cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / tree-ssa-loop-ivcanon.c
1 /* Induction variable canonicalization and loop peeling.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass detects the loops that iterate a constant number of times,
21 adds a canonical induction variable (step -1, tested against 0)
22 and replaces the exit test. This enables the less powerful rtl
23 level analysis to use this information.
24
25 This might spoil the code in some cases (by increasing register pressure).
26 Note that in the case the new variable is not needed, ivopts will get rid
27 of it, so it might only be a problem when there are no other linear induction
28 variables. In that case the created optimization possibilities are likely
29 to pay up.
30
31 Additionally in case we detect that it is beneficial to unroll the
32 loop completely, we do it right here to expose the optimization
33 possibilities to the following passes. */
34
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "basic-block.h"
42 #include "gimple-pretty-print.h"
43 #include "gimple.h"
44 #include "gimple-iterator.h"
45 #include "gimple-ssa.h"
46 #include "cgraph.h"
47 #include "tree-cfg.h"
48 #include "tree-phinodes.h"
49 #include "ssa-iterators.h"
50 #include "stringpool.h"
51 #include "tree-ssanames.h"
52 #include "tree-ssa-loop-manip.h"
53 #include "tree-ssa-loop-niter.h"
54 #include "tree-ssa-loop.h"
55 #include "tree-into-ssa.h"
56 #include "cfgloop.h"
57 #include "tree-pass.h"
58 #include "tree-chrec.h"
59 #include "tree-scalar-evolution.h"
60 #include "params.h"
61 #include "flags.h"
62 #include "tree-inline.h"
63 #include "target.h"
64 #include "tree-cfgcleanup.h"
65
66 /* Specifies types of loops that may be unrolled. */
67
68 enum unroll_level
69 {
70 UL_SINGLE_ITER, /* Only loops that exit immediately in the first
71 iteration. */
72 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
73 of code size. */
74 UL_ALL /* All suitable loops. */
75 };
76
77 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
78 is the exit edge whose condition is replaced. */
79
80 static void
81 create_canonical_iv (struct loop *loop, edge exit, tree niter)
82 {
83 edge in;
84 tree type, var;
85 gimple cond;
86 gimple_stmt_iterator incr_at;
87 enum tree_code cmp;
88
89 if (dump_file && (dump_flags & TDF_DETAILS))
90 {
91 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
92 print_generic_expr (dump_file, niter, TDF_SLIM);
93 fprintf (dump_file, " iterations.\n");
94 }
95
96 cond = last_stmt (exit->src);
97 in = EDGE_SUCC (exit->src, 0);
98 if (in == exit)
99 in = EDGE_SUCC (exit->src, 1);
100
101 /* Note that we do not need to worry about overflows, since
102 type of niter is always unsigned and all comparisons are
103 just for equality/nonequality -- i.e. everything works
104 with a modulo arithmetics. */
105
106 type = TREE_TYPE (niter);
107 niter = fold_build2 (PLUS_EXPR, type,
108 niter,
109 build_int_cst (type, 1));
110 incr_at = gsi_last_bb (in->src);
111 create_iv (niter,
112 build_int_cst (type, -1),
113 NULL_TREE, loop,
114 &incr_at, false, NULL, &var);
115
116 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
117 gimple_cond_set_code (cond, cmp);
118 gimple_cond_set_lhs (cond, var);
119 gimple_cond_set_rhs (cond, build_int_cst (type, 0));
120 update_stmt (cond);
121 }
122
123 /* Describe size of loop as detected by tree_estimate_loop_size. */
124 struct loop_size
125 {
126 /* Number of instructions in the loop. */
127 int overall;
128
129 /* Number of instructions that will be likely optimized out in
130 peeled iterations of loop (i.e. computation based on induction
131 variable where induction variable starts at known constant.) */
132 int eliminated_by_peeling;
133
134 /* Same statistics for last iteration of loop: it is smaller because
135 instructions after exit are not executed. */
136 int last_iteration;
137 int last_iteration_eliminated_by_peeling;
138
139 /* If some IV computation will become constant. */
140 bool constant_iv;
141
142 /* Number of call stmts that are not a builtin and are pure or const
143 present on the hot path. */
144 int num_pure_calls_on_hot_path;
145 /* Number of call stmts that are not a builtin and are not pure nor const
146 present on the hot path. */
147 int num_non_pure_calls_on_hot_path;
148 /* Number of statements other than calls in the loop. */
149 int non_call_stmts_on_hot_path;
150 /* Number of branches seen on the hot path. */
151 int num_branches_on_hot_path;
152 };
153
154 /* Return true if OP in STMT will be constant after peeling LOOP. */
155
156 static bool
157 constant_after_peeling (tree op, gimple stmt, struct loop *loop)
158 {
159 affine_iv iv;
160
161 if (is_gimple_min_invariant (op))
162 return true;
163
164 /* We can still fold accesses to constant arrays when index is known. */
165 if (TREE_CODE (op) != SSA_NAME)
166 {
167 tree base = op;
168
169 /* First make fast look if we see constant array inside. */
170 while (handled_component_p (base))
171 base = TREE_OPERAND (base, 0);
172 if ((DECL_P (base)
173 && ctor_for_folding (base) != error_mark_node)
174 || CONSTANT_CLASS_P (base))
175 {
176 /* If so, see if we understand all the indices. */
177 base = op;
178 while (handled_component_p (base))
179 {
180 if (TREE_CODE (base) == ARRAY_REF
181 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
182 return false;
183 base = TREE_OPERAND (base, 0);
184 }
185 return true;
186 }
187 return false;
188 }
189
190 /* Induction variables are constants. */
191 if (!simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false))
192 return false;
193 if (!is_gimple_min_invariant (iv.base))
194 return false;
195 if (!is_gimple_min_invariant (iv.step))
196 return false;
197 return true;
198 }
199
200 /* Computes an estimated number of insns in LOOP.
201 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
202 iteration of the loop.
203 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
204 of loop.
205 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
206 Stop estimating after UPPER_BOUND is met. Return true in this case. */
207
208 static bool
209 tree_estimate_loop_size (struct loop *loop, edge exit, edge edge_to_cancel, struct loop_size *size,
210 int upper_bound)
211 {
212 basic_block *body = get_loop_body (loop);
213 gimple_stmt_iterator gsi;
214 unsigned int i;
215 bool after_exit;
216 vec<basic_block> path = get_loop_hot_path (loop);
217
218 size->overall = 0;
219 size->eliminated_by_peeling = 0;
220 size->last_iteration = 0;
221 size->last_iteration_eliminated_by_peeling = 0;
222 size->num_pure_calls_on_hot_path = 0;
223 size->num_non_pure_calls_on_hot_path = 0;
224 size->non_call_stmts_on_hot_path = 0;
225 size->num_branches_on_hot_path = 0;
226 size->constant_iv = 0;
227
228 if (dump_file && (dump_flags & TDF_DETAILS))
229 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num);
230 for (i = 0; i < loop->num_nodes; i++)
231 {
232 if (edge_to_cancel && body[i] != edge_to_cancel->src
233 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
234 after_exit = true;
235 else
236 after_exit = false;
237 if (dump_file && (dump_flags & TDF_DETAILS))
238 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index, after_exit);
239
240 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
241 {
242 gimple stmt = gsi_stmt (gsi);
243 int num = estimate_num_insns (stmt, &eni_size_weights);
244 bool likely_eliminated = false;
245 bool likely_eliminated_last = false;
246 bool likely_eliminated_peeled = false;
247
248 if (dump_file && (dump_flags & TDF_DETAILS))
249 {
250 fprintf (dump_file, " size: %3i ", num);
251 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
252 }
253
254 /* Look for reasons why we might optimize this stmt away. */
255
256 if (gimple_has_side_effects (stmt))
257 ;
258 /* Exit conditional. */
259 else if (exit && body[i] == exit->src
260 && stmt == last_stmt (exit->src))
261 {
262 if (dump_file && (dump_flags & TDF_DETAILS))
263 fprintf (dump_file, " Exit condition will be eliminated "
264 "in peeled copies.\n");
265 likely_eliminated_peeled = true;
266 }
267 else if (edge_to_cancel && body[i] == edge_to_cancel->src
268 && stmt == last_stmt (edge_to_cancel->src))
269 {
270 if (dump_file && (dump_flags & TDF_DETAILS))
271 fprintf (dump_file, " Exit condition will be eliminated "
272 "in last copy.\n");
273 likely_eliminated_last = true;
274 }
275 /* Sets of IV variables */
276 else if (gimple_code (stmt) == GIMPLE_ASSIGN
277 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop))
278 {
279 if (dump_file && (dump_flags & TDF_DETAILS))
280 fprintf (dump_file, " Induction variable computation will"
281 " be folded away.\n");
282 likely_eliminated = true;
283 }
284 /* Assignments of IV variables. */
285 else if (gimple_code (stmt) == GIMPLE_ASSIGN
286 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
287 && constant_after_peeling (gimple_assign_rhs1 (stmt), stmt, loop)
288 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS
289 || constant_after_peeling (gimple_assign_rhs2 (stmt),
290 stmt, loop)))
291 {
292 size->constant_iv = true;
293 if (dump_file && (dump_flags & TDF_DETAILS))
294 fprintf (dump_file, " Constant expression will be folded away.\n");
295 likely_eliminated = true;
296 }
297 /* Conditionals. */
298 else if ((gimple_code (stmt) == GIMPLE_COND
299 && constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
300 && constant_after_peeling (gimple_cond_rhs (stmt), stmt, loop))
301 || (gimple_code (stmt) == GIMPLE_SWITCH
302 && constant_after_peeling (gimple_switch_index (stmt), stmt, loop)))
303 {
304 if (dump_file && (dump_flags & TDF_DETAILS))
305 fprintf (dump_file, " Constant conditional.\n");
306 likely_eliminated = true;
307 }
308
309 size->overall += num;
310 if (likely_eliminated || likely_eliminated_peeled)
311 size->eliminated_by_peeling += num;
312 if (!after_exit)
313 {
314 size->last_iteration += num;
315 if (likely_eliminated || likely_eliminated_last)
316 size->last_iteration_eliminated_by_peeling += num;
317 }
318 if ((size->overall * 3 / 2 - size->eliminated_by_peeling
319 - size->last_iteration_eliminated_by_peeling) > upper_bound)
320 {
321 free (body);
322 path.release ();
323 return true;
324 }
325 }
326 }
327 while (path.length ())
328 {
329 basic_block bb = path.pop ();
330 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
331 {
332 gimple stmt = gsi_stmt (gsi);
333 if (gimple_code (stmt) == GIMPLE_CALL)
334 {
335 int flags = gimple_call_flags (stmt);
336 tree decl = gimple_call_fndecl (stmt);
337
338 if (decl && DECL_IS_BUILTIN (decl)
339 && is_inexpensive_builtin (decl))
340 ;
341 else if (flags & (ECF_PURE | ECF_CONST))
342 size->num_pure_calls_on_hot_path++;
343 else
344 size->num_non_pure_calls_on_hot_path++;
345 size->num_branches_on_hot_path ++;
346 }
347 else if (gimple_code (stmt) != GIMPLE_CALL
348 && gimple_code (stmt) != GIMPLE_DEBUG)
349 size->non_call_stmts_on_hot_path++;
350 if (((gimple_code (stmt) == GIMPLE_COND
351 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
352 || constant_after_peeling (gimple_cond_rhs (stmt), stmt, loop)))
353 || (gimple_code (stmt) == GIMPLE_SWITCH
354 && !constant_after_peeling (gimple_switch_index (stmt), stmt, loop)))
355 && (!exit || bb != exit->src))
356 size->num_branches_on_hot_path++;
357 }
358 }
359 path.release ();
360 if (dump_file && (dump_flags & TDF_DETAILS))
361 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall,
362 size->eliminated_by_peeling, size->last_iteration,
363 size->last_iteration_eliminated_by_peeling);
364
365 free (body);
366 return false;
367 }
368
369 /* Estimate number of insns of completely unrolled loop.
370 It is (NUNROLL + 1) * size of loop body with taking into account
371 the fact that in last copy everything after exit conditional
372 is dead and that some instructions will be eliminated after
373 peeling.
374
375 Loop body is likely going to simplify further, this is difficult
376 to guess, we just decrease the result by 1/3. */
377
378 static unsigned HOST_WIDE_INT
379 estimated_unrolled_size (struct loop_size *size,
380 unsigned HOST_WIDE_INT nunroll)
381 {
382 HOST_WIDE_INT unr_insns = ((nunroll)
383 * (HOST_WIDE_INT) (size->overall
384 - size->eliminated_by_peeling));
385 if (!nunroll)
386 unr_insns = 0;
387 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
388
389 unr_insns = unr_insns * 2 / 3;
390 if (unr_insns <= 0)
391 unr_insns = 1;
392
393 return unr_insns;
394 }
395
396 /* Loop LOOP is known to not loop. See if there is an edge in the loop
397 body that can be remove to make the loop to always exit and at
398 the same time it does not make any code potentially executed
399 during the last iteration dead.
400
401 After complette unrolling we still may get rid of the conditional
402 on the exit in the last copy even if we have no idea what it does.
403 This is quite common case for loops of form
404
405 int a[5];
406 for (i=0;i<b;i++)
407 a[i]=0;
408
409 Here we prove the loop to iterate 5 times but we do not know
410 it from induction variable.
411
412 For now we handle only simple case where there is exit condition
413 just before the latch block and the latch block contains no statements
414 with side effect that may otherwise terminate the execution of loop
415 (such as by EH or by terminating the program or longjmp).
416
417 In the general case we may want to cancel the paths leading to statements
418 loop-niter identified as having undefined effect in the last iteration.
419 The other cases are hopefully rare and will be cleaned up later. */
420
421 static edge
422 loop_edge_to_cancel (struct loop *loop)
423 {
424 vec<edge> exits;
425 unsigned i;
426 edge edge_to_cancel;
427 gimple_stmt_iterator gsi;
428
429 /* We want only one predecestor of the loop. */
430 if (EDGE_COUNT (loop->latch->preds) > 1)
431 return NULL;
432
433 exits = get_loop_exit_edges (loop);
434
435 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
436 {
437 /* Find the other edge than the loop exit
438 leaving the conditoinal. */
439 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
440 continue;
441 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
442 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
443 else
444 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
445
446 /* We only can handle conditionals. */
447 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
448 continue;
449
450 /* We should never have conditionals in the loop latch. */
451 gcc_assert (edge_to_cancel->dest != loop->header);
452
453 /* Check that it leads to loop latch. */
454 if (edge_to_cancel->dest != loop->latch)
455 continue;
456
457 exits.release ();
458
459 /* Verify that the code in loop latch does nothing that may end program
460 execution without really reaching the exit. This may include
461 non-pure/const function calls, EH statements, volatile ASMs etc. */
462 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi))
463 if (gimple_has_side_effects (gsi_stmt (gsi)))
464 return NULL;
465 return edge_to_cancel;
466 }
467 exits.release ();
468 return NULL;
469 }
470
471 /* Remove all tests for exits that are known to be taken after LOOP was
472 peeled NPEELED times. Put gcc_unreachable before every statement
473 known to not be executed. */
474
475 static bool
476 remove_exits_and_undefined_stmts (struct loop *loop, unsigned int npeeled)
477 {
478 struct nb_iter_bound *elt;
479 bool changed = false;
480
481 for (elt = loop->bounds; elt; elt = elt->next)
482 {
483 /* If statement is known to be undefined after peeling, turn it
484 into unreachable (or trap when debugging experience is supposed
485 to be good). */
486 if (!elt->is_exit
487 && elt->bound.ult (double_int::from_uhwi (npeeled)))
488 {
489 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
490 gimple stmt = gimple_build_call
491 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
492
493 gimple_set_location (stmt, gimple_location (elt->stmt));
494 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
495 changed = true;
496 if (dump_file && (dump_flags & TDF_DETAILS))
497 {
498 fprintf (dump_file, "Forced statement unreachable: ");
499 print_gimple_stmt (dump_file, elt->stmt, 0, 0);
500 }
501 }
502 /* If we know the exit will be taken after peeling, update. */
503 else if (elt->is_exit
504 && elt->bound.ule (double_int::from_uhwi (npeeled)))
505 {
506 basic_block bb = gimple_bb (elt->stmt);
507 edge exit_edge = EDGE_SUCC (bb, 0);
508
509 if (dump_file && (dump_flags & TDF_DETAILS))
510 {
511 fprintf (dump_file, "Forced exit to be taken: ");
512 print_gimple_stmt (dump_file, elt->stmt, 0, 0);
513 }
514 if (!loop_exit_edge_p (loop, exit_edge))
515 exit_edge = EDGE_SUCC (bb, 1);
516 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
517 if (exit_edge->flags & EDGE_TRUE_VALUE)
518 gimple_cond_make_true (elt->stmt);
519 else
520 gimple_cond_make_false (elt->stmt);
521 update_stmt (elt->stmt);
522 changed = true;
523 }
524 }
525 return changed;
526 }
527
528 /* Remove all exits that are known to be never taken because of the loop bound
529 discovered. */
530
531 static bool
532 remove_redundant_iv_tests (struct loop *loop)
533 {
534 struct nb_iter_bound *elt;
535 bool changed = false;
536
537 if (!loop->any_upper_bound)
538 return false;
539 for (elt = loop->bounds; elt; elt = elt->next)
540 {
541 /* Exit is pointless if it won't be taken before loop reaches
542 upper bound. */
543 if (elt->is_exit && loop->any_upper_bound
544 && loop->nb_iterations_upper_bound.ult (elt->bound))
545 {
546 basic_block bb = gimple_bb (elt->stmt);
547 edge exit_edge = EDGE_SUCC (bb, 0);
548 struct tree_niter_desc niter;
549
550 if (!loop_exit_edge_p (loop, exit_edge))
551 exit_edge = EDGE_SUCC (bb, 1);
552
553 /* Only when we know the actual number of iterations, not
554 just a bound, we can remove the exit. */
555 if (!number_of_iterations_exit (loop, exit_edge,
556 &niter, false, false)
557 || !integer_onep (niter.assumptions)
558 || !integer_zerop (niter.may_be_zero)
559 || !niter.niter
560 || TREE_CODE (niter.niter) != INTEGER_CST
561 || !loop->nb_iterations_upper_bound.ult
562 (tree_to_double_int (niter.niter)))
563 continue;
564
565 if (dump_file && (dump_flags & TDF_DETAILS))
566 {
567 fprintf (dump_file, "Removed pointless exit: ");
568 print_gimple_stmt (dump_file, elt->stmt, 0, 0);
569 }
570 if (exit_edge->flags & EDGE_TRUE_VALUE)
571 gimple_cond_make_false (elt->stmt);
572 else
573 gimple_cond_make_true (elt->stmt);
574 update_stmt (elt->stmt);
575 changed = true;
576 }
577 }
578 return changed;
579 }
580
581 /* Stores loops that will be unlooped after we process whole loop tree. */
582 static vec<loop_p> loops_to_unloop;
583 static vec<int> loops_to_unloop_nunroll;
584
585 /* Cancel all fully unrolled loops by putting __builtin_unreachable
586 on the latch edge.
587 We do it after all unrolling since unlooping moves basic blocks
588 across loop boundaries trashing loop closed SSA form as well
589 as SCEV info needed to be intact during unrolling.
590
591 IRRED_INVALIDATED is used to bookkeep if information about
592 irreducible regions may become invalid as a result
593 of the transformation.
594 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
595 when we need to go into loop closed SSA form. */
596
597 static void
598 unloop_loops (bitmap loop_closed_ssa_invalidated,
599 bool *irred_invalidated)
600 {
601 while (loops_to_unloop.length ())
602 {
603 struct loop *loop = loops_to_unloop.pop ();
604 int n_unroll = loops_to_unloop_nunroll.pop ();
605 basic_block latch = loop->latch;
606 edge latch_edge = loop_latch_edge (loop);
607 int flags = latch_edge->flags;
608 location_t locus = latch_edge->goto_locus;
609 gimple stmt;
610 gimple_stmt_iterator gsi;
611
612 remove_exits_and_undefined_stmts (loop, n_unroll);
613
614 /* Unloop destroys the latch edge. */
615 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
616
617 /* Create new basic block for the latch edge destination and wire
618 it in. */
619 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
620 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
621 latch_edge->probability = 0;
622 latch_edge->count = 0;
623 latch_edge->flags |= flags;
624 latch_edge->goto_locus = locus;
625
626 latch_edge->dest->loop_father = current_loops->tree_root;
627 latch_edge->dest->count = 0;
628 latch_edge->dest->frequency = 0;
629 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
630
631 gsi = gsi_start_bb (latch_edge->dest);
632 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
633 }
634 loops_to_unloop.release ();
635 loops_to_unloop_nunroll.release ();
636 }
637
638 /* Tries to unroll LOOP completely, i.e. NITER times.
639 UL determines which loops we are allowed to unroll.
640 EXIT is the exit of the loop that should be eliminated.
641 MAXITER specfy bound on number of iterations, -1 if it is
642 not known or too large for HOST_WIDE_INT. The location
643 LOCUS corresponding to the loop is used when emitting
644 a summary of the unroll to the dump file. */
645
646 static bool
647 try_unroll_loop_completely (struct loop *loop,
648 edge exit, tree niter,
649 enum unroll_level ul,
650 HOST_WIDE_INT maxiter,
651 location_t locus)
652 {
653 unsigned HOST_WIDE_INT n_unroll, ninsns, max_unroll, unr_insns;
654 gimple cond;
655 struct loop_size size;
656 bool n_unroll_found = false;
657 edge edge_to_cancel = NULL;
658
659 /* See if we proved number of iterations to be low constant.
660
661 EXIT is an edge that will be removed in all but last iteration of
662 the loop.
663
664 EDGE_TO_CACNEL is an edge that will be removed from the last iteration
665 of the unrolled sequence and is expected to make the final loop not
666 rolling.
667
668 If the number of execution of loop is determined by standard induction
669 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
670 from the iv test. */
671 if (tree_fits_uhwi_p (niter))
672 {
673 n_unroll = tree_to_uhwi (niter);
674 n_unroll_found = true;
675 edge_to_cancel = EDGE_SUCC (exit->src, 0);
676 if (edge_to_cancel == exit)
677 edge_to_cancel = EDGE_SUCC (exit->src, 1);
678 }
679 /* We do not know the number of iterations and thus we can not eliminate
680 the EXIT edge. */
681 else
682 exit = NULL;
683
684 /* See if we can improve our estimate by using recorded loop bounds. */
685 if (maxiter >= 0
686 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
687 {
688 n_unroll = maxiter;
689 n_unroll_found = true;
690 /* Loop terminates before the IV variable test, so we can not
691 remove it in the last iteration. */
692 edge_to_cancel = NULL;
693 }
694
695 if (!n_unroll_found)
696 return false;
697
698 max_unroll = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
699 if (n_unroll > max_unroll)
700 return false;
701
702 if (!edge_to_cancel)
703 edge_to_cancel = loop_edge_to_cancel (loop);
704
705 if (n_unroll)
706 {
707 sbitmap wont_exit;
708 edge e;
709 unsigned i;
710 bool large;
711 vec<edge> to_remove = vNULL;
712 if (ul == UL_SINGLE_ITER)
713 return false;
714
715 large = tree_estimate_loop_size
716 (loop, exit, edge_to_cancel, &size,
717 PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS));
718 ninsns = size.overall;
719 if (large)
720 {
721 if (dump_file && (dump_flags & TDF_DETAILS))
722 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n",
723 loop->num);
724 return false;
725 }
726
727 unr_insns = estimated_unrolled_size (&size, n_unroll);
728 if (dump_file && (dump_flags & TDF_DETAILS))
729 {
730 fprintf (dump_file, " Loop size: %d\n", (int) ninsns);
731 fprintf (dump_file, " Estimated size after unrolling: %d\n",
732 (int) unr_insns);
733 }
734
735 /* If the code is going to shrink, we don't need to be extra cautious
736 on guessing if the unrolling is going to be profitable. */
737 if (unr_insns
738 /* If there is IV variable that will become constant, we save
739 one instruction in the loop prologue we do not account
740 otherwise. */
741 <= ninsns + (size.constant_iv != false))
742 ;
743 /* We unroll only inner loops, because we do not consider it profitable
744 otheriwse. We still can cancel loopback edge of not rolling loop;
745 this is always a good idea. */
746 else if (ul == UL_NO_GROWTH)
747 {
748 if (dump_file && (dump_flags & TDF_DETAILS))
749 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n",
750 loop->num);
751 return false;
752 }
753 /* Outer loops tend to be less interesting candidates for complette
754 unrolling unless we can do a lot of propagation into the inner loop
755 body. For now we disable outer loop unrolling when the code would
756 grow. */
757 else if (loop->inner)
758 {
759 if (dump_file && (dump_flags & TDF_DETAILS))
760 fprintf (dump_file, "Not unrolling loop %d: "
761 "it is not innermost and code would grow.\n",
762 loop->num);
763 return false;
764 }
765 /* If there is call on a hot path through the loop, then
766 there is most probably not much to optimize. */
767 else if (size.num_non_pure_calls_on_hot_path)
768 {
769 if (dump_file && (dump_flags & TDF_DETAILS))
770 fprintf (dump_file, "Not unrolling loop %d: "
771 "contains call and code would grow.\n",
772 loop->num);
773 return false;
774 }
775 /* If there is pure/const call in the function, then we
776 can still optimize the unrolled loop body if it contains
777 some other interesting code than the calls and code
778 storing or cumulating the return value. */
779 else if (size.num_pure_calls_on_hot_path
780 /* One IV increment, one test, one ivtmp store
781 and one useful stmt. That is about minimal loop
782 doing pure call. */
783 && (size.non_call_stmts_on_hot_path
784 <= 3 + size.num_pure_calls_on_hot_path))
785 {
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "Not unrolling loop %d: "
788 "contains just pure calls and code would grow.\n",
789 loop->num);
790 return false;
791 }
792 /* Complette unrolling is major win when control flow is removed and
793 one big basic block is created. If the loop contains control flow
794 the optimization may still be a win because of eliminating the loop
795 overhead but it also may blow the branch predictor tables.
796 Limit number of branches on the hot path through the peeled
797 sequence. */
798 else if (size.num_branches_on_hot_path * (int)n_unroll
799 > PARAM_VALUE (PARAM_MAX_PEEL_BRANCHES))
800 {
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 fprintf (dump_file, "Not unrolling loop %d: "
803 " number of branches on hot path in the unrolled sequence"
804 " reach --param max-peel-branches limit.\n",
805 loop->num);
806 return false;
807 }
808 else if (unr_insns
809 > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS))
810 {
811 if (dump_file && (dump_flags & TDF_DETAILS))
812 fprintf (dump_file, "Not unrolling loop %d: "
813 "(--param max-completely-peeled-insns limit reached).\n",
814 loop->num);
815 return false;
816 }
817
818 initialize_original_copy_tables ();
819 wont_exit = sbitmap_alloc (n_unroll + 1);
820 bitmap_ones (wont_exit);
821 bitmap_clear_bit (wont_exit, 0);
822
823 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
824 n_unroll, wont_exit,
825 exit, &to_remove,
826 DLTHE_FLAG_UPDATE_FREQ
827 | DLTHE_FLAG_COMPLETTE_PEEL))
828 {
829 free_original_copy_tables ();
830 free (wont_exit);
831 if (dump_file && (dump_flags & TDF_DETAILS))
832 fprintf (dump_file, "Failed to duplicate the loop\n");
833 return false;
834 }
835
836 FOR_EACH_VEC_ELT (to_remove, i, e)
837 {
838 bool ok = remove_path (e);
839 gcc_assert (ok);
840 }
841
842 to_remove.release ();
843 free (wont_exit);
844 free_original_copy_tables ();
845 }
846
847
848 /* Remove the conditional from the last copy of the loop. */
849 if (edge_to_cancel)
850 {
851 cond = last_stmt (edge_to_cancel->src);
852 if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
853 gimple_cond_make_false (cond);
854 else
855 gimple_cond_make_true (cond);
856 update_stmt (cond);
857 /* Do not remove the path. Doing so may remove outer loop
858 and confuse bookkeeping code in tree_unroll_loops_completelly. */
859 }
860
861 /* Store the loop for later unlooping and exit removal. */
862 loops_to_unloop.safe_push (loop);
863 loops_to_unloop_nunroll.safe_push (n_unroll);
864
865 if (dump_enabled_p ())
866 {
867 if (!n_unroll)
868 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
869 "loop turned into non-loop; it never loops\n");
870 else
871 {
872 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
873 "loop with %d iterations completely unrolled",
874 (int) (n_unroll + 1));
875 if (profile_info)
876 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
877 " (header execution count %d)",
878 (int)loop->header->count);
879 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
880 }
881 }
882
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 {
885 if (exit)
886 fprintf (dump_file, "Exit condition of peeled iterations was "
887 "eliminated.\n");
888 if (edge_to_cancel)
889 fprintf (dump_file, "Last iteration exit edge was proved true.\n");
890 else
891 fprintf (dump_file, "Latch of last iteration was marked by "
892 "__builtin_unreachable ().\n");
893 }
894
895 return true;
896 }
897
898 /* Adds a canonical induction variable to LOOP if suitable.
899 CREATE_IV is true if we may create a new iv. UL determines
900 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
901 to determine the number of iterations of a loop by direct evaluation.
902 Returns true if cfg is changed. */
903
904 static bool
905 canonicalize_loop_induction_variables (struct loop *loop,
906 bool create_iv, enum unroll_level ul,
907 bool try_eval)
908 {
909 edge exit = NULL;
910 tree niter;
911 HOST_WIDE_INT maxiter;
912 bool modified = false;
913 location_t locus = UNKNOWN_LOCATION;
914
915 niter = number_of_latch_executions (loop);
916 exit = single_exit (loop);
917 if (TREE_CODE (niter) == INTEGER_CST)
918 locus = gimple_location (last_stmt (exit->src));
919 else
920 {
921 /* If the loop has more than one exit, try checking all of them
922 for # of iterations determinable through scev. */
923 if (!exit)
924 niter = find_loop_niter (loop, &exit);
925
926 /* Finally if everything else fails, try brute force evaluation. */
927 if (try_eval
928 && (chrec_contains_undetermined (niter)
929 || TREE_CODE (niter) != INTEGER_CST))
930 niter = find_loop_niter_by_eval (loop, &exit);
931
932 if (exit)
933 locus = gimple_location (last_stmt (exit->src));
934
935 if (TREE_CODE (niter) != INTEGER_CST)
936 exit = NULL;
937 }
938
939 /* We work exceptionally hard here to estimate the bound
940 by find_loop_niter_by_eval. Be sure to keep it for future. */
941 if (niter && TREE_CODE (niter) == INTEGER_CST)
942 {
943 record_niter_bound (loop, tree_to_double_int (niter),
944 exit == single_likely_exit (loop), true);
945 }
946
947 /* Force re-computation of loop bounds so we can remove redundant exits. */
948 maxiter = max_loop_iterations_int (loop);
949
950 if (dump_file && (dump_flags & TDF_DETAILS)
951 && TREE_CODE (niter) == INTEGER_CST)
952 {
953 fprintf (dump_file, "Loop %d iterates ", loop->num);
954 print_generic_expr (dump_file, niter, TDF_SLIM);
955 fprintf (dump_file, " times.\n");
956 }
957 if (dump_file && (dump_flags & TDF_DETAILS)
958 && maxiter >= 0)
959 {
960 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num,
961 (int)maxiter);
962 }
963
964 /* Remove exits that are known to be never taken based on loop bound.
965 Needs to be called after compilation of max_loop_iterations_int that
966 populates the loop bounds. */
967 modified |= remove_redundant_iv_tests (loop);
968
969 if (try_unroll_loop_completely (loop, exit, niter, ul, maxiter, locus))
970 return true;
971
972 if (create_iv
973 && niter && !chrec_contains_undetermined (niter)
974 && exit && just_once_each_iteration_p (loop, exit->src))
975 create_canonical_iv (loop, exit, niter);
976
977 return modified;
978 }
979
980 /* The main entry point of the pass. Adds canonical induction variables
981 to the suitable loops. */
982
983 unsigned int
984 canonicalize_induction_variables (void)
985 {
986 struct loop *loop;
987 bool changed = false;
988 bool irred_invalidated = false;
989 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
990
991 free_numbers_of_iterations_estimates ();
992 estimate_numbers_of_iterations ();
993
994 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
995 {
996 changed |= canonicalize_loop_induction_variables (loop,
997 true, UL_SINGLE_ITER,
998 true);
999 }
1000 gcc_assert (!need_ssa_update_p (cfun));
1001
1002 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1003 if (irred_invalidated
1004 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1005 mark_irreducible_loops ();
1006
1007 /* Clean up the information about numbers of iterations, since brute force
1008 evaluation could reveal new information. */
1009 scev_reset ();
1010
1011 if (!bitmap_empty_p (loop_closed_ssa_invalidated))
1012 {
1013 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
1014 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1015 }
1016 BITMAP_FREE (loop_closed_ssa_invalidated);
1017
1018 if (changed)
1019 return TODO_cleanup_cfg;
1020 return 0;
1021 }
1022
1023 /* Propagate VAL into all uses of SSA_NAME. */
1024
1025 static void
1026 propagate_into_all_uses (tree ssa_name, tree val)
1027 {
1028 imm_use_iterator iter;
1029 gimple use_stmt;
1030
1031 FOR_EACH_IMM_USE_STMT (use_stmt, iter, ssa_name)
1032 {
1033 gimple_stmt_iterator use_stmt_gsi = gsi_for_stmt (use_stmt);
1034 use_operand_p use;
1035
1036 FOR_EACH_IMM_USE_ON_STMT (use, iter)
1037 SET_USE (use, val);
1038
1039 if (is_gimple_assign (use_stmt)
1040 && get_gimple_rhs_class (gimple_assign_rhs_code (use_stmt))
1041 == GIMPLE_SINGLE_RHS)
1042 {
1043 tree rhs = gimple_assign_rhs1 (use_stmt);
1044
1045 if (TREE_CODE (rhs) == ADDR_EXPR)
1046 recompute_tree_invariant_for_addr_expr (rhs);
1047 }
1048
1049 fold_stmt_inplace (&use_stmt_gsi);
1050 update_stmt (use_stmt);
1051 maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt);
1052 }
1053 }
1054
1055 /* Propagate constant SSA_NAMEs defined in basic block BB. */
1056
1057 static void
1058 propagate_constants_for_unrolling (basic_block bb)
1059 {
1060 gimple_stmt_iterator gsi;
1061
1062 /* Look for degenerate PHI nodes with constant argument. */
1063 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1064 {
1065 gimple phi = gsi_stmt (gsi);
1066 tree result = gimple_phi_result (phi);
1067 tree arg = gimple_phi_arg_def (phi, 0);
1068
1069 if (gimple_phi_num_args (phi) == 1 && TREE_CODE (arg) == INTEGER_CST)
1070 {
1071 propagate_into_all_uses (result, arg);
1072 gsi_remove (&gsi, true);
1073 release_ssa_name (result);
1074 }
1075 else
1076 gsi_next (&gsi);
1077 }
1078
1079 /* Look for assignments to SSA names with constant RHS. */
1080 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1081 {
1082 gimple stmt = gsi_stmt (gsi);
1083 tree lhs;
1084
1085 if (is_gimple_assign (stmt)
1086 && gimple_assign_rhs_code (stmt) == INTEGER_CST
1087 && (lhs = gimple_assign_lhs (stmt), TREE_CODE (lhs) == SSA_NAME)
1088 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1089 {
1090 propagate_into_all_uses (lhs, gimple_assign_rhs1 (stmt));
1091 gsi_remove (&gsi, true);
1092 release_ssa_name (lhs);
1093 }
1094 else
1095 gsi_next (&gsi);
1096 }
1097 }
1098
1099 /* Process loops from innermost to outer, stopping at the innermost
1100 loop we unrolled. */
1101
1102 static bool
1103 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
1104 vec<loop_p, va_heap>& father_stack,
1105 struct loop *loop)
1106 {
1107 struct loop *loop_father;
1108 bool changed = false;
1109 struct loop *inner;
1110 enum unroll_level ul;
1111
1112 /* Process inner loops first. */
1113 for (inner = loop->inner; inner != NULL; inner = inner->next)
1114 changed |= tree_unroll_loops_completely_1 (may_increase_size,
1115 unroll_outer, father_stack,
1116 inner);
1117
1118 /* If we changed an inner loop we cannot process outer loops in this
1119 iteration because SSA form is not up-to-date. Continue with
1120 siblings of outer loops instead. */
1121 if (changed)
1122 return true;
1123
1124 /* Don't unroll #pragma omp simd loops until the vectorizer
1125 attempts to vectorize those. */
1126 if (loop->force_vect)
1127 return false;
1128
1129 /* Try to unroll this loop. */
1130 loop_father = loop_outer (loop);
1131 if (!loop_father)
1132 return false;
1133
1134 if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
1135 /* Unroll outermost loops only if asked to do so or they do
1136 not cause code growth. */
1137 && (unroll_outer || loop_outer (loop_father)))
1138 ul = UL_ALL;
1139 else
1140 ul = UL_NO_GROWTH;
1141
1142 if (canonicalize_loop_induction_variables
1143 (loop, false, ul, !flag_tree_loop_ivcanon))
1144 {
1145 /* If we'll continue unrolling, we need to propagate constants
1146 within the new basic blocks to fold away induction variable
1147 computations; otherwise, the size might blow up before the
1148 iteration is complete and the IR eventually cleaned up. */
1149 if (loop_outer (loop_father) && !loop_father->aux)
1150 {
1151 father_stack.safe_push (loop_father);
1152 loop_father->aux = loop_father;
1153 }
1154
1155 return true;
1156 }
1157
1158 return false;
1159 }
1160
1161 /* Unroll LOOPS completely if they iterate just few times. Unless
1162 MAY_INCREASE_SIZE is true, perform the unrolling only if the
1163 size of the code does not increase. */
1164
1165 unsigned int
1166 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
1167 {
1168 stack_vec<loop_p, 16> father_stack;
1169 bool changed;
1170 int iteration = 0;
1171 bool irred_invalidated = false;
1172
1173 do
1174 {
1175 changed = false;
1176 bitmap loop_closed_ssa_invalidated = NULL;
1177
1178 if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
1179 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1180
1181 free_numbers_of_iterations_estimates ();
1182 estimate_numbers_of_iterations ();
1183
1184 changed = tree_unroll_loops_completely_1 (may_increase_size,
1185 unroll_outer, father_stack,
1186 current_loops->tree_root);
1187 if (changed)
1188 {
1189 struct loop **iter;
1190 unsigned i;
1191
1192 /* Be sure to skip unlooped loops while procesing father_stack
1193 array. */
1194 FOR_EACH_VEC_ELT (loops_to_unloop, i, iter)
1195 (*iter)->aux = NULL;
1196 FOR_EACH_VEC_ELT (father_stack, i, iter)
1197 if (!(*iter)->aux)
1198 *iter = NULL;
1199 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1200
1201 /* We can not use TODO_update_ssa_no_phi because VOPS gets confused. */
1202 if (loop_closed_ssa_invalidated
1203 && !bitmap_empty_p (loop_closed_ssa_invalidated))
1204 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
1205 TODO_update_ssa);
1206 else
1207 update_ssa (TODO_update_ssa);
1208
1209 /* Propagate the constants within the new basic blocks. */
1210 FOR_EACH_VEC_ELT (father_stack, i, iter)
1211 if (*iter)
1212 {
1213 unsigned j;
1214 basic_block *body = get_loop_body_in_dom_order (*iter);
1215 for (j = 0; j < (*iter)->num_nodes; j++)
1216 propagate_constants_for_unrolling (body[j]);
1217 free (body);
1218 (*iter)->aux = NULL;
1219 }
1220 father_stack.truncate (0);
1221
1222 /* This will take care of removing completely unrolled loops
1223 from the loop structures so we can continue unrolling now
1224 innermost loops. */
1225 if (cleanup_tree_cfg ())
1226 update_ssa (TODO_update_ssa_only_virtuals);
1227
1228 /* Clean up the information about numbers of iterations, since
1229 complete unrolling might have invalidated it. */
1230 scev_reset ();
1231 #ifdef ENABLE_CHECKING
1232 if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
1233 verify_loop_closed_ssa (true);
1234 #endif
1235 }
1236 if (loop_closed_ssa_invalidated)
1237 BITMAP_FREE (loop_closed_ssa_invalidated);
1238 }
1239 while (changed
1240 && ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS));
1241
1242 father_stack.release ();
1243
1244 if (irred_invalidated
1245 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1246 mark_irreducible_loops ();
1247
1248 return 0;
1249 }
1250
1251 /* Canonical induction variable creation pass. */
1252
1253 static unsigned int
1254 tree_ssa_loop_ivcanon (void)
1255 {
1256 if (number_of_loops (cfun) <= 1)
1257 return 0;
1258
1259 return canonicalize_induction_variables ();
1260 }
1261
1262 static bool
1263 gate_tree_ssa_loop_ivcanon (void)
1264 {
1265 return flag_tree_loop_ivcanon != 0;
1266 }
1267
1268 namespace {
1269
1270 const pass_data pass_data_iv_canon =
1271 {
1272 GIMPLE_PASS, /* type */
1273 "ivcanon", /* name */
1274 OPTGROUP_LOOP, /* optinfo_flags */
1275 true, /* has_gate */
1276 true, /* has_execute */
1277 TV_TREE_LOOP_IVCANON, /* tv_id */
1278 ( PROP_cfg | PROP_ssa ), /* properties_required */
1279 0, /* properties_provided */
1280 0, /* properties_destroyed */
1281 0, /* todo_flags_start */
1282 0, /* todo_flags_finish */
1283 };
1284
1285 class pass_iv_canon : public gimple_opt_pass
1286 {
1287 public:
1288 pass_iv_canon (gcc::context *ctxt)
1289 : gimple_opt_pass (pass_data_iv_canon, ctxt)
1290 {}
1291
1292 /* opt_pass methods: */
1293 bool gate () { return gate_tree_ssa_loop_ivcanon (); }
1294 unsigned int execute () { return tree_ssa_loop_ivcanon (); }
1295
1296 }; // class pass_iv_canon
1297
1298 } // anon namespace
1299
1300 gimple_opt_pass *
1301 make_pass_iv_canon (gcc::context *ctxt)
1302 {
1303 return new pass_iv_canon (ctxt);
1304 }
1305
1306 /* Complete unrolling of loops. */
1307
1308 static unsigned int
1309 tree_complete_unroll (void)
1310 {
1311 if (number_of_loops (cfun) <= 1)
1312 return 0;
1313
1314 return tree_unroll_loops_completely (flag_unroll_loops
1315 || flag_peel_loops
1316 || optimize >= 3, true);
1317 }
1318
1319 static bool
1320 gate_tree_complete_unroll (void)
1321 {
1322 return true;
1323 }
1324
1325 namespace {
1326
1327 const pass_data pass_data_complete_unroll =
1328 {
1329 GIMPLE_PASS, /* type */
1330 "cunroll", /* name */
1331 OPTGROUP_LOOP, /* optinfo_flags */
1332 true, /* has_gate */
1333 true, /* has_execute */
1334 TV_COMPLETE_UNROLL, /* tv_id */
1335 ( PROP_cfg | PROP_ssa ), /* properties_required */
1336 0, /* properties_provided */
1337 0, /* properties_destroyed */
1338 0, /* todo_flags_start */
1339 0, /* todo_flags_finish */
1340 };
1341
1342 class pass_complete_unroll : public gimple_opt_pass
1343 {
1344 public:
1345 pass_complete_unroll (gcc::context *ctxt)
1346 : gimple_opt_pass (pass_data_complete_unroll, ctxt)
1347 {}
1348
1349 /* opt_pass methods: */
1350 bool gate () { return gate_tree_complete_unroll (); }
1351 unsigned int execute () { return tree_complete_unroll (); }
1352
1353 }; // class pass_complete_unroll
1354
1355 } // anon namespace
1356
1357 gimple_opt_pass *
1358 make_pass_complete_unroll (gcc::context *ctxt)
1359 {
1360 return new pass_complete_unroll (ctxt);
1361 }
1362
1363 /* Complete unrolling of inner loops. */
1364
1365 static unsigned int
1366 tree_complete_unroll_inner (void)
1367 {
1368 unsigned ret = 0;
1369
1370 loop_optimizer_init (LOOPS_NORMAL
1371 | LOOPS_HAVE_RECORDED_EXITS);
1372 if (number_of_loops (cfun) > 1)
1373 {
1374 scev_initialize ();
1375 ret = tree_unroll_loops_completely (optimize >= 3, false);
1376 free_numbers_of_iterations_estimates ();
1377 scev_finalize ();
1378 }
1379 loop_optimizer_finalize ();
1380
1381 return ret;
1382 }
1383
1384 static bool
1385 gate_tree_complete_unroll_inner (void)
1386 {
1387 return optimize >= 2;
1388 }
1389
1390 namespace {
1391
1392 const pass_data pass_data_complete_unrolli =
1393 {
1394 GIMPLE_PASS, /* type */
1395 "cunrolli", /* name */
1396 OPTGROUP_LOOP, /* optinfo_flags */
1397 true, /* has_gate */
1398 true, /* has_execute */
1399 TV_COMPLETE_UNROLL, /* tv_id */
1400 ( PROP_cfg | PROP_ssa ), /* properties_required */
1401 0, /* properties_provided */
1402 0, /* properties_destroyed */
1403 0, /* todo_flags_start */
1404 TODO_verify_flow, /* todo_flags_finish */
1405 };
1406
1407 class pass_complete_unrolli : public gimple_opt_pass
1408 {
1409 public:
1410 pass_complete_unrolli (gcc::context *ctxt)
1411 : gimple_opt_pass (pass_data_complete_unrolli, ctxt)
1412 {}
1413
1414 /* opt_pass methods: */
1415 bool gate () { return gate_tree_complete_unroll_inner (); }
1416 unsigned int execute () { return tree_complete_unroll_inner (); }
1417
1418 }; // class pass_complete_unrolli
1419
1420 } // anon namespace
1421
1422 gimple_opt_pass *
1423 make_pass_complete_unrolli (gcc::context *ctxt)
1424 {
1425 return new pass_complete_unrolli (ctxt);
1426 }
1427
1428