Remove gcc/params.* files.
[gcc.git] / gcc / tree-ssa-loop-ivcanon.c
1 /* Induction variable canonicalization and loop peeling.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass detects the loops that iterate a constant number of times,
21 adds a canonical induction variable (step -1, tested against 0)
22 and replaces the exit test. This enables the less powerful rtl
23 level analysis to use this information.
24
25 This might spoil the code in some cases (by increasing register pressure).
26 Note that in the case the new variable is not needed, ivopts will get rid
27 of it, so it might only be a problem when there are no other linear induction
28 variables. In that case the created optimization possibilities are likely
29 to pay up.
30
31 We also perform
32 - complete unrolling (or peeling) when the loops is rolling few enough
33 times
34 - simple peeling (i.e. copying few initial iterations prior the loop)
35 when number of iteration estimate is known (typically by the profile
36 info). */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "backend.h"
42 #include "tree.h"
43 #include "gimple.h"
44 #include "cfghooks.h"
45 #include "tree-pass.h"
46 #include "ssa.h"
47 #include "cgraph.h"
48 #include "gimple-pretty-print.h"
49 #include "fold-const.h"
50 #include "profile.h"
51 #include "gimple-fold.h"
52 #include "tree-eh.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-ssa-loop-niter.h"
57 #include "tree-ssa-loop.h"
58 #include "tree-into-ssa.h"
59 #include "cfgloop.h"
60 #include "tree-chrec.h"
61 #include "tree-scalar-evolution.h"
62 #include "tree-inline.h"
63 #include "tree-cfgcleanup.h"
64 #include "builtins.h"
65 #include "tree-ssa-sccvn.h"
66 #include "dbgcnt.h"
67
68 /* Specifies types of loops that may be unrolled. */
69
70 enum unroll_level
71 {
72 UL_SINGLE_ITER, /* Only loops that exit immediately in the first
73 iteration. */
74 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
75 of code size. */
76 UL_ALL /* All suitable loops. */
77 };
78
79 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
80 is the exit edge whose condition is replaced. The ssa versions of the new
81 IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER
82 if they are not NULL. */
83
84 void
85 create_canonical_iv (class loop *loop, edge exit, tree niter,
86 tree *var_before = NULL, tree *var_after = NULL)
87 {
88 edge in;
89 tree type, var;
90 gcond *cond;
91 gimple_stmt_iterator incr_at;
92 enum tree_code cmp;
93
94 if (dump_file && (dump_flags & TDF_DETAILS))
95 {
96 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
97 print_generic_expr (dump_file, niter, TDF_SLIM);
98 fprintf (dump_file, " iterations.\n");
99 }
100
101 cond = as_a <gcond *> (last_stmt (exit->src));
102 in = EDGE_SUCC (exit->src, 0);
103 if (in == exit)
104 in = EDGE_SUCC (exit->src, 1);
105
106 /* Note that we do not need to worry about overflows, since
107 type of niter is always unsigned and all comparisons are
108 just for equality/nonequality -- i.e. everything works
109 with a modulo arithmetics. */
110
111 type = TREE_TYPE (niter);
112 niter = fold_build2 (PLUS_EXPR, type,
113 niter,
114 build_int_cst (type, 1));
115 incr_at = gsi_last_bb (in->src);
116 create_iv (niter,
117 build_int_cst (type, -1),
118 NULL_TREE, loop,
119 &incr_at, false, var_before, &var);
120 if (var_after)
121 *var_after = var;
122
123 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
124 gimple_cond_set_code (cond, cmp);
125 gimple_cond_set_lhs (cond, var);
126 gimple_cond_set_rhs (cond, build_int_cst (type, 0));
127 update_stmt (cond);
128 }
129
130 /* Describe size of loop as detected by tree_estimate_loop_size. */
131 struct loop_size
132 {
133 /* Number of instructions in the loop. */
134 int overall;
135
136 /* Number of instructions that will be likely optimized out in
137 peeled iterations of loop (i.e. computation based on induction
138 variable where induction variable starts at known constant.) */
139 int eliminated_by_peeling;
140
141 /* Same statistics for last iteration of loop: it is smaller because
142 instructions after exit are not executed. */
143 int last_iteration;
144 int last_iteration_eliminated_by_peeling;
145
146 /* If some IV computation will become constant. */
147 bool constant_iv;
148
149 /* Number of call stmts that are not a builtin and are pure or const
150 present on the hot path. */
151 int num_pure_calls_on_hot_path;
152 /* Number of call stmts that are not a builtin and are not pure nor const
153 present on the hot path. */
154 int num_non_pure_calls_on_hot_path;
155 /* Number of statements other than calls in the loop. */
156 int non_call_stmts_on_hot_path;
157 /* Number of branches seen on the hot path. */
158 int num_branches_on_hot_path;
159 };
160
161 /* Return true if OP in STMT will be constant after peeling LOOP. */
162
163 static bool
164 constant_after_peeling (tree op, gimple *stmt, class loop *loop)
165 {
166 if (is_gimple_min_invariant (op))
167 return true;
168
169 /* We can still fold accesses to constant arrays when index is known. */
170 if (TREE_CODE (op) != SSA_NAME)
171 {
172 tree base = op;
173
174 /* First make fast look if we see constant array inside. */
175 while (handled_component_p (base))
176 base = TREE_OPERAND (base, 0);
177 if ((DECL_P (base)
178 && ctor_for_folding (base) != error_mark_node)
179 || CONSTANT_CLASS_P (base))
180 {
181 /* If so, see if we understand all the indices. */
182 base = op;
183 while (handled_component_p (base))
184 {
185 if (TREE_CODE (base) == ARRAY_REF
186 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
187 return false;
188 base = TREE_OPERAND (base, 0);
189 }
190 return true;
191 }
192 return false;
193 }
194
195 /* Induction variables are constants when defined in loop. */
196 if (loop_containing_stmt (stmt) != loop)
197 return false;
198 tree ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, op));
199 if (chrec_contains_undetermined (ev))
200 return false;
201 return true;
202 }
203
204 /* Computes an estimated number of insns in LOOP.
205 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
206 iteration of the loop.
207 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
208 of loop.
209 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
210 Stop estimating after UPPER_BOUND is met. Return true in this case. */
211
212 static bool
213 tree_estimate_loop_size (class loop *loop, edge exit, edge edge_to_cancel,
214 struct loop_size *size, int upper_bound)
215 {
216 basic_block *body = get_loop_body (loop);
217 gimple_stmt_iterator gsi;
218 unsigned int i;
219 bool after_exit;
220 vec<basic_block> path = get_loop_hot_path (loop);
221
222 size->overall = 0;
223 size->eliminated_by_peeling = 0;
224 size->last_iteration = 0;
225 size->last_iteration_eliminated_by_peeling = 0;
226 size->num_pure_calls_on_hot_path = 0;
227 size->num_non_pure_calls_on_hot_path = 0;
228 size->non_call_stmts_on_hot_path = 0;
229 size->num_branches_on_hot_path = 0;
230 size->constant_iv = 0;
231
232 if (dump_file && (dump_flags & TDF_DETAILS))
233 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num);
234 for (i = 0; i < loop->num_nodes; i++)
235 {
236 if (edge_to_cancel && body[i] != edge_to_cancel->src
237 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
238 after_exit = true;
239 else
240 after_exit = false;
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index,
243 after_exit);
244
245 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
246 {
247 gimple *stmt = gsi_stmt (gsi);
248 int num = estimate_num_insns (stmt, &eni_size_weights);
249 bool likely_eliminated = false;
250 bool likely_eliminated_last = false;
251 bool likely_eliminated_peeled = false;
252
253 if (dump_file && (dump_flags & TDF_DETAILS))
254 {
255 fprintf (dump_file, " size: %3i ", num);
256 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0);
257 }
258
259 /* Look for reasons why we might optimize this stmt away. */
260
261 if (!gimple_has_side_effects (stmt))
262 {
263 /* Exit conditional. */
264 if (exit && body[i] == exit->src
265 && stmt == last_stmt (exit->src))
266 {
267 if (dump_file && (dump_flags & TDF_DETAILS))
268 fprintf (dump_file, " Exit condition will be eliminated "
269 "in peeled copies.\n");
270 likely_eliminated_peeled = true;
271 }
272 if (edge_to_cancel && body[i] == edge_to_cancel->src
273 && stmt == last_stmt (edge_to_cancel->src))
274 {
275 if (dump_file && (dump_flags & TDF_DETAILS))
276 fprintf (dump_file, " Exit condition will be eliminated "
277 "in last copy.\n");
278 likely_eliminated_last = true;
279 }
280 /* Sets of IV variables */
281 if (gimple_code (stmt) == GIMPLE_ASSIGN
282 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop))
283 {
284 if (dump_file && (dump_flags & TDF_DETAILS))
285 fprintf (dump_file, " Induction variable computation will"
286 " be folded away.\n");
287 likely_eliminated = true;
288 }
289 /* Assignments of IV variables. */
290 else if (gimple_code (stmt) == GIMPLE_ASSIGN
291 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
292 && constant_after_peeling (gimple_assign_rhs1 (stmt),
293 stmt, loop)
294 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS
295 || constant_after_peeling (gimple_assign_rhs2 (stmt),
296 stmt, loop)))
297 {
298 size->constant_iv = true;
299 if (dump_file && (dump_flags & TDF_DETAILS))
300 fprintf (dump_file,
301 " Constant expression will be folded away.\n");
302 likely_eliminated = true;
303 }
304 /* Conditionals. */
305 else if ((gimple_code (stmt) == GIMPLE_COND
306 && constant_after_peeling (gimple_cond_lhs (stmt), stmt,
307 loop)
308 && constant_after_peeling (gimple_cond_rhs (stmt), stmt,
309 loop)
310 /* We don't simplify all constant compares so make sure
311 they are not both constant already. See PR70288. */
312 && (! is_gimple_min_invariant (gimple_cond_lhs (stmt))
313 || ! is_gimple_min_invariant
314 (gimple_cond_rhs (stmt))))
315 || (gimple_code (stmt) == GIMPLE_SWITCH
316 && constant_after_peeling (gimple_switch_index (
317 as_a <gswitch *>
318 (stmt)),
319 stmt, loop)
320 && ! is_gimple_min_invariant
321 (gimple_switch_index
322 (as_a <gswitch *> (stmt)))))
323 {
324 if (dump_file && (dump_flags & TDF_DETAILS))
325 fprintf (dump_file, " Constant conditional.\n");
326 likely_eliminated = true;
327 }
328 }
329
330 size->overall += num;
331 if (likely_eliminated || likely_eliminated_peeled)
332 size->eliminated_by_peeling += num;
333 if (!after_exit)
334 {
335 size->last_iteration += num;
336 if (likely_eliminated || likely_eliminated_last)
337 size->last_iteration_eliminated_by_peeling += num;
338 }
339 if ((size->overall * 3 / 2 - size->eliminated_by_peeling
340 - size->last_iteration_eliminated_by_peeling) > upper_bound)
341 {
342 free (body);
343 path.release ();
344 return true;
345 }
346 }
347 }
348 while (path.length ())
349 {
350 basic_block bb = path.pop ();
351 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
352 {
353 gimple *stmt = gsi_stmt (gsi);
354 if (gimple_code (stmt) == GIMPLE_CALL
355 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt)))
356 {
357 int flags = gimple_call_flags (stmt);
358 if (flags & (ECF_PURE | ECF_CONST))
359 size->num_pure_calls_on_hot_path++;
360 else
361 size->num_non_pure_calls_on_hot_path++;
362 size->num_branches_on_hot_path ++;
363 }
364 /* Count inexpensive calls as non-calls, because they will likely
365 expand inline. */
366 else if (gimple_code (stmt) != GIMPLE_DEBUG)
367 size->non_call_stmts_on_hot_path++;
368 if (((gimple_code (stmt) == GIMPLE_COND
369 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
370 || !constant_after_peeling (gimple_cond_rhs (stmt), stmt,
371 loop)))
372 || (gimple_code (stmt) == GIMPLE_SWITCH
373 && !constant_after_peeling (gimple_switch_index (
374 as_a <gswitch *> (stmt)),
375 stmt, loop)))
376 && (!exit || bb != exit->src))
377 size->num_branches_on_hot_path++;
378 }
379 }
380 path.release ();
381 if (dump_file && (dump_flags & TDF_DETAILS))
382 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall,
383 size->eliminated_by_peeling, size->last_iteration,
384 size->last_iteration_eliminated_by_peeling);
385
386 free (body);
387 return false;
388 }
389
390 /* Estimate number of insns of completely unrolled loop.
391 It is (NUNROLL + 1) * size of loop body with taking into account
392 the fact that in last copy everything after exit conditional
393 is dead and that some instructions will be eliminated after
394 peeling.
395
396 Loop body is likely going to simplify further, this is difficult
397 to guess, we just decrease the result by 1/3. */
398
399 static unsigned HOST_WIDE_INT
400 estimated_unrolled_size (struct loop_size *size,
401 unsigned HOST_WIDE_INT nunroll)
402 {
403 HOST_WIDE_INT unr_insns = ((nunroll)
404 * (HOST_WIDE_INT) (size->overall
405 - size->eliminated_by_peeling));
406 if (!nunroll)
407 unr_insns = 0;
408 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
409
410 unr_insns = unr_insns * 2 / 3;
411 if (unr_insns <= 0)
412 unr_insns = 1;
413
414 return unr_insns;
415 }
416
417 /* Loop LOOP is known to not loop. See if there is an edge in the loop
418 body that can be remove to make the loop to always exit and at
419 the same time it does not make any code potentially executed
420 during the last iteration dead.
421
422 After complete unrolling we still may get rid of the conditional
423 on the exit in the last copy even if we have no idea what it does.
424 This is quite common case for loops of form
425
426 int a[5];
427 for (i=0;i<b;i++)
428 a[i]=0;
429
430 Here we prove the loop to iterate 5 times but we do not know
431 it from induction variable.
432
433 For now we handle only simple case where there is exit condition
434 just before the latch block and the latch block contains no statements
435 with side effect that may otherwise terminate the execution of loop
436 (such as by EH or by terminating the program or longjmp).
437
438 In the general case we may want to cancel the paths leading to statements
439 loop-niter identified as having undefined effect in the last iteration.
440 The other cases are hopefully rare and will be cleaned up later. */
441
442 static edge
443 loop_edge_to_cancel (class loop *loop)
444 {
445 vec<edge> exits;
446 unsigned i;
447 edge edge_to_cancel;
448 gimple_stmt_iterator gsi;
449
450 /* We want only one predecestor of the loop. */
451 if (EDGE_COUNT (loop->latch->preds) > 1)
452 return NULL;
453
454 exits = get_loop_exit_edges (loop);
455
456 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
457 {
458 /* Find the other edge than the loop exit
459 leaving the conditoinal. */
460 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
461 continue;
462 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
463 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
464 else
465 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
466
467 /* We only can handle conditionals. */
468 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
469 continue;
470
471 /* We should never have conditionals in the loop latch. */
472 gcc_assert (edge_to_cancel->dest != loop->header);
473
474 /* Check that it leads to loop latch. */
475 if (edge_to_cancel->dest != loop->latch)
476 continue;
477
478 exits.release ();
479
480 /* Verify that the code in loop latch does nothing that may end program
481 execution without really reaching the exit. This may include
482 non-pure/const function calls, EH statements, volatile ASMs etc. */
483 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi))
484 if (gimple_has_side_effects (gsi_stmt (gsi)))
485 return NULL;
486 return edge_to_cancel;
487 }
488 exits.release ();
489 return NULL;
490 }
491
492 /* Remove all tests for exits that are known to be taken after LOOP was
493 peeled NPEELED times. Put gcc_unreachable before every statement
494 known to not be executed. */
495
496 static bool
497 remove_exits_and_undefined_stmts (class loop *loop, unsigned int npeeled)
498 {
499 class nb_iter_bound *elt;
500 bool changed = false;
501
502 for (elt = loop->bounds; elt; elt = elt->next)
503 {
504 /* If statement is known to be undefined after peeling, turn it
505 into unreachable (or trap when debugging experience is supposed
506 to be good). */
507 if (!elt->is_exit
508 && wi::ltu_p (elt->bound, npeeled))
509 {
510 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
511 gcall *stmt = gimple_build_call
512 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
513 gimple_set_location (stmt, gimple_location (elt->stmt));
514 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
515 split_block (gimple_bb (stmt), stmt);
516 changed = true;
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 {
519 fprintf (dump_file, "Forced statement unreachable: ");
520 print_gimple_stmt (dump_file, elt->stmt, 0);
521 }
522 }
523 /* If we know the exit will be taken after peeling, update. */
524 else if (elt->is_exit
525 && wi::leu_p (elt->bound, npeeled))
526 {
527 basic_block bb = gimple_bb (elt->stmt);
528 edge exit_edge = EDGE_SUCC (bb, 0);
529
530 if (dump_file && (dump_flags & TDF_DETAILS))
531 {
532 fprintf (dump_file, "Forced exit to be taken: ");
533 print_gimple_stmt (dump_file, elt->stmt, 0);
534 }
535 if (!loop_exit_edge_p (loop, exit_edge))
536 exit_edge = EDGE_SUCC (bb, 1);
537 exit_edge->probability = profile_probability::always ();
538 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
539 gcond *cond_stmt = as_a <gcond *> (elt->stmt);
540 if (exit_edge->flags & EDGE_TRUE_VALUE)
541 gimple_cond_make_true (cond_stmt);
542 else
543 gimple_cond_make_false (cond_stmt);
544 update_stmt (cond_stmt);
545 changed = true;
546 }
547 }
548 return changed;
549 }
550
551 /* Remove all exits that are known to be never taken because of the loop bound
552 discovered. */
553
554 static bool
555 remove_redundant_iv_tests (class loop *loop)
556 {
557 class nb_iter_bound *elt;
558 bool changed = false;
559
560 if (!loop->any_upper_bound)
561 return false;
562 for (elt = loop->bounds; elt; elt = elt->next)
563 {
564 /* Exit is pointless if it won't be taken before loop reaches
565 upper bound. */
566 if (elt->is_exit && loop->any_upper_bound
567 && wi::ltu_p (loop->nb_iterations_upper_bound, elt->bound))
568 {
569 basic_block bb = gimple_bb (elt->stmt);
570 edge exit_edge = EDGE_SUCC (bb, 0);
571 class tree_niter_desc niter;
572
573 if (!loop_exit_edge_p (loop, exit_edge))
574 exit_edge = EDGE_SUCC (bb, 1);
575
576 /* Only when we know the actual number of iterations, not
577 just a bound, we can remove the exit. */
578 if (!number_of_iterations_exit (loop, exit_edge,
579 &niter, false, false)
580 || !integer_onep (niter.assumptions)
581 || !integer_zerop (niter.may_be_zero)
582 || !niter.niter
583 || TREE_CODE (niter.niter) != INTEGER_CST
584 || !wi::ltu_p (loop->nb_iterations_upper_bound,
585 wi::to_widest (niter.niter)))
586 continue;
587
588 if (dump_file && (dump_flags & TDF_DETAILS))
589 {
590 fprintf (dump_file, "Removed pointless exit: ");
591 print_gimple_stmt (dump_file, elt->stmt, 0);
592 }
593 gcond *cond_stmt = as_a <gcond *> (elt->stmt);
594 if (exit_edge->flags & EDGE_TRUE_VALUE)
595 gimple_cond_make_false (cond_stmt);
596 else
597 gimple_cond_make_true (cond_stmt);
598 update_stmt (cond_stmt);
599 changed = true;
600 }
601 }
602 return changed;
603 }
604
605 /* Stores loops that will be unlooped and edges that will be removed
606 after we process whole loop tree. */
607 static vec<loop_p> loops_to_unloop;
608 static vec<int> loops_to_unloop_nunroll;
609 static vec<edge> edges_to_remove;
610 /* Stores loops that has been peeled. */
611 static bitmap peeled_loops;
612
613 /* Cancel all fully unrolled loops by putting __builtin_unreachable
614 on the latch edge.
615 We do it after all unrolling since unlooping moves basic blocks
616 across loop boundaries trashing loop closed SSA form as well
617 as SCEV info needed to be intact during unrolling.
618
619 IRRED_INVALIDATED is used to bookkeep if information about
620 irreducible regions may become invalid as a result
621 of the transformation.
622 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
623 when we need to go into loop closed SSA form. */
624
625 static void
626 unloop_loops (bitmap loop_closed_ssa_invalidated,
627 bool *irred_invalidated)
628 {
629 while (loops_to_unloop.length ())
630 {
631 class loop *loop = loops_to_unloop.pop ();
632 int n_unroll = loops_to_unloop_nunroll.pop ();
633 basic_block latch = loop->latch;
634 edge latch_edge = loop_latch_edge (loop);
635 int flags = latch_edge->flags;
636 location_t locus = latch_edge->goto_locus;
637 gcall *stmt;
638 gimple_stmt_iterator gsi;
639
640 remove_exits_and_undefined_stmts (loop, n_unroll);
641
642 /* Unloop destroys the latch edge. */
643 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
644
645 /* Create new basic block for the latch edge destination and wire
646 it in. */
647 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
648 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
649 latch_edge->probability = profile_probability::never ();
650 latch_edge->flags |= flags;
651 latch_edge->goto_locus = locus;
652
653 add_bb_to_loop (latch_edge->dest, current_loops->tree_root);
654 latch_edge->dest->count = profile_count::zero ();
655 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
656
657 gsi = gsi_start_bb (latch_edge->dest);
658 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
659 }
660 loops_to_unloop.release ();
661 loops_to_unloop_nunroll.release ();
662
663 /* Remove edges in peeled copies. Given remove_path removes dominated
664 regions we need to cope with removal of already removed paths. */
665 unsigned i;
666 edge e;
667 auto_vec<int, 20> src_bbs;
668 src_bbs.reserve_exact (edges_to_remove.length ());
669 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
670 src_bbs.quick_push (e->src->index);
671 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
672 if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i]))
673 {
674 bool ok = remove_path (e, irred_invalidated,
675 loop_closed_ssa_invalidated);
676 gcc_assert (ok);
677 }
678 edges_to_remove.release ();
679 }
680
681 /* Tries to unroll LOOP completely, i.e. NITER times.
682 UL determines which loops we are allowed to unroll.
683 EXIT is the exit of the loop that should be eliminated.
684 MAXITER specfy bound on number of iterations, -1 if it is
685 not known or too large for HOST_WIDE_INT. The location
686 LOCUS corresponding to the loop is used when emitting
687 a summary of the unroll to the dump file. */
688
689 static bool
690 try_unroll_loop_completely (class loop *loop,
691 edge exit, tree niter, bool may_be_zero,
692 enum unroll_level ul,
693 HOST_WIDE_INT maxiter,
694 dump_user_location_t locus, bool allow_peel)
695 {
696 unsigned HOST_WIDE_INT n_unroll = 0;
697 bool n_unroll_found = false;
698 edge edge_to_cancel = NULL;
699
700 /* See if we proved number of iterations to be low constant.
701
702 EXIT is an edge that will be removed in all but last iteration of
703 the loop.
704
705 EDGE_TO_CACNEL is an edge that will be removed from the last iteration
706 of the unrolled sequence and is expected to make the final loop not
707 rolling.
708
709 If the number of execution of loop is determined by standard induction
710 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
711 from the iv test. */
712 if (tree_fits_uhwi_p (niter))
713 {
714 n_unroll = tree_to_uhwi (niter);
715 n_unroll_found = true;
716 edge_to_cancel = EDGE_SUCC (exit->src, 0);
717 if (edge_to_cancel == exit)
718 edge_to_cancel = EDGE_SUCC (exit->src, 1);
719 }
720 /* We do not know the number of iterations and thus we cannot eliminate
721 the EXIT edge. */
722 else
723 exit = NULL;
724
725 /* See if we can improve our estimate by using recorded loop bounds. */
726 if ((allow_peel || maxiter == 0 || ul == UL_NO_GROWTH)
727 && maxiter >= 0
728 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
729 {
730 n_unroll = maxiter;
731 n_unroll_found = true;
732 /* Loop terminates before the IV variable test, so we cannot
733 remove it in the last iteration. */
734 edge_to_cancel = NULL;
735 }
736
737 if (!n_unroll_found)
738 return false;
739
740 if (!loop->unroll
741 && n_unroll > (unsigned) param_max_completely_peel_times)
742 {
743 if (dump_file && (dump_flags & TDF_DETAILS))
744 fprintf (dump_file, "Not unrolling loop %d "
745 "(--param max-completely-peel-times limit reached).\n",
746 loop->num);
747 return false;
748 }
749
750 if (!edge_to_cancel)
751 edge_to_cancel = loop_edge_to_cancel (loop);
752
753 if (n_unroll)
754 {
755 if (ul == UL_SINGLE_ITER)
756 return false;
757
758 if (loop->unroll)
759 {
760 /* If the unrolling factor is too large, bail out. */
761 if (n_unroll > (unsigned)loop->unroll)
762 {
763 if (dump_file && (dump_flags & TDF_DETAILS))
764 fprintf (dump_file,
765 "Not unrolling loop %d: "
766 "user didn't want it unrolled completely.\n",
767 loop->num);
768 return false;
769 }
770 }
771 else
772 {
773 struct loop_size size;
774 /* EXIT can be removed only if we are sure it passes first N_UNROLL
775 iterations. */
776 bool remove_exit = (exit && niter
777 && TREE_CODE (niter) == INTEGER_CST
778 && wi::leu_p (n_unroll, wi::to_widest (niter)));
779 bool large
780 = tree_estimate_loop_size
781 (loop, remove_exit ? exit : NULL, edge_to_cancel, &size,
782 param_max_completely_peeled_insns);
783 if (large)
784 {
785 if (dump_file && (dump_flags & TDF_DETAILS))
786 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n",
787 loop->num);
788 return false;
789 }
790
791 unsigned HOST_WIDE_INT ninsns = size.overall;
792 unsigned HOST_WIDE_INT unr_insns
793 = estimated_unrolled_size (&size, n_unroll);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 fprintf (dump_file, " Loop size: %d\n", (int) ninsns);
797 fprintf (dump_file, " Estimated size after unrolling: %d\n",
798 (int) unr_insns);
799 }
800
801 /* If the code is going to shrink, we don't need to be extra
802 cautious on guessing if the unrolling is going to be
803 profitable. */
804 if (unr_insns
805 /* If there is IV variable that will become constant, we
806 save one instruction in the loop prologue we do not
807 account otherwise. */
808 <= ninsns + (size.constant_iv != false))
809 ;
810 /* We unroll only inner loops, because we do not consider it
811 profitable otheriwse. We still can cancel loopback edge
812 of not rolling loop; this is always a good idea. */
813 else if (ul == UL_NO_GROWTH)
814 {
815 if (dump_file && (dump_flags & TDF_DETAILS))
816 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n",
817 loop->num);
818 return false;
819 }
820 /* Outer loops tend to be less interesting candidates for
821 complete unrolling unless we can do a lot of propagation
822 into the inner loop body. For now we disable outer loop
823 unrolling when the code would grow. */
824 else if (loop->inner)
825 {
826 if (dump_file && (dump_flags & TDF_DETAILS))
827 fprintf (dump_file, "Not unrolling loop %d: "
828 "it is not innermost and code would grow.\n",
829 loop->num);
830 return false;
831 }
832 /* If there is call on a hot path through the loop, then
833 there is most probably not much to optimize. */
834 else if (size.num_non_pure_calls_on_hot_path)
835 {
836 if (dump_file && (dump_flags & TDF_DETAILS))
837 fprintf (dump_file, "Not unrolling loop %d: "
838 "contains call and code would grow.\n",
839 loop->num);
840 return false;
841 }
842 /* If there is pure/const call in the function, then we can
843 still optimize the unrolled loop body if it contains some
844 other interesting code than the calls and code storing or
845 cumulating the return value. */
846 else if (size.num_pure_calls_on_hot_path
847 /* One IV increment, one test, one ivtmp store and
848 one useful stmt. That is about minimal loop
849 doing pure call. */
850 && (size.non_call_stmts_on_hot_path
851 <= 3 + size.num_pure_calls_on_hot_path))
852 {
853 if (dump_file && (dump_flags & TDF_DETAILS))
854 fprintf (dump_file, "Not unrolling loop %d: "
855 "contains just pure calls and code would grow.\n",
856 loop->num);
857 return false;
858 }
859 /* Complete unrolling is major win when control flow is
860 removed and one big basic block is created. If the loop
861 contains control flow the optimization may still be a win
862 because of eliminating the loop overhead but it also may
863 blow the branch predictor tables. Limit number of
864 branches on the hot path through the peeled sequence. */
865 else if (size.num_branches_on_hot_path * (int)n_unroll
866 > param_max_peel_branches)
867 {
868 if (dump_file && (dump_flags & TDF_DETAILS))
869 fprintf (dump_file, "Not unrolling loop %d: "
870 "number of branches on hot path in the unrolled "
871 "sequence reaches --param max-peel-branches limit.\n",
872 loop->num);
873 return false;
874 }
875 else if (unr_insns
876 > (unsigned) param_max_completely_peeled_insns)
877 {
878 if (dump_file && (dump_flags & TDF_DETAILS))
879 fprintf (dump_file, "Not unrolling loop %d: "
880 "number of insns in the unrolled sequence reaches "
881 "--param max-completely-peeled-insns limit.\n",
882 loop->num);
883 return false;
884 }
885 }
886
887 if (!dbg_cnt (gimple_unroll))
888 return false;
889
890 initialize_original_copy_tables ();
891 auto_sbitmap wont_exit (n_unroll + 1);
892 if (exit && niter
893 && TREE_CODE (niter) == INTEGER_CST
894 && wi::leu_p (n_unroll, wi::to_widest (niter)))
895 {
896 bitmap_ones (wont_exit);
897 if (wi::eq_p (wi::to_widest (niter), n_unroll)
898 || edge_to_cancel)
899 bitmap_clear_bit (wont_exit, 0);
900 }
901 else
902 {
903 exit = NULL;
904 bitmap_clear (wont_exit);
905 }
906 if (may_be_zero)
907 bitmap_clear_bit (wont_exit, 1);
908
909 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
910 n_unroll, wont_exit,
911 exit, &edges_to_remove,
912 DLTHE_FLAG_UPDATE_FREQ
913 | DLTHE_FLAG_COMPLETTE_PEEL))
914 {
915 free_original_copy_tables ();
916 if (dump_file && (dump_flags & TDF_DETAILS))
917 fprintf (dump_file, "Failed to duplicate the loop\n");
918 return false;
919 }
920
921 free_original_copy_tables ();
922 }
923
924 /* Remove the conditional from the last copy of the loop. */
925 if (edge_to_cancel)
926 {
927 gcond *cond = as_a <gcond *> (last_stmt (edge_to_cancel->src));
928 force_edge_cold (edge_to_cancel, true);
929 if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
930 gimple_cond_make_false (cond);
931 else
932 gimple_cond_make_true (cond);
933 update_stmt (cond);
934 /* Do not remove the path, as doing so may remove outer loop and
935 confuse bookkeeping code in tree_unroll_loops_completely. */
936 }
937
938 /* Store the loop for later unlooping and exit removal. */
939 loops_to_unloop.safe_push (loop);
940 loops_to_unloop_nunroll.safe_push (n_unroll);
941
942 if (dump_enabled_p ())
943 {
944 if (!n_unroll)
945 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
946 "loop turned into non-loop; it never loops\n");
947 else
948 {
949 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
950 "loop with %d iterations completely unrolled",
951 (int) n_unroll);
952 if (loop->header->count.initialized_p ())
953 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
954 " (header execution count %d)",
955 (int)loop->header->count.to_gcov_type ());
956 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
957 }
958 }
959
960 if (dump_file && (dump_flags & TDF_DETAILS))
961 {
962 if (exit)
963 fprintf (dump_file, "Exit condition of peeled iterations was "
964 "eliminated.\n");
965 if (edge_to_cancel)
966 fprintf (dump_file, "Last iteration exit edge was proved true.\n");
967 else
968 fprintf (dump_file, "Latch of last iteration was marked by "
969 "__builtin_unreachable ().\n");
970 }
971
972 return true;
973 }
974
975 /* Return number of instructions after peeling. */
976 static unsigned HOST_WIDE_INT
977 estimated_peeled_sequence_size (struct loop_size *size,
978 unsigned HOST_WIDE_INT npeel)
979 {
980 return MAX (npeel * (HOST_WIDE_INT) (size->overall
981 - size->eliminated_by_peeling), 1);
982 }
983
984 /* If the loop is expected to iterate N times and is
985 small enough, duplicate the loop body N+1 times before
986 the loop itself. This way the hot path will never
987 enter the loop.
988 Parameters are the same as for try_unroll_loops_completely */
989
990 static bool
991 try_peel_loop (class loop *loop,
992 edge exit, tree niter, bool may_be_zero,
993 HOST_WIDE_INT maxiter)
994 {
995 HOST_WIDE_INT npeel;
996 struct loop_size size;
997 int peeled_size;
998
999 if (!flag_peel_loops
1000 || param_max_peel_times <= 0
1001 || !peeled_loops)
1002 return false;
1003
1004 if (bitmap_bit_p (peeled_loops, loop->num))
1005 {
1006 if (dump_file)
1007 fprintf (dump_file, "Not peeling: loop is already peeled\n");
1008 return false;
1009 }
1010
1011 /* We don't peel loops that will be unrolled as this can duplicate a
1012 loop more times than the user requested. */
1013 if (loop->unroll)
1014 {
1015 if (dump_file)
1016 fprintf (dump_file, "Not peeling: user didn't want it peeled.\n");
1017 return false;
1018 }
1019
1020 /* Peel only innermost loops.
1021 While the code is perfectly capable of peeling non-innermost loops,
1022 the heuristics would probably need some improvements. */
1023 if (loop->inner)
1024 {
1025 if (dump_file)
1026 fprintf (dump_file, "Not peeling: outer loop\n");
1027 return false;
1028 }
1029
1030 if (!optimize_loop_for_speed_p (loop))
1031 {
1032 if (dump_file)
1033 fprintf (dump_file, "Not peeling: cold loop\n");
1034 return false;
1035 }
1036
1037 /* Check if there is an estimate on the number of iterations. */
1038 npeel = estimated_loop_iterations_int (loop);
1039 if (npeel < 0)
1040 npeel = likely_max_loop_iterations_int (loop);
1041 if (npeel < 0)
1042 {
1043 if (dump_file)
1044 fprintf (dump_file, "Not peeling: number of iterations is not "
1045 "estimated\n");
1046 return false;
1047 }
1048 if (maxiter >= 0 && maxiter <= npeel)
1049 {
1050 if (dump_file)
1051 fprintf (dump_file, "Not peeling: upper bound is known so can "
1052 "unroll completely\n");
1053 return false;
1054 }
1055
1056 /* We want to peel estimated number of iterations + 1 (so we never
1057 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES
1058 and be sure to avoid overflows. */
1059 if (npeel > param_max_peel_times - 1)
1060 {
1061 if (dump_file)
1062 fprintf (dump_file, "Not peeling: rolls too much "
1063 "(%i + 1 > --param max-peel-times)\n", (int) npeel);
1064 return false;
1065 }
1066 npeel++;
1067
1068 /* Check peeled loops size. */
1069 tree_estimate_loop_size (loop, exit, NULL, &size,
1070 param_max_peeled_insns);
1071 if ((peeled_size = estimated_peeled_sequence_size (&size, (int) npeel))
1072 > param_max_peeled_insns)
1073 {
1074 if (dump_file)
1075 fprintf (dump_file, "Not peeling: peeled sequence size is too large "
1076 "(%i insns > --param max-peel-insns)", peeled_size);
1077 return false;
1078 }
1079
1080 if (!dbg_cnt (gimple_unroll))
1081 return false;
1082
1083 /* Duplicate possibly eliminating the exits. */
1084 initialize_original_copy_tables ();
1085 auto_sbitmap wont_exit (npeel + 1);
1086 if (exit && niter
1087 && TREE_CODE (niter) == INTEGER_CST
1088 && wi::leu_p (npeel, wi::to_widest (niter)))
1089 {
1090 bitmap_ones (wont_exit);
1091 bitmap_clear_bit (wont_exit, 0);
1092 }
1093 else
1094 {
1095 exit = NULL;
1096 bitmap_clear (wont_exit);
1097 }
1098 if (may_be_zero)
1099 bitmap_clear_bit (wont_exit, 1);
1100 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1101 npeel, wont_exit,
1102 exit, &edges_to_remove,
1103 DLTHE_FLAG_UPDATE_FREQ))
1104 {
1105 free_original_copy_tables ();
1106 return false;
1107 }
1108 free_original_copy_tables ();
1109 if (dump_file && (dump_flags & TDF_DETAILS))
1110 {
1111 fprintf (dump_file, "Peeled loop %d, %i times.\n",
1112 loop->num, (int) npeel);
1113 }
1114 if (loop->any_estimate)
1115 {
1116 if (wi::ltu_p (npeel, loop->nb_iterations_estimate))
1117 loop->nb_iterations_estimate -= npeel;
1118 else
1119 loop->nb_iterations_estimate = 0;
1120 }
1121 if (loop->any_upper_bound)
1122 {
1123 if (wi::ltu_p (npeel, loop->nb_iterations_upper_bound))
1124 loop->nb_iterations_upper_bound -= npeel;
1125 else
1126 loop->nb_iterations_upper_bound = 0;
1127 }
1128 if (loop->any_likely_upper_bound)
1129 {
1130 if (wi::ltu_p (npeel, loop->nb_iterations_likely_upper_bound))
1131 loop->nb_iterations_likely_upper_bound -= npeel;
1132 else
1133 {
1134 loop->any_estimate = true;
1135 loop->nb_iterations_estimate = 0;
1136 loop->nb_iterations_likely_upper_bound = 0;
1137 }
1138 }
1139 profile_count entry_count = profile_count::zero ();
1140
1141 edge e;
1142 edge_iterator ei;
1143 FOR_EACH_EDGE (e, ei, loop->header->preds)
1144 if (e->src != loop->latch)
1145 {
1146 if (e->src->count.initialized_p ())
1147 entry_count += e->src->count;
1148 gcc_assert (!flow_bb_inside_loop_p (loop, e->src));
1149 }
1150 profile_probability p;
1151 p = entry_count.probability_in (loop->header->count);
1152 scale_loop_profile (loop, p, 0);
1153 bitmap_set_bit (peeled_loops, loop->num);
1154 return true;
1155 }
1156 /* Adds a canonical induction variable to LOOP if suitable.
1157 CREATE_IV is true if we may create a new iv. UL determines
1158 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
1159 to determine the number of iterations of a loop by direct evaluation.
1160 Returns true if cfg is changed. */
1161
1162 static bool
1163 canonicalize_loop_induction_variables (class loop *loop,
1164 bool create_iv, enum unroll_level ul,
1165 bool try_eval, bool allow_peel)
1166 {
1167 edge exit = NULL;
1168 tree niter;
1169 HOST_WIDE_INT maxiter;
1170 bool modified = false;
1171 dump_user_location_t locus;
1172 class tree_niter_desc niter_desc;
1173 bool may_be_zero = false;
1174
1175 /* For unrolling allow conditional constant or zero iterations, thus
1176 perform loop-header copying on-the-fly. */
1177 exit = single_exit (loop);
1178 niter = chrec_dont_know;
1179 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
1180 {
1181 niter = niter_desc.niter;
1182 may_be_zero
1183 = niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero);
1184 }
1185 if (TREE_CODE (niter) == INTEGER_CST)
1186 locus = last_stmt (exit->src);
1187 else
1188 {
1189 /* For non-constant niter fold may_be_zero into niter again. */
1190 if (may_be_zero)
1191 {
1192 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1193 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter),
1194 niter_desc.may_be_zero,
1195 build_int_cst (TREE_TYPE (niter), 0), niter);
1196 else
1197 niter = chrec_dont_know;
1198 may_be_zero = false;
1199 }
1200
1201 /* If the loop has more than one exit, try checking all of them
1202 for # of iterations determinable through scev. */
1203 if (!exit)
1204 niter = find_loop_niter (loop, &exit);
1205
1206 /* Finally if everything else fails, try brute force evaluation. */
1207 if (try_eval
1208 && (chrec_contains_undetermined (niter)
1209 || TREE_CODE (niter) != INTEGER_CST))
1210 niter = find_loop_niter_by_eval (loop, &exit);
1211
1212 if (exit)
1213 locus = last_stmt (exit->src);
1214
1215 if (TREE_CODE (niter) != INTEGER_CST)
1216 exit = NULL;
1217 }
1218
1219 /* We work exceptionally hard here to estimate the bound
1220 by find_loop_niter_by_eval. Be sure to keep it for future. */
1221 if (niter && TREE_CODE (niter) == INTEGER_CST)
1222 {
1223 record_niter_bound (loop, wi::to_widest (niter),
1224 exit == single_likely_exit (loop), true);
1225 }
1226
1227 /* Force re-computation of loop bounds so we can remove redundant exits. */
1228 maxiter = max_loop_iterations_int (loop);
1229
1230 if (dump_file && (dump_flags & TDF_DETAILS)
1231 && TREE_CODE (niter) == INTEGER_CST)
1232 {
1233 fprintf (dump_file, "Loop %d iterates ", loop->num);
1234 print_generic_expr (dump_file, niter, TDF_SLIM);
1235 fprintf (dump_file, " times.\n");
1236 }
1237 if (dump_file && (dump_flags & TDF_DETAILS)
1238 && maxiter >= 0)
1239 {
1240 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num,
1241 (int)maxiter);
1242 }
1243 if (dump_file && (dump_flags & TDF_DETAILS)
1244 && likely_max_loop_iterations_int (loop) >= 0)
1245 {
1246 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1247 loop->num, (int)likely_max_loop_iterations_int (loop));
1248 }
1249
1250 /* Remove exits that are known to be never taken based on loop bound.
1251 Needs to be called after compilation of max_loop_iterations_int that
1252 populates the loop bounds. */
1253 modified |= remove_redundant_iv_tests (loop);
1254
1255 if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul,
1256 maxiter, locus, allow_peel))
1257 return true;
1258
1259 if (create_iv
1260 && niter && !chrec_contains_undetermined (niter)
1261 && exit && just_once_each_iteration_p (loop, exit->src))
1262 {
1263 tree iv_niter = niter;
1264 if (may_be_zero)
1265 {
1266 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1267 iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter),
1268 niter_desc.may_be_zero,
1269 build_int_cst (TREE_TYPE (iv_niter), 0),
1270 iv_niter);
1271 else
1272 iv_niter = NULL_TREE;
1273 }
1274 if (iv_niter)
1275 create_canonical_iv (loop, exit, iv_niter);
1276 }
1277
1278 if (ul == UL_ALL)
1279 modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter);
1280
1281 return modified;
1282 }
1283
1284 /* The main entry point of the pass. Adds canonical induction variables
1285 to the suitable loops. */
1286
1287 unsigned int
1288 canonicalize_induction_variables (void)
1289 {
1290 class loop *loop;
1291 bool changed = false;
1292 bool irred_invalidated = false;
1293 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1294
1295 estimate_numbers_of_iterations (cfun);
1296
1297 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1298 {
1299 changed |= canonicalize_loop_induction_variables (loop,
1300 true, UL_SINGLE_ITER,
1301 true, false);
1302 }
1303 gcc_assert (!need_ssa_update_p (cfun));
1304
1305 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1306 if (irred_invalidated
1307 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1308 mark_irreducible_loops ();
1309
1310 /* Clean up the information about numbers of iterations, since brute force
1311 evaluation could reveal new information. */
1312 free_numbers_of_iterations_estimates (cfun);
1313 scev_reset ();
1314
1315 if (!bitmap_empty_p (loop_closed_ssa_invalidated))
1316 {
1317 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
1318 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1319 }
1320 BITMAP_FREE (loop_closed_ssa_invalidated);
1321
1322 if (changed)
1323 return TODO_cleanup_cfg;
1324 return 0;
1325 }
1326
1327 /* Process loops from innermost to outer, stopping at the innermost
1328 loop we unrolled. */
1329
1330 static bool
1331 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
1332 bitmap father_bbs, class loop *loop)
1333 {
1334 class loop *loop_father;
1335 bool changed = false;
1336 class loop *inner;
1337 enum unroll_level ul;
1338 unsigned num = number_of_loops (cfun);
1339
1340 /* Process inner loops first. Don't walk loops added by the recursive
1341 calls because SSA form is not up-to-date. They can be handled in the
1342 next iteration. */
1343 bitmap child_father_bbs = NULL;
1344 for (inner = loop->inner; inner != NULL; inner = inner->next)
1345 if ((unsigned) inner->num < num)
1346 {
1347 if (!child_father_bbs)
1348 child_father_bbs = BITMAP_ALLOC (NULL);
1349 if (tree_unroll_loops_completely_1 (may_increase_size, unroll_outer,
1350 child_father_bbs, inner))
1351 {
1352 bitmap_ior_into (father_bbs, child_father_bbs);
1353 bitmap_clear (child_father_bbs);
1354 changed = true;
1355 }
1356 }
1357 if (child_father_bbs)
1358 BITMAP_FREE (child_father_bbs);
1359
1360 /* If we changed an inner loop we cannot process outer loops in this
1361 iteration because SSA form is not up-to-date. Continue with
1362 siblings of outer loops instead. */
1363 if (changed)
1364 {
1365 /* If we are recorded as father clear all other fathers that
1366 are necessarily covered already to avoid redundant work. */
1367 if (bitmap_bit_p (father_bbs, loop->header->index))
1368 {
1369 bitmap_clear (father_bbs);
1370 bitmap_set_bit (father_bbs, loop->header->index);
1371 }
1372 return true;
1373 }
1374
1375 /* Don't unroll #pragma omp simd loops until the vectorizer
1376 attempts to vectorize those. */
1377 if (loop->force_vectorize)
1378 return false;
1379
1380 /* Try to unroll this loop. */
1381 loop_father = loop_outer (loop);
1382 if (!loop_father)
1383 return false;
1384
1385 if (loop->unroll > 1)
1386 ul = UL_ALL;
1387 else if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
1388 /* Unroll outermost loops only if asked to do so or they do
1389 not cause code growth. */
1390 && (unroll_outer || loop_outer (loop_father)))
1391 ul = UL_ALL;
1392 else
1393 ul = UL_NO_GROWTH;
1394
1395 if (canonicalize_loop_induction_variables
1396 (loop, false, ul, !flag_tree_loop_ivcanon, unroll_outer))
1397 {
1398 /* If we'll continue unrolling, we need to propagate constants
1399 within the new basic blocks to fold away induction variable
1400 computations; otherwise, the size might blow up before the
1401 iteration is complete and the IR eventually cleaned up. */
1402 if (loop_outer (loop_father))
1403 {
1404 /* Once we process our father we will have processed
1405 the fathers of our children as well, so avoid doing
1406 redundant work and clear fathers we've gathered sofar. */
1407 bitmap_clear (father_bbs);
1408 bitmap_set_bit (father_bbs, loop_father->header->index);
1409 }
1410
1411 return true;
1412 }
1413
1414 return false;
1415 }
1416
1417 /* Unroll LOOPS completely if they iterate just few times. Unless
1418 MAY_INCREASE_SIZE is true, perform the unrolling only if the
1419 size of the code does not increase. */
1420
1421 static unsigned int
1422 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
1423 {
1424 bitmap father_bbs = BITMAP_ALLOC (NULL);
1425 bool changed;
1426 int iteration = 0;
1427 bool irred_invalidated = false;
1428
1429 estimate_numbers_of_iterations (cfun);
1430
1431 do
1432 {
1433 changed = false;
1434 bitmap loop_closed_ssa_invalidated = NULL;
1435
1436 if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
1437 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1438
1439 free_numbers_of_iterations_estimates (cfun);
1440 estimate_numbers_of_iterations (cfun);
1441
1442 changed = tree_unroll_loops_completely_1 (may_increase_size,
1443 unroll_outer, father_bbs,
1444 current_loops->tree_root);
1445 if (changed)
1446 {
1447 unsigned i;
1448
1449 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1450
1451 /* We cannot use TODO_update_ssa_no_phi because VOPS gets confused. */
1452 if (loop_closed_ssa_invalidated
1453 && !bitmap_empty_p (loop_closed_ssa_invalidated))
1454 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
1455 TODO_update_ssa);
1456 else
1457 update_ssa (TODO_update_ssa);
1458
1459 /* father_bbs is a bitmap of loop father header BB indices.
1460 Translate that to what non-root loops these BBs belong to now. */
1461 bitmap_iterator bi;
1462 bitmap fathers = BITMAP_ALLOC (NULL);
1463 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi)
1464 {
1465 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i);
1466 if (! unrolled_loop_bb)
1467 continue;
1468 if (loop_outer (unrolled_loop_bb->loop_father))
1469 bitmap_set_bit (fathers,
1470 unrolled_loop_bb->loop_father->num);
1471 }
1472 bitmap_clear (father_bbs);
1473 /* Propagate the constants within the new basic blocks. */
1474 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi)
1475 {
1476 loop_p father = get_loop (cfun, i);
1477 bitmap exit_bbs = BITMAP_ALLOC (NULL);
1478 loop_exit *exit = father->exits->next;
1479 while (exit->e)
1480 {
1481 bitmap_set_bit (exit_bbs, exit->e->dest->index);
1482 exit = exit->next;
1483 }
1484 do_rpo_vn (cfun, loop_preheader_edge (father), exit_bbs);
1485 }
1486 BITMAP_FREE (fathers);
1487
1488 /* This will take care of removing completely unrolled loops
1489 from the loop structures so we can continue unrolling now
1490 innermost loops. */
1491 if (cleanup_tree_cfg ())
1492 update_ssa (TODO_update_ssa_only_virtuals);
1493
1494 /* Clean up the information about numbers of iterations, since
1495 complete unrolling might have invalidated it. */
1496 scev_reset ();
1497 if (flag_checking && loops_state_satisfies_p (LOOP_CLOSED_SSA))
1498 verify_loop_closed_ssa (true);
1499 }
1500 if (loop_closed_ssa_invalidated)
1501 BITMAP_FREE (loop_closed_ssa_invalidated);
1502 }
1503 while (changed
1504 && ++iteration <= param_max_unroll_iterations);
1505
1506 BITMAP_FREE (father_bbs);
1507
1508 if (irred_invalidated
1509 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1510 mark_irreducible_loops ();
1511
1512 return 0;
1513 }
1514
1515 /* Canonical induction variable creation pass. */
1516
1517 namespace {
1518
1519 const pass_data pass_data_iv_canon =
1520 {
1521 GIMPLE_PASS, /* type */
1522 "ivcanon", /* name */
1523 OPTGROUP_LOOP, /* optinfo_flags */
1524 TV_TREE_LOOP_IVCANON, /* tv_id */
1525 ( PROP_cfg | PROP_ssa ), /* properties_required */
1526 0, /* properties_provided */
1527 0, /* properties_destroyed */
1528 0, /* todo_flags_start */
1529 0, /* todo_flags_finish */
1530 };
1531
1532 class pass_iv_canon : public gimple_opt_pass
1533 {
1534 public:
1535 pass_iv_canon (gcc::context *ctxt)
1536 : gimple_opt_pass (pass_data_iv_canon, ctxt)
1537 {}
1538
1539 /* opt_pass methods: */
1540 virtual bool gate (function *) { return flag_tree_loop_ivcanon != 0; }
1541 virtual unsigned int execute (function *fun);
1542
1543 }; // class pass_iv_canon
1544
1545 unsigned int
1546 pass_iv_canon::execute (function *fun)
1547 {
1548 if (number_of_loops (fun) <= 1)
1549 return 0;
1550
1551 return canonicalize_induction_variables ();
1552 }
1553
1554 } // anon namespace
1555
1556 gimple_opt_pass *
1557 make_pass_iv_canon (gcc::context *ctxt)
1558 {
1559 return new pass_iv_canon (ctxt);
1560 }
1561
1562 /* Complete unrolling of loops. */
1563
1564 namespace {
1565
1566 const pass_data pass_data_complete_unroll =
1567 {
1568 GIMPLE_PASS, /* type */
1569 "cunroll", /* name */
1570 OPTGROUP_LOOP, /* optinfo_flags */
1571 TV_COMPLETE_UNROLL, /* tv_id */
1572 ( PROP_cfg | PROP_ssa ), /* properties_required */
1573 0, /* properties_provided */
1574 0, /* properties_destroyed */
1575 0, /* todo_flags_start */
1576 0, /* todo_flags_finish */
1577 };
1578
1579 class pass_complete_unroll : public gimple_opt_pass
1580 {
1581 public:
1582 pass_complete_unroll (gcc::context *ctxt)
1583 : gimple_opt_pass (pass_data_complete_unroll, ctxt)
1584 {}
1585
1586 /* opt_pass methods: */
1587 virtual unsigned int execute (function *);
1588
1589 }; // class pass_complete_unroll
1590
1591 unsigned int
1592 pass_complete_unroll::execute (function *fun)
1593 {
1594 if (number_of_loops (fun) <= 1)
1595 return 0;
1596
1597 /* If we ever decide to run loop peeling more than once, we will need to
1598 track loops already peeled in loop structures themselves to avoid
1599 re-peeling the same loop multiple times. */
1600 if (flag_peel_loops)
1601 peeled_loops = BITMAP_ALLOC (NULL);
1602 unsigned int val = tree_unroll_loops_completely (flag_unroll_loops
1603 || flag_peel_loops
1604 || optimize >= 3, true);
1605 if (peeled_loops)
1606 {
1607 BITMAP_FREE (peeled_loops);
1608 peeled_loops = NULL;
1609 }
1610 return val;
1611 }
1612
1613 } // anon namespace
1614
1615 gimple_opt_pass *
1616 make_pass_complete_unroll (gcc::context *ctxt)
1617 {
1618 return new pass_complete_unroll (ctxt);
1619 }
1620
1621 /* Complete unrolling of inner loops. */
1622
1623 namespace {
1624
1625 const pass_data pass_data_complete_unrolli =
1626 {
1627 GIMPLE_PASS, /* type */
1628 "cunrolli", /* name */
1629 OPTGROUP_LOOP, /* optinfo_flags */
1630 TV_COMPLETE_UNROLL, /* tv_id */
1631 ( PROP_cfg | PROP_ssa ), /* properties_required */
1632 0, /* properties_provided */
1633 0, /* properties_destroyed */
1634 0, /* todo_flags_start */
1635 0, /* todo_flags_finish */
1636 };
1637
1638 class pass_complete_unrolli : public gimple_opt_pass
1639 {
1640 public:
1641 pass_complete_unrolli (gcc::context *ctxt)
1642 : gimple_opt_pass (pass_data_complete_unrolli, ctxt)
1643 {}
1644
1645 /* opt_pass methods: */
1646 virtual bool gate (function *) { return optimize >= 2; }
1647 virtual unsigned int execute (function *);
1648
1649 }; // class pass_complete_unrolli
1650
1651 unsigned int
1652 pass_complete_unrolli::execute (function *fun)
1653 {
1654 unsigned ret = 0;
1655
1656 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
1657 if (number_of_loops (fun) > 1)
1658 {
1659 scev_initialize ();
1660 ret = tree_unroll_loops_completely (optimize >= 3, false);
1661 scev_finalize ();
1662 }
1663 loop_optimizer_finalize ();
1664
1665 return ret;
1666 }
1667
1668 } // anon namespace
1669
1670 gimple_opt_pass *
1671 make_pass_complete_unrolli (gcc::context *ctxt)
1672 {
1673 return new pass_complete_unrolli (ctxt);
1674 }
1675
1676