4c67c26faf3eb67b618ef065992a72b4d91cab07
[gcc.git] / gcc / tree-ssa-loop-niter.c
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "intl.h"
30 #include "tree-flow.h"
31 #include "dumpfile.h"
32 #include "cfgloop.h"
33 #include "ggc.h"
34 #include "tree-chrec.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-data-ref.h"
37 #include "params.h"
38 #include "flags.h"
39 #include "diagnostic-core.h"
40 #include "tree-inline.h"
41
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
43
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
46 expression. */
47 #define MAX_DOMINATORS_TO_WALK 8
48
49 /*
50
51 Analysis of number of iterations of an affine exit test.
52
53 */
54
55 /* Bounds on some value, BELOW <= X <= UP. */
56
57 typedef struct
58 {
59 mpz_t below, up;
60 } bounds;
61
62
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
64
65 static void
66 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
67 {
68 tree type = TREE_TYPE (expr);
69 tree op0, op1;
70 double_int off;
71 bool negate = false;
72
73 *var = expr;
74 mpz_set_ui (offset, 0);
75
76 switch (TREE_CODE (expr))
77 {
78 case MINUS_EXPR:
79 negate = true;
80 /* Fallthru. */
81
82 case PLUS_EXPR:
83 case POINTER_PLUS_EXPR:
84 op0 = TREE_OPERAND (expr, 0);
85 op1 = TREE_OPERAND (expr, 1);
86
87 if (TREE_CODE (op1) != INTEGER_CST)
88 break;
89
90 *var = op0;
91 /* Always sign extend the offset. */
92 off = tree_to_double_int (op1);
93 off = double_int_sext (off, TYPE_PRECISION (type));
94 mpz_set_double_int (offset, off, false);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
98
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 off = tree_to_double_int (expr);
102 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
103 break;
104
105 default:
106 break;
107 }
108 }
109
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
112
113 static void
114 determine_value_range (tree type, tree var, mpz_t off,
115 mpz_t min, mpz_t max)
116 {
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var))
119 {
120 mpz_set (min, off);
121 mpz_set (max, off);
122 return;
123 }
124
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type, min, max);
128 if (!nowrap_type_p (type))
129 return;
130
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off) < 0)
134 mpz_add (max, max, off);
135 else
136 mpz_add (min, min, off);
137 }
138
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
141
142 static void
143 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
144 bounds *bnds)
145 {
146 int rel = mpz_cmp (x, y);
147 bool may_wrap = !nowrap_type_p (type);
148 mpz_t m;
149
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
158 is M - X + Y.
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
163
164 if (rel == 0)
165 {
166 mpz_set_ui (bnds->below, 0);
167 mpz_set_ui (bnds->up, 0);
168 return;
169 }
170
171 mpz_init (m);
172 mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
173 mpz_add_ui (m, m, 1);
174 mpz_sub (bnds->up, x, y);
175 mpz_set (bnds->below, bnds->up);
176
177 if (may_wrap)
178 {
179 if (rel > 0)
180 mpz_sub (bnds->below, bnds->below, m);
181 else
182 mpz_add (bnds->up, bnds->up, m);
183 }
184
185 mpz_clear (m);
186 }
187
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
191
192 static void
193 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
194 tree vary, mpz_t offy,
195 tree c0, enum tree_code cmp, tree c1,
196 bounds *bnds)
197 {
198 tree varc0, varc1, tmp, ctype;
199 mpz_t offc0, offc1, loffx, loffy, bnd;
200 bool lbound = false;
201 bool no_wrap = nowrap_type_p (type);
202 bool x_ok, y_ok;
203
204 switch (cmp)
205 {
206 case LT_EXPR:
207 case LE_EXPR:
208 case GT_EXPR:
209 case GE_EXPR:
210 STRIP_SIGN_NOPS (c0);
211 STRIP_SIGN_NOPS (c1);
212 ctype = TREE_TYPE (c0);
213 if (!useless_type_conversion_p (ctype, type))
214 return;
215
216 break;
217
218 case EQ_EXPR:
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
221 it. */
222 return;
223
224 case NE_EXPR:
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type))
229 return;
230
231 /* Ensure that the condition speaks about an expression in the same type
232 as X and Y. */
233 ctype = TREE_TYPE (c0);
234 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
235 return;
236 c0 = fold_convert (type, c0);
237 c1 = fold_convert (type, c1);
238
239 if (TYPE_MIN_VALUE (type)
240 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
241 {
242 cmp = GT_EXPR;
243 break;
244 }
245 if (TYPE_MAX_VALUE (type)
246 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
247 {
248 cmp = LT_EXPR;
249 break;
250 }
251
252 return;
253 default:
254 return;
255 }
256
257 mpz_init (offc0);
258 mpz_init (offc1);
259 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
260 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
261
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
265
266 if (operand_equal_p (varx, varc1, 0))
267 {
268 tmp = varc0; varc0 = varc1; varc1 = tmp;
269 mpz_swap (offc0, offc1);
270 cmp = swap_tree_comparison (cmp);
271 }
272
273 if (!operand_equal_p (varx, varc0, 0)
274 || !operand_equal_p (vary, varc1, 0))
275 goto end;
276
277 mpz_init_set (loffx, offx);
278 mpz_init_set (loffy, offy);
279
280 if (cmp == GT_EXPR || cmp == GE_EXPR)
281 {
282 tmp = varx; varx = vary; vary = tmp;
283 mpz_swap (offc0, offc1);
284 mpz_swap (loffx, loffy);
285 cmp = swap_tree_comparison (cmp);
286 lbound = true;
287 }
288
289 /* If there is no overflow, the condition implies that
290
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
292
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
296 true if
297
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
304
305 if (no_wrap)
306 {
307 x_ok = true;
308 y_ok = true;
309 }
310 else
311 {
312 x_ok = (integer_zerop (varx)
313 || mpz_cmp (loffx, offc0) >= 0);
314 y_ok = (integer_zerop (vary)
315 || mpz_cmp (loffy, offc1) <= 0);
316 }
317
318 if (x_ok && y_ok)
319 {
320 mpz_init (bnd);
321 mpz_sub (bnd, loffx, loffy);
322 mpz_add (bnd, bnd, offc1);
323 mpz_sub (bnd, bnd, offc0);
324
325 if (cmp == LT_EXPR)
326 mpz_sub_ui (bnd, bnd, 1);
327
328 if (lbound)
329 {
330 mpz_neg (bnd, bnd);
331 if (mpz_cmp (bnds->below, bnd) < 0)
332 mpz_set (bnds->below, bnd);
333 }
334 else
335 {
336 if (mpz_cmp (bnd, bnds->up) < 0)
337 mpz_set (bnds->up, bnd);
338 }
339 mpz_clear (bnd);
340 }
341
342 mpz_clear (loffx);
343 mpz_clear (loffy);
344 end:
345 mpz_clear (offc0);
346 mpz_clear (offc1);
347 }
348
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
351 without overflows.
352
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
357
358 static void
359 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
360 {
361 tree type = TREE_TYPE (x);
362 tree varx, vary;
363 mpz_t offx, offy;
364 mpz_t minx, maxx, miny, maxy;
365 int cnt = 0;
366 edge e;
367 basic_block bb;
368 tree c0, c1;
369 gimple cond;
370 enum tree_code cmp;
371
372 /* Get rid of unnecessary casts, but preserve the value of
373 the expressions. */
374 STRIP_SIGN_NOPS (x);
375 STRIP_SIGN_NOPS (y);
376
377 mpz_init (bnds->below);
378 mpz_init (bnds->up);
379 mpz_init (offx);
380 mpz_init (offy);
381 split_to_var_and_offset (x, &varx, offx);
382 split_to_var_and_offset (y, &vary, offy);
383
384 if (!integer_zerop (varx)
385 && operand_equal_p (varx, vary, 0))
386 {
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type, offx, offy, bnds);
391 }
392 else
393 {
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
396 mpz_init (minx);
397 mpz_init (maxx);
398 mpz_init (miny);
399 mpz_init (maxy);
400 determine_value_range (type, varx, offx, minx, maxx);
401 determine_value_range (type, vary, offy, miny, maxy);
402
403 mpz_sub (bnds->below, minx, maxy);
404 mpz_sub (bnds->up, maxx, miny);
405 mpz_clear (minx);
406 mpz_clear (maxx);
407 mpz_clear (miny);
408 mpz_clear (maxy);
409 }
410
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx) && integer_zerop (vary))
413 goto end;
414
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb = loop->header;
418 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
419 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
420 {
421 if (!single_pred_p (bb))
422 continue;
423 e = single_pred_edge (bb);
424
425 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
426 continue;
427
428 cond = last_stmt (e->src);
429 c0 = gimple_cond_lhs (cond);
430 cmp = gimple_cond_code (cond);
431 c1 = gimple_cond_rhs (cond);
432
433 if (e->flags & EDGE_FALSE_VALUE)
434 cmp = invert_tree_comparison (cmp, false);
435
436 refine_bounds_using_guard (type, varx, offx, vary, offy,
437 c0, cmp, c1, bnds);
438 ++cnt;
439 }
440
441 end:
442 mpz_clear (offx);
443 mpz_clear (offy);
444 }
445
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
449
450 static void
451 bounds_add (bounds *bnds, double_int delta, tree type)
452 {
453 mpz_t mdelta, max;
454
455 mpz_init (mdelta);
456 mpz_set_double_int (mdelta, delta, false);
457
458 mpz_init (max);
459 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
460
461 mpz_add (bnds->up, bnds->up, mdelta);
462 mpz_add (bnds->below, bnds->below, mdelta);
463
464 if (mpz_cmp (bnds->up, max) > 0)
465 mpz_set (bnds->up, max);
466
467 mpz_neg (max, max);
468 if (mpz_cmp (bnds->below, max) < 0)
469 mpz_set (bnds->below, max);
470
471 mpz_clear (mdelta);
472 mpz_clear (max);
473 }
474
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
477
478 static void
479 bounds_negate (bounds *bnds)
480 {
481 mpz_t tmp;
482
483 mpz_init_set (tmp, bnds->up);
484 mpz_neg (bnds->up, bnds->below);
485 mpz_neg (bnds->below, tmp);
486 mpz_clear (tmp);
487 }
488
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
490
491 static tree
492 inverse (tree x, tree mask)
493 {
494 tree type = TREE_TYPE (x);
495 tree rslt;
496 unsigned ctr = tree_floor_log2 (mask);
497
498 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
499 {
500 unsigned HOST_WIDE_INT ix;
501 unsigned HOST_WIDE_INT imask;
502 unsigned HOST_WIDE_INT irslt = 1;
503
504 gcc_assert (cst_and_fits_in_hwi (x));
505 gcc_assert (cst_and_fits_in_hwi (mask));
506
507 ix = int_cst_value (x);
508 imask = int_cst_value (mask);
509
510 for (; ctr; ctr--)
511 {
512 irslt *= ix;
513 ix *= ix;
514 }
515 irslt &= imask;
516
517 rslt = build_int_cst_type (type, irslt);
518 }
519 else
520 {
521 rslt = build_int_cst (type, 1);
522 for (; ctr; ctr--)
523 {
524 rslt = int_const_binop (MULT_EXPR, rslt, x);
525 x = int_const_binop (MULT_EXPR, x, x);
526 }
527 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
528 }
529
530 return rslt;
531 }
532
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
538
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
548
549 static void
550 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
551 bounds *bnds, bool exit_must_be_taken)
552 {
553 double_int max;
554 mpz_t d;
555 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
556 || mpz_sgn (bnds->below) >= 0);
557
558 if (multiple_of_p (TREE_TYPE (c), c, s))
559 {
560 /* If C is an exact multiple of S, then its value will be reached before
561 the induction variable overflows (unless the loop is exited in some
562 other way before). Note that the actual induction variable in the
563 loop (which ranges from base to final instead of from 0 to C) may
564 overflow, in which case BNDS.up will not be giving a correct upper
565 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
566 no_overflow = true;
567 exit_must_be_taken = true;
568 }
569
570 /* If the induction variable can overflow, the number of iterations is at
571 most the period of the control variable (or infinite, but in that case
572 the whole # of iterations analysis will fail). */
573 if (!no_overflow)
574 {
575 max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
576 - tree_low_cst (num_ending_zeros (s), 1));
577 mpz_set_double_int (bnd, max, true);
578 return;
579 }
580
581 /* Now we know that the induction variable does not overflow, so the loop
582 iterates at most (range of type / S) times. */
583 mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
584 true);
585
586 /* If the induction variable is guaranteed to reach the value of C before
587 overflow, ... */
588 if (exit_must_be_taken)
589 {
590 /* ... then we can strengthen this to C / S, and possibly we can use
591 the upper bound on C given by BNDS. */
592 if (TREE_CODE (c) == INTEGER_CST)
593 mpz_set_double_int (bnd, tree_to_double_int (c), true);
594 else if (bnds_u_valid)
595 mpz_set (bnd, bnds->up);
596 }
597
598 mpz_init (d);
599 mpz_set_double_int (d, tree_to_double_int (s), true);
600 mpz_fdiv_q (bnd, bnd, d);
601 mpz_clear (d);
602 }
603
604 /* Determines number of iterations of loop whose ending condition
605 is IV <> FINAL. TYPE is the type of the iv. The number of
606 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
607 we know that the exit must be taken eventually, i.e., that the IV
608 ever reaches the value FINAL (we derived this earlier, and possibly set
609 NITER->assumptions to make sure this is the case). BNDS contains the
610 bounds on the difference FINAL - IV->base. */
611
612 static bool
613 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
614 struct tree_niter_desc *niter, bool exit_must_be_taken,
615 bounds *bnds)
616 {
617 tree niter_type = unsigned_type_for (type);
618 tree s, c, d, bits, assumption, tmp, bound;
619 mpz_t max;
620
621 niter->control = *iv;
622 niter->bound = final;
623 niter->cmp = NE_EXPR;
624
625 /* Rearrange the terms so that we get inequality S * i <> C, with S
626 positive. Also cast everything to the unsigned type. If IV does
627 not overflow, BNDS bounds the value of C. Also, this is the
628 case if the computation |FINAL - IV->base| does not overflow, i.e.,
629 if BNDS->below in the result is nonnegative. */
630 if (tree_int_cst_sign_bit (iv->step))
631 {
632 s = fold_convert (niter_type,
633 fold_build1 (NEGATE_EXPR, type, iv->step));
634 c = fold_build2 (MINUS_EXPR, niter_type,
635 fold_convert (niter_type, iv->base),
636 fold_convert (niter_type, final));
637 bounds_negate (bnds);
638 }
639 else
640 {
641 s = fold_convert (niter_type, iv->step);
642 c = fold_build2 (MINUS_EXPR, niter_type,
643 fold_convert (niter_type, final),
644 fold_convert (niter_type, iv->base));
645 }
646
647 mpz_init (max);
648 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
649 exit_must_be_taken);
650 niter->max = mpz_get_double_int (niter_type, max, false);
651 mpz_clear (max);
652
653 /* First the trivial cases -- when the step is 1. */
654 if (integer_onep (s))
655 {
656 niter->niter = c;
657 return true;
658 }
659
660 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
661 is infinite. Otherwise, the number of iterations is
662 (inverse(s/d) * (c/d)) mod (size of mode/d). */
663 bits = num_ending_zeros (s);
664 bound = build_low_bits_mask (niter_type,
665 (TYPE_PRECISION (niter_type)
666 - tree_low_cst (bits, 1)));
667
668 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
669 build_int_cst (niter_type, 1), bits);
670 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
671
672 if (!exit_must_be_taken)
673 {
674 /* If we cannot assume that the exit is taken eventually, record the
675 assumptions for divisibility of c. */
676 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
677 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
678 assumption, build_int_cst (niter_type, 0));
679 if (!integer_nonzerop (assumption))
680 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
681 niter->assumptions, assumption);
682 }
683
684 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
685 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
686 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
687 return true;
688 }
689
690 /* Checks whether we can determine the final value of the control variable
691 of the loop with ending condition IV0 < IV1 (computed in TYPE).
692 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
693 of the step. The assumptions necessary to ensure that the computation
694 of the final value does not overflow are recorded in NITER. If we
695 find the final value, we adjust DELTA and return TRUE. Otherwise
696 we return false. BNDS bounds the value of IV1->base - IV0->base,
697 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
698 true if we know that the exit must be taken eventually. */
699
700 static bool
701 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
702 struct tree_niter_desc *niter,
703 tree *delta, tree step,
704 bool exit_must_be_taken, bounds *bnds)
705 {
706 tree niter_type = TREE_TYPE (step);
707 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
708 tree tmod;
709 mpz_t mmod;
710 tree assumption = boolean_true_node, bound, noloop;
711 bool ret = false, fv_comp_no_overflow;
712 tree type1 = type;
713 if (POINTER_TYPE_P (type))
714 type1 = sizetype;
715
716 if (TREE_CODE (mod) != INTEGER_CST)
717 return false;
718 if (integer_nonzerop (mod))
719 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
720 tmod = fold_convert (type1, mod);
721
722 mpz_init (mmod);
723 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
724 mpz_neg (mmod, mmod);
725
726 /* If the induction variable does not overflow and the exit is taken,
727 then the computation of the final value does not overflow. This is
728 also obviously the case if the new final value is equal to the
729 current one. Finally, we postulate this for pointer type variables,
730 as the code cannot rely on the object to that the pointer points being
731 placed at the end of the address space (and more pragmatically,
732 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
733 if (integer_zerop (mod) || POINTER_TYPE_P (type))
734 fv_comp_no_overflow = true;
735 else if (!exit_must_be_taken)
736 fv_comp_no_overflow = false;
737 else
738 fv_comp_no_overflow =
739 (iv0->no_overflow && integer_nonzerop (iv0->step))
740 || (iv1->no_overflow && integer_nonzerop (iv1->step));
741
742 if (integer_nonzerop (iv0->step))
743 {
744 /* The final value of the iv is iv1->base + MOD, assuming that this
745 computation does not overflow, and that
746 iv0->base <= iv1->base + MOD. */
747 if (!fv_comp_no_overflow)
748 {
749 bound = fold_build2 (MINUS_EXPR, type1,
750 TYPE_MAX_VALUE (type1), tmod);
751 assumption = fold_build2 (LE_EXPR, boolean_type_node,
752 iv1->base, bound);
753 if (integer_zerop (assumption))
754 goto end;
755 }
756 if (mpz_cmp (mmod, bnds->below) < 0)
757 noloop = boolean_false_node;
758 else if (POINTER_TYPE_P (type))
759 noloop = fold_build2 (GT_EXPR, boolean_type_node,
760 iv0->base,
761 fold_build_pointer_plus (iv1->base, tmod));
762 else
763 noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 iv0->base,
765 fold_build2 (PLUS_EXPR, type1,
766 iv1->base, tmod));
767 }
768 else
769 {
770 /* The final value of the iv is iv0->base - MOD, assuming that this
771 computation does not overflow, and that
772 iv0->base - MOD <= iv1->base. */
773 if (!fv_comp_no_overflow)
774 {
775 bound = fold_build2 (PLUS_EXPR, type1,
776 TYPE_MIN_VALUE (type1), tmod);
777 assumption = fold_build2 (GE_EXPR, boolean_type_node,
778 iv0->base, bound);
779 if (integer_zerop (assumption))
780 goto end;
781 }
782 if (mpz_cmp (mmod, bnds->below) < 0)
783 noloop = boolean_false_node;
784 else if (POINTER_TYPE_P (type))
785 noloop = fold_build2 (GT_EXPR, boolean_type_node,
786 fold_build_pointer_plus (iv0->base,
787 fold_build1 (NEGATE_EXPR,
788 type1, tmod)),
789 iv1->base);
790 else
791 noloop = fold_build2 (GT_EXPR, boolean_type_node,
792 fold_build2 (MINUS_EXPR, type1,
793 iv0->base, tmod),
794 iv1->base);
795 }
796
797 if (!integer_nonzerop (assumption))
798 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
799 niter->assumptions,
800 assumption);
801 if (!integer_zerop (noloop))
802 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
803 niter->may_be_zero,
804 noloop);
805 bounds_add (bnds, tree_to_double_int (mod), type);
806 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
807
808 ret = true;
809 end:
810 mpz_clear (mmod);
811 return ret;
812 }
813
814 /* Add assertions to NITER that ensure that the control variable of the loop
815 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
816 are TYPE. Returns false if we can prove that there is an overflow, true
817 otherwise. STEP is the absolute value of the step. */
818
819 static bool
820 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
821 struct tree_niter_desc *niter, tree step)
822 {
823 tree bound, d, assumption, diff;
824 tree niter_type = TREE_TYPE (step);
825
826 if (integer_nonzerop (iv0->step))
827 {
828 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
829 if (iv0->no_overflow)
830 return true;
831
832 /* If iv0->base is a constant, we can determine the last value before
833 overflow precisely; otherwise we conservatively assume
834 MAX - STEP + 1. */
835
836 if (TREE_CODE (iv0->base) == INTEGER_CST)
837 {
838 d = fold_build2 (MINUS_EXPR, niter_type,
839 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
840 fold_convert (niter_type, iv0->base));
841 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
842 }
843 else
844 diff = fold_build2 (MINUS_EXPR, niter_type, step,
845 build_int_cst (niter_type, 1));
846 bound = fold_build2 (MINUS_EXPR, type,
847 TYPE_MAX_VALUE (type), fold_convert (type, diff));
848 assumption = fold_build2 (LE_EXPR, boolean_type_node,
849 iv1->base, bound);
850 }
851 else
852 {
853 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
854 if (iv1->no_overflow)
855 return true;
856
857 if (TREE_CODE (iv1->base) == INTEGER_CST)
858 {
859 d = fold_build2 (MINUS_EXPR, niter_type,
860 fold_convert (niter_type, iv1->base),
861 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
862 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
863 }
864 else
865 diff = fold_build2 (MINUS_EXPR, niter_type, step,
866 build_int_cst (niter_type, 1));
867 bound = fold_build2 (PLUS_EXPR, type,
868 TYPE_MIN_VALUE (type), fold_convert (type, diff));
869 assumption = fold_build2 (GE_EXPR, boolean_type_node,
870 iv0->base, bound);
871 }
872
873 if (integer_zerop (assumption))
874 return false;
875 if (!integer_nonzerop (assumption))
876 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
877 niter->assumptions, assumption);
878
879 iv0->no_overflow = true;
880 iv1->no_overflow = true;
881 return true;
882 }
883
884 /* Add an assumption to NITER that a loop whose ending condition
885 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
886 bounds the value of IV1->base - IV0->base. */
887
888 static void
889 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
890 struct tree_niter_desc *niter, bounds *bnds)
891 {
892 tree assumption = boolean_true_node, bound, diff;
893 tree mbz, mbzl, mbzr, type1;
894 bool rolls_p, no_overflow_p;
895 double_int dstep;
896 mpz_t mstep, max;
897
898 /* We are going to compute the number of iterations as
899 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
900 variant of TYPE. This formula only works if
901
902 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
903
904 (where MAX is the maximum value of the unsigned variant of TYPE, and
905 the computations in this formula are performed in full precision,
906 i.e., without overflows).
907
908 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
909 we have a condition of the form iv0->base - step < iv1->base before the loop,
910 and for loops iv0->base < iv1->base - step * i the condition
911 iv0->base < iv1->base + step, due to loop header copying, which enable us
912 to prove the lower bound.
913
914 The upper bound is more complicated. Unless the expressions for initial
915 and final value themselves contain enough information, we usually cannot
916 derive it from the context. */
917
918 /* First check whether the answer does not follow from the bounds we gathered
919 before. */
920 if (integer_nonzerop (iv0->step))
921 dstep = tree_to_double_int (iv0->step);
922 else
923 {
924 dstep = double_int_sext (tree_to_double_int (iv1->step),
925 TYPE_PRECISION (type));
926 dstep = double_int_neg (dstep);
927 }
928
929 mpz_init (mstep);
930 mpz_set_double_int (mstep, dstep, true);
931 mpz_neg (mstep, mstep);
932 mpz_add_ui (mstep, mstep, 1);
933
934 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
935
936 mpz_init (max);
937 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
938 mpz_add (max, max, mstep);
939 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
940 /* For pointers, only values lying inside a single object
941 can be compared or manipulated by pointer arithmetics.
942 Gcc in general does not allow or handle objects larger
943 than half of the address space, hence the upper bound
944 is satisfied for pointers. */
945 || POINTER_TYPE_P (type));
946 mpz_clear (mstep);
947 mpz_clear (max);
948
949 if (rolls_p && no_overflow_p)
950 return;
951
952 type1 = type;
953 if (POINTER_TYPE_P (type))
954 type1 = sizetype;
955
956 /* Now the hard part; we must formulate the assumption(s) as expressions, and
957 we must be careful not to introduce overflow. */
958
959 if (integer_nonzerop (iv0->step))
960 {
961 diff = fold_build2 (MINUS_EXPR, type1,
962 iv0->step, build_int_cst (type1, 1));
963
964 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
965 0 address never belongs to any object, we can assume this for
966 pointers. */
967 if (!POINTER_TYPE_P (type))
968 {
969 bound = fold_build2 (PLUS_EXPR, type1,
970 TYPE_MIN_VALUE (type), diff);
971 assumption = fold_build2 (GE_EXPR, boolean_type_node,
972 iv0->base, bound);
973 }
974
975 /* And then we can compute iv0->base - diff, and compare it with
976 iv1->base. */
977 mbzl = fold_build2 (MINUS_EXPR, type1,
978 fold_convert (type1, iv0->base), diff);
979 mbzr = fold_convert (type1, iv1->base);
980 }
981 else
982 {
983 diff = fold_build2 (PLUS_EXPR, type1,
984 iv1->step, build_int_cst (type1, 1));
985
986 if (!POINTER_TYPE_P (type))
987 {
988 bound = fold_build2 (PLUS_EXPR, type1,
989 TYPE_MAX_VALUE (type), diff);
990 assumption = fold_build2 (LE_EXPR, boolean_type_node,
991 iv1->base, bound);
992 }
993
994 mbzl = fold_convert (type1, iv0->base);
995 mbzr = fold_build2 (MINUS_EXPR, type1,
996 fold_convert (type1, iv1->base), diff);
997 }
998
999 if (!integer_nonzerop (assumption))
1000 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1001 niter->assumptions, assumption);
1002 if (!rolls_p)
1003 {
1004 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1005 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1006 niter->may_be_zero, mbz);
1007 }
1008 }
1009
1010 /* Determines number of iterations of loop whose ending condition
1011 is IV0 < IV1. TYPE is the type of the iv. The number of
1012 iterations is stored to NITER. BNDS bounds the difference
1013 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1014 that the exit must be taken eventually. */
1015
1016 static bool
1017 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1018 struct tree_niter_desc *niter,
1019 bool exit_must_be_taken, bounds *bnds)
1020 {
1021 tree niter_type = unsigned_type_for (type);
1022 tree delta, step, s;
1023 mpz_t mstep, tmp;
1024
1025 if (integer_nonzerop (iv0->step))
1026 {
1027 niter->control = *iv0;
1028 niter->cmp = LT_EXPR;
1029 niter->bound = iv1->base;
1030 }
1031 else
1032 {
1033 niter->control = *iv1;
1034 niter->cmp = GT_EXPR;
1035 niter->bound = iv0->base;
1036 }
1037
1038 delta = fold_build2 (MINUS_EXPR, niter_type,
1039 fold_convert (niter_type, iv1->base),
1040 fold_convert (niter_type, iv0->base));
1041
1042 /* First handle the special case that the step is +-1. */
1043 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1044 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1045 {
1046 /* for (i = iv0->base; i < iv1->base; i++)
1047
1048 or
1049
1050 for (i = iv1->base; i > iv0->base; i--).
1051
1052 In both cases # of iterations is iv1->base - iv0->base, assuming that
1053 iv1->base >= iv0->base.
1054
1055 First try to derive a lower bound on the value of
1056 iv1->base - iv0->base, computed in full precision. If the difference
1057 is nonnegative, we are done, otherwise we must record the
1058 condition. */
1059
1060 if (mpz_sgn (bnds->below) < 0)
1061 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1062 iv1->base, iv0->base);
1063 niter->niter = delta;
1064 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1065 return true;
1066 }
1067
1068 if (integer_nonzerop (iv0->step))
1069 step = fold_convert (niter_type, iv0->step);
1070 else
1071 step = fold_convert (niter_type,
1072 fold_build1 (NEGATE_EXPR, type, iv1->step));
1073
1074 /* If we can determine the final value of the control iv exactly, we can
1075 transform the condition to != comparison. In particular, this will be
1076 the case if DELTA is constant. */
1077 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1078 exit_must_be_taken, bnds))
1079 {
1080 affine_iv zps;
1081
1082 zps.base = build_int_cst (niter_type, 0);
1083 zps.step = step;
1084 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1085 zps does not overflow. */
1086 zps.no_overflow = true;
1087
1088 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1089 }
1090
1091 /* Make sure that the control iv does not overflow. */
1092 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1093 return false;
1094
1095 /* We determine the number of iterations as (delta + step - 1) / step. For
1096 this to work, we must know that iv1->base >= iv0->base - step + 1,
1097 otherwise the loop does not roll. */
1098 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1099
1100 s = fold_build2 (MINUS_EXPR, niter_type,
1101 step, build_int_cst (niter_type, 1));
1102 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1103 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1104
1105 mpz_init (mstep);
1106 mpz_init (tmp);
1107 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1108 mpz_add (tmp, bnds->up, mstep);
1109 mpz_sub_ui (tmp, tmp, 1);
1110 mpz_fdiv_q (tmp, tmp, mstep);
1111 niter->max = mpz_get_double_int (niter_type, tmp, false);
1112 mpz_clear (mstep);
1113 mpz_clear (tmp);
1114
1115 return true;
1116 }
1117
1118 /* Determines number of iterations of loop whose ending condition
1119 is IV0 <= IV1. TYPE is the type of the iv. The number of
1120 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1121 we know that this condition must eventually become false (we derived this
1122 earlier, and possibly set NITER->assumptions to make sure this
1123 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1124
1125 static bool
1126 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1127 struct tree_niter_desc *niter, bool exit_must_be_taken,
1128 bounds *bnds)
1129 {
1130 tree assumption;
1131 tree type1 = type;
1132 if (POINTER_TYPE_P (type))
1133 type1 = sizetype;
1134
1135 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1136 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1137 value of the type. This we must know anyway, since if it is
1138 equal to this value, the loop rolls forever. We do not check
1139 this condition for pointer type ivs, as the code cannot rely on
1140 the object to that the pointer points being placed at the end of
1141 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1142 not defined for pointers). */
1143
1144 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1145 {
1146 if (integer_nonzerop (iv0->step))
1147 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1148 iv1->base, TYPE_MAX_VALUE (type));
1149 else
1150 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1151 iv0->base, TYPE_MIN_VALUE (type));
1152
1153 if (integer_zerop (assumption))
1154 return false;
1155 if (!integer_nonzerop (assumption))
1156 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1157 niter->assumptions, assumption);
1158 }
1159
1160 if (integer_nonzerop (iv0->step))
1161 {
1162 if (POINTER_TYPE_P (type))
1163 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1164 else
1165 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1166 build_int_cst (type1, 1));
1167 }
1168 else if (POINTER_TYPE_P (type))
1169 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1170 else
1171 iv0->base = fold_build2 (MINUS_EXPR, type1,
1172 iv0->base, build_int_cst (type1, 1));
1173
1174 bounds_add (bnds, double_int_one, type1);
1175
1176 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1177 bnds);
1178 }
1179
1180 /* Dumps description of affine induction variable IV to FILE. */
1181
1182 static void
1183 dump_affine_iv (FILE *file, affine_iv *iv)
1184 {
1185 if (!integer_zerop (iv->step))
1186 fprintf (file, "[");
1187
1188 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1189
1190 if (!integer_zerop (iv->step))
1191 {
1192 fprintf (file, ", + , ");
1193 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1194 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1195 }
1196 }
1197
1198 /* Determine the number of iterations according to condition (for staying
1199 inside loop) which compares two induction variables using comparison
1200 operator CODE. The induction variable on left side of the comparison
1201 is IV0, the right-hand side is IV1. Both induction variables must have
1202 type TYPE, which must be an integer or pointer type. The steps of the
1203 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1204
1205 LOOP is the loop whose number of iterations we are determining.
1206
1207 ONLY_EXIT is true if we are sure this is the only way the loop could be
1208 exited (including possibly non-returning function calls, exceptions, etc.)
1209 -- in this case we can use the information whether the control induction
1210 variables can overflow or not in a more efficient way.
1211
1212 The results (number of iterations and assumptions as described in
1213 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1214 Returns false if it fails to determine number of iterations, true if it
1215 was determined (possibly with some assumptions). */
1216
1217 static bool
1218 number_of_iterations_cond (struct loop *loop,
1219 tree type, affine_iv *iv0, enum tree_code code,
1220 affine_iv *iv1, struct tree_niter_desc *niter,
1221 bool only_exit)
1222 {
1223 bool exit_must_be_taken = false, ret;
1224 bounds bnds;
1225
1226 /* The meaning of these assumptions is this:
1227 if !assumptions
1228 then the rest of information does not have to be valid
1229 if may_be_zero then the loop does not roll, even if
1230 niter != 0. */
1231 niter->assumptions = boolean_true_node;
1232 niter->may_be_zero = boolean_false_node;
1233 niter->niter = NULL_TREE;
1234 niter->max = double_int_zero;
1235
1236 niter->bound = NULL_TREE;
1237 niter->cmp = ERROR_MARK;
1238
1239 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1240 the control variable is on lhs. */
1241 if (code == GE_EXPR || code == GT_EXPR
1242 || (code == NE_EXPR && integer_zerop (iv0->step)))
1243 {
1244 SWAP (iv0, iv1);
1245 code = swap_tree_comparison (code);
1246 }
1247
1248 if (POINTER_TYPE_P (type))
1249 {
1250 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1251 to the same object. If they do, the control variable cannot wrap
1252 (as wrap around the bounds of memory will never return a pointer
1253 that would be guaranteed to point to the same object, even if we
1254 avoid undefined behavior by casting to size_t and back). */
1255 iv0->no_overflow = true;
1256 iv1->no_overflow = true;
1257 }
1258
1259 /* If the control induction variable does not overflow and the only exit
1260 from the loop is the one that we analyze, we know it must be taken
1261 eventually. */
1262 if (only_exit)
1263 {
1264 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1265 exit_must_be_taken = true;
1266 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1267 exit_must_be_taken = true;
1268 }
1269
1270 /* We can handle the case when neither of the sides of the comparison is
1271 invariant, provided that the test is NE_EXPR. This rarely occurs in
1272 practice, but it is simple enough to manage. */
1273 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1274 {
1275 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1276 if (code != NE_EXPR)
1277 return false;
1278
1279 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1280 iv0->step, iv1->step);
1281 iv0->no_overflow = false;
1282 iv1->step = build_int_cst (step_type, 0);
1283 iv1->no_overflow = true;
1284 }
1285
1286 /* If the result of the comparison is a constant, the loop is weird. More
1287 precise handling would be possible, but the situation is not common enough
1288 to waste time on it. */
1289 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1290 return false;
1291
1292 /* Ignore loops of while (i-- < 10) type. */
1293 if (code != NE_EXPR)
1294 {
1295 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1296 return false;
1297
1298 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1299 return false;
1300 }
1301
1302 /* If the loop exits immediately, there is nothing to do. */
1303 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1304 {
1305 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1306 niter->max = double_int_zero;
1307 return true;
1308 }
1309
1310 /* OK, now we know we have a senseful loop. Handle several cases, depending
1311 on what comparison operator is used. */
1312 bound_difference (loop, iv1->base, iv0->base, &bnds);
1313
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 {
1316 fprintf (dump_file,
1317 "Analyzing # of iterations of loop %d\n", loop->num);
1318
1319 fprintf (dump_file, " exit condition ");
1320 dump_affine_iv (dump_file, iv0);
1321 fprintf (dump_file, " %s ",
1322 code == NE_EXPR ? "!="
1323 : code == LT_EXPR ? "<"
1324 : "<=");
1325 dump_affine_iv (dump_file, iv1);
1326 fprintf (dump_file, "\n");
1327
1328 fprintf (dump_file, " bounds on difference of bases: ");
1329 mpz_out_str (dump_file, 10, bnds.below);
1330 fprintf (dump_file, " ... ");
1331 mpz_out_str (dump_file, 10, bnds.up);
1332 fprintf (dump_file, "\n");
1333 }
1334
1335 switch (code)
1336 {
1337 case NE_EXPR:
1338 gcc_assert (integer_zerop (iv1->step));
1339 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1340 exit_must_be_taken, &bnds);
1341 break;
1342
1343 case LT_EXPR:
1344 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1345 &bnds);
1346 break;
1347
1348 case LE_EXPR:
1349 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1350 &bnds);
1351 break;
1352
1353 default:
1354 gcc_unreachable ();
1355 }
1356
1357 mpz_clear (bnds.up);
1358 mpz_clear (bnds.below);
1359
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1361 {
1362 if (ret)
1363 {
1364 fprintf (dump_file, " result:\n");
1365 if (!integer_nonzerop (niter->assumptions))
1366 {
1367 fprintf (dump_file, " under assumptions ");
1368 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1369 fprintf (dump_file, "\n");
1370 }
1371
1372 if (!integer_zerop (niter->may_be_zero))
1373 {
1374 fprintf (dump_file, " zero if ");
1375 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1376 fprintf (dump_file, "\n");
1377 }
1378
1379 fprintf (dump_file, " # of iterations ");
1380 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1381 fprintf (dump_file, ", bounded by ");
1382 dump_double_int (dump_file, niter->max, true);
1383 fprintf (dump_file, "\n");
1384 }
1385 else
1386 fprintf (dump_file, " failed\n\n");
1387 }
1388 return ret;
1389 }
1390
1391 /* Substitute NEW for OLD in EXPR and fold the result. */
1392
1393 static tree
1394 simplify_replace_tree (tree expr, tree old, tree new_tree)
1395 {
1396 unsigned i, n;
1397 tree ret = NULL_TREE, e, se;
1398
1399 if (!expr)
1400 return NULL_TREE;
1401
1402 /* Do not bother to replace constants. */
1403 if (CONSTANT_CLASS_P (old))
1404 return expr;
1405
1406 if (expr == old
1407 || operand_equal_p (expr, old, 0))
1408 return unshare_expr (new_tree);
1409
1410 if (!EXPR_P (expr))
1411 return expr;
1412
1413 n = TREE_OPERAND_LENGTH (expr);
1414 for (i = 0; i < n; i++)
1415 {
1416 e = TREE_OPERAND (expr, i);
1417 se = simplify_replace_tree (e, old, new_tree);
1418 if (e == se)
1419 continue;
1420
1421 if (!ret)
1422 ret = copy_node (expr);
1423
1424 TREE_OPERAND (ret, i) = se;
1425 }
1426
1427 return (ret ? fold (ret) : expr);
1428 }
1429
1430 /* Expand definitions of ssa names in EXPR as long as they are simple
1431 enough, and return the new expression. */
1432
1433 tree
1434 expand_simple_operations (tree expr)
1435 {
1436 unsigned i, n;
1437 tree ret = NULL_TREE, e, ee, e1;
1438 enum tree_code code;
1439 gimple stmt;
1440
1441 if (expr == NULL_TREE)
1442 return expr;
1443
1444 if (is_gimple_min_invariant (expr))
1445 return expr;
1446
1447 code = TREE_CODE (expr);
1448 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1449 {
1450 n = TREE_OPERAND_LENGTH (expr);
1451 for (i = 0; i < n; i++)
1452 {
1453 e = TREE_OPERAND (expr, i);
1454 ee = expand_simple_operations (e);
1455 if (e == ee)
1456 continue;
1457
1458 if (!ret)
1459 ret = copy_node (expr);
1460
1461 TREE_OPERAND (ret, i) = ee;
1462 }
1463
1464 if (!ret)
1465 return expr;
1466
1467 fold_defer_overflow_warnings ();
1468 ret = fold (ret);
1469 fold_undefer_and_ignore_overflow_warnings ();
1470 return ret;
1471 }
1472
1473 if (TREE_CODE (expr) != SSA_NAME)
1474 return expr;
1475
1476 stmt = SSA_NAME_DEF_STMT (expr);
1477 if (gimple_code (stmt) == GIMPLE_PHI)
1478 {
1479 basic_block src, dest;
1480
1481 if (gimple_phi_num_args (stmt) != 1)
1482 return expr;
1483 e = PHI_ARG_DEF (stmt, 0);
1484
1485 /* Avoid propagating through loop exit phi nodes, which
1486 could break loop-closed SSA form restrictions. */
1487 dest = gimple_bb (stmt);
1488 src = single_pred (dest);
1489 if (TREE_CODE (e) == SSA_NAME
1490 && src->loop_father != dest->loop_father)
1491 return expr;
1492
1493 return expand_simple_operations (e);
1494 }
1495 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1496 return expr;
1497
1498 e = gimple_assign_rhs1 (stmt);
1499 code = gimple_assign_rhs_code (stmt);
1500 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1501 {
1502 if (is_gimple_min_invariant (e))
1503 return e;
1504
1505 if (code == SSA_NAME)
1506 return expand_simple_operations (e);
1507
1508 return expr;
1509 }
1510
1511 switch (code)
1512 {
1513 CASE_CONVERT:
1514 /* Casts are simple. */
1515 ee = expand_simple_operations (e);
1516 return fold_build1 (code, TREE_TYPE (expr), ee);
1517
1518 case PLUS_EXPR:
1519 case MINUS_EXPR:
1520 case POINTER_PLUS_EXPR:
1521 /* And increments and decrements by a constant are simple. */
1522 e1 = gimple_assign_rhs2 (stmt);
1523 if (!is_gimple_min_invariant (e1))
1524 return expr;
1525
1526 ee = expand_simple_operations (e);
1527 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1528
1529 default:
1530 return expr;
1531 }
1532 }
1533
1534 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1535 expression (or EXPR unchanged, if no simplification was possible). */
1536
1537 static tree
1538 tree_simplify_using_condition_1 (tree cond, tree expr)
1539 {
1540 bool changed;
1541 tree e, te, e0, e1, e2, notcond;
1542 enum tree_code code = TREE_CODE (expr);
1543
1544 if (code == INTEGER_CST)
1545 return expr;
1546
1547 if (code == TRUTH_OR_EXPR
1548 || code == TRUTH_AND_EXPR
1549 || code == COND_EXPR)
1550 {
1551 changed = false;
1552
1553 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1554 if (TREE_OPERAND (expr, 0) != e0)
1555 changed = true;
1556
1557 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1558 if (TREE_OPERAND (expr, 1) != e1)
1559 changed = true;
1560
1561 if (code == COND_EXPR)
1562 {
1563 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1564 if (TREE_OPERAND (expr, 2) != e2)
1565 changed = true;
1566 }
1567 else
1568 e2 = NULL_TREE;
1569
1570 if (changed)
1571 {
1572 if (code == COND_EXPR)
1573 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1574 else
1575 expr = fold_build2 (code, boolean_type_node, e0, e1);
1576 }
1577
1578 return expr;
1579 }
1580
1581 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1582 propagation, and vice versa. Fold does not handle this, since it is
1583 considered too expensive. */
1584 if (TREE_CODE (cond) == EQ_EXPR)
1585 {
1586 e0 = TREE_OPERAND (cond, 0);
1587 e1 = TREE_OPERAND (cond, 1);
1588
1589 /* We know that e0 == e1. Check whether we cannot simplify expr
1590 using this fact. */
1591 e = simplify_replace_tree (expr, e0, e1);
1592 if (integer_zerop (e) || integer_nonzerop (e))
1593 return e;
1594
1595 e = simplify_replace_tree (expr, e1, e0);
1596 if (integer_zerop (e) || integer_nonzerop (e))
1597 return e;
1598 }
1599 if (TREE_CODE (expr) == EQ_EXPR)
1600 {
1601 e0 = TREE_OPERAND (expr, 0);
1602 e1 = TREE_OPERAND (expr, 1);
1603
1604 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1605 e = simplify_replace_tree (cond, e0, e1);
1606 if (integer_zerop (e))
1607 return e;
1608 e = simplify_replace_tree (cond, e1, e0);
1609 if (integer_zerop (e))
1610 return e;
1611 }
1612 if (TREE_CODE (expr) == NE_EXPR)
1613 {
1614 e0 = TREE_OPERAND (expr, 0);
1615 e1 = TREE_OPERAND (expr, 1);
1616
1617 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1618 e = simplify_replace_tree (cond, e0, e1);
1619 if (integer_zerop (e))
1620 return boolean_true_node;
1621 e = simplify_replace_tree (cond, e1, e0);
1622 if (integer_zerop (e))
1623 return boolean_true_node;
1624 }
1625
1626 te = expand_simple_operations (expr);
1627
1628 /* Check whether COND ==> EXPR. */
1629 notcond = invert_truthvalue (cond);
1630 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1631 if (e && integer_nonzerop (e))
1632 return e;
1633
1634 /* Check whether COND ==> not EXPR. */
1635 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1636 if (e && integer_zerop (e))
1637 return e;
1638
1639 return expr;
1640 }
1641
1642 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1643 expression (or EXPR unchanged, if no simplification was possible).
1644 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1645 of simple operations in definitions of ssa names in COND are expanded,
1646 so that things like casts or incrementing the value of the bound before
1647 the loop do not cause us to fail. */
1648
1649 static tree
1650 tree_simplify_using_condition (tree cond, tree expr)
1651 {
1652 cond = expand_simple_operations (cond);
1653
1654 return tree_simplify_using_condition_1 (cond, expr);
1655 }
1656
1657 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1658 Returns the simplified expression (or EXPR unchanged, if no
1659 simplification was possible).*/
1660
1661 static tree
1662 simplify_using_initial_conditions (struct loop *loop, tree expr)
1663 {
1664 edge e;
1665 basic_block bb;
1666 gimple stmt;
1667 tree cond;
1668 int cnt = 0;
1669
1670 if (TREE_CODE (expr) == INTEGER_CST)
1671 return expr;
1672
1673 /* Limit walking the dominators to avoid quadraticness in
1674 the number of BBs times the number of loops in degenerate
1675 cases. */
1676 for (bb = loop->header;
1677 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1678 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1679 {
1680 if (!single_pred_p (bb))
1681 continue;
1682 e = single_pred_edge (bb);
1683
1684 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1685 continue;
1686
1687 stmt = last_stmt (e->src);
1688 cond = fold_build2 (gimple_cond_code (stmt),
1689 boolean_type_node,
1690 gimple_cond_lhs (stmt),
1691 gimple_cond_rhs (stmt));
1692 if (e->flags & EDGE_FALSE_VALUE)
1693 cond = invert_truthvalue (cond);
1694 expr = tree_simplify_using_condition (cond, expr);
1695 ++cnt;
1696 }
1697
1698 return expr;
1699 }
1700
1701 /* Tries to simplify EXPR using the evolutions of the loop invariants
1702 in the superloops of LOOP. Returns the simplified expression
1703 (or EXPR unchanged, if no simplification was possible). */
1704
1705 static tree
1706 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1707 {
1708 enum tree_code code = TREE_CODE (expr);
1709 bool changed;
1710 tree e, e0, e1, e2;
1711
1712 if (is_gimple_min_invariant (expr))
1713 return expr;
1714
1715 if (code == TRUTH_OR_EXPR
1716 || code == TRUTH_AND_EXPR
1717 || code == COND_EXPR)
1718 {
1719 changed = false;
1720
1721 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1722 if (TREE_OPERAND (expr, 0) != e0)
1723 changed = true;
1724
1725 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1726 if (TREE_OPERAND (expr, 1) != e1)
1727 changed = true;
1728
1729 if (code == COND_EXPR)
1730 {
1731 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1732 if (TREE_OPERAND (expr, 2) != e2)
1733 changed = true;
1734 }
1735 else
1736 e2 = NULL_TREE;
1737
1738 if (changed)
1739 {
1740 if (code == COND_EXPR)
1741 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1742 else
1743 expr = fold_build2 (code, boolean_type_node, e0, e1);
1744 }
1745
1746 return expr;
1747 }
1748
1749 e = instantiate_parameters (loop, expr);
1750 if (is_gimple_min_invariant (e))
1751 return e;
1752
1753 return expr;
1754 }
1755
1756 /* Returns true if EXIT is the only possible exit from LOOP. */
1757
1758 bool
1759 loop_only_exit_p (const struct loop *loop, const_edge exit)
1760 {
1761 basic_block *body;
1762 gimple_stmt_iterator bsi;
1763 unsigned i;
1764 gimple call;
1765
1766 if (exit != single_exit (loop))
1767 return false;
1768
1769 body = get_loop_body (loop);
1770 for (i = 0; i < loop->num_nodes; i++)
1771 {
1772 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1773 {
1774 call = gsi_stmt (bsi);
1775 if (gimple_code (call) != GIMPLE_CALL)
1776 continue;
1777
1778 if (gimple_has_side_effects (call))
1779 {
1780 free (body);
1781 return false;
1782 }
1783 }
1784 }
1785
1786 free (body);
1787 return true;
1788 }
1789
1790 /* Stores description of number of iterations of LOOP derived from
1791 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1792 useful information could be derived (and fields of NITER has
1793 meaning described in comments at struct tree_niter_desc
1794 declaration), false otherwise. If WARN is true and
1795 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1796 potentially unsafe assumptions. */
1797
1798 bool
1799 number_of_iterations_exit (struct loop *loop, edge exit,
1800 struct tree_niter_desc *niter,
1801 bool warn)
1802 {
1803 gimple stmt;
1804 tree type;
1805 tree op0, op1;
1806 enum tree_code code;
1807 affine_iv iv0, iv1;
1808
1809 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1810 return false;
1811
1812 niter->assumptions = boolean_false_node;
1813 stmt = last_stmt (exit->src);
1814 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1815 return false;
1816
1817 /* We want the condition for staying inside loop. */
1818 code = gimple_cond_code (stmt);
1819 if (exit->flags & EDGE_TRUE_VALUE)
1820 code = invert_tree_comparison (code, false);
1821
1822 switch (code)
1823 {
1824 case GT_EXPR:
1825 case GE_EXPR:
1826 case NE_EXPR:
1827 case LT_EXPR:
1828 case LE_EXPR:
1829 break;
1830
1831 default:
1832 return false;
1833 }
1834
1835 op0 = gimple_cond_lhs (stmt);
1836 op1 = gimple_cond_rhs (stmt);
1837 type = TREE_TYPE (op0);
1838
1839 if (TREE_CODE (type) != INTEGER_TYPE
1840 && !POINTER_TYPE_P (type))
1841 return false;
1842
1843 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1844 return false;
1845 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1846 return false;
1847
1848 /* We don't want to see undefined signed overflow warnings while
1849 computing the number of iterations. */
1850 fold_defer_overflow_warnings ();
1851
1852 iv0.base = expand_simple_operations (iv0.base);
1853 iv1.base = expand_simple_operations (iv1.base);
1854 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1855 loop_only_exit_p (loop, exit)))
1856 {
1857 fold_undefer_and_ignore_overflow_warnings ();
1858 return false;
1859 }
1860
1861 if (optimize >= 3)
1862 {
1863 niter->assumptions = simplify_using_outer_evolutions (loop,
1864 niter->assumptions);
1865 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1866 niter->may_be_zero);
1867 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1868 }
1869
1870 niter->assumptions
1871 = simplify_using_initial_conditions (loop,
1872 niter->assumptions);
1873 niter->may_be_zero
1874 = simplify_using_initial_conditions (loop,
1875 niter->may_be_zero);
1876
1877 fold_undefer_and_ignore_overflow_warnings ();
1878
1879 if (integer_onep (niter->assumptions))
1880 return true;
1881
1882 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1883 But if we can prove that there is overflow or some other source of weird
1884 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1885 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1886 return false;
1887
1888 if (flag_unsafe_loop_optimizations)
1889 niter->assumptions = boolean_true_node;
1890
1891 if (warn)
1892 {
1893 const char *wording;
1894 location_t loc = gimple_location (stmt);
1895
1896 /* We can provide a more specific warning if one of the operator is
1897 constant and the other advances by +1 or -1. */
1898 if (!integer_zerop (iv1.step)
1899 ? (integer_zerop (iv0.step)
1900 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1901 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1902 wording =
1903 flag_unsafe_loop_optimizations
1904 ? N_("assuming that the loop is not infinite")
1905 : N_("cannot optimize possibly infinite loops");
1906 else
1907 wording =
1908 flag_unsafe_loop_optimizations
1909 ? N_("assuming that the loop counter does not overflow")
1910 : N_("cannot optimize loop, the loop counter may overflow");
1911
1912 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1913 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1914 }
1915
1916 return flag_unsafe_loop_optimizations;
1917 }
1918
1919 /* Try to determine the number of iterations of LOOP. If we succeed,
1920 expression giving number of iterations is returned and *EXIT is
1921 set to the edge from that the information is obtained. Otherwise
1922 chrec_dont_know is returned. */
1923
1924 tree
1925 find_loop_niter (struct loop *loop, edge *exit)
1926 {
1927 unsigned i;
1928 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1929 edge ex;
1930 tree niter = NULL_TREE, aniter;
1931 struct tree_niter_desc desc;
1932
1933 *exit = NULL;
1934 FOR_EACH_VEC_ELT (edge, exits, i, ex)
1935 {
1936 if (!just_once_each_iteration_p (loop, ex->src))
1937 continue;
1938
1939 if (!number_of_iterations_exit (loop, ex, &desc, false))
1940 continue;
1941
1942 if (integer_nonzerop (desc.may_be_zero))
1943 {
1944 /* We exit in the first iteration through this exit.
1945 We won't find anything better. */
1946 niter = build_int_cst (unsigned_type_node, 0);
1947 *exit = ex;
1948 break;
1949 }
1950
1951 if (!integer_zerop (desc.may_be_zero))
1952 continue;
1953
1954 aniter = desc.niter;
1955
1956 if (!niter)
1957 {
1958 /* Nothing recorded yet. */
1959 niter = aniter;
1960 *exit = ex;
1961 continue;
1962 }
1963
1964 /* Prefer constants, the lower the better. */
1965 if (TREE_CODE (aniter) != INTEGER_CST)
1966 continue;
1967
1968 if (TREE_CODE (niter) != INTEGER_CST)
1969 {
1970 niter = aniter;
1971 *exit = ex;
1972 continue;
1973 }
1974
1975 if (tree_int_cst_lt (aniter, niter))
1976 {
1977 niter = aniter;
1978 *exit = ex;
1979 continue;
1980 }
1981 }
1982 VEC_free (edge, heap, exits);
1983
1984 return niter ? niter : chrec_dont_know;
1985 }
1986
1987 /* Return true if loop is known to have bounded number of iterations. */
1988
1989 bool
1990 finite_loop_p (struct loop *loop)
1991 {
1992 unsigned i;
1993 VEC (edge, heap) *exits;
1994 edge ex;
1995 struct tree_niter_desc desc;
1996 bool finite = false;
1997 int flags;
1998
1999 if (flag_unsafe_loop_optimizations)
2000 return true;
2001 flags = flags_from_decl_or_type (current_function_decl);
2002 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2003 {
2004 if (dump_file && (dump_flags & TDF_DETAILS))
2005 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2006 loop->num);
2007 return true;
2008 }
2009
2010 exits = get_loop_exit_edges (loop);
2011 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2012 {
2013 if (!just_once_each_iteration_p (loop, ex->src))
2014 continue;
2015
2016 if (number_of_iterations_exit (loop, ex, &desc, false))
2017 {
2018 if (dump_file && (dump_flags & TDF_DETAILS))
2019 {
2020 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2021 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2022 fprintf (dump_file, " times\n");
2023 }
2024 finite = true;
2025 break;
2026 }
2027 }
2028 VEC_free (edge, heap, exits);
2029 return finite;
2030 }
2031
2032 /*
2033
2034 Analysis of a number of iterations of a loop by a brute-force evaluation.
2035
2036 */
2037
2038 /* Bound on the number of iterations we try to evaluate. */
2039
2040 #define MAX_ITERATIONS_TO_TRACK \
2041 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2042
2043 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2044 result by a chain of operations such that all but exactly one of their
2045 operands are constants. */
2046
2047 static gimple
2048 chain_of_csts_start (struct loop *loop, tree x)
2049 {
2050 gimple stmt = SSA_NAME_DEF_STMT (x);
2051 tree use;
2052 basic_block bb = gimple_bb (stmt);
2053 enum tree_code code;
2054
2055 if (!bb
2056 || !flow_bb_inside_loop_p (loop, bb))
2057 return NULL;
2058
2059 if (gimple_code (stmt) == GIMPLE_PHI)
2060 {
2061 if (bb == loop->header)
2062 return stmt;
2063
2064 return NULL;
2065 }
2066
2067 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2068 return NULL;
2069
2070 code = gimple_assign_rhs_code (stmt);
2071 if (gimple_references_memory_p (stmt)
2072 || TREE_CODE_CLASS (code) == tcc_reference
2073 || (code == ADDR_EXPR
2074 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2075 return NULL;
2076
2077 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2078 if (use == NULL_TREE)
2079 return NULL;
2080
2081 return chain_of_csts_start (loop, use);
2082 }
2083
2084 /* Determines whether the expression X is derived from a result of a phi node
2085 in header of LOOP such that
2086
2087 * the derivation of X consists only from operations with constants
2088 * the initial value of the phi node is constant
2089 * the value of the phi node in the next iteration can be derived from the
2090 value in the current iteration by a chain of operations with constants.
2091
2092 If such phi node exists, it is returned, otherwise NULL is returned. */
2093
2094 static gimple
2095 get_base_for (struct loop *loop, tree x)
2096 {
2097 gimple phi;
2098 tree init, next;
2099
2100 if (is_gimple_min_invariant (x))
2101 return NULL;
2102
2103 phi = chain_of_csts_start (loop, x);
2104 if (!phi)
2105 return NULL;
2106
2107 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2108 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2109
2110 if (TREE_CODE (next) != SSA_NAME)
2111 return NULL;
2112
2113 if (!is_gimple_min_invariant (init))
2114 return NULL;
2115
2116 if (chain_of_csts_start (loop, next) != phi)
2117 return NULL;
2118
2119 return phi;
2120 }
2121
2122 /* Given an expression X, then
2123
2124 * if X is NULL_TREE, we return the constant BASE.
2125 * otherwise X is a SSA name, whose value in the considered loop is derived
2126 by a chain of operations with constant from a result of a phi node in
2127 the header of the loop. Then we return value of X when the value of the
2128 result of this phi node is given by the constant BASE. */
2129
2130 static tree
2131 get_val_for (tree x, tree base)
2132 {
2133 gimple stmt;
2134
2135 gcc_assert (is_gimple_min_invariant (base));
2136
2137 if (!x)
2138 return base;
2139
2140 stmt = SSA_NAME_DEF_STMT (x);
2141 if (gimple_code (stmt) == GIMPLE_PHI)
2142 return base;
2143
2144 gcc_assert (is_gimple_assign (stmt));
2145
2146 /* STMT must be either an assignment of a single SSA name or an
2147 expression involving an SSA name and a constant. Try to fold that
2148 expression using the value for the SSA name. */
2149 if (gimple_assign_ssa_name_copy_p (stmt))
2150 return get_val_for (gimple_assign_rhs1 (stmt), base);
2151 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2152 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2153 {
2154 return fold_build1 (gimple_assign_rhs_code (stmt),
2155 gimple_expr_type (stmt),
2156 get_val_for (gimple_assign_rhs1 (stmt), base));
2157 }
2158 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2159 {
2160 tree rhs1 = gimple_assign_rhs1 (stmt);
2161 tree rhs2 = gimple_assign_rhs2 (stmt);
2162 if (TREE_CODE (rhs1) == SSA_NAME)
2163 rhs1 = get_val_for (rhs1, base);
2164 else if (TREE_CODE (rhs2) == SSA_NAME)
2165 rhs2 = get_val_for (rhs2, base);
2166 else
2167 gcc_unreachable ();
2168 return fold_build2 (gimple_assign_rhs_code (stmt),
2169 gimple_expr_type (stmt), rhs1, rhs2);
2170 }
2171 else
2172 gcc_unreachable ();
2173 }
2174
2175
2176 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2177 by brute force -- i.e. by determining the value of the operands of the
2178 condition at EXIT in first few iterations of the loop (assuming that
2179 these values are constant) and determining the first one in that the
2180 condition is not satisfied. Returns the constant giving the number
2181 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2182
2183 tree
2184 loop_niter_by_eval (struct loop *loop, edge exit)
2185 {
2186 tree acnd;
2187 tree op[2], val[2], next[2], aval[2];
2188 gimple phi, cond;
2189 unsigned i, j;
2190 enum tree_code cmp;
2191
2192 cond = last_stmt (exit->src);
2193 if (!cond || gimple_code (cond) != GIMPLE_COND)
2194 return chrec_dont_know;
2195
2196 cmp = gimple_cond_code (cond);
2197 if (exit->flags & EDGE_TRUE_VALUE)
2198 cmp = invert_tree_comparison (cmp, false);
2199
2200 switch (cmp)
2201 {
2202 case EQ_EXPR:
2203 case NE_EXPR:
2204 case GT_EXPR:
2205 case GE_EXPR:
2206 case LT_EXPR:
2207 case LE_EXPR:
2208 op[0] = gimple_cond_lhs (cond);
2209 op[1] = gimple_cond_rhs (cond);
2210 break;
2211
2212 default:
2213 return chrec_dont_know;
2214 }
2215
2216 for (j = 0; j < 2; j++)
2217 {
2218 if (is_gimple_min_invariant (op[j]))
2219 {
2220 val[j] = op[j];
2221 next[j] = NULL_TREE;
2222 op[j] = NULL_TREE;
2223 }
2224 else
2225 {
2226 phi = get_base_for (loop, op[j]);
2227 if (!phi)
2228 return chrec_dont_know;
2229 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2230 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2231 }
2232 }
2233
2234 /* Don't issue signed overflow warnings. */
2235 fold_defer_overflow_warnings ();
2236
2237 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2238 {
2239 for (j = 0; j < 2; j++)
2240 aval[j] = get_val_for (op[j], val[j]);
2241
2242 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2243 if (acnd && integer_zerop (acnd))
2244 {
2245 fold_undefer_and_ignore_overflow_warnings ();
2246 if (dump_file && (dump_flags & TDF_DETAILS))
2247 fprintf (dump_file,
2248 "Proved that loop %d iterates %d times using brute force.\n",
2249 loop->num, i);
2250 return build_int_cst (unsigned_type_node, i);
2251 }
2252
2253 for (j = 0; j < 2; j++)
2254 {
2255 val[j] = get_val_for (next[j], val[j]);
2256 if (!is_gimple_min_invariant (val[j]))
2257 {
2258 fold_undefer_and_ignore_overflow_warnings ();
2259 return chrec_dont_know;
2260 }
2261 }
2262 }
2263
2264 fold_undefer_and_ignore_overflow_warnings ();
2265
2266 return chrec_dont_know;
2267 }
2268
2269 /* Finds the exit of the LOOP by that the loop exits after a constant
2270 number of iterations and stores the exit edge to *EXIT. The constant
2271 giving the number of iterations of LOOP is returned. The number of
2272 iterations is determined using loop_niter_by_eval (i.e. by brute force
2273 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2274 determines the number of iterations, chrec_dont_know is returned. */
2275
2276 tree
2277 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2278 {
2279 unsigned i;
2280 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2281 edge ex;
2282 tree niter = NULL_TREE, aniter;
2283
2284 *exit = NULL;
2285
2286 /* Loops with multiple exits are expensive to handle and less important. */
2287 if (!flag_expensive_optimizations
2288 && VEC_length (edge, exits) > 1)
2289 return chrec_dont_know;
2290
2291 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2292 {
2293 if (!just_once_each_iteration_p (loop, ex->src))
2294 continue;
2295
2296 aniter = loop_niter_by_eval (loop, ex);
2297 if (chrec_contains_undetermined (aniter))
2298 continue;
2299
2300 if (niter
2301 && !tree_int_cst_lt (aniter, niter))
2302 continue;
2303
2304 niter = aniter;
2305 *exit = ex;
2306 }
2307 VEC_free (edge, heap, exits);
2308
2309 return niter ? niter : chrec_dont_know;
2310 }
2311
2312 /*
2313
2314 Analysis of upper bounds on number of iterations of a loop.
2315
2316 */
2317
2318 static double_int derive_constant_upper_bound_ops (tree, tree,
2319 enum tree_code, tree);
2320
2321 /* Returns a constant upper bound on the value of the right-hand side of
2322 an assignment statement STMT. */
2323
2324 static double_int
2325 derive_constant_upper_bound_assign (gimple stmt)
2326 {
2327 enum tree_code code = gimple_assign_rhs_code (stmt);
2328 tree op0 = gimple_assign_rhs1 (stmt);
2329 tree op1 = gimple_assign_rhs2 (stmt);
2330
2331 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2332 op0, code, op1);
2333 }
2334
2335 /* Returns a constant upper bound on the value of expression VAL. VAL
2336 is considered to be unsigned. If its type is signed, its value must
2337 be nonnegative. */
2338
2339 static double_int
2340 derive_constant_upper_bound (tree val)
2341 {
2342 enum tree_code code;
2343 tree op0, op1;
2344
2345 extract_ops_from_tree (val, &code, &op0, &op1);
2346 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2347 }
2348
2349 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2350 whose type is TYPE. The expression is considered to be unsigned. If
2351 its type is signed, its value must be nonnegative. */
2352
2353 static double_int
2354 derive_constant_upper_bound_ops (tree type, tree op0,
2355 enum tree_code code, tree op1)
2356 {
2357 tree subtype, maxt;
2358 double_int bnd, max, mmax, cst;
2359 gimple stmt;
2360
2361 if (INTEGRAL_TYPE_P (type))
2362 maxt = TYPE_MAX_VALUE (type);
2363 else
2364 maxt = upper_bound_in_type (type, type);
2365
2366 max = tree_to_double_int (maxt);
2367
2368 switch (code)
2369 {
2370 case INTEGER_CST:
2371 return tree_to_double_int (op0);
2372
2373 CASE_CONVERT:
2374 subtype = TREE_TYPE (op0);
2375 if (!TYPE_UNSIGNED (subtype)
2376 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2377 that OP0 is nonnegative. */
2378 && TYPE_UNSIGNED (type)
2379 && !tree_expr_nonnegative_p (op0))
2380 {
2381 /* If we cannot prove that the casted expression is nonnegative,
2382 we cannot establish more useful upper bound than the precision
2383 of the type gives us. */
2384 return max;
2385 }
2386
2387 /* We now know that op0 is an nonnegative value. Try deriving an upper
2388 bound for it. */
2389 bnd = derive_constant_upper_bound (op0);
2390
2391 /* If the bound does not fit in TYPE, max. value of TYPE could be
2392 attained. */
2393 if (double_int_ucmp (max, bnd) < 0)
2394 return max;
2395
2396 return bnd;
2397
2398 case PLUS_EXPR:
2399 case POINTER_PLUS_EXPR:
2400 case MINUS_EXPR:
2401 if (TREE_CODE (op1) != INTEGER_CST
2402 || !tree_expr_nonnegative_p (op0))
2403 return max;
2404
2405 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2406 choose the most logical way how to treat this constant regardless
2407 of the signedness of the type. */
2408 cst = tree_to_double_int (op1);
2409 cst = double_int_sext (cst, TYPE_PRECISION (type));
2410 if (code != MINUS_EXPR)
2411 cst = double_int_neg (cst);
2412
2413 bnd = derive_constant_upper_bound (op0);
2414
2415 if (double_int_negative_p (cst))
2416 {
2417 cst = double_int_neg (cst);
2418 /* Avoid CST == 0x80000... */
2419 if (double_int_negative_p (cst))
2420 return max;;
2421
2422 /* OP0 + CST. We need to check that
2423 BND <= MAX (type) - CST. */
2424
2425 mmax = double_int_sub (max, cst);
2426 if (double_int_ucmp (bnd, mmax) > 0)
2427 return max;
2428
2429 return double_int_add (bnd, cst);
2430 }
2431 else
2432 {
2433 /* OP0 - CST, where CST >= 0.
2434
2435 If TYPE is signed, we have already verified that OP0 >= 0, and we
2436 know that the result is nonnegative. This implies that
2437 VAL <= BND - CST.
2438
2439 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2440 otherwise the operation underflows.
2441 */
2442
2443 /* This should only happen if the type is unsigned; however, for
2444 buggy programs that use overflowing signed arithmetics even with
2445 -fno-wrapv, this condition may also be true for signed values. */
2446 if (double_int_ucmp (bnd, cst) < 0)
2447 return max;
2448
2449 if (TYPE_UNSIGNED (type))
2450 {
2451 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2452 double_int_to_tree (type, cst));
2453 if (!tem || integer_nonzerop (tem))
2454 return max;
2455 }
2456
2457 bnd = double_int_sub (bnd, cst);
2458 }
2459
2460 return bnd;
2461
2462 case FLOOR_DIV_EXPR:
2463 case EXACT_DIV_EXPR:
2464 if (TREE_CODE (op1) != INTEGER_CST
2465 || tree_int_cst_sign_bit (op1))
2466 return max;
2467
2468 bnd = derive_constant_upper_bound (op0);
2469 return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2470
2471 case BIT_AND_EXPR:
2472 if (TREE_CODE (op1) != INTEGER_CST
2473 || tree_int_cst_sign_bit (op1))
2474 return max;
2475 return tree_to_double_int (op1);
2476
2477 case SSA_NAME:
2478 stmt = SSA_NAME_DEF_STMT (op0);
2479 if (gimple_code (stmt) != GIMPLE_ASSIGN
2480 || gimple_assign_lhs (stmt) != op0)
2481 return max;
2482 return derive_constant_upper_bound_assign (stmt);
2483
2484 default:
2485 return max;
2486 }
2487 }
2488
2489 /* Records that every statement in LOOP is executed I_BOUND times.
2490 REALISTIC is true if I_BOUND is expected to be close to the real number
2491 of iterations. UPPER is true if we are sure the loop iterates at most
2492 I_BOUND times. */
2493
2494 void
2495 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2496 bool upper)
2497 {
2498 /* Update the bounds only when there is no previous estimation, or when the
2499 current estimation is smaller. */
2500 if (upper
2501 && (!loop->any_upper_bound
2502 || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2503 {
2504 loop->any_upper_bound = true;
2505 loop->nb_iterations_upper_bound = i_bound;
2506 }
2507 if (realistic
2508 && (!loop->any_estimate
2509 || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2510 {
2511 loop->any_estimate = true;
2512 loop->nb_iterations_estimate = i_bound;
2513 }
2514
2515 /* If an upper bound is smaller than the realistic estimate of the
2516 number of iterations, use the upper bound instead. */
2517 if (loop->any_upper_bound
2518 && loop->any_estimate
2519 && double_int_ucmp (loop->nb_iterations_upper_bound,
2520 loop->nb_iterations_estimate) < 0)
2521 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2522 }
2523
2524 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2525 is true if the loop is exited immediately after STMT, and this exit
2526 is taken at last when the STMT is executed BOUND + 1 times.
2527 REALISTIC is true if BOUND is expected to be close to the real number
2528 of iterations. UPPER is true if we are sure the loop iterates at most
2529 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2530
2531 static void
2532 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2533 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2534 {
2535 double_int delta;
2536 edge exit;
2537
2538 if (dump_file && (dump_flags & TDF_DETAILS))
2539 {
2540 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2541 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2542 fprintf (dump_file, " is %sexecuted at most ",
2543 upper ? "" : "probably ");
2544 print_generic_expr (dump_file, bound, TDF_SLIM);
2545 fprintf (dump_file, " (bounded by ");
2546 dump_double_int (dump_file, i_bound, true);
2547 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2548 }
2549
2550 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2551 real number of iterations. */
2552 if (TREE_CODE (bound) != INTEGER_CST)
2553 realistic = false;
2554 if (!upper && !realistic)
2555 return;
2556
2557 /* If we have a guaranteed upper bound, record it in the appropriate
2558 list. */
2559 if (upper)
2560 {
2561 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2562
2563 elt->bound = i_bound;
2564 elt->stmt = at_stmt;
2565 elt->is_exit = is_exit;
2566 elt->next = loop->bounds;
2567 loop->bounds = elt;
2568 }
2569
2570 /* Update the number of iteration estimates according to the bound.
2571 If at_stmt is an exit or dominates the single exit from the loop,
2572 then the loop latch is executed at most BOUND times, otherwise
2573 it can be executed BOUND + 1 times. */
2574 exit = single_exit (loop);
2575 if (is_exit
2576 || (exit != NULL
2577 && dominated_by_p (CDI_DOMINATORS,
2578 exit->src, gimple_bb (at_stmt))))
2579 delta = double_int_zero;
2580 else
2581 delta = double_int_one;
2582 i_bound = double_int_add (i_bound, delta);
2583
2584 /* If an overflow occurred, ignore the result. */
2585 if (double_int_ucmp (i_bound, delta) < 0)
2586 return;
2587
2588 record_niter_bound (loop, i_bound, realistic, upper);
2589 }
2590
2591 /* Record the estimate on number of iterations of LOOP based on the fact that
2592 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2593 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2594 estimated number of iterations is expected to be close to the real one.
2595 UPPER is true if we are sure the induction variable does not wrap. */
2596
2597 static void
2598 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2599 tree low, tree high, bool realistic, bool upper)
2600 {
2601 tree niter_bound, extreme, delta;
2602 tree type = TREE_TYPE (base), unsigned_type;
2603 double_int max;
2604
2605 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2606 return;
2607
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2609 {
2610 fprintf (dump_file, "Induction variable (");
2611 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2612 fprintf (dump_file, ") ");
2613 print_generic_expr (dump_file, base, TDF_SLIM);
2614 fprintf (dump_file, " + ");
2615 print_generic_expr (dump_file, step, TDF_SLIM);
2616 fprintf (dump_file, " * iteration does not wrap in statement ");
2617 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2618 fprintf (dump_file, " in loop %d.\n", loop->num);
2619 }
2620
2621 unsigned_type = unsigned_type_for (type);
2622 base = fold_convert (unsigned_type, base);
2623 step = fold_convert (unsigned_type, step);
2624
2625 if (tree_int_cst_sign_bit (step))
2626 {
2627 extreme = fold_convert (unsigned_type, low);
2628 if (TREE_CODE (base) != INTEGER_CST)
2629 base = fold_convert (unsigned_type, high);
2630 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2631 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2632 }
2633 else
2634 {
2635 extreme = fold_convert (unsigned_type, high);
2636 if (TREE_CODE (base) != INTEGER_CST)
2637 base = fold_convert (unsigned_type, low);
2638 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2639 }
2640
2641 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2642 would get out of the range. */
2643 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2644 max = derive_constant_upper_bound (niter_bound);
2645 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2646 }
2647
2648 /* Determine information about number of iterations a LOOP from the index
2649 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2650 guaranteed to be executed in every iteration of LOOP. Callback for
2651 for_each_index. */
2652
2653 struct ilb_data
2654 {
2655 struct loop *loop;
2656 gimple stmt;
2657 bool reliable;
2658 };
2659
2660 static bool
2661 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2662 {
2663 struct ilb_data *data = (struct ilb_data *) dta;
2664 tree ev, init, step;
2665 tree low, high, type, next;
2666 bool sign, upper = data->reliable, at_end = false;
2667 struct loop *loop = data->loop;
2668
2669 if (TREE_CODE (base) != ARRAY_REF)
2670 return true;
2671
2672 /* For arrays at the end of the structure, we are not guaranteed that they
2673 do not really extend over their declared size. However, for arrays of
2674 size greater than one, this is unlikely to be intended. */
2675 if (array_at_struct_end_p (base))
2676 {
2677 at_end = true;
2678 upper = false;
2679 }
2680
2681 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2682 init = initial_condition (ev);
2683 step = evolution_part_in_loop_num (ev, loop->num);
2684
2685 if (!init
2686 || !step
2687 || TREE_CODE (step) != INTEGER_CST
2688 || integer_zerop (step)
2689 || tree_contains_chrecs (init, NULL)
2690 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2691 return true;
2692
2693 low = array_ref_low_bound (base);
2694 high = array_ref_up_bound (base);
2695
2696 /* The case of nonconstant bounds could be handled, but it would be
2697 complicated. */
2698 if (TREE_CODE (low) != INTEGER_CST
2699 || !high
2700 || TREE_CODE (high) != INTEGER_CST)
2701 return true;
2702 sign = tree_int_cst_sign_bit (step);
2703 type = TREE_TYPE (step);
2704
2705 /* The array of length 1 at the end of a structure most likely extends
2706 beyond its bounds. */
2707 if (at_end
2708 && operand_equal_p (low, high, 0))
2709 return true;
2710
2711 /* In case the relevant bound of the array does not fit in type, or
2712 it does, but bound + step (in type) still belongs into the range of the
2713 array, the index may wrap and still stay within the range of the array
2714 (consider e.g. if the array is indexed by the full range of
2715 unsigned char).
2716
2717 To make things simpler, we require both bounds to fit into type, although
2718 there are cases where this would not be strictly necessary. */
2719 if (!int_fits_type_p (high, type)
2720 || !int_fits_type_p (low, type))
2721 return true;
2722 low = fold_convert (type, low);
2723 high = fold_convert (type, high);
2724
2725 if (sign)
2726 next = fold_binary (PLUS_EXPR, type, low, step);
2727 else
2728 next = fold_binary (PLUS_EXPR, type, high, step);
2729
2730 if (tree_int_cst_compare (low, next) <= 0
2731 && tree_int_cst_compare (next, high) <= 0)
2732 return true;
2733
2734 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2735 return true;
2736 }
2737
2738 /* Determine information about number of iterations a LOOP from the bounds
2739 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2740 STMT is guaranteed to be executed in every iteration of LOOP.*/
2741
2742 static void
2743 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2744 bool reliable)
2745 {
2746 struct ilb_data data;
2747
2748 data.loop = loop;
2749 data.stmt = stmt;
2750 data.reliable = reliable;
2751 for_each_index (&ref, idx_infer_loop_bounds, &data);
2752 }
2753
2754 /* Determine information about number of iterations of a LOOP from the way
2755 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2756 executed in every iteration of LOOP. */
2757
2758 static void
2759 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2760 {
2761 if (is_gimple_assign (stmt))
2762 {
2763 tree op0 = gimple_assign_lhs (stmt);
2764 tree op1 = gimple_assign_rhs1 (stmt);
2765
2766 /* For each memory access, analyze its access function
2767 and record a bound on the loop iteration domain. */
2768 if (REFERENCE_CLASS_P (op0))
2769 infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2770
2771 if (REFERENCE_CLASS_P (op1))
2772 infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2773 }
2774 else if (is_gimple_call (stmt))
2775 {
2776 tree arg, lhs;
2777 unsigned i, n = gimple_call_num_args (stmt);
2778
2779 lhs = gimple_call_lhs (stmt);
2780 if (lhs && REFERENCE_CLASS_P (lhs))
2781 infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2782
2783 for (i = 0; i < n; i++)
2784 {
2785 arg = gimple_call_arg (stmt, i);
2786 if (REFERENCE_CLASS_P (arg))
2787 infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2788 }
2789 }
2790 }
2791
2792 /* Determine information about number of iterations of a LOOP from the fact
2793 that pointer arithmetics in STMT does not overflow. */
2794
2795 static void
2796 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2797 {
2798 tree def, base, step, scev, type, low, high;
2799 tree var, ptr;
2800
2801 if (!is_gimple_assign (stmt)
2802 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2803 return;
2804
2805 def = gimple_assign_lhs (stmt);
2806 if (TREE_CODE (def) != SSA_NAME)
2807 return;
2808
2809 type = TREE_TYPE (def);
2810 if (!nowrap_type_p (type))
2811 return;
2812
2813 ptr = gimple_assign_rhs1 (stmt);
2814 if (!expr_invariant_in_loop_p (loop, ptr))
2815 return;
2816
2817 var = gimple_assign_rhs2 (stmt);
2818 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2819 return;
2820
2821 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2822 if (chrec_contains_undetermined (scev))
2823 return;
2824
2825 base = initial_condition_in_loop_num (scev, loop->num);
2826 step = evolution_part_in_loop_num (scev, loop->num);
2827
2828 if (!base || !step
2829 || TREE_CODE (step) != INTEGER_CST
2830 || tree_contains_chrecs (base, NULL)
2831 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2832 return;
2833
2834 low = lower_bound_in_type (type, type);
2835 high = upper_bound_in_type (type, type);
2836
2837 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2838 produce a NULL pointer. The contrary would mean NULL points to an object,
2839 while NULL is supposed to compare unequal with the address of all objects.
2840 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2841 NULL pointer since that would mean wrapping, which we assume here not to
2842 happen. So, we can exclude NULL from the valid range of pointer
2843 arithmetic. */
2844 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2845 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2846
2847 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2848 }
2849
2850 /* Determine information about number of iterations of a LOOP from the fact
2851 that signed arithmetics in STMT does not overflow. */
2852
2853 static void
2854 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2855 {
2856 tree def, base, step, scev, type, low, high;
2857
2858 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2859 return;
2860
2861 def = gimple_assign_lhs (stmt);
2862
2863 if (TREE_CODE (def) != SSA_NAME)
2864 return;
2865
2866 type = TREE_TYPE (def);
2867 if (!INTEGRAL_TYPE_P (type)
2868 || !TYPE_OVERFLOW_UNDEFINED (type))
2869 return;
2870
2871 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2872 if (chrec_contains_undetermined (scev))
2873 return;
2874
2875 base = initial_condition_in_loop_num (scev, loop->num);
2876 step = evolution_part_in_loop_num (scev, loop->num);
2877
2878 if (!base || !step
2879 || TREE_CODE (step) != INTEGER_CST
2880 || tree_contains_chrecs (base, NULL)
2881 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2882 return;
2883
2884 low = lower_bound_in_type (type, type);
2885 high = upper_bound_in_type (type, type);
2886
2887 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2888 }
2889
2890 /* The following analyzers are extracting informations on the bounds
2891 of LOOP from the following undefined behaviors:
2892
2893 - data references should not access elements over the statically
2894 allocated size,
2895
2896 - signed variables should not overflow when flag_wrapv is not set.
2897 */
2898
2899 static void
2900 infer_loop_bounds_from_undefined (struct loop *loop)
2901 {
2902 unsigned i;
2903 basic_block *bbs;
2904 gimple_stmt_iterator bsi;
2905 basic_block bb;
2906 bool reliable;
2907
2908 bbs = get_loop_body (loop);
2909
2910 for (i = 0; i < loop->num_nodes; i++)
2911 {
2912 bb = bbs[i];
2913
2914 /* If BB is not executed in each iteration of the loop, we cannot
2915 use the operations in it to infer reliable upper bound on the
2916 # of iterations of the loop. However, we can use it as a guess. */
2917 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2918
2919 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2920 {
2921 gimple stmt = gsi_stmt (bsi);
2922
2923 infer_loop_bounds_from_array (loop, stmt, reliable);
2924
2925 if (reliable)
2926 {
2927 infer_loop_bounds_from_signedness (loop, stmt);
2928 infer_loop_bounds_from_pointer_arith (loop, stmt);
2929 }
2930 }
2931
2932 }
2933
2934 free (bbs);
2935 }
2936
2937 /* Converts VAL to double_int. */
2938
2939 static double_int
2940 gcov_type_to_double_int (gcov_type val)
2941 {
2942 double_int ret;
2943
2944 ret.low = (unsigned HOST_WIDE_INT) val;
2945 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2946 the size of type. */
2947 val >>= HOST_BITS_PER_WIDE_INT - 1;
2948 val >>= 1;
2949 ret.high = (unsigned HOST_WIDE_INT) val;
2950
2951 return ret;
2952 }
2953
2954 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
2955 is true also use estimates derived from undefined behavior. */
2956
2957 void
2958 estimate_numbers_of_iterations_loop (struct loop *loop)
2959 {
2960 VEC (edge, heap) *exits;
2961 tree niter, type;
2962 unsigned i;
2963 struct tree_niter_desc niter_desc;
2964 edge ex;
2965 double_int bound;
2966
2967 /* Give up if we already have tried to compute an estimation. */
2968 if (loop->estimate_state != EST_NOT_COMPUTED)
2969 return;
2970
2971 loop->estimate_state = EST_AVAILABLE;
2972 /* Force estimate compuation but leave any existing upper bound in place. */
2973 loop->any_estimate = false;
2974
2975 exits = get_loop_exit_edges (loop);
2976 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2977 {
2978 if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
2979 continue;
2980
2981 niter = niter_desc.niter;
2982 type = TREE_TYPE (niter);
2983 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
2984 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
2985 build_int_cst (type, 0),
2986 niter);
2987 record_estimate (loop, niter, niter_desc.max,
2988 last_stmt (ex->src),
2989 true, true, true);
2990 }
2991 VEC_free (edge, heap, exits);
2992
2993 infer_loop_bounds_from_undefined (loop);
2994
2995 /* If we have a measured profile, use it to estimate the number of
2996 iterations. */
2997 if (loop->header->count != 0)
2998 {
2999 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3000 bound = gcov_type_to_double_int (nit);
3001 record_niter_bound (loop, bound, true, false);
3002 }
3003 }
3004
3005 /* Sets NIT to the estimated number of executions of the latch of the
3006 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3007 large as the number of iterations. If we have no reliable estimate,
3008 the function returns false, otherwise returns true. */
3009
3010 bool
3011 estimated_loop_iterations (struct loop *loop, double_int *nit)
3012 {
3013 estimate_numbers_of_iterations_loop (loop);
3014 if (!loop->any_estimate)
3015 return false;
3016
3017 *nit = loop->nb_iterations_estimate;
3018 return true;
3019 }
3020
3021 /* Sets NIT to an upper bound for the maximum number of executions of the
3022 latch of the LOOP. If we have no reliable estimate, the function returns
3023 false, otherwise returns true. */
3024
3025 bool
3026 max_loop_iterations (struct loop *loop, double_int *nit)
3027 {
3028 estimate_numbers_of_iterations_loop (loop);
3029 if (!loop->any_upper_bound)
3030 return false;
3031
3032 *nit = loop->nb_iterations_upper_bound;
3033 return true;
3034 }
3035
3036 /* Similar to estimated_loop_iterations, but returns the estimate only
3037 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3038 on the number of iterations of LOOP could not be derived, returns -1. */
3039
3040 HOST_WIDE_INT
3041 estimated_loop_iterations_int (struct loop *loop)
3042 {
3043 double_int nit;
3044 HOST_WIDE_INT hwi_nit;
3045
3046 if (!estimated_loop_iterations (loop, &nit))
3047 return -1;
3048
3049 if (!double_int_fits_in_shwi_p (nit))
3050 return -1;
3051 hwi_nit = double_int_to_shwi (nit);
3052
3053 return hwi_nit < 0 ? -1 : hwi_nit;
3054 }
3055
3056 /* Similar to max_loop_iterations, but returns the estimate only
3057 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3058 on the number of iterations of LOOP could not be derived, returns -1. */
3059
3060 HOST_WIDE_INT
3061 max_loop_iterations_int (struct loop *loop)
3062 {
3063 double_int nit;
3064 HOST_WIDE_INT hwi_nit;
3065
3066 if (!max_loop_iterations (loop, &nit))
3067 return -1;
3068
3069 if (!double_int_fits_in_shwi_p (nit))
3070 return -1;
3071 hwi_nit = double_int_to_shwi (nit);
3072
3073 return hwi_nit < 0 ? -1 : hwi_nit;
3074 }
3075
3076 /* Returns an upper bound on the number of executions of statements
3077 in the LOOP. For statements before the loop exit, this exceeds
3078 the number of execution of the latch by one. */
3079
3080 HOST_WIDE_INT
3081 max_stmt_executions_int (struct loop *loop)
3082 {
3083 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3084 HOST_WIDE_INT snit;
3085
3086 if (nit == -1)
3087 return -1;
3088
3089 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3090
3091 /* If the computation overflows, return -1. */
3092 return snit < 0 ? -1 : snit;
3093 }
3094
3095 /* Returns an estimate for the number of executions of statements
3096 in the LOOP. For statements before the loop exit, this exceeds
3097 the number of execution of the latch by one. */
3098
3099 HOST_WIDE_INT
3100 estimated_stmt_executions_int (struct loop *loop)
3101 {
3102 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3103 HOST_WIDE_INT snit;
3104
3105 if (nit == -1)
3106 return -1;
3107
3108 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3109
3110 /* If the computation overflows, return -1. */
3111 return snit < 0 ? -1 : snit;
3112 }
3113
3114 /* Sets NIT to the estimated maximum number of executions of the latch of the
3115 LOOP, plus one. If we have no reliable estimate, the function returns
3116 false, otherwise returns true. */
3117
3118 bool
3119 max_stmt_executions (struct loop *loop, double_int *nit)
3120 {
3121 double_int nit_minus_one;
3122
3123 if (!max_loop_iterations (loop, nit))
3124 return false;
3125
3126 nit_minus_one = *nit;
3127
3128 *nit = double_int_add (*nit, double_int_one);
3129
3130 return double_int_ucmp (*nit, nit_minus_one) > 0;
3131 }
3132
3133 /* Sets NIT to the estimated number of executions of the latch of the
3134 LOOP, plus one. If we have no reliable estimate, the function returns
3135 false, otherwise returns true. */
3136
3137 bool
3138 estimated_stmt_executions (struct loop *loop, double_int *nit)
3139 {
3140 double_int nit_minus_one;
3141
3142 if (!estimated_loop_iterations (loop, nit))
3143 return false;
3144
3145 nit_minus_one = *nit;
3146
3147 *nit = double_int_add (*nit, double_int_one);
3148
3149 return double_int_ucmp (*nit, nit_minus_one) > 0;
3150 }
3151
3152 /* Records estimates on numbers of iterations of loops. */
3153
3154 void
3155 estimate_numbers_of_iterations (void)
3156 {
3157 loop_iterator li;
3158 struct loop *loop;
3159
3160 /* We don't want to issue signed overflow warnings while getting
3161 loop iteration estimates. */
3162 fold_defer_overflow_warnings ();
3163
3164 FOR_EACH_LOOP (li, loop, 0)
3165 {
3166 estimate_numbers_of_iterations_loop (loop);
3167 }
3168
3169 fold_undefer_and_ignore_overflow_warnings ();
3170 }
3171
3172 /* Returns true if statement S1 dominates statement S2. */
3173
3174 bool
3175 stmt_dominates_stmt_p (gimple s1, gimple s2)
3176 {
3177 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3178
3179 if (!bb1
3180 || s1 == s2)
3181 return true;
3182
3183 if (bb1 == bb2)
3184 {
3185 gimple_stmt_iterator bsi;
3186
3187 if (gimple_code (s2) == GIMPLE_PHI)
3188 return false;
3189
3190 if (gimple_code (s1) == GIMPLE_PHI)
3191 return true;
3192
3193 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3194 if (gsi_stmt (bsi) == s1)
3195 return true;
3196
3197 return false;
3198 }
3199
3200 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3201 }
3202
3203 /* Returns true when we can prove that the number of executions of
3204 STMT in the loop is at most NITER, according to the bound on
3205 the number of executions of the statement NITER_BOUND->stmt recorded in
3206 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3207 statements in the loop. */
3208
3209 static bool
3210 n_of_executions_at_most (gimple stmt,
3211 struct nb_iter_bound *niter_bound,
3212 tree niter)
3213 {
3214 double_int bound = niter_bound->bound;
3215 tree nit_type = TREE_TYPE (niter), e;
3216 enum tree_code cmp;
3217
3218 gcc_assert (TYPE_UNSIGNED (nit_type));
3219
3220 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3221 the number of iterations is small. */
3222 if (!double_int_fits_to_tree_p (nit_type, bound))
3223 return false;
3224
3225 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3226 times. This means that:
3227
3228 -- if NITER_BOUND->is_exit is true, then everything before
3229 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3230 times, and everything after it at most NITER_BOUND->bound times.
3231
3232 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3233 is executed, then NITER_BOUND->stmt is executed as well in the same
3234 iteration (we conclude that if both statements belong to the same
3235 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3236 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3237 executed at most NITER_BOUND->bound + 2 times. */
3238
3239 if (niter_bound->is_exit)
3240 {
3241 if (stmt
3242 && stmt != niter_bound->stmt
3243 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3244 cmp = GE_EXPR;
3245 else
3246 cmp = GT_EXPR;
3247 }
3248 else
3249 {
3250 if (!stmt
3251 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3252 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3253 {
3254 bound = double_int_add (bound, double_int_one);
3255 if (double_int_zero_p (bound)
3256 || !double_int_fits_to_tree_p (nit_type, bound))
3257 return false;
3258 }
3259 cmp = GT_EXPR;
3260 }
3261
3262 e = fold_binary (cmp, boolean_type_node,
3263 niter, double_int_to_tree (nit_type, bound));
3264 return e && integer_nonzerop (e);
3265 }
3266
3267 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3268
3269 bool
3270 nowrap_type_p (tree type)
3271 {
3272 if (INTEGRAL_TYPE_P (type)
3273 && TYPE_OVERFLOW_UNDEFINED (type))
3274 return true;
3275
3276 if (POINTER_TYPE_P (type))
3277 return true;
3278
3279 return false;
3280 }
3281
3282 /* Return false only when the induction variable BASE + STEP * I is
3283 known to not overflow: i.e. when the number of iterations is small
3284 enough with respect to the step and initial condition in order to
3285 keep the evolution confined in TYPEs bounds. Return true when the
3286 iv is known to overflow or when the property is not computable.
3287
3288 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3289 the rules for overflow of the given language apply (e.g., that signed
3290 arithmetics in C does not overflow). */
3291
3292 bool
3293 scev_probably_wraps_p (tree base, tree step,
3294 gimple at_stmt, struct loop *loop,
3295 bool use_overflow_semantics)
3296 {
3297 struct nb_iter_bound *bound;
3298 tree delta, step_abs;
3299 tree unsigned_type, valid_niter;
3300 tree type = TREE_TYPE (step);
3301
3302 /* FIXME: We really need something like
3303 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3304
3305 We used to test for the following situation that frequently appears
3306 during address arithmetics:
3307
3308 D.1621_13 = (long unsigned intD.4) D.1620_12;
3309 D.1622_14 = D.1621_13 * 8;
3310 D.1623_15 = (doubleD.29 *) D.1622_14;
3311
3312 And derived that the sequence corresponding to D_14
3313 can be proved to not wrap because it is used for computing a
3314 memory access; however, this is not really the case -- for example,
3315 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3316 2032, 2040, 0, 8, ..., but the code is still legal. */
3317
3318 if (chrec_contains_undetermined (base)
3319 || chrec_contains_undetermined (step))
3320 return true;
3321
3322 if (integer_zerop (step))
3323 return false;
3324
3325 /* If we can use the fact that signed and pointer arithmetics does not
3326 wrap, we are done. */
3327 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3328 return false;
3329
3330 /* To be able to use estimates on number of iterations of the loop,
3331 we must have an upper bound on the absolute value of the step. */
3332 if (TREE_CODE (step) != INTEGER_CST)
3333 return true;
3334
3335 /* Don't issue signed overflow warnings. */
3336 fold_defer_overflow_warnings ();
3337
3338 /* Otherwise, compute the number of iterations before we reach the
3339 bound of the type, and verify that the loop is exited before this
3340 occurs. */
3341 unsigned_type = unsigned_type_for (type);
3342 base = fold_convert (unsigned_type, base);
3343
3344 if (tree_int_cst_sign_bit (step))
3345 {
3346 tree extreme = fold_convert (unsigned_type,
3347 lower_bound_in_type (type, type));
3348 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3349 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3350 fold_convert (unsigned_type, step));
3351 }
3352 else
3353 {
3354 tree extreme = fold_convert (unsigned_type,
3355 upper_bound_in_type (type, type));
3356 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3357 step_abs = fold_convert (unsigned_type, step);
3358 }
3359
3360 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3361
3362 estimate_numbers_of_iterations_loop (loop);
3363 for (bound = loop->bounds; bound; bound = bound->next)
3364 {
3365 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3366 {
3367 fold_undefer_and_ignore_overflow_warnings ();
3368 return false;
3369 }
3370 }
3371
3372 fold_undefer_and_ignore_overflow_warnings ();
3373
3374 /* At this point we still don't have a proof that the iv does not
3375 overflow: give up. */
3376 return true;
3377 }
3378
3379 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3380
3381 void
3382 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3383 {
3384 struct nb_iter_bound *bound, *next;
3385
3386 loop->nb_iterations = NULL;
3387 loop->estimate_state = EST_NOT_COMPUTED;
3388 for (bound = loop->bounds; bound; bound = next)
3389 {
3390 next = bound->next;
3391 ggc_free (bound);
3392 }
3393
3394 loop->bounds = NULL;
3395 }
3396
3397 /* Frees the information on upper bounds on numbers of iterations of loops. */
3398
3399 void
3400 free_numbers_of_iterations_estimates (void)
3401 {
3402 loop_iterator li;
3403 struct loop *loop;
3404
3405 FOR_EACH_LOOP (li, loop, 0)
3406 {
3407 free_numbers_of_iterations_estimates_loop (loop);
3408 }
3409 }
3410
3411 /* Substitute value VAL for ssa name NAME inside expressions held
3412 at LOOP. */
3413
3414 void
3415 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3416 {
3417 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3418 }