add auto_vec
[gcc.git] / gcc / tree-ssa-loop-manip.c
1 /* High-level loop manipulation functions.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "stringpool.h"
36 #include "tree-ssanames.h"
37 #include "tree-ssa-loop-ivopts.h"
38 #include "tree-ssa-loop-manip.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "tree-into-ssa.h"
42 #include "tree-ssa.h"
43 #include "dumpfile.h"
44 #include "gimple-pretty-print.h"
45 #include "cfgloop.h"
46 #include "tree-pass.h" /* ??? for TODO_update_ssa but this isn't a pass. */
47 #include "tree-scalar-evolution.h"
48 #include "params.h"
49 #include "tree-inline.h"
50 #include "langhooks.h"
51
52 /* All bitmaps for rewriting into loop-closed SSA go on this obstack,
53 so that we can free them all at once. */
54 static bitmap_obstack loop_renamer_obstack;
55
56 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
57 It is expected that neither BASE nor STEP are shared with other expressions
58 (unless the sharing rules allow this). Use VAR as a base var_decl for it
59 (if NULL, a new temporary will be created). The increment will occur at
60 INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and
61 AFTER can be computed using standard_iv_increment_position. The ssa versions
62 of the variable before and after increment will be stored in VAR_BEFORE and
63 VAR_AFTER (unless they are NULL). */
64
65 void
66 create_iv (tree base, tree step, tree var, struct loop *loop,
67 gimple_stmt_iterator *incr_pos, bool after,
68 tree *var_before, tree *var_after)
69 {
70 gimple stmt;
71 tree initial, step1;
72 gimple_seq stmts;
73 tree vb, va;
74 enum tree_code incr_op = PLUS_EXPR;
75 edge pe = loop_preheader_edge (loop);
76
77 if (var != NULL_TREE)
78 {
79 vb = make_ssa_name (var, NULL);
80 va = make_ssa_name (var, NULL);
81 }
82 else
83 {
84 vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
85 va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
86 }
87 if (var_before)
88 *var_before = vb;
89 if (var_after)
90 *var_after = va;
91
92 /* For easier readability of the created code, produce MINUS_EXPRs
93 when suitable. */
94 if (TREE_CODE (step) == INTEGER_CST)
95 {
96 if (TYPE_UNSIGNED (TREE_TYPE (step)))
97 {
98 step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
99 if (tree_int_cst_lt (step1, step))
100 {
101 incr_op = MINUS_EXPR;
102 step = step1;
103 }
104 }
105 else
106 {
107 bool ovf;
108
109 if (!tree_expr_nonnegative_warnv_p (step, &ovf)
110 && may_negate_without_overflow_p (step))
111 {
112 incr_op = MINUS_EXPR;
113 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
114 }
115 }
116 }
117 if (POINTER_TYPE_P (TREE_TYPE (base)))
118 {
119 if (TREE_CODE (base) == ADDR_EXPR)
120 mark_addressable (TREE_OPERAND (base, 0));
121 step = convert_to_ptrofftype (step);
122 if (incr_op == MINUS_EXPR)
123 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
124 incr_op = POINTER_PLUS_EXPR;
125 }
126 /* Gimplify the step if necessary. We put the computations in front of the
127 loop (i.e. the step should be loop invariant). */
128 step = force_gimple_operand (step, &stmts, true, NULL_TREE);
129 if (stmts)
130 gsi_insert_seq_on_edge_immediate (pe, stmts);
131
132 stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
133 if (after)
134 gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
135 else
136 gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
137
138 initial = force_gimple_operand (base, &stmts, true, var);
139 if (stmts)
140 gsi_insert_seq_on_edge_immediate (pe, stmts);
141
142 stmt = create_phi_node (vb, loop->header);
143 add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
144 add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
145 }
146
147 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of
148 both DEF_LOOP and USE_LOOP. */
149
150 static inline struct loop *
151 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop)
152 {
153 unsigned ud = loop_depth (use_loop);
154 unsigned dd = loop_depth (def_loop);
155 gcc_assert (ud > 0 && dd > 0);
156 if (ud > dd)
157 use_loop = superloop_at_depth (use_loop, dd);
158 if (ud < dd)
159 def_loop = superloop_at_depth (def_loop, ud);
160 while (loop_outer (use_loop) != loop_outer (def_loop))
161 {
162 use_loop = loop_outer (use_loop);
163 def_loop = loop_outer (def_loop);
164 gcc_assert (use_loop && def_loop);
165 }
166 return use_loop;
167 }
168
169 /* DEF_BB is a basic block containing a DEF that needs rewriting into
170 loop-closed SSA form. USE_BLOCKS is the set of basic blocks containing
171 uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in
172 USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B).
173 ALL_EXITS[I] is the set of all basic blocks that exit loop I.
174
175 Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB
176 or one of its loop fathers, in which DEF is live. This set is returned
177 in the bitmap LIVE_EXITS.
178
179 Instead of computing the complete livein set of the def, we use the loop
180 nesting tree as a form of poor man's structure analysis. This greatly
181 speeds up the analysis, which is important because this function may be
182 called on all SSA names that need rewriting, one at a time. */
183
184 static void
185 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks,
186 bitmap *loop_exits, basic_block def_bb)
187 {
188 unsigned i;
189 bitmap_iterator bi;
190 struct loop *def_loop = def_bb->loop_father;
191 unsigned def_loop_depth = loop_depth (def_loop);
192 bitmap def_loop_exits;
193
194 /* Normally the work list size is bounded by the number of basic
195 blocks in the largest loop. We don't know this number, but we
196 can be fairly sure that it will be relatively small. */
197 auto_vec<basic_block> worklist (MAX (8, n_basic_blocks_for_fn (cfun) / 128));
198
199 EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi)
200 {
201 basic_block use_bb = BASIC_BLOCK (i);
202 struct loop *use_loop = use_bb->loop_father;
203 gcc_checking_assert (def_loop != use_loop
204 && ! flow_loop_nested_p (def_loop, use_loop));
205 if (! flow_loop_nested_p (use_loop, def_loop))
206 use_bb = find_sibling_superloop (use_loop, def_loop)->header;
207 if (bitmap_set_bit (live_exits, use_bb->index))
208 worklist.safe_push (use_bb);
209 }
210
211 /* Iterate until the worklist is empty. */
212 while (! worklist.is_empty ())
213 {
214 edge e;
215 edge_iterator ei;
216
217 /* Pull a block off the worklist. */
218 basic_block bb = worklist.pop ();
219
220 /* Make sure we have at least enough room in the work list
221 for all predecessors of this block. */
222 worklist.reserve (EDGE_COUNT (bb->preds));
223
224 /* For each predecessor block. */
225 FOR_EACH_EDGE (e, ei, bb->preds)
226 {
227 basic_block pred = e->src;
228 struct loop *pred_loop = pred->loop_father;
229 unsigned pred_loop_depth = loop_depth (pred_loop);
230 bool pred_visited;
231
232 /* We should have met DEF_BB along the way. */
233 gcc_assert (pred != ENTRY_BLOCK_PTR_FOR_FN (cfun));
234
235 if (pred_loop_depth >= def_loop_depth)
236 {
237 if (pred_loop_depth > def_loop_depth)
238 pred_loop = superloop_at_depth (pred_loop, def_loop_depth);
239 /* If we've reached DEF_LOOP, our train ends here. */
240 if (pred_loop == def_loop)
241 continue;
242 }
243 else if (! flow_loop_nested_p (pred_loop, def_loop))
244 pred = find_sibling_superloop (pred_loop, def_loop)->header;
245
246 /* Add PRED to the LIVEIN set. PRED_VISITED is true if
247 we had already added PRED to LIVEIN before. */
248 pred_visited = !bitmap_set_bit (live_exits, pred->index);
249
250 /* If we have visited PRED before, don't add it to the worklist.
251 If BB dominates PRED, then we're probably looking at a loop.
252 We're only interested in looking up in the dominance tree
253 because DEF_BB dominates all the uses. */
254 if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb))
255 continue;
256
257 worklist.quick_push (pred);
258 }
259 }
260
261 def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack);
262 for (struct loop *loop = def_loop;
263 loop != current_loops->tree_root;
264 loop = loop_outer (loop))
265 bitmap_ior_into (def_loop_exits, loop_exits[loop->num]);
266 bitmap_and_into (live_exits, def_loop_exits);
267 BITMAP_FREE (def_loop_exits);
268 }
269
270 /* Add a loop-closing PHI for VAR in basic block EXIT. */
271
272 static void
273 add_exit_phi (basic_block exit, tree var)
274 {
275 gimple phi;
276 edge e;
277 edge_iterator ei;
278
279 #ifdef ENABLE_CHECKING
280 /* Check that at least one of the edges entering the EXIT block exits
281 the loop, or a superloop of that loop, that VAR is defined in. */
282 gimple def_stmt = SSA_NAME_DEF_STMT (var);
283 basic_block def_bb = gimple_bb (def_stmt);
284 FOR_EACH_EDGE (e, ei, exit->preds)
285 {
286 struct loop *aloop = find_common_loop (def_bb->loop_father,
287 e->src->loop_father);
288 if (!flow_bb_inside_loop_p (aloop, e->dest))
289 break;
290 }
291
292 gcc_checking_assert (e);
293 #endif
294
295 phi = create_phi_node (NULL_TREE, exit);
296 create_new_def_for (var, phi, gimple_phi_result_ptr (phi));
297 FOR_EACH_EDGE (e, ei, exit->preds)
298 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
299
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 {
302 fprintf (dump_file, ";; Created LCSSA PHI: ");
303 print_gimple_stmt (dump_file, phi, 0, dump_flags);
304 }
305 }
306
307 /* Add exit phis for VAR that is used in LIVEIN.
308 Exits of the loops are stored in LOOP_EXITS. */
309
310 static void
311 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits)
312 {
313 unsigned index;
314 bitmap_iterator bi;
315 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
316 bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack);
317
318 gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index));
319
320 compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb);
321
322 EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi)
323 {
324 add_exit_phi (BASIC_BLOCK (index), var);
325 }
326
327 BITMAP_FREE (live_exits);
328 }
329
330 /* Add exit phis for the names marked in NAMES_TO_RENAME.
331 Exits of the loops are stored in EXITS. Sets of blocks where the ssa
332 names are used are stored in USE_BLOCKS. */
333
334 static void
335 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits)
336 {
337 unsigned i;
338 bitmap_iterator bi;
339
340 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
341 {
342 add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
343 }
344 }
345
346 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets. */
347
348 static void
349 get_loops_exits (bitmap *loop_exits)
350 {
351 struct loop *loop;
352 unsigned j;
353 edge e;
354
355 FOR_EACH_LOOP (loop, 0)
356 {
357 vec<edge> exit_edges = get_loop_exit_edges (loop);
358 loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack);
359 FOR_EACH_VEC_ELT (exit_edges, j, e)
360 bitmap_set_bit (loop_exits[loop->num], e->dest->index);
361 exit_edges.release ();
362 }
363 }
364
365 /* For USE in BB, if it is used outside of the loop it is defined in,
366 mark it for rewrite. Record basic block BB where it is used
367 to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */
368
369 static void
370 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
371 bitmap need_phis)
372 {
373 unsigned ver;
374 basic_block def_bb;
375 struct loop *def_loop;
376
377 if (TREE_CODE (use) != SSA_NAME)
378 return;
379
380 ver = SSA_NAME_VERSION (use);
381 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
382 if (!def_bb)
383 return;
384 def_loop = def_bb->loop_father;
385
386 /* If the definition is not inside a loop, it is not interesting. */
387 if (!loop_outer (def_loop))
388 return;
389
390 /* If the use is not outside of the loop it is defined in, it is not
391 interesting. */
392 if (flow_bb_inside_loop_p (def_loop, bb))
393 return;
394
395 /* If we're seeing VER for the first time, we still have to allocate
396 a bitmap for its uses. */
397 if (bitmap_set_bit (need_phis, ver))
398 use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack);
399 bitmap_set_bit (use_blocks[ver], bb->index);
400 }
401
402 /* For uses in STMT, mark names that are used outside of the loop they are
403 defined to rewrite. Record the set of blocks in that the ssa
404 names are defined to USE_BLOCKS and the ssa names themselves to
405 NEED_PHIS. */
406
407 static void
408 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
409 {
410 ssa_op_iter iter;
411 tree var;
412 basic_block bb = gimple_bb (stmt);
413
414 if (is_gimple_debug (stmt))
415 return;
416
417 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
418 find_uses_to_rename_use (bb, var, use_blocks, need_phis);
419 }
420
421 /* Marks names that are used in BB and outside of the loop they are
422 defined in for rewrite. Records the set of blocks in that the ssa
423 names are defined to USE_BLOCKS. Record the SSA names that will
424 need exit PHIs in NEED_PHIS. */
425
426 static void
427 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
428 {
429 gimple_stmt_iterator bsi;
430 edge e;
431 edge_iterator ei;
432
433 FOR_EACH_EDGE (e, ei, bb->succs)
434 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
435 {
436 gimple phi = gsi_stmt (bsi);
437 if (! virtual_operand_p (gimple_phi_result (phi)))
438 find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e),
439 use_blocks, need_phis);
440 }
441
442 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
443 find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
444 }
445
446 /* Marks names that are used outside of the loop they are defined in
447 for rewrite. Records the set of blocks in that the ssa
448 names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL,
449 scan only blocks in this set. */
450
451 static void
452 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
453 {
454 basic_block bb;
455 unsigned index;
456 bitmap_iterator bi;
457
458 if (changed_bbs)
459 EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
460 find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
461 else
462 FOR_EACH_BB (bb)
463 find_uses_to_rename_bb (bb, use_blocks, need_phis);
464 }
465
466 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
467 phi nodes to ensure that no variable is used outside the loop it is
468 defined in.
469
470 This strengthening of the basic ssa form has several advantages:
471
472 1) Updating it during unrolling/peeling/versioning is trivial, since
473 we do not need to care about the uses outside of the loop.
474 The same applies to virtual operands which are also rewritten into
475 loop closed SSA form. Note that virtual operands are always live
476 until function exit.
477 2) The behavior of all uses of an induction variable is the same.
478 Without this, you need to distinguish the case when the variable
479 is used outside of the loop it is defined in, for example
480
481 for (i = 0; i < 100; i++)
482 {
483 for (j = 0; j < 100; j++)
484 {
485 k = i + j;
486 use1 (k);
487 }
488 use2 (k);
489 }
490
491 Looking from the outer loop with the normal SSA form, the first use of k
492 is not well-behaved, while the second one is an induction variable with
493 base 99 and step 1.
494
495 If CHANGED_BBS is not NULL, we look for uses outside loops only in
496 the basic blocks in this set.
497
498 UPDATE_FLAG is used in the call to update_ssa. See
499 TODO_update_ssa* for documentation. */
500
501 void
502 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
503 {
504 bitmap *use_blocks;
505 bitmap names_to_rename;
506
507 loops_state_set (LOOP_CLOSED_SSA);
508 if (number_of_loops (cfun) <= 1)
509 return;
510
511 /* If the pass has caused the SSA form to be out-of-date, update it
512 now. */
513 update_ssa (update_flag);
514
515 bitmap_obstack_initialize (&loop_renamer_obstack);
516
517 names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack);
518
519 /* Uses of names to rename. We don't have to initialize this array,
520 because we know that we will only have entries for the SSA names
521 in NAMES_TO_RENAME. */
522 use_blocks = XNEWVEC (bitmap, num_ssa_names);
523
524 /* Find the uses outside loops. */
525 find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
526
527 if (!bitmap_empty_p (names_to_rename))
528 {
529 /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks
530 that are the destination of an edge exiting loop number I. */
531 bitmap *loop_exits = XNEWVEC (bitmap, number_of_loops (cfun));
532 get_loops_exits (loop_exits);
533
534 /* Add the PHI nodes on exits of the loops for the names we need to
535 rewrite. */
536 add_exit_phis (names_to_rename, use_blocks, loop_exits);
537
538 free (loop_exits);
539
540 /* Fix up all the names found to be used outside their original
541 loops. */
542 update_ssa (TODO_update_ssa);
543 }
544
545 bitmap_obstack_release (&loop_renamer_obstack);
546 free (use_blocks);
547 }
548
549 /* Check invariants of the loop closed ssa form for the USE in BB. */
550
551 static void
552 check_loop_closed_ssa_use (basic_block bb, tree use)
553 {
554 gimple def;
555 basic_block def_bb;
556
557 if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
558 return;
559
560 def = SSA_NAME_DEF_STMT (use);
561 def_bb = gimple_bb (def);
562 gcc_assert (!def_bb
563 || flow_bb_inside_loop_p (def_bb->loop_father, bb));
564 }
565
566 /* Checks invariants of loop closed ssa form in statement STMT in BB. */
567
568 static void
569 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
570 {
571 ssa_op_iter iter;
572 tree var;
573
574 if (is_gimple_debug (stmt))
575 return;
576
577 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
578 check_loop_closed_ssa_use (bb, var);
579 }
580
581 /* Checks that invariants of the loop closed ssa form are preserved.
582 Call verify_ssa when VERIFY_SSA_P is true. */
583
584 DEBUG_FUNCTION void
585 verify_loop_closed_ssa (bool verify_ssa_p)
586 {
587 basic_block bb;
588 gimple_stmt_iterator bsi;
589 gimple phi;
590 edge e;
591 edge_iterator ei;
592
593 if (number_of_loops (cfun) <= 1)
594 return;
595
596 if (verify_ssa_p)
597 verify_ssa (false);
598
599 timevar_push (TV_VERIFY_LOOP_CLOSED);
600
601 FOR_EACH_BB (bb)
602 {
603 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
604 {
605 phi = gsi_stmt (bsi);
606 FOR_EACH_EDGE (e, ei, bb->preds)
607 check_loop_closed_ssa_use (e->src,
608 PHI_ARG_DEF_FROM_EDGE (phi, e));
609 }
610
611 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
612 check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
613 }
614
615 timevar_pop (TV_VERIFY_LOOP_CLOSED);
616 }
617
618 /* Split loop exit edge EXIT. The things are a bit complicated by a need to
619 preserve the loop closed ssa form. The newly created block is returned. */
620
621 basic_block
622 split_loop_exit_edge (edge exit)
623 {
624 basic_block dest = exit->dest;
625 basic_block bb = split_edge (exit);
626 gimple phi, new_phi;
627 tree new_name, name;
628 use_operand_p op_p;
629 gimple_stmt_iterator psi;
630 source_location locus;
631
632 for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
633 {
634 phi = gsi_stmt (psi);
635 op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
636 locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
637
638 name = USE_FROM_PTR (op_p);
639
640 /* If the argument of the PHI node is a constant, we do not need
641 to keep it inside loop. */
642 if (TREE_CODE (name) != SSA_NAME)
643 continue;
644
645 /* Otherwise create an auxiliary phi node that will copy the value
646 of the SSA name out of the loop. */
647 new_name = duplicate_ssa_name (name, NULL);
648 new_phi = create_phi_node (new_name, bb);
649 add_phi_arg (new_phi, name, exit, locus);
650 SET_USE (op_p, new_name);
651 }
652
653 return bb;
654 }
655
656 /* Returns the basic block in that statements should be emitted for induction
657 variables incremented at the end of the LOOP. */
658
659 basic_block
660 ip_end_pos (struct loop *loop)
661 {
662 return loop->latch;
663 }
664
665 /* Returns the basic block in that statements should be emitted for induction
666 variables incremented just before exit condition of a LOOP. */
667
668 basic_block
669 ip_normal_pos (struct loop *loop)
670 {
671 gimple last;
672 basic_block bb;
673 edge exit;
674
675 if (!single_pred_p (loop->latch))
676 return NULL;
677
678 bb = single_pred (loop->latch);
679 last = last_stmt (bb);
680 if (!last
681 || gimple_code (last) != GIMPLE_COND)
682 return NULL;
683
684 exit = EDGE_SUCC (bb, 0);
685 if (exit->dest == loop->latch)
686 exit = EDGE_SUCC (bb, 1);
687
688 if (flow_bb_inside_loop_p (loop, exit->dest))
689 return NULL;
690
691 return bb;
692 }
693
694 /* Stores the standard position for induction variable increment in LOOP
695 (just before the exit condition if it is available and latch block is empty,
696 end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
697 the increment should be inserted after *BSI. */
698
699 void
700 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
701 bool *insert_after)
702 {
703 basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
704 gimple last = last_stmt (latch);
705
706 if (!bb
707 || (last && gimple_code (last) != GIMPLE_LABEL))
708 {
709 *bsi = gsi_last_bb (latch);
710 *insert_after = true;
711 }
712 else
713 {
714 *bsi = gsi_last_bb (bb);
715 *insert_after = false;
716 }
717 }
718
719 /* Copies phi node arguments for duplicated blocks. The index of the first
720 duplicated block is FIRST_NEW_BLOCK. */
721
722 static void
723 copy_phi_node_args (unsigned first_new_block)
724 {
725 unsigned i;
726
727 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
728 BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
729
730 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
731 add_phi_args_after_copy_bb (BASIC_BLOCK (i));
732
733 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
734 BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
735 }
736
737
738 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
739 updates the PHI nodes at start of the copied region. In order to
740 achieve this, only loops whose exits all lead to the same location
741 are handled.
742
743 Notice that we do not completely update the SSA web after
744 duplication. The caller is responsible for calling update_ssa
745 after the loop has been duplicated. */
746
747 bool
748 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
749 unsigned int ndupl, sbitmap wont_exit,
750 edge orig, vec<edge> *to_remove,
751 int flags)
752 {
753 unsigned first_new_block;
754
755 if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
756 return false;
757 if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
758 return false;
759
760 #ifdef ENABLE_CHECKING
761 /* ??? This forces needless update_ssa calls after processing each
762 loop instead of just once after processing all loops. We should
763 instead verify that loop-closed SSA form is up-to-date for LOOP
764 only (and possibly SSA form). For now just skip verifying if
765 there are to-be renamed variables. */
766 if (!need_ssa_update_p (cfun)
767 && loops_state_satisfies_p (LOOP_CLOSED_SSA))
768 verify_loop_closed_ssa (true);
769 #endif
770
771 first_new_block = last_basic_block;
772 if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
773 orig, to_remove, flags))
774 return false;
775
776 /* Readd the removed phi args for e. */
777 flush_pending_stmts (e);
778
779 /* Copy the phi node arguments. */
780 copy_phi_node_args (first_new_block);
781
782 scev_reset ();
783
784 return true;
785 }
786
787 /* Returns true if we can unroll LOOP FACTOR times. Number
788 of iterations of the loop is returned in NITER. */
789
790 bool
791 can_unroll_loop_p (struct loop *loop, unsigned factor,
792 struct tree_niter_desc *niter)
793 {
794 edge exit;
795
796 /* Check whether unrolling is possible. We only want to unroll loops
797 for that we are able to determine number of iterations. We also
798 want to split the extra iterations of the loop from its end,
799 therefore we require that the loop has precisely one
800 exit. */
801
802 exit = single_dom_exit (loop);
803 if (!exit)
804 return false;
805
806 if (!number_of_iterations_exit (loop, exit, niter, false)
807 || niter->cmp == ERROR_MARK
808 /* Scalar evolutions analysis might have copy propagated
809 the abnormal ssa names into these expressions, hence
810 emitting the computations based on them during loop
811 unrolling might create overlapping life ranges for
812 them, and failures in out-of-ssa. */
813 || contains_abnormal_ssa_name_p (niter->may_be_zero)
814 || contains_abnormal_ssa_name_p (niter->control.base)
815 || contains_abnormal_ssa_name_p (niter->control.step)
816 || contains_abnormal_ssa_name_p (niter->bound))
817 return false;
818
819 /* And of course, we must be able to duplicate the loop. */
820 if (!can_duplicate_loop_p (loop))
821 return false;
822
823 /* The final loop should be small enough. */
824 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
825 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
826 return false;
827
828 return true;
829 }
830
831 /* Determines the conditions that control execution of LOOP unrolled FACTOR
832 times. DESC is number of iterations of LOOP. ENTER_COND is set to
833 condition that must be true if the main loop can be entered.
834 EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
835 how the exit from the unrolled loop should be controlled. */
836
837 static void
838 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
839 unsigned factor, tree *enter_cond,
840 tree *exit_base, tree *exit_step,
841 enum tree_code *exit_cmp, tree *exit_bound)
842 {
843 gimple_seq stmts;
844 tree base = desc->control.base;
845 tree step = desc->control.step;
846 tree bound = desc->bound;
847 tree type = TREE_TYPE (step);
848 tree bigstep, delta;
849 tree min = lower_bound_in_type (type, type);
850 tree max = upper_bound_in_type (type, type);
851 enum tree_code cmp = desc->cmp;
852 tree cond = boolean_true_node, assum;
853
854 /* For pointers, do the arithmetics in the type of step. */
855 base = fold_convert (type, base);
856 bound = fold_convert (type, bound);
857
858 *enter_cond = boolean_false_node;
859 *exit_base = NULL_TREE;
860 *exit_step = NULL_TREE;
861 *exit_cmp = ERROR_MARK;
862 *exit_bound = NULL_TREE;
863 gcc_assert (cmp != ERROR_MARK);
864
865 /* We only need to be correct when we answer question
866 "Do at least FACTOR more iterations remain?" in the unrolled loop.
867 Thus, transforming BASE + STEP * i <> BOUND to
868 BASE + STEP * i < BOUND is ok. */
869 if (cmp == NE_EXPR)
870 {
871 if (tree_int_cst_sign_bit (step))
872 cmp = GT_EXPR;
873 else
874 cmp = LT_EXPR;
875 }
876 else if (cmp == LT_EXPR)
877 {
878 gcc_assert (!tree_int_cst_sign_bit (step));
879 }
880 else if (cmp == GT_EXPR)
881 {
882 gcc_assert (tree_int_cst_sign_bit (step));
883 }
884 else
885 gcc_unreachable ();
886
887 /* The main body of the loop may be entered iff:
888
889 1) desc->may_be_zero is false.
890 2) it is possible to check that there are at least FACTOR iterations
891 of the loop, i.e., BOUND - step * FACTOR does not overflow.
892 3) # of iterations is at least FACTOR */
893
894 if (!integer_zerop (desc->may_be_zero))
895 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
896 invert_truthvalue (desc->may_be_zero),
897 cond);
898
899 bigstep = fold_build2 (MULT_EXPR, type, step,
900 build_int_cst_type (type, factor));
901 delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
902 if (cmp == LT_EXPR)
903 assum = fold_build2 (GE_EXPR, boolean_type_node,
904 bound,
905 fold_build2 (PLUS_EXPR, type, min, delta));
906 else
907 assum = fold_build2 (LE_EXPR, boolean_type_node,
908 bound,
909 fold_build2 (PLUS_EXPR, type, max, delta));
910 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
911
912 bound = fold_build2 (MINUS_EXPR, type, bound, delta);
913 assum = fold_build2 (cmp, boolean_type_node, base, bound);
914 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
915
916 cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
917 if (stmts)
918 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
919 /* cond now may be a gimple comparison, which would be OK, but also any
920 other gimple rhs (say a && b). In this case we need to force it to
921 operand. */
922 if (!is_gimple_condexpr (cond))
923 {
924 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
925 if (stmts)
926 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
927 }
928 *enter_cond = cond;
929
930 base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
931 if (stmts)
932 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
933 bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
934 if (stmts)
935 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
936
937 *exit_base = base;
938 *exit_step = bigstep;
939 *exit_cmp = cmp;
940 *exit_bound = bound;
941 }
942
943 /* Scales the frequencies of all basic blocks in LOOP that are strictly
944 dominated by BB by NUM/DEN. */
945
946 static void
947 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
948 int num, int den)
949 {
950 basic_block son;
951
952 if (den == 0)
953 return;
954
955 for (son = first_dom_son (CDI_DOMINATORS, bb);
956 son;
957 son = next_dom_son (CDI_DOMINATORS, son))
958 {
959 if (!flow_bb_inside_loop_p (loop, son))
960 continue;
961 scale_bbs_frequencies_int (&son, 1, num, den);
962 scale_dominated_blocks_in_loop (loop, son, num, den);
963 }
964 }
965
966 /* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP.
967 EXIT is the exit of the loop to that DESC corresponds.
968
969 If N is number of iterations of the loop and MAY_BE_ZERO is the condition
970 under that loop exits in the first iteration even if N != 0,
971
972 while (1)
973 {
974 x = phi (init, next);
975
976 pre;
977 if (st)
978 break;
979 post;
980 }
981
982 becomes (with possibly the exit conditions formulated a bit differently,
983 avoiding the need to create a new iv):
984
985 if (MAY_BE_ZERO || N < FACTOR)
986 goto rest;
987
988 do
989 {
990 x = phi (init, next);
991
992 pre;
993 post;
994 pre;
995 post;
996 ...
997 pre;
998 post;
999 N -= FACTOR;
1000
1001 } while (N >= FACTOR);
1002
1003 rest:
1004 init' = phi (init, x);
1005
1006 while (1)
1007 {
1008 x = phi (init', next);
1009
1010 pre;
1011 if (st)
1012 break;
1013 post;
1014 }
1015
1016 Before the loop is unrolled, TRANSFORM is called for it (only for the
1017 unrolled loop, but not for its versioned copy). DATA is passed to
1018 TRANSFORM. */
1019
1020 /* Probability in % that the unrolled loop is entered. Just a guess. */
1021 #define PROB_UNROLLED_LOOP_ENTERED 90
1022
1023 void
1024 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
1025 edge exit, struct tree_niter_desc *desc,
1026 transform_callback transform,
1027 void *data)
1028 {
1029 gimple exit_if;
1030 tree ctr_before, ctr_after;
1031 tree enter_main_cond, exit_base, exit_step, exit_bound;
1032 enum tree_code exit_cmp;
1033 gimple phi_old_loop, phi_new_loop, phi_rest;
1034 gimple_stmt_iterator psi_old_loop, psi_new_loop;
1035 tree init, next, new_init;
1036 struct loop *new_loop;
1037 basic_block rest, exit_bb;
1038 edge old_entry, new_entry, old_latch, precond_edge, new_exit;
1039 edge new_nonexit, e;
1040 gimple_stmt_iterator bsi;
1041 use_operand_p op;
1042 bool ok;
1043 unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
1044 unsigned new_est_niter, i, prob;
1045 unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1046 sbitmap wont_exit;
1047 auto_vec<edge> to_remove;
1048
1049 est_niter = expected_loop_iterations (loop);
1050 determine_exit_conditions (loop, desc, factor,
1051 &enter_main_cond, &exit_base, &exit_step,
1052 &exit_cmp, &exit_bound);
1053
1054 /* Let us assume that the unrolled loop is quite likely to be entered. */
1055 if (integer_nonzerop (enter_main_cond))
1056 prob_entry = REG_BR_PROB_BASE;
1057 else
1058 prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
1059
1060 /* The values for scales should keep profile consistent, and somewhat close
1061 to correct.
1062
1063 TODO: The current value of SCALE_REST makes it appear that the loop that
1064 is created by splitting the remaining iterations of the unrolled loop is
1065 executed the same number of times as the original loop, and with the same
1066 frequencies, which is obviously wrong. This does not appear to cause
1067 problems, so we do not bother with fixing it for now. To make the profile
1068 correct, we would need to change the probability of the exit edge of the
1069 loop, and recompute the distribution of frequencies in its body because
1070 of this change (scale the frequencies of blocks before and after the exit
1071 by appropriate factors). */
1072 scale_unrolled = prob_entry;
1073 scale_rest = REG_BR_PROB_BASE;
1074
1075 new_loop = loop_version (loop, enter_main_cond, NULL,
1076 prob_entry, scale_unrolled, scale_rest, true);
1077 gcc_assert (new_loop != NULL);
1078 update_ssa (TODO_update_ssa);
1079
1080 /* Determine the probability of the exit edge of the unrolled loop. */
1081 new_est_niter = est_niter / factor;
1082
1083 /* Without profile feedback, loops for that we do not know a better estimate
1084 are assumed to roll 10 times. When we unroll such loop, it appears to
1085 roll too little, and it may even seem to be cold. To avoid this, we
1086 ensure that the created loop appears to roll at least 5 times (but at
1087 most as many times as before unrolling). */
1088 if (new_est_niter < 5)
1089 {
1090 if (est_niter < 5)
1091 new_est_niter = est_niter;
1092 else
1093 new_est_niter = 5;
1094 }
1095
1096 /* Prepare the cfg and update the phi nodes. Move the loop exit to the
1097 loop latch (and make its condition dummy, for the moment). */
1098 rest = loop_preheader_edge (new_loop)->src;
1099 precond_edge = single_pred_edge (rest);
1100 split_edge (loop_latch_edge (loop));
1101 exit_bb = single_pred (loop->latch);
1102
1103 /* Since the exit edge will be removed, the frequency of all the blocks
1104 in the loop that are dominated by it must be scaled by
1105 1 / (1 - exit->probability). */
1106 scale_dominated_blocks_in_loop (loop, exit->src,
1107 REG_BR_PROB_BASE,
1108 REG_BR_PROB_BASE - exit->probability);
1109
1110 bsi = gsi_last_bb (exit_bb);
1111 exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
1112 integer_zero_node,
1113 NULL_TREE, NULL_TREE);
1114
1115 gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
1116 new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
1117 rescan_loop_exit (new_exit, true, false);
1118
1119 /* Set the probability of new exit to the same of the old one. Fix
1120 the frequency of the latch block, by scaling it back by
1121 1 - exit->probability. */
1122 new_exit->count = exit->count;
1123 new_exit->probability = exit->probability;
1124 new_nonexit = single_pred_edge (loop->latch);
1125 new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
1126 new_nonexit->flags = EDGE_TRUE_VALUE;
1127 new_nonexit->count -= exit->count;
1128 if (new_nonexit->count < 0)
1129 new_nonexit->count = 0;
1130 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1131 REG_BR_PROB_BASE);
1132
1133 old_entry = loop_preheader_edge (loop);
1134 new_entry = loop_preheader_edge (new_loop);
1135 old_latch = loop_latch_edge (loop);
1136 for (psi_old_loop = gsi_start_phis (loop->header),
1137 psi_new_loop = gsi_start_phis (new_loop->header);
1138 !gsi_end_p (psi_old_loop);
1139 gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
1140 {
1141 phi_old_loop = gsi_stmt (psi_old_loop);
1142 phi_new_loop = gsi_stmt (psi_new_loop);
1143
1144 init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
1145 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
1146 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
1147 next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
1148
1149 /* Prefer using original variable as a base for the new ssa name.
1150 This is necessary for virtual ops, and useful in order to avoid
1151 losing debug info for real ops. */
1152 if (TREE_CODE (next) == SSA_NAME
1153 && useless_type_conversion_p (TREE_TYPE (next),
1154 TREE_TYPE (init)))
1155 new_init = copy_ssa_name (next, NULL);
1156 else if (TREE_CODE (init) == SSA_NAME
1157 && useless_type_conversion_p (TREE_TYPE (init),
1158 TREE_TYPE (next)))
1159 new_init = copy_ssa_name (init, NULL);
1160 else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1161 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp");
1162 else
1163 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp");
1164
1165 phi_rest = create_phi_node (new_init, rest);
1166
1167 add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1168 add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1169 SET_USE (op, new_init);
1170 }
1171
1172 remove_path (exit);
1173
1174 /* Transform the loop. */
1175 if (transform)
1176 (*transform) (loop, data);
1177
1178 /* Unroll the loop and remove the exits in all iterations except for the
1179 last one. */
1180 wont_exit = sbitmap_alloc (factor);
1181 bitmap_ones (wont_exit);
1182 bitmap_clear_bit (wont_exit, factor - 1);
1183
1184 ok = gimple_duplicate_loop_to_header_edge
1185 (loop, loop_latch_edge (loop), factor - 1,
1186 wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1187 free (wont_exit);
1188 gcc_assert (ok);
1189
1190 FOR_EACH_VEC_ELT (to_remove, i, e)
1191 {
1192 ok = remove_path (e);
1193 gcc_assert (ok);
1194 }
1195 update_ssa (TODO_update_ssa);
1196
1197 /* Ensure that the frequencies in the loop match the new estimated
1198 number of iterations, and change the probability of the new
1199 exit edge. */
1200 freq_h = loop->header->frequency;
1201 freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1202 if (freq_h != 0)
1203 scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1204
1205 exit_bb = single_pred (loop->latch);
1206 new_exit = find_edge (exit_bb, rest);
1207 new_exit->count = loop_preheader_edge (loop)->count;
1208 new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1209
1210 rest->count += new_exit->count;
1211 rest->frequency += EDGE_FREQUENCY (new_exit);
1212
1213 new_nonexit = single_pred_edge (loop->latch);
1214 prob = new_nonexit->probability;
1215 new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1216 new_nonexit->count = exit_bb->count - new_exit->count;
1217 if (new_nonexit->count < 0)
1218 new_nonexit->count = 0;
1219 if (prob > 0)
1220 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1221 prob);
1222
1223 /* Finally create the new counter for number of iterations and add the new
1224 exit instruction. */
1225 bsi = gsi_last_nondebug_bb (exit_bb);
1226 exit_if = gsi_stmt (bsi);
1227 create_iv (exit_base, exit_step, NULL_TREE, loop,
1228 &bsi, false, &ctr_before, &ctr_after);
1229 gimple_cond_set_code (exit_if, exit_cmp);
1230 gimple_cond_set_lhs (exit_if, ctr_after);
1231 gimple_cond_set_rhs (exit_if, exit_bound);
1232 update_stmt (exit_if);
1233
1234 #ifdef ENABLE_CHECKING
1235 verify_flow_info ();
1236 verify_loop_structure ();
1237 verify_loop_closed_ssa (true);
1238 #endif
1239 }
1240
1241 /* Wrapper over tree_transform_and_unroll_loop for case we do not
1242 want to transform the loop before unrolling. The meaning
1243 of the arguments is the same as for tree_transform_and_unroll_loop. */
1244
1245 void
1246 tree_unroll_loop (struct loop *loop, unsigned factor,
1247 edge exit, struct tree_niter_desc *desc)
1248 {
1249 tree_transform_and_unroll_loop (loop, factor, exit, desc,
1250 NULL, NULL);
1251 }
1252
1253 /* Rewrite the phi node at position PSI in function of the main
1254 induction variable MAIN_IV and insert the generated code at GSI. */
1255
1256 static void
1257 rewrite_phi_with_iv (loop_p loop,
1258 gimple_stmt_iterator *psi,
1259 gimple_stmt_iterator *gsi,
1260 tree main_iv)
1261 {
1262 affine_iv iv;
1263 gimple stmt, phi = gsi_stmt (*psi);
1264 tree atype, mtype, val, res = PHI_RESULT (phi);
1265
1266 if (virtual_operand_p (res) || res == main_iv)
1267 {
1268 gsi_next (psi);
1269 return;
1270 }
1271
1272 if (!simple_iv (loop, loop, res, &iv, true))
1273 {
1274 gsi_next (psi);
1275 return;
1276 }
1277
1278 remove_phi_node (psi, false);
1279
1280 atype = TREE_TYPE (res);
1281 mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1282 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1283 fold_convert (mtype, main_iv));
1284 val = fold_build2 (POINTER_TYPE_P (atype)
1285 ? POINTER_PLUS_EXPR : PLUS_EXPR,
1286 atype, unshare_expr (iv.base), val);
1287 val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1288 GSI_SAME_STMT);
1289 stmt = gimple_build_assign (res, val);
1290 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1291 }
1292
1293 /* Rewrite all the phi nodes of LOOP in function of the main induction
1294 variable MAIN_IV. */
1295
1296 static void
1297 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1298 {
1299 unsigned i;
1300 basic_block *bbs = get_loop_body_in_dom_order (loop);
1301 gimple_stmt_iterator psi;
1302
1303 for (i = 0; i < loop->num_nodes; i++)
1304 {
1305 basic_block bb = bbs[i];
1306 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1307
1308 if (bb->loop_father != loop)
1309 continue;
1310
1311 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1312 rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1313 }
1314
1315 free (bbs);
1316 }
1317
1318 /* Bases all the induction variables in LOOP on a single induction
1319 variable (unsigned with base 0 and step 1), whose final value is
1320 compared with *NIT. When the IV type precision has to be larger
1321 than *NIT type precision, *NIT is converted to the larger type, the
1322 conversion code is inserted before the loop, and *NIT is updated to
1323 the new definition. When BUMP_IN_LATCH is true, the induction
1324 variable is incremented in the loop latch, otherwise it is
1325 incremented in the loop header. Return the induction variable that
1326 was created. */
1327
1328 tree
1329 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1330 {
1331 unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1332 unsigned original_precision = precision;
1333 tree type, var_before;
1334 gimple_stmt_iterator gsi, psi;
1335 gimple stmt;
1336 edge exit = single_dom_exit (loop);
1337 gimple_seq stmts;
1338 enum machine_mode mode;
1339 bool unsigned_p = false;
1340
1341 for (psi = gsi_start_phis (loop->header);
1342 !gsi_end_p (psi); gsi_next (&psi))
1343 {
1344 gimple phi = gsi_stmt (psi);
1345 tree res = PHI_RESULT (phi);
1346 bool uns;
1347
1348 type = TREE_TYPE (res);
1349 if (virtual_operand_p (res)
1350 || (!INTEGRAL_TYPE_P (type)
1351 && !POINTER_TYPE_P (type))
1352 || TYPE_PRECISION (type) < precision)
1353 continue;
1354
1355 uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type);
1356
1357 if (TYPE_PRECISION (type) > precision)
1358 unsigned_p = uns;
1359 else
1360 unsigned_p |= uns;
1361
1362 precision = TYPE_PRECISION (type);
1363 }
1364
1365 mode = smallest_mode_for_size (precision, MODE_INT);
1366 precision = GET_MODE_PRECISION (mode);
1367 type = build_nonstandard_integer_type (precision, unsigned_p);
1368
1369 if (original_precision != precision)
1370 {
1371 *nit = fold_convert (type, *nit);
1372 *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1373 if (stmts)
1374 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1375 }
1376
1377 if (bump_in_latch)
1378 gsi = gsi_last_bb (loop->latch);
1379 else
1380 gsi = gsi_last_nondebug_bb (loop->header);
1381 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1382 loop, &gsi, bump_in_latch, &var_before, NULL);
1383
1384 rewrite_all_phi_nodes_with_iv (loop, var_before);
1385
1386 stmt = last_stmt (exit->src);
1387 /* Make the loop exit if the control condition is not satisfied. */
1388 if (exit->flags & EDGE_TRUE_VALUE)
1389 {
1390 edge te, fe;
1391
1392 extract_true_false_edges_from_block (exit->src, &te, &fe);
1393 te->flags = EDGE_FALSE_VALUE;
1394 fe->flags = EDGE_TRUE_VALUE;
1395 }
1396 gimple_cond_set_code (stmt, LT_EXPR);
1397 gimple_cond_set_lhs (stmt, var_before);
1398 gimple_cond_set_rhs (stmt, *nit);
1399 update_stmt (stmt);
1400
1401 return var_before;
1402 }