned i;
2759 bitmap_iterator bi;
2760 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2761 {
2762 im_mem_ref *aref = memory_accesses.refs_list[i];
2763 if (!refs_independent_p (ref, aref, kind != sm_waw))
2764 {
2765 indep_p = false;
2766 break;
2767 }
2768 }
2769 }
2770 }
2771
2772 if (dump_file && (dump_flags & TDF_DETAILS))
2773 fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
2774 kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
2775 ref->id, loop->num, indep_p ? "independent" : "dependent");
2776
2777 /* Record the computed result in the cache. */
2778 record_loop_dependence (loop, ref, kind,
2779 indep_p ? dep_independent : dep_dependent);
2780
2781 return indep_p;
2782 }
2783
2784
2785 /* Returns true if we can perform store motion of REF from LOOP. */
2786
2787 static bool
2788 can_sm_ref_p (class loop *loop, im_mem_ref *ref)
2789 {
2790 tree base;
2791
2792 /* Can't hoist unanalyzable refs. */
2793 if (!MEM_ANALYZABLE (ref))
2794 return false;
2795
2796 /* It should be movable. */
2797 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2798 || TREE_THIS_VOLATILE (ref->mem.ref)
2799 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2800 return false;
2801
2802 /* If it can throw fail, we do not properly update EH info. */
2803 if (tree_could_throw_p (ref->mem.ref))
2804 return false;
2805
2806 /* If it can trap, it must be always executed in LOOP.
2807 Readonly memory locations may trap when storing to them, but
2808 tree_could_trap_p is a predicate for rvalues, so check that
2809 explicitly. */
2810 base = get_base_address (ref->mem.ref);
2811 if ((tree_could_trap_p (ref->mem.ref)
2812 || (DECL_P (base) && TREE_READONLY (base)))
2813 /* ??? We can at least use false here, allowing loads? We
2814 are forcing conditional stores if the ref is not always
2815 stored to later anyway. So this would only guard
2816 the load we need to emit. Thus when the ref is not
2817 loaded we can elide this completely? */
2818 && !ref_always_accessed_p (loop, ref, true))
2819 return false;
2820
2821 /* Verify all loads of ref can be hoisted. */
2822 if (ref->loaded
2823 && bitmap_bit_p (ref->loaded, loop->num)
2824 && !ref_indep_loop_p (loop, ref, lim_raw))
2825 return false;
2826
2827 /* Verify the candidate can be disambiguated against all loads,
2828 that is, we can elide all in-loop stores. Disambiguation
2829 against stores is done later when we cannot guarantee preserving
2830 the order of stores. */
2831 if (!ref_indep_loop_p (loop, ref, sm_war))
2832 return false;
2833
2834 return true;
2835 }
2836
2837 /* Marks the references in LOOP for that store motion should be performed
2838 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2839 motion was performed in one of the outer loops. */
2840
2841 static void
2842 find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2843 {
2844 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2845 unsigned i;
2846 bitmap_iterator bi;
2847 im_mem_ref *ref;
2848
2849 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2850 {
2851 ref = memory_accesses.refs_list[i];
2852 if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
2853 bitmap_set_bit (refs_to_sm, i);
2854 }
2855 }
2856
2857 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2858 for a store motion optimization (i.e. whether we can insert statement
2859 on its exits). */
2860
2861 static bool
2862 loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
2863 vec<edge> exits)
2864 {
2865 unsigned i;
2866 edge ex;
2867
2868 FOR_EACH_VEC_ELT (exits, i, ex)
2869 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2870 return false;
2871
2872 return true;
2873 }
2874
2875 /* Try to perform store motion for all memory references modified inside
2876 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2877 store motion was executed in one of the outer loops. */
2878
2879 static void
2880 store_motion_loop (class loop *loop, bitmap sm_executed)
2881 {
2882 auto_vec<edge> exits = get_loop_exit_edges (loop);
2883 class loop *subloop;
2884 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2885
2886 if (loop_suitable_for_sm (loop, exits))
2887 {
2888 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2889 if (!bitmap_empty_p (sm_in_loop))
2890 hoist_memory_references (loop, sm_in_loop, exits);
2891 }
2892
2893 bitmap_ior_into (sm_executed, sm_in_loop);
2894 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2895 store_motion_loop (subloop, sm_executed);
2896 bitmap_and_compl_into (sm_executed, sm_in_loop);
2897 BITMAP_FREE (sm_in_loop);
2898 }
2899
2900 /* Try to perform store motion for all memory references modified inside
2901 loops. */
2902
2903 static void
2904 do_store_motion (void)
2905 {
2906 class loop *loop;
2907 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2908
2909 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2910 store_motion_loop (loop, sm_executed);
2911
2912 BITMAP_FREE (sm_executed);
2913 }
2914
2915 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2916 for each such basic block bb records the outermost loop for that execution
2917 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2918 blocks that contain a nonpure call. */
2919
2920 static void
2921 fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
2922 {
2923 basic_block bb = NULL, *bbs, last = NULL;
2924 unsigned i;
2925 edge e;
2926 class loop *inn_loop = loop;
2927
2928 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2929 {
2930 bbs = get_loop_body_in_dom_order (loop);
2931
2932 for (i = 0; i < loop->num_nodes; i++)
2933 {
2934 edge_iterator ei;
2935 bb = bbs[i];
2936
2937 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2938 last = bb;
2939
2940 if (bitmap_bit_p (contains_call, bb->index))
2941 break;
2942
2943 FOR_EACH_EDGE (e, ei, bb->succs)
2944 {
2945 /* If there is an exit from this BB. */
2946 if (!flow_bb_inside_loop_p (loop, e->dest))
2947 break;
2948 /* Or we enter a possibly non-finite loop. */
2949 if (flow_loop_nested_p (bb->loop_father,
2950 e->dest->loop_father)
2951 && ! finite_loop_p (e->dest->loop_father))
2952 break;
2953 }
2954 if (e)
2955 break;
2956
2957 /* A loop might be infinite (TODO use simple loop analysis
2958 to disprove this if possible). */
2959 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2960 break;
2961
2962 if (!flow_bb_inside_loop_p (inn_loop, bb))
2963 break;
2964
2965 if (bb->loop_father->header == bb)
2966 {
2967 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2968 break;
2969
2970 /* In a loop that is always entered we may proceed anyway.
2971 But record that we entered it and stop once we leave it. */
2972 inn_loop = bb->loop_father;
2973 }
2974 }
2975
2976 while (1)
2977 {
2978 SET_ALWAYS_EXECUTED_IN (last, loop);
2979 if (last == loop->header)
2980 break;
2981 last = get_immediate_dominator (CDI_DOMINATORS, last);
2982 }
2983
2984 free (bbs);
2985 }
2986
2987 for (loop = loop->inner; loop; loop = loop->next)
2988 fill_always_executed_in_1 (loop, contains_call);
2989 }
2990
2991 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2992 for each such basic block bb records the outermost loop for that execution
2993 of its header implies execution of bb. */
2994
2995 static void
2996 fill_always_executed_in (void)
2997 {
2998 basic_block bb;
2999 class loop *loop;
3000
3001 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
3002 bitmap_clear (contains_call);
3003 FOR_EACH_BB_FN (bb, cfun)
3004 {
3005 gimple_stmt_iterator gsi;
3006 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3007 {
3008 if (nonpure_call_p (gsi_stmt (gsi)))
3009 break;
3010 }
3011
3012 if (!gsi_end_p (gsi))
3013 bitmap_set_bit (contains_call, bb->index);
3014 }
3015
3016 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
3017 fill_always_executed_in_1 (loop, contains_call);
3018 }
3019
3020
3021 /* Compute the global information needed by the loop invariant motion pass. */
3022
3023 static void
3024 tree_ssa_lim_initialize (bool store_motion)
3025 {
3026 class loop *loop;
3027 unsigned i;
3028
3029 bitmap_obstack_initialize (&lim_bitmap_obstack);
3030 gcc_obstack_init (&mem_ref_obstack);
3031 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
3032
3033 if (flag_tm)
3034 compute_transaction_bits ();
3035
3036 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
3037 memory_accesses.refs_list.create (100);
3038 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3039 memory_accesses.refs_list.quick_push
3040 (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
3041
3042 memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
3043 memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
3044 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
3045 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
3046 if (store_motion)
3047 {
3048 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
3049 memory_accesses.all_refs_stored_in_loop.quick_grow
3050 (number_of_loops (cfun));
3051 }
3052
3053 for (i = 0; i < number_of_loops (cfun); i++)
3054 {
3055 bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
3056 &lim_bitmap_obstack);
3057 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
3058 &lim_bitmap_obstack);
3059 if (store_motion)
3060 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
3061 &lim_bitmap_obstack);
3062 }
3063
3064 memory_accesses.ttae_cache = NULL;
3065
3066 /* Initialize bb_loop_postorder with a mapping from loop->num to
3067 its postorder index. */
3068 i = 0;
3069 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
3070 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3071 bb_loop_postorder[loop->num] = i++;
3072 }
3073
3074 /* Cleans up after the invariant motion pass. */
3075
3076 static void
3077 tree_ssa_lim_finalize (void)
3078 {
3079 basic_block bb;
3080 unsigned i;
3081 im_mem_ref *ref;
3082
3083 FOR_EACH_BB_FN (bb, cfun)
3084 SET_ALWAYS_EXECUTED_IN (bb, NULL);
3085
3086 bitmap_obstack_release (&lim_bitmap_obstack);
3087 delete lim_aux_data_map;
3088
3089 delete memory_accesses.refs;
3090 memory_accesses.refs = NULL;
3091
3092 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
3093 memref_free (ref);
3094 memory_accesses.refs_list.release ();
3095 obstack_free (&mem_ref_obstack, NULL);
3096
3097 memory_accesses.refs_loaded_in_loop.release ();
3098 memory_accesses.refs_stored_in_loop.release ();
3099 memory_accesses.all_refs_stored_in_loop.release ();
3100
3101 if (memory_accesses.ttae_cache)
3102 free_affine_expand_cache (&memory_accesses.ttae_cache);
3103
3104 free (bb_loop_postorder);
3105 }
3106
3107 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3108 i.e. those that are likely to be win regardless of the register pressure.
3109 Only perform store motion if STORE_MOTION is true. */
3110
3111 unsigned int
3112 loop_invariant_motion_in_fun (function *fun, bool store_motion)
3113 {
3114 unsigned int todo = 0;
3115
3116 tree_ssa_lim_initialize (store_motion);
3117
3118 /* Gathers information about memory accesses in the loops. */
3119 analyze_memory_references (store_motion);
3120
3121 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3122 fill_always_executed_in ();
3123
3124 int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3125 int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3126
3127 /* For each statement determine the outermost loop in that it is
3128 invariant and cost for computing the invariant. */
3129 for (int i = 0; i < n; ++i)
3130 compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3131
3132 /* Execute store motion. Force the necessary invariants to be moved
3133 out of the loops as well. */
3134 if (store_motion)
3135 do_store_motion ();
3136
3137 free (rpo);
3138 rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
3139 n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3140
3141 /* Move the expressions that are expensive enough. */
3142 for (int i = 0; i < n; ++i)
3143 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
3144
3145 free (rpo);
3146
3147 gsi_commit_edge_inserts ();
3148 if (need_ssa_update_p (fun))
3149 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3150
3151 tree_ssa_lim_finalize ();
3152
3153 return todo;
3154 }
3155
3156 /* Loop invariant motion pass. */
3157
3158 namespace {
3159
3160 const pass_data pass_data_lim =
3161 {
3162 GIMPLE_PASS, /* type */
3163 "lim", /* name */
3164 OPTGROUP_LOOP, /* optinfo_flags */
3165 TV_LIM, /* tv_id */
3166 PROP_cfg, /* properties_required */
3167 0, /* properties_provided */
3168 0, /* properties_destroyed */
3169 0, /* todo_flags_start */
3170 0, /* todo_flags_finish */
3171 };
3172
3173 class pass_lim : public gimple_opt_pass
3174 {
3175 public:
3176 pass_lim (gcc::context *ctxt)
3177 : gimple_opt_pass (pass_data_lim, ctxt)
3178 {}
3179
3180 /* opt_pass methods: */
3181 opt_pass * clone () { return new pass_lim (m_ctxt); }
3182 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
3183 virtual unsigned int execute (function *);
3184
3185 }; // class pass_lim
3186
3187 unsigned int
3188 pass_lim::execute (function *fun)
3189 {
3190 bool in_loop_pipeline = scev_initialized_p ();
3191 if (!in_loop_pipeline)
3192 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
3193
3194 if (number_of_loops (fun) <= 1)
3195 return 0;
3196 unsigned int todo = loop_invariant_motion_in_fun (fun, true);
3197
3198 if (!in_loop_pipeline)
3199 loop_optimizer_finalize ();
3200 else
3201 scev_reset ();
3202 return todo;
3203 }
3204
3205 } // anon namespace
3206
3207 gimple_opt_pass *
3208 make_pass_lim (gcc::context *ctxt)
3209 {
3210 return new pass_lim (ctxt);
3211 }
3212
3213