Daily bump.
[gcc.git] / gcc / tree-ssa-loop-niter.c
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "intl.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "tree-pass.h"
36 #include "ggc.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-data-ref.h"
40 #include "params.h"
41 #include "flags.h"
42 #include "diagnostic-core.h"
43 #include "tree-inline.h"
44 #include "gmp.h"
45
46 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
47
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
50 expression. */
51 #define MAX_DOMINATORS_TO_WALK 8
52
53 /*
54
55 Analysis of number of iterations of an affine exit test.
56
57 */
58
59 /* Bounds on some value, BELOW <= X <= UP. */
60
61 typedef struct
62 {
63 mpz_t below, up;
64 } bounds;
65
66
67 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
68
69 static void
70 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
71 {
72 tree type = TREE_TYPE (expr);
73 tree op0, op1;
74 double_int off;
75 bool negate = false;
76
77 *var = expr;
78 mpz_set_ui (offset, 0);
79
80 switch (TREE_CODE (expr))
81 {
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
85
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
90
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
93
94 *var = op0;
95 /* Always sign extend the offset. */
96 off = tree_to_double_int (op1);
97 off = double_int_sext (off, TYPE_PRECISION (type));
98 mpz_set_double_int (offset, off, false);
99 if (negate)
100 mpz_neg (offset, offset);
101 break;
102
103 case INTEGER_CST:
104 *var = build_int_cst_type (type, 0);
105 off = tree_to_double_int (expr);
106 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
107 break;
108
109 default:
110 break;
111 }
112 }
113
114 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
115 in TYPE to MIN and MAX. */
116
117 static void
118 determine_value_range (tree type, tree var, mpz_t off,
119 mpz_t min, mpz_t max)
120 {
121 /* If the expression is a constant, we know its value exactly. */
122 if (integer_zerop (var))
123 {
124 mpz_set (min, off);
125 mpz_set (max, off);
126 return;
127 }
128
129 /* If the computation may wrap, we know nothing about the value, except for
130 the range of the type. */
131 get_type_static_bounds (type, min, max);
132 if (!nowrap_type_p (type))
133 return;
134
135 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
136 add it to MIN, otherwise to MAX. */
137 if (mpz_sgn (off) < 0)
138 mpz_add (max, max, off);
139 else
140 mpz_add (min, min, off);
141 }
142
143 /* Stores the bounds on the difference of the values of the expressions
144 (var + X) and (var + Y), computed in TYPE, to BNDS. */
145
146 static void
147 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
148 bounds *bnds)
149 {
150 int rel = mpz_cmp (x, y);
151 bool may_wrap = !nowrap_type_p (type);
152 mpz_t m;
153
154 /* If X == Y, then the expressions are always equal.
155 If X > Y, there are the following possibilities:
156 a) neither of var + X and var + Y overflow or underflow, or both of
157 them do. Then their difference is X - Y.
158 b) var + X overflows, and var + Y does not. Then the values of the
159 expressions are var + X - M and var + Y, where M is the range of
160 the type, and their difference is X - Y - M.
161 c) var + Y underflows and var + X does not. Their difference again
162 is M - X + Y.
163 Therefore, if the arithmetics in type does not overflow, then the
164 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
165 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
166 (X - Y, X - Y + M). */
167
168 if (rel == 0)
169 {
170 mpz_set_ui (bnds->below, 0);
171 mpz_set_ui (bnds->up, 0);
172 return;
173 }
174
175 mpz_init (m);
176 mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
177 mpz_add_ui (m, m, 1);
178 mpz_sub (bnds->up, x, y);
179 mpz_set (bnds->below, bnds->up);
180
181 if (may_wrap)
182 {
183 if (rel > 0)
184 mpz_sub (bnds->below, bnds->below, m);
185 else
186 mpz_add (bnds->up, bnds->up, m);
187 }
188
189 mpz_clear (m);
190 }
191
192 /* From condition C0 CMP C1 derives information regarding the
193 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
194 and stores it to BNDS. */
195
196 static void
197 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
198 tree vary, mpz_t offy,
199 tree c0, enum tree_code cmp, tree c1,
200 bounds *bnds)
201 {
202 tree varc0, varc1, tmp, ctype;
203 mpz_t offc0, offc1, loffx, loffy, bnd;
204 bool lbound = false;
205 bool no_wrap = nowrap_type_p (type);
206 bool x_ok, y_ok;
207
208 switch (cmp)
209 {
210 case LT_EXPR:
211 case LE_EXPR:
212 case GT_EXPR:
213 case GE_EXPR:
214 STRIP_SIGN_NOPS (c0);
215 STRIP_SIGN_NOPS (c1);
216 ctype = TREE_TYPE (c0);
217 if (!useless_type_conversion_p (ctype, type))
218 return;
219
220 break;
221
222 case EQ_EXPR:
223 /* We could derive quite precise information from EQ_EXPR, however, such
224 a guard is unlikely to appear, so we do not bother with handling
225 it. */
226 return;
227
228 case NE_EXPR:
229 /* NE_EXPR comparisons do not contain much of useful information, except for
230 special case of comparing with the bounds of the type. */
231 if (TREE_CODE (c1) != INTEGER_CST
232 || !INTEGRAL_TYPE_P (type))
233 return;
234
235 /* Ensure that the condition speaks about an expression in the same type
236 as X and Y. */
237 ctype = TREE_TYPE (c0);
238 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
239 return;
240 c0 = fold_convert (type, c0);
241 c1 = fold_convert (type, c1);
242
243 if (TYPE_MIN_VALUE (type)
244 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
245 {
246 cmp = GT_EXPR;
247 break;
248 }
249 if (TYPE_MAX_VALUE (type)
250 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
251 {
252 cmp = LT_EXPR;
253 break;
254 }
255
256 return;
257 default:
258 return;
259 }
260
261 mpz_init (offc0);
262 mpz_init (offc1);
263 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
264 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
265
266 /* We are only interested in comparisons of expressions based on VARX and
267 VARY. TODO -- we might also be able to derive some bounds from
268 expressions containing just one of the variables. */
269
270 if (operand_equal_p (varx, varc1, 0))
271 {
272 tmp = varc0; varc0 = varc1; varc1 = tmp;
273 mpz_swap (offc0, offc1);
274 cmp = swap_tree_comparison (cmp);
275 }
276
277 if (!operand_equal_p (varx, varc0, 0)
278 || !operand_equal_p (vary, varc1, 0))
279 goto end;
280
281 mpz_init_set (loffx, offx);
282 mpz_init_set (loffy, offy);
283
284 if (cmp == GT_EXPR || cmp == GE_EXPR)
285 {
286 tmp = varx; varx = vary; vary = tmp;
287 mpz_swap (offc0, offc1);
288 mpz_swap (loffx, loffy);
289 cmp = swap_tree_comparison (cmp);
290 lbound = true;
291 }
292
293 /* If there is no overflow, the condition implies that
294
295 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
296
297 The overflows and underflows may complicate things a bit; each
298 overflow decreases the appropriate offset by M, and underflow
299 increases it by M. The above inequality would not necessarily be
300 true if
301
302 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
303 VARX + OFFC0 overflows, but VARX + OFFX does not.
304 This may only happen if OFFX < OFFC0.
305 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
306 VARY + OFFC1 underflows and VARY + OFFY does not.
307 This may only happen if OFFY > OFFC1. */
308
309 if (no_wrap)
310 {
311 x_ok = true;
312 y_ok = true;
313 }
314 else
315 {
316 x_ok = (integer_zerop (varx)
317 || mpz_cmp (loffx, offc0) >= 0);
318 y_ok = (integer_zerop (vary)
319 || mpz_cmp (loffy, offc1) <= 0);
320 }
321
322 if (x_ok && y_ok)
323 {
324 mpz_init (bnd);
325 mpz_sub (bnd, loffx, loffy);
326 mpz_add (bnd, bnd, offc1);
327 mpz_sub (bnd, bnd, offc0);
328
329 if (cmp == LT_EXPR)
330 mpz_sub_ui (bnd, bnd, 1);
331
332 if (lbound)
333 {
334 mpz_neg (bnd, bnd);
335 if (mpz_cmp (bnds->below, bnd) < 0)
336 mpz_set (bnds->below, bnd);
337 }
338 else
339 {
340 if (mpz_cmp (bnd, bnds->up) < 0)
341 mpz_set (bnds->up, bnd);
342 }
343 mpz_clear (bnd);
344 }
345
346 mpz_clear (loffx);
347 mpz_clear (loffy);
348 end:
349 mpz_clear (offc0);
350 mpz_clear (offc1);
351 }
352
353 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
354 The subtraction is considered to be performed in arbitrary precision,
355 without overflows.
356
357 We do not attempt to be too clever regarding the value ranges of X and
358 Y; most of the time, they are just integers or ssa names offsetted by
359 integer. However, we try to use the information contained in the
360 comparisons before the loop (usually created by loop header copying). */
361
362 static void
363 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
364 {
365 tree type = TREE_TYPE (x);
366 tree varx, vary;
367 mpz_t offx, offy;
368 mpz_t minx, maxx, miny, maxy;
369 int cnt = 0;
370 edge e;
371 basic_block bb;
372 tree c0, c1;
373 gimple cond;
374 enum tree_code cmp;
375
376 /* Get rid of unnecessary casts, but preserve the value of
377 the expressions. */
378 STRIP_SIGN_NOPS (x);
379 STRIP_SIGN_NOPS (y);
380
381 mpz_init (bnds->below);
382 mpz_init (bnds->up);
383 mpz_init (offx);
384 mpz_init (offy);
385 split_to_var_and_offset (x, &varx, offx);
386 split_to_var_and_offset (y, &vary, offy);
387
388 if (!integer_zerop (varx)
389 && operand_equal_p (varx, vary, 0))
390 {
391 /* Special case VARX == VARY -- we just need to compare the
392 offsets. The matters are a bit more complicated in the
393 case addition of offsets may wrap. */
394 bound_difference_of_offsetted_base (type, offx, offy, bnds);
395 }
396 else
397 {
398 /* Otherwise, use the value ranges to determine the initial
399 estimates on below and up. */
400 mpz_init (minx);
401 mpz_init (maxx);
402 mpz_init (miny);
403 mpz_init (maxy);
404 determine_value_range (type, varx, offx, minx, maxx);
405 determine_value_range (type, vary, offy, miny, maxy);
406
407 mpz_sub (bnds->below, minx, maxy);
408 mpz_sub (bnds->up, maxx, miny);
409 mpz_clear (minx);
410 mpz_clear (maxx);
411 mpz_clear (miny);
412 mpz_clear (maxy);
413 }
414
415 /* If both X and Y are constants, we cannot get any more precise. */
416 if (integer_zerop (varx) && integer_zerop (vary))
417 goto end;
418
419 /* Now walk the dominators of the loop header and use the entry
420 guards to refine the estimates. */
421 for (bb = loop->header;
422 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
423 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
424 {
425 if (!single_pred_p (bb))
426 continue;
427 e = single_pred_edge (bb);
428
429 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
430 continue;
431
432 cond = last_stmt (e->src);
433 c0 = gimple_cond_lhs (cond);
434 cmp = gimple_cond_code (cond);
435 c1 = gimple_cond_rhs (cond);
436
437 if (e->flags & EDGE_FALSE_VALUE)
438 cmp = invert_tree_comparison (cmp, false);
439
440 refine_bounds_using_guard (type, varx, offx, vary, offy,
441 c0, cmp, c1, bnds);
442 ++cnt;
443 }
444
445 end:
446 mpz_clear (offx);
447 mpz_clear (offy);
448 }
449
450 /* Update the bounds in BNDS that restrict the value of X to the bounds
451 that restrict the value of X + DELTA. X can be obtained as a
452 difference of two values in TYPE. */
453
454 static void
455 bounds_add (bounds *bnds, double_int delta, tree type)
456 {
457 mpz_t mdelta, max;
458
459 mpz_init (mdelta);
460 mpz_set_double_int (mdelta, delta, false);
461
462 mpz_init (max);
463 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
464
465 mpz_add (bnds->up, bnds->up, mdelta);
466 mpz_add (bnds->below, bnds->below, mdelta);
467
468 if (mpz_cmp (bnds->up, max) > 0)
469 mpz_set (bnds->up, max);
470
471 mpz_neg (max, max);
472 if (mpz_cmp (bnds->below, max) < 0)
473 mpz_set (bnds->below, max);
474
475 mpz_clear (mdelta);
476 mpz_clear (max);
477 }
478
479 /* Update the bounds in BNDS that restrict the value of X to the bounds
480 that restrict the value of -X. */
481
482 static void
483 bounds_negate (bounds *bnds)
484 {
485 mpz_t tmp;
486
487 mpz_init_set (tmp, bnds->up);
488 mpz_neg (bnds->up, bnds->below);
489 mpz_neg (bnds->below, tmp);
490 mpz_clear (tmp);
491 }
492
493 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
494
495 static tree
496 inverse (tree x, tree mask)
497 {
498 tree type = TREE_TYPE (x);
499 tree rslt;
500 unsigned ctr = tree_floor_log2 (mask);
501
502 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
503 {
504 unsigned HOST_WIDE_INT ix;
505 unsigned HOST_WIDE_INT imask;
506 unsigned HOST_WIDE_INT irslt = 1;
507
508 gcc_assert (cst_and_fits_in_hwi (x));
509 gcc_assert (cst_and_fits_in_hwi (mask));
510
511 ix = int_cst_value (x);
512 imask = int_cst_value (mask);
513
514 for (; ctr; ctr--)
515 {
516 irslt *= ix;
517 ix *= ix;
518 }
519 irslt &= imask;
520
521 rslt = build_int_cst_type (type, irslt);
522 }
523 else
524 {
525 rslt = build_int_cst (type, 1);
526 for (; ctr; ctr--)
527 {
528 rslt = int_const_binop (MULT_EXPR, rslt, x);
529 x = int_const_binop (MULT_EXPR, x, x);
530 }
531 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
532 }
533
534 return rslt;
535 }
536
537 /* Derives the upper bound BND on the number of executions of loop with exit
538 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
539 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
540 that the loop ends through this exit, i.e., the induction variable ever
541 reaches the value of C.
542
543 The value C is equal to final - base, where final and base are the final and
544 initial value of the actual induction variable in the analysed loop. BNDS
545 bounds the value of this difference when computed in signed type with
546 unbounded range, while the computation of C is performed in an unsigned
547 type with the range matching the range of the type of the induction variable.
548 In particular, BNDS.up contains an upper bound on C in the following cases:
549 -- if the iv must reach its final value without overflow, i.e., if
550 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
551 -- if final >= base, which we know to hold when BNDS.below >= 0. */
552
553 static void
554 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
555 bounds *bnds, bool exit_must_be_taken)
556 {
557 double_int max;
558 mpz_t d;
559 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
560 || mpz_sgn (bnds->below) >= 0);
561
562 if (multiple_of_p (TREE_TYPE (c), c, s))
563 {
564 /* If C is an exact multiple of S, then its value will be reached before
565 the induction variable overflows (unless the loop is exited in some
566 other way before). Note that the actual induction variable in the
567 loop (which ranges from base to final instead of from 0 to C) may
568 overflow, in which case BNDS.up will not be giving a correct upper
569 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
570 no_overflow = true;
571 exit_must_be_taken = true;
572 }
573
574 /* If the induction variable can overflow, the number of iterations is at
575 most the period of the control variable (or infinite, but in that case
576 the whole # of iterations analysis will fail). */
577 if (!no_overflow)
578 {
579 max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
580 - tree_low_cst (num_ending_zeros (s), 1));
581 mpz_set_double_int (bnd, max, true);
582 return;
583 }
584
585 /* Now we know that the induction variable does not overflow, so the loop
586 iterates at most (range of type / S) times. */
587 mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
588 true);
589
590 /* If the induction variable is guaranteed to reach the value of C before
591 overflow, ... */
592 if (exit_must_be_taken)
593 {
594 /* ... then we can strenghten this to C / S, and possibly we can use
595 the upper bound on C given by BNDS. */
596 if (TREE_CODE (c) == INTEGER_CST)
597 mpz_set_double_int (bnd, tree_to_double_int (c), true);
598 else if (bnds_u_valid)
599 mpz_set (bnd, bnds->up);
600 }
601
602 mpz_init (d);
603 mpz_set_double_int (d, tree_to_double_int (s), true);
604 mpz_fdiv_q (bnd, bnd, d);
605 mpz_clear (d);
606 }
607
608 /* Determines number of iterations of loop whose ending condition
609 is IV <> FINAL. TYPE is the type of the iv. The number of
610 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
611 we know that the exit must be taken eventually, i.e., that the IV
612 ever reaches the value FINAL (we derived this earlier, and possibly set
613 NITER->assumptions to make sure this is the case). BNDS contains the
614 bounds on the difference FINAL - IV->base. */
615
616 static bool
617 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
618 struct tree_niter_desc *niter, bool exit_must_be_taken,
619 bounds *bnds)
620 {
621 tree niter_type = unsigned_type_for (type);
622 tree s, c, d, bits, assumption, tmp, bound;
623 mpz_t max;
624
625 niter->control = *iv;
626 niter->bound = final;
627 niter->cmp = NE_EXPR;
628
629 /* Rearrange the terms so that we get inequality S * i <> C, with S
630 positive. Also cast everything to the unsigned type. If IV does
631 not overflow, BNDS bounds the value of C. Also, this is the
632 case if the computation |FINAL - IV->base| does not overflow, i.e.,
633 if BNDS->below in the result is nonnegative. */
634 if (tree_int_cst_sign_bit (iv->step))
635 {
636 s = fold_convert (niter_type,
637 fold_build1 (NEGATE_EXPR, type, iv->step));
638 c = fold_build2 (MINUS_EXPR, niter_type,
639 fold_convert (niter_type, iv->base),
640 fold_convert (niter_type, final));
641 bounds_negate (bnds);
642 }
643 else
644 {
645 s = fold_convert (niter_type, iv->step);
646 c = fold_build2 (MINUS_EXPR, niter_type,
647 fold_convert (niter_type, final),
648 fold_convert (niter_type, iv->base));
649 }
650
651 mpz_init (max);
652 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
653 exit_must_be_taken);
654 niter->max = mpz_get_double_int (niter_type, max, false);
655 mpz_clear (max);
656
657 /* First the trivial cases -- when the step is 1. */
658 if (integer_onep (s))
659 {
660 niter->niter = c;
661 return true;
662 }
663
664 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
665 is infinite. Otherwise, the number of iterations is
666 (inverse(s/d) * (c/d)) mod (size of mode/d). */
667 bits = num_ending_zeros (s);
668 bound = build_low_bits_mask (niter_type,
669 (TYPE_PRECISION (niter_type)
670 - tree_low_cst (bits, 1)));
671
672 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
673 build_int_cst (niter_type, 1), bits);
674 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
675
676 if (!exit_must_be_taken)
677 {
678 /* If we cannot assume that the exit is taken eventually, record the
679 assumptions for divisibility of c. */
680 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
681 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
682 assumption, build_int_cst (niter_type, 0));
683 if (!integer_nonzerop (assumption))
684 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
685 niter->assumptions, assumption);
686 }
687
688 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
689 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
690 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
691 return true;
692 }
693
694 /* Checks whether we can determine the final value of the control variable
695 of the loop with ending condition IV0 < IV1 (computed in TYPE).
696 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
697 of the step. The assumptions necessary to ensure that the computation
698 of the final value does not overflow are recorded in NITER. If we
699 find the final value, we adjust DELTA and return TRUE. Otherwise
700 we return false. BNDS bounds the value of IV1->base - IV0->base,
701 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
702 true if we know that the exit must be taken eventually. */
703
704 static bool
705 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
706 struct tree_niter_desc *niter,
707 tree *delta, tree step,
708 bool exit_must_be_taken, bounds *bnds)
709 {
710 tree niter_type = TREE_TYPE (step);
711 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
712 tree tmod;
713 mpz_t mmod;
714 tree assumption = boolean_true_node, bound, noloop;
715 bool ret = false, fv_comp_no_overflow;
716 tree type1 = type;
717 if (POINTER_TYPE_P (type))
718 type1 = sizetype;
719
720 if (TREE_CODE (mod) != INTEGER_CST)
721 return false;
722 if (integer_nonzerop (mod))
723 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
724 tmod = fold_convert (type1, mod);
725
726 mpz_init (mmod);
727 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
728 mpz_neg (mmod, mmod);
729
730 /* If the induction variable does not overflow and the exit is taken,
731 then the computation of the final value does not overflow. This is
732 also obviously the case if the new final value is equal to the
733 current one. Finally, we postulate this for pointer type variables,
734 as the code cannot rely on the object to that the pointer points being
735 placed at the end of the address space (and more pragmatically,
736 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
737 if (integer_zerop (mod) || POINTER_TYPE_P (type))
738 fv_comp_no_overflow = true;
739 else if (!exit_must_be_taken)
740 fv_comp_no_overflow = false;
741 else
742 fv_comp_no_overflow =
743 (iv0->no_overflow && integer_nonzerop (iv0->step))
744 || (iv1->no_overflow && integer_nonzerop (iv1->step));
745
746 if (integer_nonzerop (iv0->step))
747 {
748 /* The final value of the iv is iv1->base + MOD, assuming that this
749 computation does not overflow, and that
750 iv0->base <= iv1->base + MOD. */
751 if (!fv_comp_no_overflow)
752 {
753 bound = fold_build2 (MINUS_EXPR, type1,
754 TYPE_MAX_VALUE (type1), tmod);
755 assumption = fold_build2 (LE_EXPR, boolean_type_node,
756 iv1->base, bound);
757 if (integer_zerop (assumption))
758 goto end;
759 }
760 if (mpz_cmp (mmod, bnds->below) < 0)
761 noloop = boolean_false_node;
762 else if (POINTER_TYPE_P (type))
763 noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 iv0->base,
765 fold_build_pointer_plus (iv1->base, tmod));
766 else
767 noloop = fold_build2 (GT_EXPR, boolean_type_node,
768 iv0->base,
769 fold_build2 (PLUS_EXPR, type1,
770 iv1->base, tmod));
771 }
772 else
773 {
774 /* The final value of the iv is iv0->base - MOD, assuming that this
775 computation does not overflow, and that
776 iv0->base - MOD <= iv1->base. */
777 if (!fv_comp_no_overflow)
778 {
779 bound = fold_build2 (PLUS_EXPR, type1,
780 TYPE_MIN_VALUE (type1), tmod);
781 assumption = fold_build2 (GE_EXPR, boolean_type_node,
782 iv0->base, bound);
783 if (integer_zerop (assumption))
784 goto end;
785 }
786 if (mpz_cmp (mmod, bnds->below) < 0)
787 noloop = boolean_false_node;
788 else if (POINTER_TYPE_P (type))
789 noloop = fold_build2 (GT_EXPR, boolean_type_node,
790 fold_build_pointer_plus (iv0->base,
791 fold_build1 (NEGATE_EXPR,
792 type1, tmod)),
793 iv1->base);
794 else
795 noloop = fold_build2 (GT_EXPR, boolean_type_node,
796 fold_build2 (MINUS_EXPR, type1,
797 iv0->base, tmod),
798 iv1->base);
799 }
800
801 if (!integer_nonzerop (assumption))
802 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
803 niter->assumptions,
804 assumption);
805 if (!integer_zerop (noloop))
806 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
807 niter->may_be_zero,
808 noloop);
809 bounds_add (bnds, tree_to_double_int (mod), type);
810 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
811
812 ret = true;
813 end:
814 mpz_clear (mmod);
815 return ret;
816 }
817
818 /* Add assertions to NITER that ensure that the control variable of the loop
819 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
820 are TYPE. Returns false if we can prove that there is an overflow, true
821 otherwise. STEP is the absolute value of the step. */
822
823 static bool
824 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
825 struct tree_niter_desc *niter, tree step)
826 {
827 tree bound, d, assumption, diff;
828 tree niter_type = TREE_TYPE (step);
829
830 if (integer_nonzerop (iv0->step))
831 {
832 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
833 if (iv0->no_overflow)
834 return true;
835
836 /* If iv0->base is a constant, we can determine the last value before
837 overflow precisely; otherwise we conservatively assume
838 MAX - STEP + 1. */
839
840 if (TREE_CODE (iv0->base) == INTEGER_CST)
841 {
842 d = fold_build2 (MINUS_EXPR, niter_type,
843 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
844 fold_convert (niter_type, iv0->base));
845 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
846 }
847 else
848 diff = fold_build2 (MINUS_EXPR, niter_type, step,
849 build_int_cst (niter_type, 1));
850 bound = fold_build2 (MINUS_EXPR, type,
851 TYPE_MAX_VALUE (type), fold_convert (type, diff));
852 assumption = fold_build2 (LE_EXPR, boolean_type_node,
853 iv1->base, bound);
854 }
855 else
856 {
857 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
858 if (iv1->no_overflow)
859 return true;
860
861 if (TREE_CODE (iv1->base) == INTEGER_CST)
862 {
863 d = fold_build2 (MINUS_EXPR, niter_type,
864 fold_convert (niter_type, iv1->base),
865 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
866 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
867 }
868 else
869 diff = fold_build2 (MINUS_EXPR, niter_type, step,
870 build_int_cst (niter_type, 1));
871 bound = fold_build2 (PLUS_EXPR, type,
872 TYPE_MIN_VALUE (type), fold_convert (type, diff));
873 assumption = fold_build2 (GE_EXPR, boolean_type_node,
874 iv0->base, bound);
875 }
876
877 if (integer_zerop (assumption))
878 return false;
879 if (!integer_nonzerop (assumption))
880 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
881 niter->assumptions, assumption);
882
883 iv0->no_overflow = true;
884 iv1->no_overflow = true;
885 return true;
886 }
887
888 /* Add an assumption to NITER that a loop whose ending condition
889 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
890 bounds the value of IV1->base - IV0->base. */
891
892 static void
893 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
894 struct tree_niter_desc *niter, bounds *bnds)
895 {
896 tree assumption = boolean_true_node, bound, diff;
897 tree mbz, mbzl, mbzr, type1;
898 bool rolls_p, no_overflow_p;
899 double_int dstep;
900 mpz_t mstep, max;
901
902 /* We are going to compute the number of iterations as
903 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
904 variant of TYPE. This formula only works if
905
906 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
907
908 (where MAX is the maximum value of the unsigned variant of TYPE, and
909 the computations in this formula are performed in full precision,
910 i.e., without overflows).
911
912 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
913 we have a condition of the form iv0->base - step < iv1->base before the loop,
914 and for loops iv0->base < iv1->base - step * i the condition
915 iv0->base < iv1->base + step, due to loop header copying, which enable us
916 to prove the lower bound.
917
918 The upper bound is more complicated. Unless the expressions for initial
919 and final value themselves contain enough information, we usually cannot
920 derive it from the context. */
921
922 /* First check whether the answer does not follow from the bounds we gathered
923 before. */
924 if (integer_nonzerop (iv0->step))
925 dstep = tree_to_double_int (iv0->step);
926 else
927 {
928 dstep = double_int_sext (tree_to_double_int (iv1->step),
929 TYPE_PRECISION (type));
930 dstep = double_int_neg (dstep);
931 }
932
933 mpz_init (mstep);
934 mpz_set_double_int (mstep, dstep, true);
935 mpz_neg (mstep, mstep);
936 mpz_add_ui (mstep, mstep, 1);
937
938 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
939
940 mpz_init (max);
941 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
942 mpz_add (max, max, mstep);
943 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
944 /* For pointers, only values lying inside a single object
945 can be compared or manipulated by pointer arithmetics.
946 Gcc in general does not allow or handle objects larger
947 than half of the address space, hence the upper bound
948 is satisfied for pointers. */
949 || POINTER_TYPE_P (type));
950 mpz_clear (mstep);
951 mpz_clear (max);
952
953 if (rolls_p && no_overflow_p)
954 return;
955
956 type1 = type;
957 if (POINTER_TYPE_P (type))
958 type1 = sizetype;
959
960 /* Now the hard part; we must formulate the assumption(s) as expressions, and
961 we must be careful not to introduce overflow. */
962
963 if (integer_nonzerop (iv0->step))
964 {
965 diff = fold_build2 (MINUS_EXPR, type1,
966 iv0->step, build_int_cst (type1, 1));
967
968 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
969 0 address never belongs to any object, we can assume this for
970 pointers. */
971 if (!POINTER_TYPE_P (type))
972 {
973 bound = fold_build2 (PLUS_EXPR, type1,
974 TYPE_MIN_VALUE (type), diff);
975 assumption = fold_build2 (GE_EXPR, boolean_type_node,
976 iv0->base, bound);
977 }
978
979 /* And then we can compute iv0->base - diff, and compare it with
980 iv1->base. */
981 mbzl = fold_build2 (MINUS_EXPR, type1,
982 fold_convert (type1, iv0->base), diff);
983 mbzr = fold_convert (type1, iv1->base);
984 }
985 else
986 {
987 diff = fold_build2 (PLUS_EXPR, type1,
988 iv1->step, build_int_cst (type1, 1));
989
990 if (!POINTER_TYPE_P (type))
991 {
992 bound = fold_build2 (PLUS_EXPR, type1,
993 TYPE_MAX_VALUE (type), diff);
994 assumption = fold_build2 (LE_EXPR, boolean_type_node,
995 iv1->base, bound);
996 }
997
998 mbzl = fold_convert (type1, iv0->base);
999 mbzr = fold_build2 (MINUS_EXPR, type1,
1000 fold_convert (type1, iv1->base), diff);
1001 }
1002
1003 if (!integer_nonzerop (assumption))
1004 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1005 niter->assumptions, assumption);
1006 if (!rolls_p)
1007 {
1008 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1009 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1010 niter->may_be_zero, mbz);
1011 }
1012 }
1013
1014 /* Determines number of iterations of loop whose ending condition
1015 is IV0 < IV1. TYPE is the type of the iv. The number of
1016 iterations is stored to NITER. BNDS bounds the difference
1017 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1018 that the exit must be taken eventually. */
1019
1020 static bool
1021 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1022 struct tree_niter_desc *niter,
1023 bool exit_must_be_taken, bounds *bnds)
1024 {
1025 tree niter_type = unsigned_type_for (type);
1026 tree delta, step, s;
1027 mpz_t mstep, tmp;
1028
1029 if (integer_nonzerop (iv0->step))
1030 {
1031 niter->control = *iv0;
1032 niter->cmp = LT_EXPR;
1033 niter->bound = iv1->base;
1034 }
1035 else
1036 {
1037 niter->control = *iv1;
1038 niter->cmp = GT_EXPR;
1039 niter->bound = iv0->base;
1040 }
1041
1042 delta = fold_build2 (MINUS_EXPR, niter_type,
1043 fold_convert (niter_type, iv1->base),
1044 fold_convert (niter_type, iv0->base));
1045
1046 /* First handle the special case that the step is +-1. */
1047 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1048 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1049 {
1050 /* for (i = iv0->base; i < iv1->base; i++)
1051
1052 or
1053
1054 for (i = iv1->base; i > iv0->base; i--).
1055
1056 In both cases # of iterations is iv1->base - iv0->base, assuming that
1057 iv1->base >= iv0->base.
1058
1059 First try to derive a lower bound on the value of
1060 iv1->base - iv0->base, computed in full precision. If the difference
1061 is nonnegative, we are done, otherwise we must record the
1062 condition. */
1063
1064 if (mpz_sgn (bnds->below) < 0)
1065 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1066 iv1->base, iv0->base);
1067 niter->niter = delta;
1068 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1069 return true;
1070 }
1071
1072 if (integer_nonzerop (iv0->step))
1073 step = fold_convert (niter_type, iv0->step);
1074 else
1075 step = fold_convert (niter_type,
1076 fold_build1 (NEGATE_EXPR, type, iv1->step));
1077
1078 /* If we can determine the final value of the control iv exactly, we can
1079 transform the condition to != comparison. In particular, this will be
1080 the case if DELTA is constant. */
1081 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1082 exit_must_be_taken, bnds))
1083 {
1084 affine_iv zps;
1085
1086 zps.base = build_int_cst (niter_type, 0);
1087 zps.step = step;
1088 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1089 zps does not overflow. */
1090 zps.no_overflow = true;
1091
1092 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1093 }
1094
1095 /* Make sure that the control iv does not overflow. */
1096 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1097 return false;
1098
1099 /* We determine the number of iterations as (delta + step - 1) / step. For
1100 this to work, we must know that iv1->base >= iv0->base - step + 1,
1101 otherwise the loop does not roll. */
1102 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1103
1104 s = fold_build2 (MINUS_EXPR, niter_type,
1105 step, build_int_cst (niter_type, 1));
1106 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1107 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1108
1109 mpz_init (mstep);
1110 mpz_init (tmp);
1111 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1112 mpz_add (tmp, bnds->up, mstep);
1113 mpz_sub_ui (tmp, tmp, 1);
1114 mpz_fdiv_q (tmp, tmp, mstep);
1115 niter->max = mpz_get_double_int (niter_type, tmp, false);
1116 mpz_clear (mstep);
1117 mpz_clear (tmp);
1118
1119 return true;
1120 }
1121
1122 /* Determines number of iterations of loop whose ending condition
1123 is IV0 <= IV1. TYPE is the type of the iv. The number of
1124 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1125 we know that this condition must eventually become false (we derived this
1126 earlier, and possibly set NITER->assumptions to make sure this
1127 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1128
1129 static bool
1130 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1131 struct tree_niter_desc *niter, bool exit_must_be_taken,
1132 bounds *bnds)
1133 {
1134 tree assumption;
1135 tree type1 = type;
1136 if (POINTER_TYPE_P (type))
1137 type1 = sizetype;
1138
1139 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1140 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1141 value of the type. This we must know anyway, since if it is
1142 equal to this value, the loop rolls forever. We do not check
1143 this condition for pointer type ivs, as the code cannot rely on
1144 the object to that the pointer points being placed at the end of
1145 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1146 not defined for pointers). */
1147
1148 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1149 {
1150 if (integer_nonzerop (iv0->step))
1151 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1152 iv1->base, TYPE_MAX_VALUE (type));
1153 else
1154 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1155 iv0->base, TYPE_MIN_VALUE (type));
1156
1157 if (integer_zerop (assumption))
1158 return false;
1159 if (!integer_nonzerop (assumption))
1160 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1161 niter->assumptions, assumption);
1162 }
1163
1164 if (integer_nonzerop (iv0->step))
1165 {
1166 if (POINTER_TYPE_P (type))
1167 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1168 else
1169 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1170 build_int_cst (type1, 1));
1171 }
1172 else if (POINTER_TYPE_P (type))
1173 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1174 else
1175 iv0->base = fold_build2 (MINUS_EXPR, type1,
1176 iv0->base, build_int_cst (type1, 1));
1177
1178 bounds_add (bnds, double_int_one, type1);
1179
1180 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1181 bnds);
1182 }
1183
1184 /* Dumps description of affine induction variable IV to FILE. */
1185
1186 static void
1187 dump_affine_iv (FILE *file, affine_iv *iv)
1188 {
1189 if (!integer_zerop (iv->step))
1190 fprintf (file, "[");
1191
1192 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1193
1194 if (!integer_zerop (iv->step))
1195 {
1196 fprintf (file, ", + , ");
1197 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1198 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1199 }
1200 }
1201
1202 /* Determine the number of iterations according to condition (for staying
1203 inside loop) which compares two induction variables using comparison
1204 operator CODE. The induction variable on left side of the comparison
1205 is IV0, the right-hand side is IV1. Both induction variables must have
1206 type TYPE, which must be an integer or pointer type. The steps of the
1207 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1208
1209 LOOP is the loop whose number of iterations we are determining.
1210
1211 ONLY_EXIT is true if we are sure this is the only way the loop could be
1212 exited (including possibly non-returning function calls, exceptions, etc.)
1213 -- in this case we can use the information whether the control induction
1214 variables can overflow or not in a more efficient way.
1215
1216 The results (number of iterations and assumptions as described in
1217 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1218 Returns false if it fails to determine number of iterations, true if it
1219 was determined (possibly with some assumptions). */
1220
1221 static bool
1222 number_of_iterations_cond (struct loop *loop,
1223 tree type, affine_iv *iv0, enum tree_code code,
1224 affine_iv *iv1, struct tree_niter_desc *niter,
1225 bool only_exit)
1226 {
1227 bool exit_must_be_taken = false, ret;
1228 bounds bnds;
1229
1230 /* The meaning of these assumptions is this:
1231 if !assumptions
1232 then the rest of information does not have to be valid
1233 if may_be_zero then the loop does not roll, even if
1234 niter != 0. */
1235 niter->assumptions = boolean_true_node;
1236 niter->may_be_zero = boolean_false_node;
1237 niter->niter = NULL_TREE;
1238 niter->max = double_int_zero;
1239
1240 niter->bound = NULL_TREE;
1241 niter->cmp = ERROR_MARK;
1242
1243 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1244 the control variable is on lhs. */
1245 if (code == GE_EXPR || code == GT_EXPR
1246 || (code == NE_EXPR && integer_zerop (iv0->step)))
1247 {
1248 SWAP (iv0, iv1);
1249 code = swap_tree_comparison (code);
1250 }
1251
1252 if (POINTER_TYPE_P (type))
1253 {
1254 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1255 to the same object. If they do, the control variable cannot wrap
1256 (as wrap around the bounds of memory will never return a pointer
1257 that would be guaranteed to point to the same object, even if we
1258 avoid undefined behavior by casting to size_t and back). */
1259 iv0->no_overflow = true;
1260 iv1->no_overflow = true;
1261 }
1262
1263 /* If the control induction variable does not overflow and the only exit
1264 from the loop is the one that we analyze, we know it must be taken
1265 eventually. */
1266 if (only_exit)
1267 {
1268 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1269 exit_must_be_taken = true;
1270 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1271 exit_must_be_taken = true;
1272 }
1273
1274 /* We can handle the case when neither of the sides of the comparison is
1275 invariant, provided that the test is NE_EXPR. This rarely occurs in
1276 practice, but it is simple enough to manage. */
1277 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1278 {
1279 if (code != NE_EXPR)
1280 return false;
1281
1282 iv0->step = fold_binary_to_constant (MINUS_EXPR, type,
1283 iv0->step, iv1->step);
1284 iv0->no_overflow = false;
1285 iv1->step = build_int_cst (type, 0);
1286 iv1->no_overflow = true;
1287 }
1288
1289 /* If the result of the comparison is a constant, the loop is weird. More
1290 precise handling would be possible, but the situation is not common enough
1291 to waste time on it. */
1292 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1293 return false;
1294
1295 /* Ignore loops of while (i-- < 10) type. */
1296 if (code != NE_EXPR)
1297 {
1298 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1299 return false;
1300
1301 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1302 return false;
1303 }
1304
1305 /* If the loop exits immediately, there is nothing to do. */
1306 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1307 {
1308 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1309 niter->max = double_int_zero;
1310 return true;
1311 }
1312
1313 /* OK, now we know we have a senseful loop. Handle several cases, depending
1314 on what comparison operator is used. */
1315 bound_difference (loop, iv1->base, iv0->base, &bnds);
1316
1317 if (dump_file && (dump_flags & TDF_DETAILS))
1318 {
1319 fprintf (dump_file,
1320 "Analyzing # of iterations of loop %d\n", loop->num);
1321
1322 fprintf (dump_file, " exit condition ");
1323 dump_affine_iv (dump_file, iv0);
1324 fprintf (dump_file, " %s ",
1325 code == NE_EXPR ? "!="
1326 : code == LT_EXPR ? "<"
1327 : "<=");
1328 dump_affine_iv (dump_file, iv1);
1329 fprintf (dump_file, "\n");
1330
1331 fprintf (dump_file, " bounds on difference of bases: ");
1332 mpz_out_str (dump_file, 10, bnds.below);
1333 fprintf (dump_file, " ... ");
1334 mpz_out_str (dump_file, 10, bnds.up);
1335 fprintf (dump_file, "\n");
1336 }
1337
1338 switch (code)
1339 {
1340 case NE_EXPR:
1341 gcc_assert (integer_zerop (iv1->step));
1342 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1343 exit_must_be_taken, &bnds);
1344 break;
1345
1346 case LT_EXPR:
1347 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1348 &bnds);
1349 break;
1350
1351 case LE_EXPR:
1352 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1353 &bnds);
1354 break;
1355
1356 default:
1357 gcc_unreachable ();
1358 }
1359
1360 mpz_clear (bnds.up);
1361 mpz_clear (bnds.below);
1362
1363 if (dump_file && (dump_flags & TDF_DETAILS))
1364 {
1365 if (ret)
1366 {
1367 fprintf (dump_file, " result:\n");
1368 if (!integer_nonzerop (niter->assumptions))
1369 {
1370 fprintf (dump_file, " under assumptions ");
1371 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1372 fprintf (dump_file, "\n");
1373 }
1374
1375 if (!integer_zerop (niter->may_be_zero))
1376 {
1377 fprintf (dump_file, " zero if ");
1378 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1379 fprintf (dump_file, "\n");
1380 }
1381
1382 fprintf (dump_file, " # of iterations ");
1383 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1384 fprintf (dump_file, ", bounded by ");
1385 dump_double_int (dump_file, niter->max, true);
1386 fprintf (dump_file, "\n");
1387 }
1388 else
1389 fprintf (dump_file, " failed\n\n");
1390 }
1391 return ret;
1392 }
1393
1394 /* Substitute NEW for OLD in EXPR and fold the result. */
1395
1396 static tree
1397 simplify_replace_tree (tree expr, tree old, tree new_tree)
1398 {
1399 unsigned i, n;
1400 tree ret = NULL_TREE, e, se;
1401
1402 if (!expr)
1403 return NULL_TREE;
1404
1405 /* Do not bother to replace constants. */
1406 if (CONSTANT_CLASS_P (old))
1407 return expr;
1408
1409 if (expr == old
1410 || operand_equal_p (expr, old, 0))
1411 return unshare_expr (new_tree);
1412
1413 if (!EXPR_P (expr))
1414 return expr;
1415
1416 n = TREE_OPERAND_LENGTH (expr);
1417 for (i = 0; i < n; i++)
1418 {
1419 e = TREE_OPERAND (expr, i);
1420 se = simplify_replace_tree (e, old, new_tree);
1421 if (e == se)
1422 continue;
1423
1424 if (!ret)
1425 ret = copy_node (expr);
1426
1427 TREE_OPERAND (ret, i) = se;
1428 }
1429
1430 return (ret ? fold (ret) : expr);
1431 }
1432
1433 /* Expand definitions of ssa names in EXPR as long as they are simple
1434 enough, and return the new expression. */
1435
1436 tree
1437 expand_simple_operations (tree expr)
1438 {
1439 unsigned i, n;
1440 tree ret = NULL_TREE, e, ee, e1;
1441 enum tree_code code;
1442 gimple stmt;
1443
1444 if (expr == NULL_TREE)
1445 return expr;
1446
1447 if (is_gimple_min_invariant (expr))
1448 return expr;
1449
1450 code = TREE_CODE (expr);
1451 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1452 {
1453 n = TREE_OPERAND_LENGTH (expr);
1454 for (i = 0; i < n; i++)
1455 {
1456 e = TREE_OPERAND (expr, i);
1457 ee = expand_simple_operations (e);
1458 if (e == ee)
1459 continue;
1460
1461 if (!ret)
1462 ret = copy_node (expr);
1463
1464 TREE_OPERAND (ret, i) = ee;
1465 }
1466
1467 if (!ret)
1468 return expr;
1469
1470 fold_defer_overflow_warnings ();
1471 ret = fold (ret);
1472 fold_undefer_and_ignore_overflow_warnings ();
1473 return ret;
1474 }
1475
1476 if (TREE_CODE (expr) != SSA_NAME)
1477 return expr;
1478
1479 stmt = SSA_NAME_DEF_STMT (expr);
1480 if (gimple_code (stmt) == GIMPLE_PHI)
1481 {
1482 basic_block src, dest;
1483
1484 if (gimple_phi_num_args (stmt) != 1)
1485 return expr;
1486 e = PHI_ARG_DEF (stmt, 0);
1487
1488 /* Avoid propagating through loop exit phi nodes, which
1489 could break loop-closed SSA form restrictions. */
1490 dest = gimple_bb (stmt);
1491 src = single_pred (dest);
1492 if (TREE_CODE (e) == SSA_NAME
1493 && src->loop_father != dest->loop_father)
1494 return expr;
1495
1496 return expand_simple_operations (e);
1497 }
1498 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1499 return expr;
1500
1501 e = gimple_assign_rhs1 (stmt);
1502 code = gimple_assign_rhs_code (stmt);
1503 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1504 {
1505 if (is_gimple_min_invariant (e))
1506 return e;
1507
1508 if (code == SSA_NAME)
1509 return expand_simple_operations (e);
1510
1511 return expr;
1512 }
1513
1514 switch (code)
1515 {
1516 CASE_CONVERT:
1517 /* Casts are simple. */
1518 ee = expand_simple_operations (e);
1519 return fold_build1 (code, TREE_TYPE (expr), ee);
1520
1521 case PLUS_EXPR:
1522 case MINUS_EXPR:
1523 case POINTER_PLUS_EXPR:
1524 /* And increments and decrements by a constant are simple. */
1525 e1 = gimple_assign_rhs2 (stmt);
1526 if (!is_gimple_min_invariant (e1))
1527 return expr;
1528
1529 ee = expand_simple_operations (e);
1530 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1531
1532 default:
1533 return expr;
1534 }
1535 }
1536
1537 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1538 expression (or EXPR unchanged, if no simplification was possible). */
1539
1540 static tree
1541 tree_simplify_using_condition_1 (tree cond, tree expr)
1542 {
1543 bool changed;
1544 tree e, te, e0, e1, e2, notcond;
1545 enum tree_code code = TREE_CODE (expr);
1546
1547 if (code == INTEGER_CST)
1548 return expr;
1549
1550 if (code == TRUTH_OR_EXPR
1551 || code == TRUTH_AND_EXPR
1552 || code == COND_EXPR)
1553 {
1554 changed = false;
1555
1556 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1557 if (TREE_OPERAND (expr, 0) != e0)
1558 changed = true;
1559
1560 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1561 if (TREE_OPERAND (expr, 1) != e1)
1562 changed = true;
1563
1564 if (code == COND_EXPR)
1565 {
1566 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1567 if (TREE_OPERAND (expr, 2) != e2)
1568 changed = true;
1569 }
1570 else
1571 e2 = NULL_TREE;
1572
1573 if (changed)
1574 {
1575 if (code == COND_EXPR)
1576 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1577 else
1578 expr = fold_build2 (code, boolean_type_node, e0, e1);
1579 }
1580
1581 return expr;
1582 }
1583
1584 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1585 propagation, and vice versa. Fold does not handle this, since it is
1586 considered too expensive. */
1587 if (TREE_CODE (cond) == EQ_EXPR)
1588 {
1589 e0 = TREE_OPERAND (cond, 0);
1590 e1 = TREE_OPERAND (cond, 1);
1591
1592 /* We know that e0 == e1. Check whether we cannot simplify expr
1593 using this fact. */
1594 e = simplify_replace_tree (expr, e0, e1);
1595 if (integer_zerop (e) || integer_nonzerop (e))
1596 return e;
1597
1598 e = simplify_replace_tree (expr, e1, e0);
1599 if (integer_zerop (e) || integer_nonzerop (e))
1600 return e;
1601 }
1602 if (TREE_CODE (expr) == EQ_EXPR)
1603 {
1604 e0 = TREE_OPERAND (expr, 0);
1605 e1 = TREE_OPERAND (expr, 1);
1606
1607 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1608 e = simplify_replace_tree (cond, e0, e1);
1609 if (integer_zerop (e))
1610 return e;
1611 e = simplify_replace_tree (cond, e1, e0);
1612 if (integer_zerop (e))
1613 return e;
1614 }
1615 if (TREE_CODE (expr) == NE_EXPR)
1616 {
1617 e0 = TREE_OPERAND (expr, 0);
1618 e1 = TREE_OPERAND (expr, 1);
1619
1620 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1621 e = simplify_replace_tree (cond, e0, e1);
1622 if (integer_zerop (e))
1623 return boolean_true_node;
1624 e = simplify_replace_tree (cond, e1, e0);
1625 if (integer_zerop (e))
1626 return boolean_true_node;
1627 }
1628
1629 te = expand_simple_operations (expr);
1630
1631 /* Check whether COND ==> EXPR. */
1632 notcond = invert_truthvalue (cond);
1633 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1634 if (e && integer_nonzerop (e))
1635 return e;
1636
1637 /* Check whether COND ==> not EXPR. */
1638 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1639 if (e && integer_zerop (e))
1640 return e;
1641
1642 return expr;
1643 }
1644
1645 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1646 expression (or EXPR unchanged, if no simplification was possible).
1647 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1648 of simple operations in definitions of ssa names in COND are expanded,
1649 so that things like casts or incrementing the value of the bound before
1650 the loop do not cause us to fail. */
1651
1652 static tree
1653 tree_simplify_using_condition (tree cond, tree expr)
1654 {
1655 cond = expand_simple_operations (cond);
1656
1657 return tree_simplify_using_condition_1 (cond, expr);
1658 }
1659
1660 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1661 Returns the simplified expression (or EXPR unchanged, if no
1662 simplification was possible).*/
1663
1664 static tree
1665 simplify_using_initial_conditions (struct loop *loop, tree expr)
1666 {
1667 edge e;
1668 basic_block bb;
1669 gimple stmt;
1670 tree cond;
1671 int cnt = 0;
1672
1673 if (TREE_CODE (expr) == INTEGER_CST)
1674 return expr;
1675
1676 /* Limit walking the dominators to avoid quadraticness in
1677 the number of BBs times the number of loops in degenerate
1678 cases. */
1679 for (bb = loop->header;
1680 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1681 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1682 {
1683 if (!single_pred_p (bb))
1684 continue;
1685 e = single_pred_edge (bb);
1686
1687 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1688 continue;
1689
1690 stmt = last_stmt (e->src);
1691 cond = fold_build2 (gimple_cond_code (stmt),
1692 boolean_type_node,
1693 gimple_cond_lhs (stmt),
1694 gimple_cond_rhs (stmt));
1695 if (e->flags & EDGE_FALSE_VALUE)
1696 cond = invert_truthvalue (cond);
1697 expr = tree_simplify_using_condition (cond, expr);
1698 ++cnt;
1699 }
1700
1701 return expr;
1702 }
1703
1704 /* Tries to simplify EXPR using the evolutions of the loop invariants
1705 in the superloops of LOOP. Returns the simplified expression
1706 (or EXPR unchanged, if no simplification was possible). */
1707
1708 static tree
1709 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1710 {
1711 enum tree_code code = TREE_CODE (expr);
1712 bool changed;
1713 tree e, e0, e1, e2;
1714
1715 if (is_gimple_min_invariant (expr))
1716 return expr;
1717
1718 if (code == TRUTH_OR_EXPR
1719 || code == TRUTH_AND_EXPR
1720 || code == COND_EXPR)
1721 {
1722 changed = false;
1723
1724 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1725 if (TREE_OPERAND (expr, 0) != e0)
1726 changed = true;
1727
1728 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1729 if (TREE_OPERAND (expr, 1) != e1)
1730 changed = true;
1731
1732 if (code == COND_EXPR)
1733 {
1734 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1735 if (TREE_OPERAND (expr, 2) != e2)
1736 changed = true;
1737 }
1738 else
1739 e2 = NULL_TREE;
1740
1741 if (changed)
1742 {
1743 if (code == COND_EXPR)
1744 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1745 else
1746 expr = fold_build2 (code, boolean_type_node, e0, e1);
1747 }
1748
1749 return expr;
1750 }
1751
1752 e = instantiate_parameters (loop, expr);
1753 if (is_gimple_min_invariant (e))
1754 return e;
1755
1756 return expr;
1757 }
1758
1759 /* Returns true if EXIT is the only possible exit from LOOP. */
1760
1761 bool
1762 loop_only_exit_p (const struct loop *loop, const_edge exit)
1763 {
1764 basic_block *body;
1765 gimple_stmt_iterator bsi;
1766 unsigned i;
1767 gimple call;
1768
1769 if (exit != single_exit (loop))
1770 return false;
1771
1772 body = get_loop_body (loop);
1773 for (i = 0; i < loop->num_nodes; i++)
1774 {
1775 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1776 {
1777 call = gsi_stmt (bsi);
1778 if (gimple_code (call) != GIMPLE_CALL)
1779 continue;
1780
1781 if (gimple_has_side_effects (call))
1782 {
1783 free (body);
1784 return false;
1785 }
1786 }
1787 }
1788
1789 free (body);
1790 return true;
1791 }
1792
1793 /* Stores description of number of iterations of LOOP derived from
1794 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1795 useful information could be derived (and fields of NITER has
1796 meaning described in comments at struct tree_niter_desc
1797 declaration), false otherwise. If WARN is true and
1798 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1799 potentially unsafe assumptions. */
1800
1801 bool
1802 number_of_iterations_exit (struct loop *loop, edge exit,
1803 struct tree_niter_desc *niter,
1804 bool warn)
1805 {
1806 gimple stmt;
1807 tree type;
1808 tree op0, op1;
1809 enum tree_code code;
1810 affine_iv iv0, iv1;
1811
1812 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1813 return false;
1814
1815 niter->assumptions = boolean_false_node;
1816 stmt = last_stmt (exit->src);
1817 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1818 return false;
1819
1820 /* We want the condition for staying inside loop. */
1821 code = gimple_cond_code (stmt);
1822 if (exit->flags & EDGE_TRUE_VALUE)
1823 code = invert_tree_comparison (code, false);
1824
1825 switch (code)
1826 {
1827 case GT_EXPR:
1828 case GE_EXPR:
1829 case NE_EXPR:
1830 case LT_EXPR:
1831 case LE_EXPR:
1832 break;
1833
1834 default:
1835 return false;
1836 }
1837
1838 op0 = gimple_cond_lhs (stmt);
1839 op1 = gimple_cond_rhs (stmt);
1840 type = TREE_TYPE (op0);
1841
1842 if (TREE_CODE (type) != INTEGER_TYPE
1843 && !POINTER_TYPE_P (type))
1844 return false;
1845
1846 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1847 return false;
1848 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1849 return false;
1850
1851 /* We don't want to see undefined signed overflow warnings while
1852 computing the number of iterations. */
1853 fold_defer_overflow_warnings ();
1854
1855 iv0.base = expand_simple_operations (iv0.base);
1856 iv1.base = expand_simple_operations (iv1.base);
1857 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1858 loop_only_exit_p (loop, exit)))
1859 {
1860 fold_undefer_and_ignore_overflow_warnings ();
1861 return false;
1862 }
1863
1864 if (optimize >= 3)
1865 {
1866 niter->assumptions = simplify_using_outer_evolutions (loop,
1867 niter->assumptions);
1868 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1869 niter->may_be_zero);
1870 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1871 }
1872
1873 niter->assumptions
1874 = simplify_using_initial_conditions (loop,
1875 niter->assumptions);
1876 niter->may_be_zero
1877 = simplify_using_initial_conditions (loop,
1878 niter->may_be_zero);
1879
1880 fold_undefer_and_ignore_overflow_warnings ();
1881
1882 if (integer_onep (niter->assumptions))
1883 return true;
1884
1885 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1886 But if we can prove that there is overflow or some other source of weird
1887 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1888 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1889 return false;
1890
1891 if (flag_unsafe_loop_optimizations)
1892 niter->assumptions = boolean_true_node;
1893
1894 if (warn)
1895 {
1896 const char *wording;
1897 location_t loc = gimple_location (stmt);
1898
1899 /* We can provide a more specific warning if one of the operator is
1900 constant and the other advances by +1 or -1. */
1901 if (!integer_zerop (iv1.step)
1902 ? (integer_zerop (iv0.step)
1903 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1904 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1905 wording =
1906 flag_unsafe_loop_optimizations
1907 ? N_("assuming that the loop is not infinite")
1908 : N_("cannot optimize possibly infinite loops");
1909 else
1910 wording =
1911 flag_unsafe_loop_optimizations
1912 ? N_("assuming that the loop counter does not overflow")
1913 : N_("cannot optimize loop, the loop counter may overflow");
1914
1915 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1916 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1917 }
1918
1919 return flag_unsafe_loop_optimizations;
1920 }
1921
1922 /* Try to determine the number of iterations of LOOP. If we succeed,
1923 expression giving number of iterations is returned and *EXIT is
1924 set to the edge from that the information is obtained. Otherwise
1925 chrec_dont_know is returned. */
1926
1927 tree
1928 find_loop_niter (struct loop *loop, edge *exit)
1929 {
1930 unsigned i;
1931 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1932 edge ex;
1933 tree niter = NULL_TREE, aniter;
1934 struct tree_niter_desc desc;
1935
1936 *exit = NULL;
1937 FOR_EACH_VEC_ELT (edge, exits, i, ex)
1938 {
1939 if (!just_once_each_iteration_p (loop, ex->src))
1940 continue;
1941
1942 if (!number_of_iterations_exit (loop, ex, &desc, false))
1943 continue;
1944
1945 if (integer_nonzerop (desc.may_be_zero))
1946 {
1947 /* We exit in the first iteration through this exit.
1948 We won't find anything better. */
1949 niter = build_int_cst (unsigned_type_node, 0);
1950 *exit = ex;
1951 break;
1952 }
1953
1954 if (!integer_zerop (desc.may_be_zero))
1955 continue;
1956
1957 aniter = desc.niter;
1958
1959 if (!niter)
1960 {
1961 /* Nothing recorded yet. */
1962 niter = aniter;
1963 *exit = ex;
1964 continue;
1965 }
1966
1967 /* Prefer constants, the lower the better. */
1968 if (TREE_CODE (aniter) != INTEGER_CST)
1969 continue;
1970
1971 if (TREE_CODE (niter) != INTEGER_CST)
1972 {
1973 niter = aniter;
1974 *exit = ex;
1975 continue;
1976 }
1977
1978 if (tree_int_cst_lt (aniter, niter))
1979 {
1980 niter = aniter;
1981 *exit = ex;
1982 continue;
1983 }
1984 }
1985 VEC_free (edge, heap, exits);
1986
1987 return niter ? niter : chrec_dont_know;
1988 }
1989
1990 /* Return true if loop is known to have bounded number of iterations. */
1991
1992 bool
1993 finite_loop_p (struct loop *loop)
1994 {
1995 unsigned i;
1996 VEC (edge, heap) *exits;
1997 edge ex;
1998 struct tree_niter_desc desc;
1999 bool finite = false;
2000 int flags;
2001
2002 if (flag_unsafe_loop_optimizations)
2003 return true;
2004 flags = flags_from_decl_or_type (current_function_decl);
2005 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2006 {
2007 if (dump_file && (dump_flags & TDF_DETAILS))
2008 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2009 loop->num);
2010 return true;
2011 }
2012
2013 exits = get_loop_exit_edges (loop);
2014 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2015 {
2016 if (!just_once_each_iteration_p (loop, ex->src))
2017 continue;
2018
2019 if (number_of_iterations_exit (loop, ex, &desc, false))
2020 {
2021 if (dump_file && (dump_flags & TDF_DETAILS))
2022 {
2023 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2024 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2025 fprintf (dump_file, " times\n");
2026 }
2027 finite = true;
2028 break;
2029 }
2030 }
2031 VEC_free (edge, heap, exits);
2032 return finite;
2033 }
2034
2035 /*
2036
2037 Analysis of a number of iterations of a loop by a brute-force evaluation.
2038
2039 */
2040
2041 /* Bound on the number of iterations we try to evaluate. */
2042
2043 #define MAX_ITERATIONS_TO_TRACK \
2044 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2045
2046 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2047 result by a chain of operations such that all but exactly one of their
2048 operands are constants. */
2049
2050 static gimple
2051 chain_of_csts_start (struct loop *loop, tree x)
2052 {
2053 gimple stmt = SSA_NAME_DEF_STMT (x);
2054 tree use;
2055 basic_block bb = gimple_bb (stmt);
2056 enum tree_code code;
2057
2058 if (!bb
2059 || !flow_bb_inside_loop_p (loop, bb))
2060 return NULL;
2061
2062 if (gimple_code (stmt) == GIMPLE_PHI)
2063 {
2064 if (bb == loop->header)
2065 return stmt;
2066
2067 return NULL;
2068 }
2069
2070 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2071 return NULL;
2072
2073 code = gimple_assign_rhs_code (stmt);
2074 if (gimple_references_memory_p (stmt)
2075 || TREE_CODE_CLASS (code) == tcc_reference
2076 || (code == ADDR_EXPR
2077 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2078 return NULL;
2079
2080 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2081 if (use == NULL_TREE)
2082 return NULL;
2083
2084 return chain_of_csts_start (loop, use);
2085 }
2086
2087 /* Determines whether the expression X is derived from a result of a phi node
2088 in header of LOOP such that
2089
2090 * the derivation of X consists only from operations with constants
2091 * the initial value of the phi node is constant
2092 * the value of the phi node in the next iteration can be derived from the
2093 value in the current iteration by a chain of operations with constants.
2094
2095 If such phi node exists, it is returned, otherwise NULL is returned. */
2096
2097 static gimple
2098 get_base_for (struct loop *loop, tree x)
2099 {
2100 gimple phi;
2101 tree init, next;
2102
2103 if (is_gimple_min_invariant (x))
2104 return NULL;
2105
2106 phi = chain_of_csts_start (loop, x);
2107 if (!phi)
2108 return NULL;
2109
2110 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2111 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2112
2113 if (TREE_CODE (next) != SSA_NAME)
2114 return NULL;
2115
2116 if (!is_gimple_min_invariant (init))
2117 return NULL;
2118
2119 if (chain_of_csts_start (loop, next) != phi)
2120 return NULL;
2121
2122 return phi;
2123 }
2124
2125 /* Given an expression X, then
2126
2127 * if X is NULL_TREE, we return the constant BASE.
2128 * otherwise X is a SSA name, whose value in the considered loop is derived
2129 by a chain of operations with constant from a result of a phi node in
2130 the header of the loop. Then we return value of X when the value of the
2131 result of this phi node is given by the constant BASE. */
2132
2133 static tree
2134 get_val_for (tree x, tree base)
2135 {
2136 gimple stmt;
2137
2138 gcc_assert (is_gimple_min_invariant (base));
2139
2140 if (!x)
2141 return base;
2142
2143 stmt = SSA_NAME_DEF_STMT (x);
2144 if (gimple_code (stmt) == GIMPLE_PHI)
2145 return base;
2146
2147 gcc_assert (is_gimple_assign (stmt));
2148
2149 /* STMT must be either an assignment of a single SSA name or an
2150 expression involving an SSA name and a constant. Try to fold that
2151 expression using the value for the SSA name. */
2152 if (gimple_assign_ssa_name_copy_p (stmt))
2153 return get_val_for (gimple_assign_rhs1 (stmt), base);
2154 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2155 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2156 {
2157 return fold_build1 (gimple_assign_rhs_code (stmt),
2158 gimple_expr_type (stmt),
2159 get_val_for (gimple_assign_rhs1 (stmt), base));
2160 }
2161 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2162 {
2163 tree rhs1 = gimple_assign_rhs1 (stmt);
2164 tree rhs2 = gimple_assign_rhs2 (stmt);
2165 if (TREE_CODE (rhs1) == SSA_NAME)
2166 rhs1 = get_val_for (rhs1, base);
2167 else if (TREE_CODE (rhs2) == SSA_NAME)
2168 rhs2 = get_val_for (rhs2, base);
2169 else
2170 gcc_unreachable ();
2171 return fold_build2 (gimple_assign_rhs_code (stmt),
2172 gimple_expr_type (stmt), rhs1, rhs2);
2173 }
2174 else
2175 gcc_unreachable ();
2176 }
2177
2178
2179 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2180 by brute force -- i.e. by determining the value of the operands of the
2181 condition at EXIT in first few iterations of the loop (assuming that
2182 these values are constant) and determining the first one in that the
2183 condition is not satisfied. Returns the constant giving the number
2184 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2185
2186 tree
2187 loop_niter_by_eval (struct loop *loop, edge exit)
2188 {
2189 tree acnd;
2190 tree op[2], val[2], next[2], aval[2];
2191 gimple phi, cond;
2192 unsigned i, j;
2193 enum tree_code cmp;
2194
2195 cond = last_stmt (exit->src);
2196 if (!cond || gimple_code (cond) != GIMPLE_COND)
2197 return chrec_dont_know;
2198
2199 cmp = gimple_cond_code (cond);
2200 if (exit->flags & EDGE_TRUE_VALUE)
2201 cmp = invert_tree_comparison (cmp, false);
2202
2203 switch (cmp)
2204 {
2205 case EQ_EXPR:
2206 case NE_EXPR:
2207 case GT_EXPR:
2208 case GE_EXPR:
2209 case LT_EXPR:
2210 case LE_EXPR:
2211 op[0] = gimple_cond_lhs (cond);
2212 op[1] = gimple_cond_rhs (cond);
2213 break;
2214
2215 default:
2216 return chrec_dont_know;
2217 }
2218
2219 for (j = 0; j < 2; j++)
2220 {
2221 if (is_gimple_min_invariant (op[j]))
2222 {
2223 val[j] = op[j];
2224 next[j] = NULL_TREE;
2225 op[j] = NULL_TREE;
2226 }
2227 else
2228 {
2229 phi = get_base_for (loop, op[j]);
2230 if (!phi)
2231 return chrec_dont_know;
2232 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2233 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2234 }
2235 }
2236
2237 /* Don't issue signed overflow warnings. */
2238 fold_defer_overflow_warnings ();
2239
2240 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2241 {
2242 for (j = 0; j < 2; j++)
2243 aval[j] = get_val_for (op[j], val[j]);
2244
2245 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2246 if (acnd && integer_zerop (acnd))
2247 {
2248 fold_undefer_and_ignore_overflow_warnings ();
2249 if (dump_file && (dump_flags & TDF_DETAILS))
2250 fprintf (dump_file,
2251 "Proved that loop %d iterates %d times using brute force.\n",
2252 loop->num, i);
2253 return build_int_cst (unsigned_type_node, i);
2254 }
2255
2256 for (j = 0; j < 2; j++)
2257 {
2258 val[j] = get_val_for (next[j], val[j]);
2259 if (!is_gimple_min_invariant (val[j]))
2260 {
2261 fold_undefer_and_ignore_overflow_warnings ();
2262 return chrec_dont_know;
2263 }
2264 }
2265 }
2266
2267 fold_undefer_and_ignore_overflow_warnings ();
2268
2269 return chrec_dont_know;
2270 }
2271
2272 /* Finds the exit of the LOOP by that the loop exits after a constant
2273 number of iterations and stores the exit edge to *EXIT. The constant
2274 giving the number of iterations of LOOP is returned. The number of
2275 iterations is determined using loop_niter_by_eval (i.e. by brute force
2276 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2277 determines the number of iterations, chrec_dont_know is returned. */
2278
2279 tree
2280 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2281 {
2282 unsigned i;
2283 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2284 edge ex;
2285 tree niter = NULL_TREE, aniter;
2286
2287 *exit = NULL;
2288
2289 /* Loops with multiple exits are expensive to handle and less important. */
2290 if (!flag_expensive_optimizations
2291 && VEC_length (edge, exits) > 1)
2292 return chrec_dont_know;
2293
2294 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2295 {
2296 if (!just_once_each_iteration_p (loop, ex->src))
2297 continue;
2298
2299 aniter = loop_niter_by_eval (loop, ex);
2300 if (chrec_contains_undetermined (aniter))
2301 continue;
2302
2303 if (niter
2304 && !tree_int_cst_lt (aniter, niter))
2305 continue;
2306
2307 niter = aniter;
2308 *exit = ex;
2309 }
2310 VEC_free (edge, heap, exits);
2311
2312 return niter ? niter : chrec_dont_know;
2313 }
2314
2315 /*
2316
2317 Analysis of upper bounds on number of iterations of a loop.
2318
2319 */
2320
2321 static double_int derive_constant_upper_bound_ops (tree, tree,
2322 enum tree_code, tree);
2323
2324 /* Returns a constant upper bound on the value of the right-hand side of
2325 an assignment statement STMT. */
2326
2327 static double_int
2328 derive_constant_upper_bound_assign (gimple stmt)
2329 {
2330 enum tree_code code = gimple_assign_rhs_code (stmt);
2331 tree op0 = gimple_assign_rhs1 (stmt);
2332 tree op1 = gimple_assign_rhs2 (stmt);
2333
2334 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2335 op0, code, op1);
2336 }
2337
2338 /* Returns a constant upper bound on the value of expression VAL. VAL
2339 is considered to be unsigned. If its type is signed, its value must
2340 be nonnegative. */
2341
2342 static double_int
2343 derive_constant_upper_bound (tree val)
2344 {
2345 enum tree_code code;
2346 tree op0, op1;
2347
2348 extract_ops_from_tree (val, &code, &op0, &op1);
2349 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2350 }
2351
2352 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2353 whose type is TYPE. The expression is considered to be unsigned. If
2354 its type is signed, its value must be nonnegative. */
2355
2356 static double_int
2357 derive_constant_upper_bound_ops (tree type, tree op0,
2358 enum tree_code code, tree op1)
2359 {
2360 tree subtype, maxt;
2361 double_int bnd, max, mmax, cst;
2362 gimple stmt;
2363
2364 if (INTEGRAL_TYPE_P (type))
2365 maxt = TYPE_MAX_VALUE (type);
2366 else
2367 maxt = upper_bound_in_type (type, type);
2368
2369 max = tree_to_double_int (maxt);
2370
2371 switch (code)
2372 {
2373 case INTEGER_CST:
2374 return tree_to_double_int (op0);
2375
2376 CASE_CONVERT:
2377 subtype = TREE_TYPE (op0);
2378 if (!TYPE_UNSIGNED (subtype)
2379 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2380 that OP0 is nonnegative. */
2381 && TYPE_UNSIGNED (type)
2382 && !tree_expr_nonnegative_p (op0))
2383 {
2384 /* If we cannot prove that the casted expression is nonnegative,
2385 we cannot establish more useful upper bound than the precision
2386 of the type gives us. */
2387 return max;
2388 }
2389
2390 /* We now know that op0 is an nonnegative value. Try deriving an upper
2391 bound for it. */
2392 bnd = derive_constant_upper_bound (op0);
2393
2394 /* If the bound does not fit in TYPE, max. value of TYPE could be
2395 attained. */
2396 if (double_int_ucmp (max, bnd) < 0)
2397 return max;
2398
2399 return bnd;
2400
2401 case PLUS_EXPR:
2402 case POINTER_PLUS_EXPR:
2403 case MINUS_EXPR:
2404 if (TREE_CODE (op1) != INTEGER_CST
2405 || !tree_expr_nonnegative_p (op0))
2406 return max;
2407
2408 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2409 choose the most logical way how to treat this constant regardless
2410 of the signedness of the type. */
2411 cst = tree_to_double_int (op1);
2412 cst = double_int_sext (cst, TYPE_PRECISION (type));
2413 if (code != MINUS_EXPR)
2414 cst = double_int_neg (cst);
2415
2416 bnd = derive_constant_upper_bound (op0);
2417
2418 if (double_int_negative_p (cst))
2419 {
2420 cst = double_int_neg (cst);
2421 /* Avoid CST == 0x80000... */
2422 if (double_int_negative_p (cst))
2423 return max;;
2424
2425 /* OP0 + CST. We need to check that
2426 BND <= MAX (type) - CST. */
2427
2428 mmax = double_int_sub (max, cst);
2429 if (double_int_ucmp (bnd, mmax) > 0)
2430 return max;
2431
2432 return double_int_add (bnd, cst);
2433 }
2434 else
2435 {
2436 /* OP0 - CST, where CST >= 0.
2437
2438 If TYPE is signed, we have already verified that OP0 >= 0, and we
2439 know that the result is nonnegative. This implies that
2440 VAL <= BND - CST.
2441
2442 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2443 otherwise the operation underflows.
2444 */
2445
2446 /* This should only happen if the type is unsigned; however, for
2447 buggy programs that use overflowing signed arithmetics even with
2448 -fno-wrapv, this condition may also be true for signed values. */
2449 if (double_int_ucmp (bnd, cst) < 0)
2450 return max;
2451
2452 if (TYPE_UNSIGNED (type))
2453 {
2454 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2455 double_int_to_tree (type, cst));
2456 if (!tem || integer_nonzerop (tem))
2457 return max;
2458 }
2459
2460 bnd = double_int_sub (bnd, cst);
2461 }
2462
2463 return bnd;
2464
2465 case FLOOR_DIV_EXPR:
2466 case EXACT_DIV_EXPR:
2467 if (TREE_CODE (op1) != INTEGER_CST
2468 || tree_int_cst_sign_bit (op1))
2469 return max;
2470
2471 bnd = derive_constant_upper_bound (op0);
2472 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2473
2474 case BIT_AND_EXPR:
2475 if (TREE_CODE (op1) != INTEGER_CST
2476 || tree_int_cst_sign_bit (op1))
2477 return max;
2478 return tree_to_double_int (op1);
2479
2480 case SSA_NAME:
2481 stmt = SSA_NAME_DEF_STMT (op0);
2482 if (gimple_code (stmt) != GIMPLE_ASSIGN
2483 || gimple_assign_lhs (stmt) != op0)
2484 return max;
2485 return derive_constant_upper_bound_assign (stmt);
2486
2487 default:
2488 return max;
2489 }
2490 }
2491
2492 /* Records that every statement in LOOP is executed I_BOUND times.
2493 REALISTIC is true if I_BOUND is expected to be close to the real number
2494 of iterations. UPPER is true if we are sure the loop iterates at most
2495 I_BOUND times. */
2496
2497 static void
2498 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2499 bool upper)
2500 {
2501 /* Update the bounds only when there is no previous estimation, or when the current
2502 estimation is smaller. */
2503 if (upper
2504 && (!loop->any_upper_bound
2505 || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2506 {
2507 loop->any_upper_bound = true;
2508 loop->nb_iterations_upper_bound = i_bound;
2509 }
2510 if (realistic
2511 && (!loop->any_estimate
2512 || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2513 {
2514 loop->any_estimate = true;
2515 loop->nb_iterations_estimate = i_bound;
2516 }
2517 }
2518
2519 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2520 is true if the loop is exited immediately after STMT, and this exit
2521 is taken at last when the STMT is executed BOUND + 1 times.
2522 REALISTIC is true if BOUND is expected to be close to the real number
2523 of iterations. UPPER is true if we are sure the loop iterates at most
2524 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2525
2526 static void
2527 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2528 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2529 {
2530 double_int delta;
2531 edge exit;
2532
2533 if (dump_file && (dump_flags & TDF_DETAILS))
2534 {
2535 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2536 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2537 fprintf (dump_file, " is %sexecuted at most ",
2538 upper ? "" : "probably ");
2539 print_generic_expr (dump_file, bound, TDF_SLIM);
2540 fprintf (dump_file, " (bounded by ");
2541 dump_double_int (dump_file, i_bound, true);
2542 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2543 }
2544
2545 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2546 real number of iterations. */
2547 if (TREE_CODE (bound) != INTEGER_CST)
2548 realistic = false;
2549 if (!upper && !realistic)
2550 return;
2551
2552 /* If we have a guaranteed upper bound, record it in the appropriate
2553 list. */
2554 if (upper)
2555 {
2556 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2557
2558 elt->bound = i_bound;
2559 elt->stmt = at_stmt;
2560 elt->is_exit = is_exit;
2561 elt->next = loop->bounds;
2562 loop->bounds = elt;
2563 }
2564
2565 /* Update the number of iteration estimates according to the bound.
2566 If at_stmt is an exit or dominates the single exit from the loop,
2567 then the loop latch is executed at most BOUND times, otherwise
2568 it can be executed BOUND + 1 times. */
2569 exit = single_exit (loop);
2570 if (is_exit
2571 || (exit != NULL
2572 && dominated_by_p (CDI_DOMINATORS,
2573 exit->src, gimple_bb (at_stmt))))
2574 delta = double_int_zero;
2575 else
2576 delta = double_int_one;
2577 i_bound = double_int_add (i_bound, delta);
2578
2579 /* If an overflow occurred, ignore the result. */
2580 if (double_int_ucmp (i_bound, delta) < 0)
2581 return;
2582
2583 record_niter_bound (loop, i_bound, realistic, upper);
2584 }
2585
2586 /* Record the estimate on number of iterations of LOOP based on the fact that
2587 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2588 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2589 estimated number of iterations is expected to be close to the real one.
2590 UPPER is true if we are sure the induction variable does not wrap. */
2591
2592 static void
2593 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2594 tree low, tree high, bool realistic, bool upper)
2595 {
2596 tree niter_bound, extreme, delta;
2597 tree type = TREE_TYPE (base), unsigned_type;
2598 double_int max;
2599
2600 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2601 return;
2602
2603 if (dump_file && (dump_flags & TDF_DETAILS))
2604 {
2605 fprintf (dump_file, "Induction variable (");
2606 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2607 fprintf (dump_file, ") ");
2608 print_generic_expr (dump_file, base, TDF_SLIM);
2609 fprintf (dump_file, " + ");
2610 print_generic_expr (dump_file, step, TDF_SLIM);
2611 fprintf (dump_file, " * iteration does not wrap in statement ");
2612 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2613 fprintf (dump_file, " in loop %d.\n", loop->num);
2614 }
2615
2616 unsigned_type = unsigned_type_for (type);
2617 base = fold_convert (unsigned_type, base);
2618 step = fold_convert (unsigned_type, step);
2619
2620 if (tree_int_cst_sign_bit (step))
2621 {
2622 extreme = fold_convert (unsigned_type, low);
2623 if (TREE_CODE (base) != INTEGER_CST)
2624 base = fold_convert (unsigned_type, high);
2625 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2626 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2627 }
2628 else
2629 {
2630 extreme = fold_convert (unsigned_type, high);
2631 if (TREE_CODE (base) != INTEGER_CST)
2632 base = fold_convert (unsigned_type, low);
2633 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2634 }
2635
2636 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2637 would get out of the range. */
2638 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2639 max = derive_constant_upper_bound (niter_bound);
2640 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2641 }
2642
2643 /* Returns true if REF is a reference to an array at the end of a dynamically
2644 allocated structure. If this is the case, the array may be allocated larger
2645 than its upper bound implies. */
2646
2647 bool
2648 array_at_struct_end_p (tree ref)
2649 {
2650 tree base = get_base_address (ref);
2651 tree parent, field;
2652
2653 /* Unless the reference is through a pointer, the size of the array matches
2654 its declaration. */
2655 if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
2656 return false;
2657
2658 for (;handled_component_p (ref); ref = parent)
2659 {
2660 parent = TREE_OPERAND (ref, 0);
2661
2662 if (TREE_CODE (ref) == COMPONENT_REF)
2663 {
2664 /* All fields of a union are at its end. */
2665 if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
2666 continue;
2667
2668 /* Unless the field is at the end of the struct, we are done. */
2669 field = TREE_OPERAND (ref, 1);
2670 if (DECL_CHAIN (field))
2671 return false;
2672 }
2673
2674 /* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
2675 In all these cases, we might be accessing the last element, and
2676 although in practice this will probably never happen, it is legal for
2677 the indices of this last element to exceed the bounds of the array.
2678 Therefore, continue checking. */
2679 }
2680
2681 return true;
2682 }
2683
2684 /* Determine information about number of iterations a LOOP from the index
2685 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2686 guaranteed to be executed in every iteration of LOOP. Callback for
2687 for_each_index. */
2688
2689 struct ilb_data
2690 {
2691 struct loop *loop;
2692 gimple stmt;
2693 bool reliable;
2694 };
2695
2696 static bool
2697 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2698 {
2699 struct ilb_data *data = (struct ilb_data *) dta;
2700 tree ev, init, step;
2701 tree low, high, type, next;
2702 bool sign, upper = data->reliable, at_end = false;
2703 struct loop *loop = data->loop;
2704
2705 if (TREE_CODE (base) != ARRAY_REF)
2706 return true;
2707
2708 /* For arrays at the end of the structure, we are not guaranteed that they
2709 do not really extend over their declared size. However, for arrays of
2710 size greater than one, this is unlikely to be intended. */
2711 if (array_at_struct_end_p (base))
2712 {
2713 at_end = true;
2714 upper = false;
2715 }
2716
2717 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2718 init = initial_condition (ev);
2719 step = evolution_part_in_loop_num (ev, loop->num);
2720
2721 if (!init
2722 || !step
2723 || TREE_CODE (step) != INTEGER_CST
2724 || integer_zerop (step)
2725 || tree_contains_chrecs (init, NULL)
2726 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2727 return true;
2728
2729 low = array_ref_low_bound (base);
2730 high = array_ref_up_bound (base);
2731
2732 /* The case of nonconstant bounds could be handled, but it would be
2733 complicated. */
2734 if (TREE_CODE (low) != INTEGER_CST
2735 || !high
2736 || TREE_CODE (high) != INTEGER_CST)
2737 return true;
2738 sign = tree_int_cst_sign_bit (step);
2739 type = TREE_TYPE (step);
2740
2741 /* The array of length 1 at the end of a structure most likely extends
2742 beyond its bounds. */
2743 if (at_end
2744 && operand_equal_p (low, high, 0))
2745 return true;
2746
2747 /* In case the relevant bound of the array does not fit in type, or
2748 it does, but bound + step (in type) still belongs into the range of the
2749 array, the index may wrap and still stay within the range of the array
2750 (consider e.g. if the array is indexed by the full range of
2751 unsigned char).
2752
2753 To make things simpler, we require both bounds to fit into type, although
2754 there are cases where this would not be strictly necessary. */
2755 if (!int_fits_type_p (high, type)
2756 || !int_fits_type_p (low, type))
2757 return true;
2758 low = fold_convert (type, low);
2759 high = fold_convert (type, high);
2760
2761 if (sign)
2762 next = fold_binary (PLUS_EXPR, type, low, step);
2763 else
2764 next = fold_binary (PLUS_EXPR, type, high, step);
2765
2766 if (tree_int_cst_compare (low, next) <= 0
2767 && tree_int_cst_compare (next, high) <= 0)
2768 return true;
2769
2770 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2771 return true;
2772 }
2773
2774 /* Determine information about number of iterations a LOOP from the bounds
2775 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2776 STMT is guaranteed to be executed in every iteration of LOOP.*/
2777
2778 static void
2779 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2780 bool reliable)
2781 {
2782 struct ilb_data data;
2783
2784 data.loop = loop;
2785 data.stmt = stmt;
2786 data.reliable = reliable;
2787 for_each_index (&ref, idx_infer_loop_bounds, &data);
2788 }
2789
2790 /* Determine information about number of iterations of a LOOP from the way
2791 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2792 executed in every iteration of LOOP. */
2793
2794 static void
2795 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2796 {
2797 if (is_gimple_assign (stmt))
2798 {
2799 tree op0 = gimple_assign_lhs (stmt);
2800 tree op1 = gimple_assign_rhs1 (stmt);
2801
2802 /* For each memory access, analyze its access function
2803 and record a bound on the loop iteration domain. */
2804 if (REFERENCE_CLASS_P (op0))
2805 infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2806
2807 if (REFERENCE_CLASS_P (op1))
2808 infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2809 }
2810 else if (is_gimple_call (stmt))
2811 {
2812 tree arg, lhs;
2813 unsigned i, n = gimple_call_num_args (stmt);
2814
2815 lhs = gimple_call_lhs (stmt);
2816 if (lhs && REFERENCE_CLASS_P (lhs))
2817 infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2818
2819 for (i = 0; i < n; i++)
2820 {
2821 arg = gimple_call_arg (stmt, i);
2822 if (REFERENCE_CLASS_P (arg))
2823 infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2824 }
2825 }
2826 }
2827
2828 /* Determine information about number of iterations of a LOOP from the fact
2829 that pointer arithmetics in STMT does not overflow. */
2830
2831 static void
2832 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2833 {
2834 tree def, base, step, scev, type, low, high;
2835 tree var, ptr;
2836
2837 if (!is_gimple_assign (stmt)
2838 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2839 return;
2840
2841 def = gimple_assign_lhs (stmt);
2842 if (TREE_CODE (def) != SSA_NAME)
2843 return;
2844
2845 type = TREE_TYPE (def);
2846 if (!nowrap_type_p (type))
2847 return;
2848
2849 ptr = gimple_assign_rhs1 (stmt);
2850 if (!expr_invariant_in_loop_p (loop, ptr))
2851 return;
2852
2853 var = gimple_assign_rhs2 (stmt);
2854 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2855 return;
2856
2857 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2858 if (chrec_contains_undetermined (scev))
2859 return;
2860
2861 base = initial_condition_in_loop_num (scev, loop->num);
2862 step = evolution_part_in_loop_num (scev, loop->num);
2863
2864 if (!base || !step
2865 || TREE_CODE (step) != INTEGER_CST
2866 || tree_contains_chrecs (base, NULL)
2867 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2868 return;
2869
2870 low = lower_bound_in_type (type, type);
2871 high = upper_bound_in_type (type, type);
2872
2873 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2874 produce a NULL pointer. The contrary would mean NULL points to an object,
2875 while NULL is supposed to compare unequal with the address of all objects.
2876 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2877 NULL pointer since that would mean wrapping, which we assume here not to
2878 happen. So, we can exclude NULL from the valid range of pointer
2879 arithmetic. */
2880 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2881 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2882
2883 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2884 }
2885
2886 /* Determine information about number of iterations of a LOOP from the fact
2887 that signed arithmetics in STMT does not overflow. */
2888
2889 static void
2890 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2891 {
2892 tree def, base, step, scev, type, low, high;
2893
2894 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2895 return;
2896
2897 def = gimple_assign_lhs (stmt);
2898
2899 if (TREE_CODE (def) != SSA_NAME)
2900 return;
2901
2902 type = TREE_TYPE (def);
2903 if (!INTEGRAL_TYPE_P (type)
2904 || !TYPE_OVERFLOW_UNDEFINED (type))
2905 return;
2906
2907 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2908 if (chrec_contains_undetermined (scev))
2909 return;
2910
2911 base = initial_condition_in_loop_num (scev, loop->num);
2912 step = evolution_part_in_loop_num (scev, loop->num);
2913
2914 if (!base || !step
2915 || TREE_CODE (step) != INTEGER_CST
2916 || tree_contains_chrecs (base, NULL)
2917 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2918 return;
2919
2920 low = lower_bound_in_type (type, type);
2921 high = upper_bound_in_type (type, type);
2922
2923 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2924 }
2925
2926 /* The following analyzers are extracting informations on the bounds
2927 of LOOP from the following undefined behaviors:
2928
2929 - data references should not access elements over the statically
2930 allocated size,
2931
2932 - signed variables should not overflow when flag_wrapv is not set.
2933 */
2934
2935 static void
2936 infer_loop_bounds_from_undefined (struct loop *loop)
2937 {
2938 unsigned i;
2939 basic_block *bbs;
2940 gimple_stmt_iterator bsi;
2941 basic_block bb;
2942 bool reliable;
2943
2944 bbs = get_loop_body (loop);
2945
2946 for (i = 0; i < loop->num_nodes; i++)
2947 {
2948 bb = bbs[i];
2949
2950 /* If BB is not executed in each iteration of the loop, we cannot
2951 use the operations in it to infer reliable upper bound on the
2952 # of iterations of the loop. However, we can use it as a guess. */
2953 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2954
2955 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2956 {
2957 gimple stmt = gsi_stmt (bsi);
2958
2959 infer_loop_bounds_from_array (loop, stmt, reliable);
2960
2961 if (reliable)
2962 {
2963 infer_loop_bounds_from_signedness (loop, stmt);
2964 infer_loop_bounds_from_pointer_arith (loop, stmt);
2965 }
2966 }
2967
2968 }
2969
2970 free (bbs);
2971 }
2972
2973 /* Converts VAL to double_int. */
2974
2975 static double_int
2976 gcov_type_to_double_int (gcov_type val)
2977 {
2978 double_int ret;
2979
2980 ret.low = (unsigned HOST_WIDE_INT) val;
2981 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2982 the size of type. */
2983 val >>= HOST_BITS_PER_WIDE_INT - 1;
2984 val >>= 1;
2985 ret.high = (unsigned HOST_WIDE_INT) val;
2986
2987 return ret;
2988 }
2989
2990 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
2991 is true also use estimates derived from undefined behavior. */
2992
2993 void
2994 estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
2995 {
2996 VEC (edge, heap) *exits;
2997 tree niter, type;
2998 unsigned i;
2999 struct tree_niter_desc niter_desc;
3000 edge ex;
3001 double_int bound;
3002
3003 /* Give up if we already have tried to compute an estimation. */
3004 if (loop->estimate_state != EST_NOT_COMPUTED)
3005 return;
3006 loop->estimate_state = EST_AVAILABLE;
3007 loop->any_upper_bound = false;
3008 loop->any_estimate = false;
3009
3010 exits = get_loop_exit_edges (loop);
3011 FOR_EACH_VEC_ELT (edge, exits, i, ex)
3012 {
3013 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
3014 continue;
3015
3016 niter = niter_desc.niter;
3017 type = TREE_TYPE (niter);
3018 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3019 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3020 build_int_cst (type, 0),
3021 niter);
3022 record_estimate (loop, niter, niter_desc.max,
3023 last_stmt (ex->src),
3024 true, true, true);
3025 }
3026 VEC_free (edge, heap, exits);
3027
3028 if (use_undefined_p)
3029 infer_loop_bounds_from_undefined (loop);
3030
3031 /* If we have a measured profile, use it to estimate the number of
3032 iterations. */
3033 if (loop->header->count != 0)
3034 {
3035 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3036 bound = gcov_type_to_double_int (nit);
3037 record_niter_bound (loop, bound, true, false);
3038 }
3039
3040 /* If an upper bound is smaller than the realistic estimate of the
3041 number of iterations, use the upper bound instead. */
3042 if (loop->any_upper_bound
3043 && loop->any_estimate
3044 && double_int_ucmp (loop->nb_iterations_upper_bound,
3045 loop->nb_iterations_estimate) < 0)
3046 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
3047 }
3048
3049 /* Sets NIT to the estimated number of executions of the latch of the
3050 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3051 large as the number of iterations. If we have no reliable estimate,
3052 the function returns false, otherwise returns true. */
3053
3054 bool
3055 estimated_loop_iterations (struct loop *loop, bool conservative,
3056 double_int *nit)
3057 {
3058 estimate_numbers_of_iterations_loop (loop, true);
3059 if (conservative)
3060 {
3061 if (!loop->any_upper_bound)
3062 return false;
3063
3064 *nit = loop->nb_iterations_upper_bound;
3065 }
3066 else
3067 {
3068 if (!loop->any_estimate)
3069 return false;
3070
3071 *nit = loop->nb_iterations_estimate;
3072 }
3073
3074 return true;
3075 }
3076
3077 /* Similar to estimated_loop_iterations, but returns the estimate only
3078 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3079 on the number of iterations of LOOP could not be derived, returns -1. */
3080
3081 HOST_WIDE_INT
3082 estimated_loop_iterations_int (struct loop *loop, bool conservative)
3083 {
3084 double_int nit;
3085 HOST_WIDE_INT hwi_nit;
3086
3087 if (!estimated_loop_iterations (loop, conservative, &nit))
3088 return -1;
3089
3090 if (!double_int_fits_in_shwi_p (nit))
3091 return -1;
3092 hwi_nit = double_int_to_shwi (nit);
3093
3094 return hwi_nit < 0 ? -1 : hwi_nit;
3095 }
3096
3097 /* Returns an upper bound on the number of executions of statements
3098 in the LOOP. For statements before the loop exit, this exceeds
3099 the number of execution of the latch by one. */
3100
3101 HOST_WIDE_INT
3102 max_stmt_executions_int (struct loop *loop, bool conservative)
3103 {
3104 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop, conservative);
3105 HOST_WIDE_INT snit;
3106
3107 if (nit == -1)
3108 return -1;
3109
3110 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3111
3112 /* If the computation overflows, return -1. */
3113 return snit < 0 ? -1 : snit;
3114 }
3115
3116 /* Sets NIT to the estimated number of executions of the latch of the
3117 LOOP, plus one. If CONSERVATIVE is true, we must be sure that NIT is at
3118 least as large as the number of iterations. If we have no reliable
3119 estimate, the function returns false, otherwise returns true. */
3120
3121 bool
3122 max_stmt_executions (struct loop *loop, bool conservative, double_int *nit)
3123 {
3124 double_int nit_minus_one;
3125
3126 if (!estimated_loop_iterations (loop, conservative, nit))
3127 return false;
3128
3129 nit_minus_one = *nit;
3130
3131 *nit = double_int_add (*nit, double_int_one);
3132
3133 return double_int_ucmp (*nit, nit_minus_one) > 0;
3134 }
3135
3136 /* Records estimates on numbers of iterations of loops. */
3137
3138 void
3139 estimate_numbers_of_iterations (bool use_undefined_p)
3140 {
3141 loop_iterator li;
3142 struct loop *loop;
3143
3144 /* We don't want to issue signed overflow warnings while getting
3145 loop iteration estimates. */
3146 fold_defer_overflow_warnings ();
3147
3148 FOR_EACH_LOOP (li, loop, 0)
3149 {
3150 estimate_numbers_of_iterations_loop (loop, use_undefined_p);
3151 }
3152
3153 fold_undefer_and_ignore_overflow_warnings ();
3154 }
3155
3156 /* Returns true if statement S1 dominates statement S2. */
3157
3158 bool
3159 stmt_dominates_stmt_p (gimple s1, gimple s2)
3160 {
3161 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3162
3163 if (!bb1
3164 || s1 == s2)
3165 return true;
3166
3167 if (bb1 == bb2)
3168 {
3169 gimple_stmt_iterator bsi;
3170
3171 if (gimple_code (s2) == GIMPLE_PHI)
3172 return false;
3173
3174 if (gimple_code (s1) == GIMPLE_PHI)
3175 return true;
3176
3177 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3178 if (gsi_stmt (bsi) == s1)
3179 return true;
3180
3181 return false;
3182 }
3183
3184 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3185 }
3186
3187 /* Returns true when we can prove that the number of executions of
3188 STMT in the loop is at most NITER, according to the bound on
3189 the number of executions of the statement NITER_BOUND->stmt recorded in
3190 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3191 statements in the loop. */
3192
3193 static bool
3194 n_of_executions_at_most (gimple stmt,
3195 struct nb_iter_bound *niter_bound,
3196 tree niter)
3197 {
3198 double_int bound = niter_bound->bound;
3199 tree nit_type = TREE_TYPE (niter), e;
3200 enum tree_code cmp;
3201
3202 gcc_assert (TYPE_UNSIGNED (nit_type));
3203
3204 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3205 the number of iterations is small. */
3206 if (!double_int_fits_to_tree_p (nit_type, bound))
3207 return false;
3208
3209 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3210 times. This means that:
3211
3212 -- if NITER_BOUND->is_exit is true, then everything before
3213 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3214 times, and everything after it at most NITER_BOUND->bound times.
3215
3216 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3217 is executed, then NITER_BOUND->stmt is executed as well in the same
3218 iteration (we conclude that if both statements belong to the same
3219 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3220 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3221 executed at most NITER_BOUND->bound + 2 times. */
3222
3223 if (niter_bound->is_exit)
3224 {
3225 if (stmt
3226 && stmt != niter_bound->stmt
3227 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3228 cmp = GE_EXPR;
3229 else
3230 cmp = GT_EXPR;
3231 }
3232 else
3233 {
3234 if (!stmt
3235 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3236 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3237 {
3238 bound = double_int_add (bound, double_int_one);
3239 if (double_int_zero_p (bound)
3240 || !double_int_fits_to_tree_p (nit_type, bound))
3241 return false;
3242 }
3243 cmp = GT_EXPR;
3244 }
3245
3246 e = fold_binary (cmp, boolean_type_node,
3247 niter, double_int_to_tree (nit_type, bound));
3248 return e && integer_nonzerop (e);
3249 }
3250
3251 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3252
3253 bool
3254 nowrap_type_p (tree type)
3255 {
3256 if (INTEGRAL_TYPE_P (type)
3257 && TYPE_OVERFLOW_UNDEFINED (type))
3258 return true;
3259
3260 if (POINTER_TYPE_P (type))
3261 return true;
3262
3263 return false;
3264 }
3265
3266 /* Return false only when the induction variable BASE + STEP * I is
3267 known to not overflow: i.e. when the number of iterations is small
3268 enough with respect to the step and initial condition in order to
3269 keep the evolution confined in TYPEs bounds. Return true when the
3270 iv is known to overflow or when the property is not computable.
3271
3272 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3273 the rules for overflow of the given language apply (e.g., that signed
3274 arithmetics in C does not overflow). */
3275
3276 bool
3277 scev_probably_wraps_p (tree base, tree step,
3278 gimple at_stmt, struct loop *loop,
3279 bool use_overflow_semantics)
3280 {
3281 struct nb_iter_bound *bound;
3282 tree delta, step_abs;
3283 tree unsigned_type, valid_niter;
3284 tree type = TREE_TYPE (step);
3285
3286 /* FIXME: We really need something like
3287 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3288
3289 We used to test for the following situation that frequently appears
3290 during address arithmetics:
3291
3292 D.1621_13 = (long unsigned intD.4) D.1620_12;
3293 D.1622_14 = D.1621_13 * 8;
3294 D.1623_15 = (doubleD.29 *) D.1622_14;
3295
3296 And derived that the sequence corresponding to D_14
3297 can be proved to not wrap because it is used for computing a
3298 memory access; however, this is not really the case -- for example,
3299 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3300 2032, 2040, 0, 8, ..., but the code is still legal. */
3301
3302 if (chrec_contains_undetermined (base)
3303 || chrec_contains_undetermined (step))
3304 return true;
3305
3306 if (integer_zerop (step))
3307 return false;
3308
3309 /* If we can use the fact that signed and pointer arithmetics does not
3310 wrap, we are done. */
3311 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3312 return false;
3313
3314 /* To be able to use estimates on number of iterations of the loop,
3315 we must have an upper bound on the absolute value of the step. */
3316 if (TREE_CODE (step) != INTEGER_CST)
3317 return true;
3318
3319 /* Don't issue signed overflow warnings. */
3320 fold_defer_overflow_warnings ();
3321
3322 /* Otherwise, compute the number of iterations before we reach the
3323 bound of the type, and verify that the loop is exited before this
3324 occurs. */
3325 unsigned_type = unsigned_type_for (type);
3326 base = fold_convert (unsigned_type, base);
3327
3328 if (tree_int_cst_sign_bit (step))
3329 {
3330 tree extreme = fold_convert (unsigned_type,
3331 lower_bound_in_type (type, type));
3332 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3333 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3334 fold_convert (unsigned_type, step));
3335 }
3336 else
3337 {
3338 tree extreme = fold_convert (unsigned_type,
3339 upper_bound_in_type (type, type));
3340 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3341 step_abs = fold_convert (unsigned_type, step);
3342 }
3343
3344 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3345
3346 estimate_numbers_of_iterations_loop (loop, true);
3347 for (bound = loop->bounds; bound; bound = bound->next)
3348 {
3349 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3350 {
3351 fold_undefer_and_ignore_overflow_warnings ();
3352 return false;
3353 }
3354 }
3355
3356 fold_undefer_and_ignore_overflow_warnings ();
3357
3358 /* At this point we still don't have a proof that the iv does not
3359 overflow: give up. */
3360 return true;
3361 }
3362
3363 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3364
3365 void
3366 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3367 {
3368 struct nb_iter_bound *bound, *next;
3369
3370 loop->nb_iterations = NULL;
3371 loop->estimate_state = EST_NOT_COMPUTED;
3372 for (bound = loop->bounds; bound; bound = next)
3373 {
3374 next = bound->next;
3375 ggc_free (bound);
3376 }
3377
3378 loop->bounds = NULL;
3379 }
3380
3381 /* Frees the information on upper bounds on numbers of iterations of loops. */
3382
3383 void
3384 free_numbers_of_iterations_estimates (void)
3385 {
3386 loop_iterator li;
3387 struct loop *loop;
3388
3389 FOR_EACH_LOOP (li, loop, 0)
3390 {
3391 free_numbers_of_iterations_estimates_loop (loop);
3392 }
3393 }
3394
3395 /* Substitute value VAL for ssa name NAME inside expressions held
3396 at LOOP. */
3397
3398 void
3399 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3400 {
3401 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3402 }