Daily bump.
[gcc.git] / gcc / tree-ssa-loop-niter.c
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "params.h"
45
46
47 /* The maximum number of dominator BBs we search for conditions
48 of loop header copies we use for simplifying a conditional
49 expression. */
50 #define MAX_DOMINATORS_TO_WALK 8
51
52 /*
53
54 Analysis of number of iterations of an affine exit test.
55
56 */
57
58 /* Bounds on some value, BELOW <= X <= UP. */
59
60 struct bounds
61 {
62 mpz_t below, up;
63 };
64
65
66 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
67
68 static void
69 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
70 {
71 tree type = TREE_TYPE (expr);
72 tree op0, op1;
73 bool negate = false;
74
75 *var = expr;
76 mpz_set_ui (offset, 0);
77
78 switch (TREE_CODE (expr))
79 {
80 case MINUS_EXPR:
81 negate = true;
82 /* Fallthru. */
83
84 case PLUS_EXPR:
85 case POINTER_PLUS_EXPR:
86 op0 = TREE_OPERAND (expr, 0);
87 op1 = TREE_OPERAND (expr, 1);
88
89 if (TREE_CODE (op1) != INTEGER_CST)
90 break;
91
92 *var = op0;
93 /* Always sign extend the offset. */
94 wi::to_mpz (op1, offset, SIGNED);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
98
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 wi::to_mpz (expr, offset, TYPE_SIGN (type));
102 break;
103
104 default:
105 break;
106 }
107 }
108
109 /* From condition C0 CMP C1 derives information regarding the value range
110 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
111
112 static void
113 refine_value_range_using_guard (tree type, tree var,
114 tree c0, enum tree_code cmp, tree c1,
115 mpz_t below, mpz_t up)
116 {
117 tree varc0, varc1, ctype;
118 mpz_t offc0, offc1;
119 mpz_t mint, maxt, minc1, maxc1;
120 wide_int minv, maxv;
121 bool no_wrap = nowrap_type_p (type);
122 bool c0_ok, c1_ok;
123 signop sgn = TYPE_SIGN (type);
124
125 switch (cmp)
126 {
127 case LT_EXPR:
128 case LE_EXPR:
129 case GT_EXPR:
130 case GE_EXPR:
131 STRIP_SIGN_NOPS (c0);
132 STRIP_SIGN_NOPS (c1);
133 ctype = TREE_TYPE (c0);
134 if (!useless_type_conversion_p (ctype, type))
135 return;
136
137 break;
138
139 case EQ_EXPR:
140 /* We could derive quite precise information from EQ_EXPR, however,
141 such a guard is unlikely to appear, so we do not bother with
142 handling it. */
143 return;
144
145 case NE_EXPR:
146 /* NE_EXPR comparisons do not contain much of useful information,
147 except for cases of comparing with bounds. */
148 if (TREE_CODE (c1) != INTEGER_CST
149 || !INTEGRAL_TYPE_P (type))
150 return;
151
152 /* Ensure that the condition speaks about an expression in the same
153 type as X and Y. */
154 ctype = TREE_TYPE (c0);
155 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
156 return;
157 c0 = fold_convert (type, c0);
158 c1 = fold_convert (type, c1);
159
160 if (operand_equal_p (var, c0, 0))
161 {
162 mpz_t valc1;
163
164 /* Case of comparing VAR with its below/up bounds. */
165 mpz_init (valc1);
166 wi::to_mpz (c1, valc1, TYPE_SIGN (type));
167 if (mpz_cmp (valc1, below) == 0)
168 cmp = GT_EXPR;
169 if (mpz_cmp (valc1, up) == 0)
170 cmp = LT_EXPR;
171
172 mpz_clear (valc1);
173 }
174 else
175 {
176 /* Case of comparing with the bounds of the type. */
177 wide_int min = wi::min_value (type);
178 wide_int max = wi::max_value (type);
179
180 if (wi::eq_p (c1, min))
181 cmp = GT_EXPR;
182 if (wi::eq_p (c1, max))
183 cmp = LT_EXPR;
184 }
185
186 /* Quick return if no useful information. */
187 if (cmp == NE_EXPR)
188 return;
189
190 break;
191
192 default:
193 return;
194 }
195
196 mpz_init (offc0);
197 mpz_init (offc1);
198 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
199 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
200
201 /* We are only interested in comparisons of expressions based on VAR. */
202 if (operand_equal_p (var, varc1, 0))
203 {
204 std::swap (varc0, varc1);
205 mpz_swap (offc0, offc1);
206 cmp = swap_tree_comparison (cmp);
207 }
208 else if (!operand_equal_p (var, varc0, 0))
209 {
210 mpz_clear (offc0);
211 mpz_clear (offc1);
212 return;
213 }
214
215 mpz_init (mint);
216 mpz_init (maxt);
217 get_type_static_bounds (type, mint, maxt);
218 mpz_init (minc1);
219 mpz_init (maxc1);
220 /* Setup range information for varc1. */
221 if (integer_zerop (varc1))
222 {
223 wi::to_mpz (integer_zero_node, minc1, TYPE_SIGN (type));
224 wi::to_mpz (integer_zero_node, maxc1, TYPE_SIGN (type));
225 }
226 else if (TREE_CODE (varc1) == SSA_NAME
227 && INTEGRAL_TYPE_P (type)
228 && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
229 {
230 gcc_assert (wi::le_p (minv, maxv, sgn));
231 wi::to_mpz (minv, minc1, sgn);
232 wi::to_mpz (maxv, maxc1, sgn);
233 }
234 else
235 {
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
238 }
239
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
243
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
254
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
259
260 if (cmp == LT_EXPR)
261 {
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
264 }
265 if (cmp == GT_EXPR)
266 {
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
269 }
270
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
273
274 (varc0) cmp (varc1 + offc1 - offc0)
275
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
278
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
282
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
285
286 2) cmp == LE_EXPR && offc0 < 0
287
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
290
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
293
294 3) cmp == GE_EXPR && offc0 < 0
295
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
298
299 4) cmp == GE_EXPR && offc0 > 0
300
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
303
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
306
307 Note we only handle case 2 and 4 in below code. */
308
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
319
320 if (cmp == LE_EXPR)
321 {
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
324 }
325 else
326 {
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
329 }
330
331 end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
338 }
339
340 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
342
343 static void
344 determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
346 {
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_type rtype = VR_VARYING;
352
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
355 {
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
359 }
360
361 get_type_static_bounds (type, min, max);
362
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
365 {
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
369
370 /* Either for VAR itself... */
371 rtype = get_range_info (var, &minv, &maxv);
372 /* Or for PHI results in loop->header where VAR is used as
373 PHI argument from the loop preheader edge. */
374 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
375 {
376 gphi *phi = gsi.phi ();
377 wide_int minc, maxc;
378 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
379 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
380 == VR_RANGE))
381 {
382 if (rtype != VR_RANGE)
383 {
384 rtype = VR_RANGE;
385 minv = minc;
386 maxv = maxc;
387 }
388 else
389 {
390 minv = wi::max (minv, minc, sgn);
391 maxv = wi::min (maxv, maxc, sgn);
392 /* If the PHI result range are inconsistent with
393 the VAR range, give up on looking at the PHI
394 results. This can happen if VR_UNDEFINED is
395 involved. */
396 if (wi::gt_p (minv, maxv, sgn))
397 {
398 rtype = get_range_info (var, &minv, &maxv);
399 break;
400 }
401 }
402 }
403 }
404 mpz_init (minm);
405 mpz_init (maxm);
406 if (rtype != VR_RANGE)
407 {
408 mpz_set (minm, min);
409 mpz_set (maxm, max);
410 }
411 else
412 {
413 gcc_assert (wi::le_p (minv, maxv, sgn));
414 wi::to_mpz (minv, minm, sgn);
415 wi::to_mpz (maxv, maxm, sgn);
416 }
417 /* Now walk the dominators of the loop header and use the entry
418 guards to refine the estimates. */
419 for (bb = loop->header;
420 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
421 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
422 {
423 edge e;
424 tree c0, c1;
425 gimple *cond;
426 enum tree_code cmp;
427
428 if (!single_pred_p (bb))
429 continue;
430 e = single_pred_edge (bb);
431
432 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
433 continue;
434
435 cond = last_stmt (e->src);
436 c0 = gimple_cond_lhs (cond);
437 cmp = gimple_cond_code (cond);
438 c1 = gimple_cond_rhs (cond);
439
440 if (e->flags & EDGE_FALSE_VALUE)
441 cmp = invert_tree_comparison (cmp, false);
442
443 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
444 ++cnt;
445 }
446
447 mpz_add (minm, minm, off);
448 mpz_add (maxm, maxm, off);
449 /* If the computation may not wrap or off is zero, then this
450 is always fine. If off is negative and minv + off isn't
451 smaller than type's minimum, or off is positive and
452 maxv + off isn't bigger than type's maximum, use the more
453 precise range too. */
454 if (nowrap_type_p (type)
455 || mpz_sgn (off) == 0
456 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
457 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
458 {
459 mpz_set (min, minm);
460 mpz_set (max, maxm);
461 mpz_clear (minm);
462 mpz_clear (maxm);
463 return;
464 }
465 mpz_clear (minm);
466 mpz_clear (maxm);
467 }
468
469 /* If the computation may wrap, we know nothing about the value, except for
470 the range of the type. */
471 if (!nowrap_type_p (type))
472 return;
473
474 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
475 add it to MIN, otherwise to MAX. */
476 if (mpz_sgn (off) < 0)
477 mpz_add (max, max, off);
478 else
479 mpz_add (min, min, off);
480 }
481
482 /* Stores the bounds on the difference of the values of the expressions
483 (var + X) and (var + Y), computed in TYPE, to BNDS. */
484
485 static void
486 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
487 bounds *bnds)
488 {
489 int rel = mpz_cmp (x, y);
490 bool may_wrap = !nowrap_type_p (type);
491 mpz_t m;
492
493 /* If X == Y, then the expressions are always equal.
494 If X > Y, there are the following possibilities:
495 a) neither of var + X and var + Y overflow or underflow, or both of
496 them do. Then their difference is X - Y.
497 b) var + X overflows, and var + Y does not. Then the values of the
498 expressions are var + X - M and var + Y, where M is the range of
499 the type, and their difference is X - Y - M.
500 c) var + Y underflows and var + X does not. Their difference again
501 is M - X + Y.
502 Therefore, if the arithmetics in type does not overflow, then the
503 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
504 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
505 (X - Y, X - Y + M). */
506
507 if (rel == 0)
508 {
509 mpz_set_ui (bnds->below, 0);
510 mpz_set_ui (bnds->up, 0);
511 return;
512 }
513
514 mpz_init (m);
515 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
516 mpz_add_ui (m, m, 1);
517 mpz_sub (bnds->up, x, y);
518 mpz_set (bnds->below, bnds->up);
519
520 if (may_wrap)
521 {
522 if (rel > 0)
523 mpz_sub (bnds->below, bnds->below, m);
524 else
525 mpz_add (bnds->up, bnds->up, m);
526 }
527
528 mpz_clear (m);
529 }
530
531 /* From condition C0 CMP C1 derives information regarding the
532 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
533 and stores it to BNDS. */
534
535 static void
536 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
537 tree vary, mpz_t offy,
538 tree c0, enum tree_code cmp, tree c1,
539 bounds *bnds)
540 {
541 tree varc0, varc1, ctype;
542 mpz_t offc0, offc1, loffx, loffy, bnd;
543 bool lbound = false;
544 bool no_wrap = nowrap_type_p (type);
545 bool x_ok, y_ok;
546
547 switch (cmp)
548 {
549 case LT_EXPR:
550 case LE_EXPR:
551 case GT_EXPR:
552 case GE_EXPR:
553 STRIP_SIGN_NOPS (c0);
554 STRIP_SIGN_NOPS (c1);
555 ctype = TREE_TYPE (c0);
556 if (!useless_type_conversion_p (ctype, type))
557 return;
558
559 break;
560
561 case EQ_EXPR:
562 /* We could derive quite precise information from EQ_EXPR, however, such
563 a guard is unlikely to appear, so we do not bother with handling
564 it. */
565 return;
566
567 case NE_EXPR:
568 /* NE_EXPR comparisons do not contain much of useful information, except for
569 special case of comparing with the bounds of the type. */
570 if (TREE_CODE (c1) != INTEGER_CST
571 || !INTEGRAL_TYPE_P (type))
572 return;
573
574 /* Ensure that the condition speaks about an expression in the same type
575 as X and Y. */
576 ctype = TREE_TYPE (c0);
577 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
578 return;
579 c0 = fold_convert (type, c0);
580 c1 = fold_convert (type, c1);
581
582 if (TYPE_MIN_VALUE (type)
583 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
584 {
585 cmp = GT_EXPR;
586 break;
587 }
588 if (TYPE_MAX_VALUE (type)
589 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
590 {
591 cmp = LT_EXPR;
592 break;
593 }
594
595 return;
596 default:
597 return;
598 }
599
600 mpz_init (offc0);
601 mpz_init (offc1);
602 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
603 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
604
605 /* We are only interested in comparisons of expressions based on VARX and
606 VARY. TODO -- we might also be able to derive some bounds from
607 expressions containing just one of the variables. */
608
609 if (operand_equal_p (varx, varc1, 0))
610 {
611 std::swap (varc0, varc1);
612 mpz_swap (offc0, offc1);
613 cmp = swap_tree_comparison (cmp);
614 }
615
616 if (!operand_equal_p (varx, varc0, 0)
617 || !operand_equal_p (vary, varc1, 0))
618 goto end;
619
620 mpz_init_set (loffx, offx);
621 mpz_init_set (loffy, offy);
622
623 if (cmp == GT_EXPR || cmp == GE_EXPR)
624 {
625 std::swap (varx, vary);
626 mpz_swap (offc0, offc1);
627 mpz_swap (loffx, loffy);
628 cmp = swap_tree_comparison (cmp);
629 lbound = true;
630 }
631
632 /* If there is no overflow, the condition implies that
633
634 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
635
636 The overflows and underflows may complicate things a bit; each
637 overflow decreases the appropriate offset by M, and underflow
638 increases it by M. The above inequality would not necessarily be
639 true if
640
641 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
642 VARX + OFFC0 overflows, but VARX + OFFX does not.
643 This may only happen if OFFX < OFFC0.
644 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
645 VARY + OFFC1 underflows and VARY + OFFY does not.
646 This may only happen if OFFY > OFFC1. */
647
648 if (no_wrap)
649 {
650 x_ok = true;
651 y_ok = true;
652 }
653 else
654 {
655 x_ok = (integer_zerop (varx)
656 || mpz_cmp (loffx, offc0) >= 0);
657 y_ok = (integer_zerop (vary)
658 || mpz_cmp (loffy, offc1) <= 0);
659 }
660
661 if (x_ok && y_ok)
662 {
663 mpz_init (bnd);
664 mpz_sub (bnd, loffx, loffy);
665 mpz_add (bnd, bnd, offc1);
666 mpz_sub (bnd, bnd, offc0);
667
668 if (cmp == LT_EXPR)
669 mpz_sub_ui (bnd, bnd, 1);
670
671 if (lbound)
672 {
673 mpz_neg (bnd, bnd);
674 if (mpz_cmp (bnds->below, bnd) < 0)
675 mpz_set (bnds->below, bnd);
676 }
677 else
678 {
679 if (mpz_cmp (bnd, bnds->up) < 0)
680 mpz_set (bnds->up, bnd);
681 }
682 mpz_clear (bnd);
683 }
684
685 mpz_clear (loffx);
686 mpz_clear (loffy);
687 end:
688 mpz_clear (offc0);
689 mpz_clear (offc1);
690 }
691
692 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
693 The subtraction is considered to be performed in arbitrary precision,
694 without overflows.
695
696 We do not attempt to be too clever regarding the value ranges of X and
697 Y; most of the time, they are just integers or ssa names offsetted by
698 integer. However, we try to use the information contained in the
699 comparisons before the loop (usually created by loop header copying). */
700
701 static void
702 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
703 {
704 tree type = TREE_TYPE (x);
705 tree varx, vary;
706 mpz_t offx, offy;
707 mpz_t minx, maxx, miny, maxy;
708 int cnt = 0;
709 edge e;
710 basic_block bb;
711 tree c0, c1;
712 gimple *cond;
713 enum tree_code cmp;
714
715 /* Get rid of unnecessary casts, but preserve the value of
716 the expressions. */
717 STRIP_SIGN_NOPS (x);
718 STRIP_SIGN_NOPS (y);
719
720 mpz_init (bnds->below);
721 mpz_init (bnds->up);
722 mpz_init (offx);
723 mpz_init (offy);
724 split_to_var_and_offset (x, &varx, offx);
725 split_to_var_and_offset (y, &vary, offy);
726
727 if (!integer_zerop (varx)
728 && operand_equal_p (varx, vary, 0))
729 {
730 /* Special case VARX == VARY -- we just need to compare the
731 offsets. The matters are a bit more complicated in the
732 case addition of offsets may wrap. */
733 bound_difference_of_offsetted_base (type, offx, offy, bnds);
734 }
735 else
736 {
737 /* Otherwise, use the value ranges to determine the initial
738 estimates on below and up. */
739 mpz_init (minx);
740 mpz_init (maxx);
741 mpz_init (miny);
742 mpz_init (maxy);
743 determine_value_range (loop, type, varx, offx, minx, maxx);
744 determine_value_range (loop, type, vary, offy, miny, maxy);
745
746 mpz_sub (bnds->below, minx, maxy);
747 mpz_sub (bnds->up, maxx, miny);
748 mpz_clear (minx);
749 mpz_clear (maxx);
750 mpz_clear (miny);
751 mpz_clear (maxy);
752 }
753
754 /* If both X and Y are constants, we cannot get any more precise. */
755 if (integer_zerop (varx) && integer_zerop (vary))
756 goto end;
757
758 /* Now walk the dominators of the loop header and use the entry
759 guards to refine the estimates. */
760 for (bb = loop->header;
761 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
762 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
763 {
764 if (!single_pred_p (bb))
765 continue;
766 e = single_pred_edge (bb);
767
768 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
769 continue;
770
771 cond = last_stmt (e->src);
772 c0 = gimple_cond_lhs (cond);
773 cmp = gimple_cond_code (cond);
774 c1 = gimple_cond_rhs (cond);
775
776 if (e->flags & EDGE_FALSE_VALUE)
777 cmp = invert_tree_comparison (cmp, false);
778
779 refine_bounds_using_guard (type, varx, offx, vary, offy,
780 c0, cmp, c1, bnds);
781 ++cnt;
782 }
783
784 end:
785 mpz_clear (offx);
786 mpz_clear (offy);
787 }
788
789 /* Update the bounds in BNDS that restrict the value of X to the bounds
790 that restrict the value of X + DELTA. X can be obtained as a
791 difference of two values in TYPE. */
792
793 static void
794 bounds_add (bounds *bnds, const widest_int &delta, tree type)
795 {
796 mpz_t mdelta, max;
797
798 mpz_init (mdelta);
799 wi::to_mpz (delta, mdelta, SIGNED);
800
801 mpz_init (max);
802 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
803
804 mpz_add (bnds->up, bnds->up, mdelta);
805 mpz_add (bnds->below, bnds->below, mdelta);
806
807 if (mpz_cmp (bnds->up, max) > 0)
808 mpz_set (bnds->up, max);
809
810 mpz_neg (max, max);
811 if (mpz_cmp (bnds->below, max) < 0)
812 mpz_set (bnds->below, max);
813
814 mpz_clear (mdelta);
815 mpz_clear (max);
816 }
817
818 /* Update the bounds in BNDS that restrict the value of X to the bounds
819 that restrict the value of -X. */
820
821 static void
822 bounds_negate (bounds *bnds)
823 {
824 mpz_t tmp;
825
826 mpz_init_set (tmp, bnds->up);
827 mpz_neg (bnds->up, bnds->below);
828 mpz_neg (bnds->below, tmp);
829 mpz_clear (tmp);
830 }
831
832 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
833
834 static tree
835 inverse (tree x, tree mask)
836 {
837 tree type = TREE_TYPE (x);
838 tree rslt;
839 unsigned ctr = tree_floor_log2 (mask);
840
841 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
842 {
843 unsigned HOST_WIDE_INT ix;
844 unsigned HOST_WIDE_INT imask;
845 unsigned HOST_WIDE_INT irslt = 1;
846
847 gcc_assert (cst_and_fits_in_hwi (x));
848 gcc_assert (cst_and_fits_in_hwi (mask));
849
850 ix = int_cst_value (x);
851 imask = int_cst_value (mask);
852
853 for (; ctr; ctr--)
854 {
855 irslt *= ix;
856 ix *= ix;
857 }
858 irslt &= imask;
859
860 rslt = build_int_cst_type (type, irslt);
861 }
862 else
863 {
864 rslt = build_int_cst (type, 1);
865 for (; ctr; ctr--)
866 {
867 rslt = int_const_binop (MULT_EXPR, rslt, x);
868 x = int_const_binop (MULT_EXPR, x, x);
869 }
870 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
871 }
872
873 return rslt;
874 }
875
876 /* Derives the upper bound BND on the number of executions of loop with exit
877 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
878 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
879 that the loop ends through this exit, i.e., the induction variable ever
880 reaches the value of C.
881
882 The value C is equal to final - base, where final and base are the final and
883 initial value of the actual induction variable in the analysed loop. BNDS
884 bounds the value of this difference when computed in signed type with
885 unbounded range, while the computation of C is performed in an unsigned
886 type with the range matching the range of the type of the induction variable.
887 In particular, BNDS.up contains an upper bound on C in the following cases:
888 -- if the iv must reach its final value without overflow, i.e., if
889 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
890 -- if final >= base, which we know to hold when BNDS.below >= 0. */
891
892 static void
893 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
894 bounds *bnds, bool exit_must_be_taken)
895 {
896 widest_int max;
897 mpz_t d;
898 tree type = TREE_TYPE (c);
899 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
900 || mpz_sgn (bnds->below) >= 0);
901
902 if (integer_onep (s)
903 || (TREE_CODE (c) == INTEGER_CST
904 && TREE_CODE (s) == INTEGER_CST
905 && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)
906 || (TYPE_OVERFLOW_UNDEFINED (type)
907 && multiple_of_p (type, c, s)))
908 {
909 /* If C is an exact multiple of S, then its value will be reached before
910 the induction variable overflows (unless the loop is exited in some
911 other way before). Note that the actual induction variable in the
912 loop (which ranges from base to final instead of from 0 to C) may
913 overflow, in which case BNDS.up will not be giving a correct upper
914 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
915 no_overflow = true;
916 exit_must_be_taken = true;
917 }
918
919 /* If the induction variable can overflow, the number of iterations is at
920 most the period of the control variable (or infinite, but in that case
921 the whole # of iterations analysis will fail). */
922 if (!no_overflow)
923 {
924 max = wi::mask <widest_int> (TYPE_PRECISION (type) - wi::ctz (s), false);
925 wi::to_mpz (max, bnd, UNSIGNED);
926 return;
927 }
928
929 /* Now we know that the induction variable does not overflow, so the loop
930 iterates at most (range of type / S) times. */
931 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
932
933 /* If the induction variable is guaranteed to reach the value of C before
934 overflow, ... */
935 if (exit_must_be_taken)
936 {
937 /* ... then we can strengthen this to C / S, and possibly we can use
938 the upper bound on C given by BNDS. */
939 if (TREE_CODE (c) == INTEGER_CST)
940 wi::to_mpz (c, bnd, UNSIGNED);
941 else if (bnds_u_valid)
942 mpz_set (bnd, bnds->up);
943 }
944
945 mpz_init (d);
946 wi::to_mpz (s, d, UNSIGNED);
947 mpz_fdiv_q (bnd, bnd, d);
948 mpz_clear (d);
949 }
950
951 /* Determines number of iterations of loop whose ending condition
952 is IV <> FINAL. TYPE is the type of the iv. The number of
953 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
954 we know that the exit must be taken eventually, i.e., that the IV
955 ever reaches the value FINAL (we derived this earlier, and possibly set
956 NITER->assumptions to make sure this is the case). BNDS contains the
957 bounds on the difference FINAL - IV->base. */
958
959 static bool
960 number_of_iterations_ne (struct loop *loop, tree type, affine_iv *iv,
961 tree final, struct tree_niter_desc *niter,
962 bool exit_must_be_taken, bounds *bnds)
963 {
964 tree niter_type = unsigned_type_for (type);
965 tree s, c, d, bits, assumption, tmp, bound;
966 mpz_t max;
967
968 niter->control = *iv;
969 niter->bound = final;
970 niter->cmp = NE_EXPR;
971
972 /* Rearrange the terms so that we get inequality S * i <> C, with S
973 positive. Also cast everything to the unsigned type. If IV does
974 not overflow, BNDS bounds the value of C. Also, this is the
975 case if the computation |FINAL - IV->base| does not overflow, i.e.,
976 if BNDS->below in the result is nonnegative. */
977 if (tree_int_cst_sign_bit (iv->step))
978 {
979 s = fold_convert (niter_type,
980 fold_build1 (NEGATE_EXPR, type, iv->step));
981 c = fold_build2 (MINUS_EXPR, niter_type,
982 fold_convert (niter_type, iv->base),
983 fold_convert (niter_type, final));
984 bounds_negate (bnds);
985 }
986 else
987 {
988 s = fold_convert (niter_type, iv->step);
989 c = fold_build2 (MINUS_EXPR, niter_type,
990 fold_convert (niter_type, final),
991 fold_convert (niter_type, iv->base));
992 }
993
994 mpz_init (max);
995 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
996 exit_must_be_taken);
997 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
998 TYPE_SIGN (niter_type));
999 mpz_clear (max);
1000
1001 /* Compute no-overflow information for the control iv. This can be
1002 proven when below two conditions are satisfied:
1003
1004 1) IV evaluates toward FINAL at beginning, i.e:
1005 base <= FINAL ; step > 0
1006 base >= FINAL ; step < 0
1007
1008 2) |FINAL - base| is an exact multiple of step.
1009
1010 Unfortunately, it's hard to prove above conditions after pass loop-ch
1011 because loop with exit condition (IV != FINAL) usually will be guarded
1012 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1013 can alternatively try to prove below conditions:
1014
1015 1') IV evaluates toward FINAL at beginning, i.e:
1016 new_base = base - step < FINAL ; step > 0
1017 && base - step doesn't underflow
1018 new_base = base - step > FINAL ; step < 0
1019 && base - step doesn't overflow
1020
1021 2') |FINAL - new_base| is an exact multiple of step.
1022
1023 Please refer to PR34114 as an example of loop-ch's impact, also refer
1024 to PR72817 as an example why condition 2') is necessary.
1025
1026 Note, for NE_EXPR, base equals to FINAL is a special case, in
1027 which the loop exits immediately, and the iv does not overflow. */
1028 if (!niter->control.no_overflow
1029 && (integer_onep (s) || multiple_of_p (type, c, s)))
1030 {
1031 tree t, cond, new_c, relaxed_cond = boolean_false_node;
1032
1033 if (tree_int_cst_sign_bit (iv->step))
1034 {
1035 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1036 if (TREE_CODE (type) == INTEGER_TYPE)
1037 {
1038 /* Only when base - step doesn't overflow. */
1039 t = TYPE_MAX_VALUE (type);
1040 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1041 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1042 if (integer_nonzerop (t))
1043 {
1044 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1045 new_c = fold_build2 (MINUS_EXPR, niter_type,
1046 fold_convert (niter_type, t),
1047 fold_convert (niter_type, final));
1048 if (multiple_of_p (type, new_c, s))
1049 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
1050 t, final);
1051 }
1052 }
1053 }
1054 else
1055 {
1056 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1057 if (TREE_CODE (type) == INTEGER_TYPE)
1058 {
1059 /* Only when base - step doesn't underflow. */
1060 t = TYPE_MIN_VALUE (type);
1061 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1062 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1063 if (integer_nonzerop (t))
1064 {
1065 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1066 new_c = fold_build2 (MINUS_EXPR, niter_type,
1067 fold_convert (niter_type, final),
1068 fold_convert (niter_type, t));
1069 if (multiple_of_p (type, new_c, s))
1070 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
1071 t, final);
1072 }
1073 }
1074 }
1075
1076 t = simplify_using_initial_conditions (loop, cond);
1077 if (!t || !integer_onep (t))
1078 t = simplify_using_initial_conditions (loop, relaxed_cond);
1079
1080 if (t && integer_onep (t))
1081 niter->control.no_overflow = true;
1082 }
1083
1084 /* First the trivial cases -- when the step is 1. */
1085 if (integer_onep (s))
1086 {
1087 niter->niter = c;
1088 return true;
1089 }
1090 if (niter->control.no_overflow && multiple_of_p (type, c, s))
1091 {
1092 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
1093 return true;
1094 }
1095
1096 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1097 is infinite. Otherwise, the number of iterations is
1098 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1099 bits = num_ending_zeros (s);
1100 bound = build_low_bits_mask (niter_type,
1101 (TYPE_PRECISION (niter_type)
1102 - tree_to_uhwi (bits)));
1103
1104 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1105 build_int_cst (niter_type, 1), bits);
1106 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1107
1108 if (!exit_must_be_taken)
1109 {
1110 /* If we cannot assume that the exit is taken eventually, record the
1111 assumptions for divisibility of c. */
1112 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1113 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1114 assumption, build_int_cst (niter_type, 0));
1115 if (!integer_nonzerop (assumption))
1116 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1117 niter->assumptions, assumption);
1118 }
1119
1120 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1121 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1122 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1123 return true;
1124 }
1125
1126 /* Checks whether we can determine the final value of the control variable
1127 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1128 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1129 of the step. The assumptions necessary to ensure that the computation
1130 of the final value does not overflow are recorded in NITER. If we
1131 find the final value, we adjust DELTA and return TRUE. Otherwise
1132 we return false. BNDS bounds the value of IV1->base - IV0->base,
1133 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1134 true if we know that the exit must be taken eventually. */
1135
1136 static bool
1137 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1138 struct tree_niter_desc *niter,
1139 tree *delta, tree step,
1140 bool exit_must_be_taken, bounds *bnds)
1141 {
1142 tree niter_type = TREE_TYPE (step);
1143 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1144 tree tmod;
1145 tree assumption = boolean_true_node, bound;
1146 tree type1 = (POINTER_TYPE_P (type)) ? sizetype : type;
1147
1148 if (TREE_CODE (mod) != INTEGER_CST)
1149 return false;
1150 if (integer_nonzerop (mod))
1151 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1152 tmod = fold_convert (type1, mod);
1153
1154 /* If the induction variable does not overflow and the exit is taken,
1155 then the computation of the final value does not overflow. There
1156 are three cases:
1157 1) The case if the new final value is equal to the current one.
1158 2) Induction varaible has pointer type, as the code cannot rely
1159 on the object to that the pointer points being placed at the
1160 end of the address space (and more pragmatically,
1161 TYPE_{MIN,MAX}_VALUE is not defined for pointers).
1162 3) EXIT_MUST_BE_TAKEN is true, note it implies that the induction
1163 variable does not overflow. */
1164 if (!integer_zerop (mod) && !POINTER_TYPE_P (type) && !exit_must_be_taken)
1165 {
1166 if (integer_nonzerop (iv0->step))
1167 {
1168 /* The final value of the iv is iv1->base + MOD, assuming
1169 that this computation does not overflow, and that
1170 iv0->base <= iv1->base + MOD. */
1171 bound = fold_build2 (MINUS_EXPR, type1,
1172 TYPE_MAX_VALUE (type1), tmod);
1173 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1174 iv1->base, bound);
1175 }
1176 else
1177 {
1178 /* The final value of the iv is iv0->base - MOD, assuming
1179 that this computation does not overflow, and that
1180 iv0->base - MOD <= iv1->base. */
1181 bound = fold_build2 (PLUS_EXPR, type1,
1182 TYPE_MIN_VALUE (type1), tmod);
1183 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1184 iv0->base, bound);
1185 }
1186 if (integer_zerop (assumption))
1187 return false;
1188 else if (!integer_nonzerop (assumption))
1189 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1190 niter->assumptions, assumption);
1191 }
1192
1193 /* Since we are transforming LT to NE and DELTA is constant, there
1194 is no need to compute may_be_zero because this loop must roll. */
1195
1196 bounds_add (bnds, wi::to_widest (mod), type);
1197 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1198 return true;
1199 }
1200
1201 /* Add assertions to NITER that ensure that the control variable of the loop
1202 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1203 are TYPE. Returns false if we can prove that there is an overflow, true
1204 otherwise. STEP is the absolute value of the step. */
1205
1206 static bool
1207 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1208 struct tree_niter_desc *niter, tree step)
1209 {
1210 tree bound, d, assumption, diff;
1211 tree niter_type = TREE_TYPE (step);
1212
1213 if (integer_nonzerop (iv0->step))
1214 {
1215 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1216 if (iv0->no_overflow)
1217 return true;
1218
1219 /* If iv0->base is a constant, we can determine the last value before
1220 overflow precisely; otherwise we conservatively assume
1221 MAX - STEP + 1. */
1222
1223 if (TREE_CODE (iv0->base) == INTEGER_CST)
1224 {
1225 d = fold_build2 (MINUS_EXPR, niter_type,
1226 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1227 fold_convert (niter_type, iv0->base));
1228 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1229 }
1230 else
1231 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1232 build_int_cst (niter_type, 1));
1233 bound = fold_build2 (MINUS_EXPR, type,
1234 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1235 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1236 iv1->base, bound);
1237 }
1238 else
1239 {
1240 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1241 if (iv1->no_overflow)
1242 return true;
1243
1244 if (TREE_CODE (iv1->base) == INTEGER_CST)
1245 {
1246 d = fold_build2 (MINUS_EXPR, niter_type,
1247 fold_convert (niter_type, iv1->base),
1248 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1249 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1250 }
1251 else
1252 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1253 build_int_cst (niter_type, 1));
1254 bound = fold_build2 (PLUS_EXPR, type,
1255 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1256 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1257 iv0->base, bound);
1258 }
1259
1260 if (integer_zerop (assumption))
1261 return false;
1262 if (!integer_nonzerop (assumption))
1263 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1264 niter->assumptions, assumption);
1265
1266 iv0->no_overflow = true;
1267 iv1->no_overflow = true;
1268 return true;
1269 }
1270
1271 /* Add an assumption to NITER that a loop whose ending condition
1272 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1273 bounds the value of IV1->base - IV0->base. */
1274
1275 static void
1276 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1277 struct tree_niter_desc *niter, bounds *bnds)
1278 {
1279 tree assumption = boolean_true_node, bound, diff;
1280 tree mbz, mbzl, mbzr, type1;
1281 bool rolls_p, no_overflow_p;
1282 widest_int dstep;
1283 mpz_t mstep, max;
1284
1285 /* We are going to compute the number of iterations as
1286 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1287 variant of TYPE. This formula only works if
1288
1289 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1290
1291 (where MAX is the maximum value of the unsigned variant of TYPE, and
1292 the computations in this formula are performed in full precision,
1293 i.e., without overflows).
1294
1295 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1296 we have a condition of the form iv0->base - step < iv1->base before the loop,
1297 and for loops iv0->base < iv1->base - step * i the condition
1298 iv0->base < iv1->base + step, due to loop header copying, which enable us
1299 to prove the lower bound.
1300
1301 The upper bound is more complicated. Unless the expressions for initial
1302 and final value themselves contain enough information, we usually cannot
1303 derive it from the context. */
1304
1305 /* First check whether the answer does not follow from the bounds we gathered
1306 before. */
1307 if (integer_nonzerop (iv0->step))
1308 dstep = wi::to_widest (iv0->step);
1309 else
1310 {
1311 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1312 dstep = -dstep;
1313 }
1314
1315 mpz_init (mstep);
1316 wi::to_mpz (dstep, mstep, UNSIGNED);
1317 mpz_neg (mstep, mstep);
1318 mpz_add_ui (mstep, mstep, 1);
1319
1320 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1321
1322 mpz_init (max);
1323 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1324 mpz_add (max, max, mstep);
1325 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1326 /* For pointers, only values lying inside a single object
1327 can be compared or manipulated by pointer arithmetics.
1328 Gcc in general does not allow or handle objects larger
1329 than half of the address space, hence the upper bound
1330 is satisfied for pointers. */
1331 || POINTER_TYPE_P (type));
1332 mpz_clear (mstep);
1333 mpz_clear (max);
1334
1335 if (rolls_p && no_overflow_p)
1336 return;
1337
1338 type1 = type;
1339 if (POINTER_TYPE_P (type))
1340 type1 = sizetype;
1341
1342 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1343 we must be careful not to introduce overflow. */
1344
1345 if (integer_nonzerop (iv0->step))
1346 {
1347 diff = fold_build2 (MINUS_EXPR, type1,
1348 iv0->step, build_int_cst (type1, 1));
1349
1350 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1351 0 address never belongs to any object, we can assume this for
1352 pointers. */
1353 if (!POINTER_TYPE_P (type))
1354 {
1355 bound = fold_build2 (PLUS_EXPR, type1,
1356 TYPE_MIN_VALUE (type), diff);
1357 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1358 iv0->base, bound);
1359 }
1360
1361 /* And then we can compute iv0->base - diff, and compare it with
1362 iv1->base. */
1363 mbzl = fold_build2 (MINUS_EXPR, type1,
1364 fold_convert (type1, iv0->base), diff);
1365 mbzr = fold_convert (type1, iv1->base);
1366 }
1367 else
1368 {
1369 diff = fold_build2 (PLUS_EXPR, type1,
1370 iv1->step, build_int_cst (type1, 1));
1371
1372 if (!POINTER_TYPE_P (type))
1373 {
1374 bound = fold_build2 (PLUS_EXPR, type1,
1375 TYPE_MAX_VALUE (type), diff);
1376 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1377 iv1->base, bound);
1378 }
1379
1380 mbzl = fold_convert (type1, iv0->base);
1381 mbzr = fold_build2 (MINUS_EXPR, type1,
1382 fold_convert (type1, iv1->base), diff);
1383 }
1384
1385 if (!integer_nonzerop (assumption))
1386 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1387 niter->assumptions, assumption);
1388 if (!rolls_p)
1389 {
1390 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1391 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1392 niter->may_be_zero, mbz);
1393 }
1394 }
1395
1396 /* Determines number of iterations of loop whose ending condition
1397 is IV0 < IV1. TYPE is the type of the iv. The number of
1398 iterations is stored to NITER. BNDS bounds the difference
1399 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1400 that the exit must be taken eventually. */
1401
1402 static bool
1403 number_of_iterations_lt (struct loop *loop, tree type, affine_iv *iv0,
1404 affine_iv *iv1, struct tree_niter_desc *niter,
1405 bool exit_must_be_taken, bounds *bnds)
1406 {
1407 tree niter_type = unsigned_type_for (type);
1408 tree delta, step, s;
1409 mpz_t mstep, tmp;
1410
1411 if (integer_nonzerop (iv0->step))
1412 {
1413 niter->control = *iv0;
1414 niter->cmp = LT_EXPR;
1415 niter->bound = iv1->base;
1416 }
1417 else
1418 {
1419 niter->control = *iv1;
1420 niter->cmp = GT_EXPR;
1421 niter->bound = iv0->base;
1422 }
1423
1424 delta = fold_build2 (MINUS_EXPR, niter_type,
1425 fold_convert (niter_type, iv1->base),
1426 fold_convert (niter_type, iv0->base));
1427
1428 /* First handle the special case that the step is +-1. */
1429 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1430 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1431 {
1432 /* for (i = iv0->base; i < iv1->base; i++)
1433
1434 or
1435
1436 for (i = iv1->base; i > iv0->base; i--).
1437
1438 In both cases # of iterations is iv1->base - iv0->base, assuming that
1439 iv1->base >= iv0->base.
1440
1441 First try to derive a lower bound on the value of
1442 iv1->base - iv0->base, computed in full precision. If the difference
1443 is nonnegative, we are done, otherwise we must record the
1444 condition. */
1445
1446 if (mpz_sgn (bnds->below) < 0)
1447 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1448 iv1->base, iv0->base);
1449 niter->niter = delta;
1450 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1451 TYPE_SIGN (niter_type));
1452 niter->control.no_overflow = true;
1453 return true;
1454 }
1455
1456 if (integer_nonzerop (iv0->step))
1457 step = fold_convert (niter_type, iv0->step);
1458 else
1459 step = fold_convert (niter_type,
1460 fold_build1 (NEGATE_EXPR, type, iv1->step));
1461
1462 /* If we can determine the final value of the control iv exactly, we can
1463 transform the condition to != comparison. In particular, this will be
1464 the case if DELTA is constant. */
1465 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1466 exit_must_be_taken, bnds))
1467 {
1468 affine_iv zps;
1469
1470 zps.base = build_int_cst (niter_type, 0);
1471 zps.step = step;
1472 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1473 zps does not overflow. */
1474 zps.no_overflow = true;
1475
1476 return number_of_iterations_ne (loop, type, &zps,
1477 delta, niter, true, bnds);
1478 }
1479
1480 /* Make sure that the control iv does not overflow. */
1481 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1482 return false;
1483
1484 /* We determine the number of iterations as (delta + step - 1) / step. For
1485 this to work, we must know that iv1->base >= iv0->base - step + 1,
1486 otherwise the loop does not roll. */
1487 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1488
1489 s = fold_build2 (MINUS_EXPR, niter_type,
1490 step, build_int_cst (niter_type, 1));
1491 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1492 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1493
1494 mpz_init (mstep);
1495 mpz_init (tmp);
1496 wi::to_mpz (step, mstep, UNSIGNED);
1497 mpz_add (tmp, bnds->up, mstep);
1498 mpz_sub_ui (tmp, tmp, 1);
1499 mpz_fdiv_q (tmp, tmp, mstep);
1500 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1501 TYPE_SIGN (niter_type));
1502 mpz_clear (mstep);
1503 mpz_clear (tmp);
1504
1505 return true;
1506 }
1507
1508 /* Determines number of iterations of loop whose ending condition
1509 is IV0 <= IV1. TYPE is the type of the iv. The number of
1510 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1511 we know that this condition must eventually become false (we derived this
1512 earlier, and possibly set NITER->assumptions to make sure this
1513 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1514
1515 static bool
1516 number_of_iterations_le (struct loop *loop, tree type, affine_iv *iv0,
1517 affine_iv *iv1, struct tree_niter_desc *niter,
1518 bool exit_must_be_taken, bounds *bnds)
1519 {
1520 tree assumption;
1521 tree type1 = type;
1522 if (POINTER_TYPE_P (type))
1523 type1 = sizetype;
1524
1525 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1526 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1527 value of the type. This we must know anyway, since if it is
1528 equal to this value, the loop rolls forever. We do not check
1529 this condition for pointer type ivs, as the code cannot rely on
1530 the object to that the pointer points being placed at the end of
1531 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1532 not defined for pointers). */
1533
1534 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1535 {
1536 if (integer_nonzerop (iv0->step))
1537 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1538 iv1->base, TYPE_MAX_VALUE (type));
1539 else
1540 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1541 iv0->base, TYPE_MIN_VALUE (type));
1542
1543 if (integer_zerop (assumption))
1544 return false;
1545 if (!integer_nonzerop (assumption))
1546 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1547 niter->assumptions, assumption);
1548 }
1549
1550 if (integer_nonzerop (iv0->step))
1551 {
1552 if (POINTER_TYPE_P (type))
1553 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1554 else
1555 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1556 build_int_cst (type1, 1));
1557 }
1558 else if (POINTER_TYPE_P (type))
1559 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1560 else
1561 iv0->base = fold_build2 (MINUS_EXPR, type1,
1562 iv0->base, build_int_cst (type1, 1));
1563
1564 bounds_add (bnds, 1, type1);
1565
1566 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1567 bnds);
1568 }
1569
1570 /* Dumps description of affine induction variable IV to FILE. */
1571
1572 static void
1573 dump_affine_iv (FILE *file, affine_iv *iv)
1574 {
1575 if (!integer_zerop (iv->step))
1576 fprintf (file, "[");
1577
1578 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1579
1580 if (!integer_zerop (iv->step))
1581 {
1582 fprintf (file, ", + , ");
1583 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1584 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1585 }
1586 }
1587
1588 /* Determine the number of iterations according to condition (for staying
1589 inside loop) which compares two induction variables using comparison
1590 operator CODE. The induction variable on left side of the comparison
1591 is IV0, the right-hand side is IV1. Both induction variables must have
1592 type TYPE, which must be an integer or pointer type. The steps of the
1593 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1594
1595 LOOP is the loop whose number of iterations we are determining.
1596
1597 ONLY_EXIT is true if we are sure this is the only way the loop could be
1598 exited (including possibly non-returning function calls, exceptions, etc.)
1599 -- in this case we can use the information whether the control induction
1600 variables can overflow or not in a more efficient way.
1601
1602 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1603
1604 The results (number of iterations and assumptions as described in
1605 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1606 Returns false if it fails to determine number of iterations, true if it
1607 was determined (possibly with some assumptions). */
1608
1609 static bool
1610 number_of_iterations_cond (struct loop *loop,
1611 tree type, affine_iv *iv0, enum tree_code code,
1612 affine_iv *iv1, struct tree_niter_desc *niter,
1613 bool only_exit, bool every_iteration)
1614 {
1615 bool exit_must_be_taken = false, ret;
1616 bounds bnds;
1617
1618 /* If the test is not executed every iteration, wrapping may make the test
1619 to pass again.
1620 TODO: the overflow case can be still used as unreliable estimate of upper
1621 bound. But we have no API to pass it down to number of iterations code
1622 and, at present, it will not use it anyway. */
1623 if (!every_iteration
1624 && (!iv0->no_overflow || !iv1->no_overflow
1625 || code == NE_EXPR || code == EQ_EXPR))
1626 return false;
1627
1628 /* The meaning of these assumptions is this:
1629 if !assumptions
1630 then the rest of information does not have to be valid
1631 if may_be_zero then the loop does not roll, even if
1632 niter != 0. */
1633 niter->assumptions = boolean_true_node;
1634 niter->may_be_zero = boolean_false_node;
1635 niter->niter = NULL_TREE;
1636 niter->max = 0;
1637 niter->bound = NULL_TREE;
1638 niter->cmp = ERROR_MARK;
1639
1640 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1641 the control variable is on lhs. */
1642 if (code == GE_EXPR || code == GT_EXPR
1643 || (code == NE_EXPR && integer_zerop (iv0->step)))
1644 {
1645 std::swap (iv0, iv1);
1646 code = swap_tree_comparison (code);
1647 }
1648
1649 if (POINTER_TYPE_P (type))
1650 {
1651 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1652 to the same object. If they do, the control variable cannot wrap
1653 (as wrap around the bounds of memory will never return a pointer
1654 that would be guaranteed to point to the same object, even if we
1655 avoid undefined behavior by casting to size_t and back). */
1656 iv0->no_overflow = true;
1657 iv1->no_overflow = true;
1658 }
1659
1660 /* If the control induction variable does not overflow and the only exit
1661 from the loop is the one that we analyze, we know it must be taken
1662 eventually. */
1663 if (only_exit)
1664 {
1665 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1666 exit_must_be_taken = true;
1667 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1668 exit_must_be_taken = true;
1669 }
1670
1671 /* We can handle the case when neither of the sides of the comparison is
1672 invariant, provided that the test is NE_EXPR. This rarely occurs in
1673 practice, but it is simple enough to manage. */
1674 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1675 {
1676 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1677 if (code != NE_EXPR)
1678 return false;
1679
1680 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1681 iv0->step, iv1->step);
1682 iv0->no_overflow = false;
1683 iv1->step = build_int_cst (step_type, 0);
1684 iv1->no_overflow = true;
1685 }
1686
1687 /* If the result of the comparison is a constant, the loop is weird. More
1688 precise handling would be possible, but the situation is not common enough
1689 to waste time on it. */
1690 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1691 return false;
1692
1693 /* Ignore loops of while (i-- < 10) type. */
1694 if (code != NE_EXPR)
1695 {
1696 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1697 return false;
1698
1699 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1700 return false;
1701 }
1702
1703 /* If the loop exits immediately, there is nothing to do. */
1704 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1705 if (tem && integer_zerop (tem))
1706 {
1707 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1708 niter->max = 0;
1709 return true;
1710 }
1711
1712 /* OK, now we know we have a senseful loop. Handle several cases, depending
1713 on what comparison operator is used. */
1714 bound_difference (loop, iv1->base, iv0->base, &bnds);
1715
1716 if (dump_file && (dump_flags & TDF_DETAILS))
1717 {
1718 fprintf (dump_file,
1719 "Analyzing # of iterations of loop %d\n", loop->num);
1720
1721 fprintf (dump_file, " exit condition ");
1722 dump_affine_iv (dump_file, iv0);
1723 fprintf (dump_file, " %s ",
1724 code == NE_EXPR ? "!="
1725 : code == LT_EXPR ? "<"
1726 : "<=");
1727 dump_affine_iv (dump_file, iv1);
1728 fprintf (dump_file, "\n");
1729
1730 fprintf (dump_file, " bounds on difference of bases: ");
1731 mpz_out_str (dump_file, 10, bnds.below);
1732 fprintf (dump_file, " ... ");
1733 mpz_out_str (dump_file, 10, bnds.up);
1734 fprintf (dump_file, "\n");
1735 }
1736
1737 switch (code)
1738 {
1739 case NE_EXPR:
1740 gcc_assert (integer_zerop (iv1->step));
1741 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1742 exit_must_be_taken, &bnds);
1743 break;
1744
1745 case LT_EXPR:
1746 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1747 exit_must_be_taken, &bnds);
1748 break;
1749
1750 case LE_EXPR:
1751 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1752 exit_must_be_taken, &bnds);
1753 break;
1754
1755 default:
1756 gcc_unreachable ();
1757 }
1758
1759 mpz_clear (bnds.up);
1760 mpz_clear (bnds.below);
1761
1762 if (dump_file && (dump_flags & TDF_DETAILS))
1763 {
1764 if (ret)
1765 {
1766 fprintf (dump_file, " result:\n");
1767 if (!integer_nonzerop (niter->assumptions))
1768 {
1769 fprintf (dump_file, " under assumptions ");
1770 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1771 fprintf (dump_file, "\n");
1772 }
1773
1774 if (!integer_zerop (niter->may_be_zero))
1775 {
1776 fprintf (dump_file, " zero if ");
1777 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1778 fprintf (dump_file, "\n");
1779 }
1780
1781 fprintf (dump_file, " # of iterations ");
1782 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1783 fprintf (dump_file, ", bounded by ");
1784 print_decu (niter->max, dump_file);
1785 fprintf (dump_file, "\n");
1786 }
1787 else
1788 fprintf (dump_file, " failed\n\n");
1789 }
1790 return ret;
1791 }
1792
1793 /* Substitute NEW for OLD in EXPR and fold the result. */
1794
1795 static tree
1796 simplify_replace_tree (tree expr, tree old, tree new_tree)
1797 {
1798 unsigned i, n;
1799 tree ret = NULL_TREE, e, se;
1800
1801 if (!expr)
1802 return NULL_TREE;
1803
1804 /* Do not bother to replace constants. */
1805 if (CONSTANT_CLASS_P (old))
1806 return expr;
1807
1808 if (expr == old
1809 || operand_equal_p (expr, old, 0))
1810 return unshare_expr (new_tree);
1811
1812 if (!EXPR_P (expr))
1813 return expr;
1814
1815 n = TREE_OPERAND_LENGTH (expr);
1816 for (i = 0; i < n; i++)
1817 {
1818 e = TREE_OPERAND (expr, i);
1819 se = simplify_replace_tree (e, old, new_tree);
1820 if (e == se)
1821 continue;
1822
1823 if (!ret)
1824 ret = copy_node (expr);
1825
1826 TREE_OPERAND (ret, i) = se;
1827 }
1828
1829 return (ret ? fold (ret) : expr);
1830 }
1831
1832 /* Expand definitions of ssa names in EXPR as long as they are simple
1833 enough, and return the new expression. If STOP is specified, stop
1834 expanding if EXPR equals to it. */
1835
1836 tree
1837 expand_simple_operations (tree expr, tree stop)
1838 {
1839 unsigned i, n;
1840 tree ret = NULL_TREE, e, ee, e1;
1841 enum tree_code code;
1842 gimple *stmt;
1843
1844 if (expr == NULL_TREE)
1845 return expr;
1846
1847 if (is_gimple_min_invariant (expr))
1848 return expr;
1849
1850 code = TREE_CODE (expr);
1851 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1852 {
1853 n = TREE_OPERAND_LENGTH (expr);
1854 for (i = 0; i < n; i++)
1855 {
1856 e = TREE_OPERAND (expr, i);
1857 ee = expand_simple_operations (e, stop);
1858 if (e == ee)
1859 continue;
1860
1861 if (!ret)
1862 ret = copy_node (expr);
1863
1864 TREE_OPERAND (ret, i) = ee;
1865 }
1866
1867 if (!ret)
1868 return expr;
1869
1870 fold_defer_overflow_warnings ();
1871 ret = fold (ret);
1872 fold_undefer_and_ignore_overflow_warnings ();
1873 return ret;
1874 }
1875
1876 /* Stop if it's not ssa name or the one we don't want to expand. */
1877 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
1878 return expr;
1879
1880 stmt = SSA_NAME_DEF_STMT (expr);
1881 if (gimple_code (stmt) == GIMPLE_PHI)
1882 {
1883 basic_block src, dest;
1884
1885 if (gimple_phi_num_args (stmt) != 1)
1886 return expr;
1887 e = PHI_ARG_DEF (stmt, 0);
1888
1889 /* Avoid propagating through loop exit phi nodes, which
1890 could break loop-closed SSA form restrictions. */
1891 dest = gimple_bb (stmt);
1892 src = single_pred (dest);
1893 if (TREE_CODE (e) == SSA_NAME
1894 && src->loop_father != dest->loop_father)
1895 return expr;
1896
1897 return expand_simple_operations (e, stop);
1898 }
1899 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1900 return expr;
1901
1902 /* Avoid expanding to expressions that contain SSA names that need
1903 to take part in abnormal coalescing. */
1904 ssa_op_iter iter;
1905 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
1906 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
1907 return expr;
1908
1909 e = gimple_assign_rhs1 (stmt);
1910 code = gimple_assign_rhs_code (stmt);
1911 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1912 {
1913 if (is_gimple_min_invariant (e))
1914 return e;
1915
1916 if (code == SSA_NAME)
1917 return expand_simple_operations (e, stop);
1918
1919 return expr;
1920 }
1921
1922 switch (code)
1923 {
1924 CASE_CONVERT:
1925 /* Casts are simple. */
1926 ee = expand_simple_operations (e, stop);
1927 return fold_build1 (code, TREE_TYPE (expr), ee);
1928
1929 case PLUS_EXPR:
1930 case MINUS_EXPR:
1931 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
1932 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
1933 return expr;
1934 /* Fallthru. */
1935 case POINTER_PLUS_EXPR:
1936 /* And increments and decrements by a constant are simple. */
1937 e1 = gimple_assign_rhs2 (stmt);
1938 if (!is_gimple_min_invariant (e1))
1939 return expr;
1940
1941 ee = expand_simple_operations (e, stop);
1942 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1943
1944 default:
1945 return expr;
1946 }
1947 }
1948
1949 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1950 expression (or EXPR unchanged, if no simplification was possible). */
1951
1952 static tree
1953 tree_simplify_using_condition_1 (tree cond, tree expr)
1954 {
1955 bool changed;
1956 tree e, e0, e1, e2, notcond;
1957 enum tree_code code = TREE_CODE (expr);
1958
1959 if (code == INTEGER_CST)
1960 return expr;
1961
1962 if (code == TRUTH_OR_EXPR
1963 || code == TRUTH_AND_EXPR
1964 || code == COND_EXPR)
1965 {
1966 changed = false;
1967
1968 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1969 if (TREE_OPERAND (expr, 0) != e0)
1970 changed = true;
1971
1972 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1973 if (TREE_OPERAND (expr, 1) != e1)
1974 changed = true;
1975
1976 if (code == COND_EXPR)
1977 {
1978 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1979 if (TREE_OPERAND (expr, 2) != e2)
1980 changed = true;
1981 }
1982 else
1983 e2 = NULL_TREE;
1984
1985 if (changed)
1986 {
1987 if (code == COND_EXPR)
1988 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1989 else
1990 expr = fold_build2 (code, boolean_type_node, e0, e1);
1991 }
1992
1993 return expr;
1994 }
1995
1996 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1997 propagation, and vice versa. Fold does not handle this, since it is
1998 considered too expensive. */
1999 if (TREE_CODE (cond) == EQ_EXPR)
2000 {
2001 e0 = TREE_OPERAND (cond, 0);
2002 e1 = TREE_OPERAND (cond, 1);
2003
2004 /* We know that e0 == e1. Check whether we cannot simplify expr
2005 using this fact. */
2006 e = simplify_replace_tree (expr, e0, e1);
2007 if (integer_zerop (e) || integer_nonzerop (e))
2008 return e;
2009
2010 e = simplify_replace_tree (expr, e1, e0);
2011 if (integer_zerop (e) || integer_nonzerop (e))
2012 return e;
2013 }
2014 if (TREE_CODE (expr) == EQ_EXPR)
2015 {
2016 e0 = TREE_OPERAND (expr, 0);
2017 e1 = TREE_OPERAND (expr, 1);
2018
2019 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2020 e = simplify_replace_tree (cond, e0, e1);
2021 if (integer_zerop (e))
2022 return e;
2023 e = simplify_replace_tree (cond, e1, e0);
2024 if (integer_zerop (e))
2025 return e;
2026 }
2027 if (TREE_CODE (expr) == NE_EXPR)
2028 {
2029 e0 = TREE_OPERAND (expr, 0);
2030 e1 = TREE_OPERAND (expr, 1);
2031
2032 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2033 e = simplify_replace_tree (cond, e0, e1);
2034 if (integer_zerop (e))
2035 return boolean_true_node;
2036 e = simplify_replace_tree (cond, e1, e0);
2037 if (integer_zerop (e))
2038 return boolean_true_node;
2039 }
2040
2041 /* Check whether COND ==> EXPR. */
2042 notcond = invert_truthvalue (cond);
2043 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2044 if (e && integer_nonzerop (e))
2045 return e;
2046
2047 /* Check whether COND ==> not EXPR. */
2048 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2049 if (e && integer_zerop (e))
2050 return e;
2051
2052 return expr;
2053 }
2054
2055 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2056 expression (or EXPR unchanged, if no simplification was possible).
2057 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2058 of simple operations in definitions of ssa names in COND are expanded,
2059 so that things like casts or incrementing the value of the bound before
2060 the loop do not cause us to fail. */
2061
2062 static tree
2063 tree_simplify_using_condition (tree cond, tree expr)
2064 {
2065 cond = expand_simple_operations (cond);
2066
2067 return tree_simplify_using_condition_1 (cond, expr);
2068 }
2069
2070 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2071 Returns the simplified expression (or EXPR unchanged, if no
2072 simplification was possible). */
2073
2074 tree
2075 simplify_using_initial_conditions (struct loop *loop, tree expr)
2076 {
2077 edge e;
2078 basic_block bb;
2079 gimple *stmt;
2080 tree cond, expanded, backup;
2081 int cnt = 0;
2082
2083 if (TREE_CODE (expr) == INTEGER_CST)
2084 return expr;
2085
2086 backup = expanded = expand_simple_operations (expr);
2087
2088 /* Limit walking the dominators to avoid quadraticness in
2089 the number of BBs times the number of loops in degenerate
2090 cases. */
2091 for (bb = loop->header;
2092 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2093 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2094 {
2095 if (!single_pred_p (bb))
2096 continue;
2097 e = single_pred_edge (bb);
2098
2099 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2100 continue;
2101
2102 stmt = last_stmt (e->src);
2103 cond = fold_build2 (gimple_cond_code (stmt),
2104 boolean_type_node,
2105 gimple_cond_lhs (stmt),
2106 gimple_cond_rhs (stmt));
2107 if (e->flags & EDGE_FALSE_VALUE)
2108 cond = invert_truthvalue (cond);
2109 expanded = tree_simplify_using_condition (cond, expanded);
2110 /* Break if EXPR is simplified to const values. */
2111 if (expanded
2112 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
2113 return expanded;
2114
2115 ++cnt;
2116 }
2117
2118 /* Return the original expression if no simplification is done. */
2119 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
2120 }
2121
2122 /* Tries to simplify EXPR using the evolutions of the loop invariants
2123 in the superloops of LOOP. Returns the simplified expression
2124 (or EXPR unchanged, if no simplification was possible). */
2125
2126 static tree
2127 simplify_using_outer_evolutions (struct loop *loop, tree expr)
2128 {
2129 enum tree_code code = TREE_CODE (expr);
2130 bool changed;
2131 tree e, e0, e1, e2;
2132
2133 if (is_gimple_min_invariant (expr))
2134 return expr;
2135
2136 if (code == TRUTH_OR_EXPR
2137 || code == TRUTH_AND_EXPR
2138 || code == COND_EXPR)
2139 {
2140 changed = false;
2141
2142 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2143 if (TREE_OPERAND (expr, 0) != e0)
2144 changed = true;
2145
2146 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2147 if (TREE_OPERAND (expr, 1) != e1)
2148 changed = true;
2149
2150 if (code == COND_EXPR)
2151 {
2152 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2153 if (TREE_OPERAND (expr, 2) != e2)
2154 changed = true;
2155 }
2156 else
2157 e2 = NULL_TREE;
2158
2159 if (changed)
2160 {
2161 if (code == COND_EXPR)
2162 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2163 else
2164 expr = fold_build2 (code, boolean_type_node, e0, e1);
2165 }
2166
2167 return expr;
2168 }
2169
2170 e = instantiate_parameters (loop, expr);
2171 if (is_gimple_min_invariant (e))
2172 return e;
2173
2174 return expr;
2175 }
2176
2177 /* Returns true if EXIT is the only possible exit from LOOP. */
2178
2179 bool
2180 loop_only_exit_p (const struct loop *loop, const_edge exit)
2181 {
2182 basic_block *body;
2183 gimple_stmt_iterator bsi;
2184 unsigned i;
2185
2186 if (exit != single_exit (loop))
2187 return false;
2188
2189 body = get_loop_body (loop);
2190 for (i = 0; i < loop->num_nodes; i++)
2191 {
2192 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2193 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
2194 {
2195 free (body);
2196 return true;
2197 }
2198 }
2199
2200 free (body);
2201 return true;
2202 }
2203
2204 /* Stores description of number of iterations of LOOP derived from
2205 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2206 information could be derived (and fields of NITER have meaning described
2207 in comments at struct tree_niter_desc declaration), false otherwise.
2208 When EVERY_ITERATION is true, only tests that are known to be executed
2209 every iteration are considered (i.e. only test that alone bounds the loop).
2210 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2211 it when returning true. */
2212
2213 bool
2214 number_of_iterations_exit_assumptions (struct loop *loop, edge exit,
2215 struct tree_niter_desc *niter,
2216 gcond **at_stmt, bool every_iteration)
2217 {
2218 gimple *last;
2219 gcond *stmt;
2220 tree type;
2221 tree op0, op1;
2222 enum tree_code code;
2223 affine_iv iv0, iv1;
2224 bool safe;
2225
2226 /* Nothing to analyze if the loop is known to be infinite. */
2227 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
2228 return false;
2229
2230 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2231
2232 if (every_iteration && !safe)
2233 return false;
2234
2235 niter->assumptions = boolean_false_node;
2236 niter->control.base = NULL_TREE;
2237 niter->control.step = NULL_TREE;
2238 niter->control.no_overflow = false;
2239 last = last_stmt (exit->src);
2240 if (!last)
2241 return false;
2242 stmt = dyn_cast <gcond *> (last);
2243 if (!stmt)
2244 return false;
2245
2246 /* We want the condition for staying inside loop. */
2247 code = gimple_cond_code (stmt);
2248 if (exit->flags & EDGE_TRUE_VALUE)
2249 code = invert_tree_comparison (code, false);
2250
2251 switch (code)
2252 {
2253 case GT_EXPR:
2254 case GE_EXPR:
2255 case LT_EXPR:
2256 case LE_EXPR:
2257 case NE_EXPR:
2258 break;
2259
2260 default:
2261 return false;
2262 }
2263
2264 op0 = gimple_cond_lhs (stmt);
2265 op1 = gimple_cond_rhs (stmt);
2266 type = TREE_TYPE (op0);
2267
2268 if (TREE_CODE (type) != INTEGER_TYPE
2269 && !POINTER_TYPE_P (type))
2270 return false;
2271
2272 tree iv0_niters = NULL_TREE;
2273 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2274 op0, &iv0, &iv0_niters, false))
2275 return false;
2276 tree iv1_niters = NULL_TREE;
2277 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2278 op1, &iv1, &iv1_niters, false))
2279 return false;
2280 /* Give up on complicated case. */
2281 if (iv0_niters && iv1_niters)
2282 return false;
2283
2284 /* We don't want to see undefined signed overflow warnings while
2285 computing the number of iterations. */
2286 fold_defer_overflow_warnings ();
2287
2288 iv0.base = expand_simple_operations (iv0.base);
2289 iv1.base = expand_simple_operations (iv1.base);
2290 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2291 loop_only_exit_p (loop, exit), safe))
2292 {
2293 fold_undefer_and_ignore_overflow_warnings ();
2294 return false;
2295 }
2296
2297 /* Incorporate additional assumption implied by control iv. */
2298 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
2299 if (iv_niters)
2300 {
2301 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
2302 fold_convert (TREE_TYPE (niter->niter),
2303 iv_niters));
2304
2305 if (!integer_nonzerop (assumption))
2306 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2307 niter->assumptions, assumption);
2308
2309 /* Refine upper bound if possible. */
2310 if (TREE_CODE (iv_niters) == INTEGER_CST
2311 && niter->max > wi::to_widest (iv_niters))
2312 niter->max = wi::to_widest (iv_niters);
2313 }
2314
2315 /* There is no assumptions if the loop is known to be finite. */
2316 if (!integer_zerop (niter->assumptions)
2317 && loop_constraint_set_p (loop, LOOP_C_FINITE))
2318 niter->assumptions = boolean_true_node;
2319
2320 if (optimize >= 3)
2321 {
2322 niter->assumptions = simplify_using_outer_evolutions (loop,
2323 niter->assumptions);
2324 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2325 niter->may_be_zero);
2326 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2327 }
2328
2329 niter->assumptions
2330 = simplify_using_initial_conditions (loop,
2331 niter->assumptions);
2332 niter->may_be_zero
2333 = simplify_using_initial_conditions (loop,
2334 niter->may_be_zero);
2335
2336 fold_undefer_and_ignore_overflow_warnings ();
2337
2338 /* If NITER has simplified into a constant, update MAX. */
2339 if (TREE_CODE (niter->niter) == INTEGER_CST)
2340 niter->max = wi::to_widest (niter->niter);
2341
2342 if (at_stmt)
2343 *at_stmt = stmt;
2344
2345 return (!integer_zerop (niter->assumptions));
2346 }
2347
2348 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2349 the niter information holds unconditionally. */
2350
2351 bool
2352 number_of_iterations_exit (struct loop *loop, edge exit,
2353 struct tree_niter_desc *niter,
2354 bool warn, bool every_iteration)
2355 {
2356 gcond *stmt;
2357 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
2358 &stmt, every_iteration))
2359 return false;
2360
2361 if (integer_nonzerop (niter->assumptions))
2362 return true;
2363
2364 if (warn)
2365 warning_at (gimple_location_safe (stmt),
2366 OPT_Wunsafe_loop_optimizations,
2367 "missed loop optimization, the loop counter may overflow");
2368
2369 return false;
2370 }
2371
2372 /* Try to determine the number of iterations of LOOP. If we succeed,
2373 expression giving number of iterations is returned and *EXIT is
2374 set to the edge from that the information is obtained. Otherwise
2375 chrec_dont_know is returned. */
2376
2377 tree
2378 find_loop_niter (struct loop *loop, edge *exit)
2379 {
2380 unsigned i;
2381 vec<edge> exits = get_loop_exit_edges (loop);
2382 edge ex;
2383 tree niter = NULL_TREE, aniter;
2384 struct tree_niter_desc desc;
2385
2386 *exit = NULL;
2387 FOR_EACH_VEC_ELT (exits, i, ex)
2388 {
2389 if (!number_of_iterations_exit (loop, ex, &desc, false))
2390 continue;
2391
2392 if (integer_nonzerop (desc.may_be_zero))
2393 {
2394 /* We exit in the first iteration through this exit.
2395 We won't find anything better. */
2396 niter = build_int_cst (unsigned_type_node, 0);
2397 *exit = ex;
2398 break;
2399 }
2400
2401 if (!integer_zerop (desc.may_be_zero))
2402 continue;
2403
2404 aniter = desc.niter;
2405
2406 if (!niter)
2407 {
2408 /* Nothing recorded yet. */
2409 niter = aniter;
2410 *exit = ex;
2411 continue;
2412 }
2413
2414 /* Prefer constants, the lower the better. */
2415 if (TREE_CODE (aniter) != INTEGER_CST)
2416 continue;
2417
2418 if (TREE_CODE (niter) != INTEGER_CST)
2419 {
2420 niter = aniter;
2421 *exit = ex;
2422 continue;
2423 }
2424
2425 if (tree_int_cst_lt (aniter, niter))
2426 {
2427 niter = aniter;
2428 *exit = ex;
2429 continue;
2430 }
2431 }
2432 exits.release ();
2433
2434 return niter ? niter : chrec_dont_know;
2435 }
2436
2437 /* Return true if loop is known to have bounded number of iterations. */
2438
2439 bool
2440 finite_loop_p (struct loop *loop)
2441 {
2442 widest_int nit;
2443 int flags;
2444
2445 flags = flags_from_decl_or_type (current_function_decl);
2446 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2447 {
2448 if (dump_file && (dump_flags & TDF_DETAILS))
2449 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2450 loop->num);
2451 return true;
2452 }
2453
2454 if (loop->any_upper_bound
2455 || max_loop_iterations (loop, &nit))
2456 {
2457 if (dump_file && (dump_flags & TDF_DETAILS))
2458 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2459 loop->num);
2460 return true;
2461 }
2462 return false;
2463 }
2464
2465 /*
2466
2467 Analysis of a number of iterations of a loop by a brute-force evaluation.
2468
2469 */
2470
2471 /* Bound on the number of iterations we try to evaluate. */
2472
2473 #define MAX_ITERATIONS_TO_TRACK \
2474 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2475
2476 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2477 result by a chain of operations such that all but exactly one of their
2478 operands are constants. */
2479
2480 static gphi *
2481 chain_of_csts_start (struct loop *loop, tree x)
2482 {
2483 gimple *stmt = SSA_NAME_DEF_STMT (x);
2484 tree use;
2485 basic_block bb = gimple_bb (stmt);
2486 enum tree_code code;
2487
2488 if (!bb
2489 || !flow_bb_inside_loop_p (loop, bb))
2490 return NULL;
2491
2492 if (gimple_code (stmt) == GIMPLE_PHI)
2493 {
2494 if (bb == loop->header)
2495 return as_a <gphi *> (stmt);
2496
2497 return NULL;
2498 }
2499
2500 if (gimple_code (stmt) != GIMPLE_ASSIGN
2501 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2502 return NULL;
2503
2504 code = gimple_assign_rhs_code (stmt);
2505 if (gimple_references_memory_p (stmt)
2506 || TREE_CODE_CLASS (code) == tcc_reference
2507 || (code == ADDR_EXPR
2508 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2509 return NULL;
2510
2511 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2512 if (use == NULL_TREE)
2513 return NULL;
2514
2515 return chain_of_csts_start (loop, use);
2516 }
2517
2518 /* Determines whether the expression X is derived from a result of a phi node
2519 in header of LOOP such that
2520
2521 * the derivation of X consists only from operations with constants
2522 * the initial value of the phi node is constant
2523 * the value of the phi node in the next iteration can be derived from the
2524 value in the current iteration by a chain of operations with constants,
2525 or is also a constant
2526
2527 If such phi node exists, it is returned, otherwise NULL is returned. */
2528
2529 static gphi *
2530 get_base_for (struct loop *loop, tree x)
2531 {
2532 gphi *phi;
2533 tree init, next;
2534
2535 if (is_gimple_min_invariant (x))
2536 return NULL;
2537
2538 phi = chain_of_csts_start (loop, x);
2539 if (!phi)
2540 return NULL;
2541
2542 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2543 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2544
2545 if (!is_gimple_min_invariant (init))
2546 return NULL;
2547
2548 if (TREE_CODE (next) == SSA_NAME
2549 && chain_of_csts_start (loop, next) != phi)
2550 return NULL;
2551
2552 return phi;
2553 }
2554
2555 /* Given an expression X, then
2556
2557 * if X is NULL_TREE, we return the constant BASE.
2558 * if X is a constant, we return the constant X.
2559 * otherwise X is a SSA name, whose value in the considered loop is derived
2560 by a chain of operations with constant from a result of a phi node in
2561 the header of the loop. Then we return value of X when the value of the
2562 result of this phi node is given by the constant BASE. */
2563
2564 static tree
2565 get_val_for (tree x, tree base)
2566 {
2567 gimple *stmt;
2568
2569 gcc_checking_assert (is_gimple_min_invariant (base));
2570
2571 if (!x)
2572 return base;
2573 else if (is_gimple_min_invariant (x))
2574 return x;
2575
2576 stmt = SSA_NAME_DEF_STMT (x);
2577 if (gimple_code (stmt) == GIMPLE_PHI)
2578 return base;
2579
2580 gcc_checking_assert (is_gimple_assign (stmt));
2581
2582 /* STMT must be either an assignment of a single SSA name or an
2583 expression involving an SSA name and a constant. Try to fold that
2584 expression using the value for the SSA name. */
2585 if (gimple_assign_ssa_name_copy_p (stmt))
2586 return get_val_for (gimple_assign_rhs1 (stmt), base);
2587 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2588 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2589 return fold_build1 (gimple_assign_rhs_code (stmt),
2590 gimple_expr_type (stmt),
2591 get_val_for (gimple_assign_rhs1 (stmt), base));
2592 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2593 {
2594 tree rhs1 = gimple_assign_rhs1 (stmt);
2595 tree rhs2 = gimple_assign_rhs2 (stmt);
2596 if (TREE_CODE (rhs1) == SSA_NAME)
2597 rhs1 = get_val_for (rhs1, base);
2598 else if (TREE_CODE (rhs2) == SSA_NAME)
2599 rhs2 = get_val_for (rhs2, base);
2600 else
2601 gcc_unreachable ();
2602 return fold_build2 (gimple_assign_rhs_code (stmt),
2603 gimple_expr_type (stmt), rhs1, rhs2);
2604 }
2605 else
2606 gcc_unreachable ();
2607 }
2608
2609
2610 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2611 by brute force -- i.e. by determining the value of the operands of the
2612 condition at EXIT in first few iterations of the loop (assuming that
2613 these values are constant) and determining the first one in that the
2614 condition is not satisfied. Returns the constant giving the number
2615 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2616
2617 tree
2618 loop_niter_by_eval (struct loop *loop, edge exit)
2619 {
2620 tree acnd;
2621 tree op[2], val[2], next[2], aval[2];
2622 gphi *phi;
2623 gimple *cond;
2624 unsigned i, j;
2625 enum tree_code cmp;
2626
2627 cond = last_stmt (exit->src);
2628 if (!cond || gimple_code (cond) != GIMPLE_COND)
2629 return chrec_dont_know;
2630
2631 cmp = gimple_cond_code (cond);
2632 if (exit->flags & EDGE_TRUE_VALUE)
2633 cmp = invert_tree_comparison (cmp, false);
2634
2635 switch (cmp)
2636 {
2637 case EQ_EXPR:
2638 case NE_EXPR:
2639 case GT_EXPR:
2640 case GE_EXPR:
2641 case LT_EXPR:
2642 case LE_EXPR:
2643 op[0] = gimple_cond_lhs (cond);
2644 op[1] = gimple_cond_rhs (cond);
2645 break;
2646
2647 default:
2648 return chrec_dont_know;
2649 }
2650
2651 for (j = 0; j < 2; j++)
2652 {
2653 if (is_gimple_min_invariant (op[j]))
2654 {
2655 val[j] = op[j];
2656 next[j] = NULL_TREE;
2657 op[j] = NULL_TREE;
2658 }
2659 else
2660 {
2661 phi = get_base_for (loop, op[j]);
2662 if (!phi)
2663 return chrec_dont_know;
2664 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2665 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2666 }
2667 }
2668
2669 /* Don't issue signed overflow warnings. */
2670 fold_defer_overflow_warnings ();
2671
2672 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2673 {
2674 for (j = 0; j < 2; j++)
2675 aval[j] = get_val_for (op[j], val[j]);
2676
2677 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2678 if (acnd && integer_zerop (acnd))
2679 {
2680 fold_undefer_and_ignore_overflow_warnings ();
2681 if (dump_file && (dump_flags & TDF_DETAILS))
2682 fprintf (dump_file,
2683 "Proved that loop %d iterates %d times using brute force.\n",
2684 loop->num, i);
2685 return build_int_cst (unsigned_type_node, i);
2686 }
2687
2688 for (j = 0; j < 2; j++)
2689 {
2690 aval[j] = val[j];
2691 val[j] = get_val_for (next[j], val[j]);
2692 if (!is_gimple_min_invariant (val[j]))
2693 {
2694 fold_undefer_and_ignore_overflow_warnings ();
2695 return chrec_dont_know;
2696 }
2697 }
2698
2699 /* If the next iteration would use the same base values
2700 as the current one, there is no point looping further,
2701 all following iterations will be the same as this one. */
2702 if (val[0] == aval[0] && val[1] == aval[1])
2703 break;
2704 }
2705
2706 fold_undefer_and_ignore_overflow_warnings ();
2707
2708 return chrec_dont_know;
2709 }
2710
2711 /* Finds the exit of the LOOP by that the loop exits after a constant
2712 number of iterations and stores the exit edge to *EXIT. The constant
2713 giving the number of iterations of LOOP is returned. The number of
2714 iterations is determined using loop_niter_by_eval (i.e. by brute force
2715 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2716 determines the number of iterations, chrec_dont_know is returned. */
2717
2718 tree
2719 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2720 {
2721 unsigned i;
2722 vec<edge> exits = get_loop_exit_edges (loop);
2723 edge ex;
2724 tree niter = NULL_TREE, aniter;
2725
2726 *exit = NULL;
2727
2728 /* Loops with multiple exits are expensive to handle and less important. */
2729 if (!flag_expensive_optimizations
2730 && exits.length () > 1)
2731 {
2732 exits.release ();
2733 return chrec_dont_know;
2734 }
2735
2736 FOR_EACH_VEC_ELT (exits, i, ex)
2737 {
2738 if (!just_once_each_iteration_p (loop, ex->src))
2739 continue;
2740
2741 aniter = loop_niter_by_eval (loop, ex);
2742 if (chrec_contains_undetermined (aniter))
2743 continue;
2744
2745 if (niter
2746 && !tree_int_cst_lt (aniter, niter))
2747 continue;
2748
2749 niter = aniter;
2750 *exit = ex;
2751 }
2752 exits.release ();
2753
2754 return niter ? niter : chrec_dont_know;
2755 }
2756
2757 /*
2758
2759 Analysis of upper bounds on number of iterations of a loop.
2760
2761 */
2762
2763 static widest_int derive_constant_upper_bound_ops (tree, tree,
2764 enum tree_code, tree);
2765
2766 /* Returns a constant upper bound on the value of the right-hand side of
2767 an assignment statement STMT. */
2768
2769 static widest_int
2770 derive_constant_upper_bound_assign (gimple *stmt)
2771 {
2772 enum tree_code code = gimple_assign_rhs_code (stmt);
2773 tree op0 = gimple_assign_rhs1 (stmt);
2774 tree op1 = gimple_assign_rhs2 (stmt);
2775
2776 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2777 op0, code, op1);
2778 }
2779
2780 /* Returns a constant upper bound on the value of expression VAL. VAL
2781 is considered to be unsigned. If its type is signed, its value must
2782 be nonnegative. */
2783
2784 static widest_int
2785 derive_constant_upper_bound (tree val)
2786 {
2787 enum tree_code code;
2788 tree op0, op1, op2;
2789
2790 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
2791 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2792 }
2793
2794 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2795 whose type is TYPE. The expression is considered to be unsigned. If
2796 its type is signed, its value must be nonnegative. */
2797
2798 static widest_int
2799 derive_constant_upper_bound_ops (tree type, tree op0,
2800 enum tree_code code, tree op1)
2801 {
2802 tree subtype, maxt;
2803 widest_int bnd, max, cst;
2804 gimple *stmt;
2805
2806 if (INTEGRAL_TYPE_P (type))
2807 maxt = TYPE_MAX_VALUE (type);
2808 else
2809 maxt = upper_bound_in_type (type, type);
2810
2811 max = wi::to_widest (maxt);
2812
2813 switch (code)
2814 {
2815 case INTEGER_CST:
2816 return wi::to_widest (op0);
2817
2818 CASE_CONVERT:
2819 subtype = TREE_TYPE (op0);
2820 if (!TYPE_UNSIGNED (subtype)
2821 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2822 that OP0 is nonnegative. */
2823 && TYPE_UNSIGNED (type)
2824 && !tree_expr_nonnegative_p (op0))
2825 {
2826 /* If we cannot prove that the casted expression is nonnegative,
2827 we cannot establish more useful upper bound than the precision
2828 of the type gives us. */
2829 return max;
2830 }
2831
2832 /* We now know that op0 is an nonnegative value. Try deriving an upper
2833 bound for it. */
2834 bnd = derive_constant_upper_bound (op0);
2835
2836 /* If the bound does not fit in TYPE, max. value of TYPE could be
2837 attained. */
2838 if (wi::ltu_p (max, bnd))
2839 return max;
2840
2841 return bnd;
2842
2843 case PLUS_EXPR:
2844 case POINTER_PLUS_EXPR:
2845 case MINUS_EXPR:
2846 if (TREE_CODE (op1) != INTEGER_CST
2847 || !tree_expr_nonnegative_p (op0))
2848 return max;
2849
2850 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2851 choose the most logical way how to treat this constant regardless
2852 of the signedness of the type. */
2853 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
2854 if (code != MINUS_EXPR)
2855 cst = -cst;
2856
2857 bnd = derive_constant_upper_bound (op0);
2858
2859 if (wi::neg_p (cst))
2860 {
2861 cst = -cst;
2862 /* Avoid CST == 0x80000... */
2863 if (wi::neg_p (cst))
2864 return max;
2865
2866 /* OP0 + CST. We need to check that
2867 BND <= MAX (type) - CST. */
2868
2869 widest_int mmax = max - cst;
2870 if (wi::leu_p (bnd, mmax))
2871 return max;
2872
2873 return bnd + cst;
2874 }
2875 else
2876 {
2877 /* OP0 - CST, where CST >= 0.
2878
2879 If TYPE is signed, we have already verified that OP0 >= 0, and we
2880 know that the result is nonnegative. This implies that
2881 VAL <= BND - CST.
2882
2883 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2884 otherwise the operation underflows.
2885 */
2886
2887 /* This should only happen if the type is unsigned; however, for
2888 buggy programs that use overflowing signed arithmetics even with
2889 -fno-wrapv, this condition may also be true for signed values. */
2890 if (wi::ltu_p (bnd, cst))
2891 return max;
2892
2893 if (TYPE_UNSIGNED (type))
2894 {
2895 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2896 wide_int_to_tree (type, cst));
2897 if (!tem || integer_nonzerop (tem))
2898 return max;
2899 }
2900
2901 bnd -= cst;
2902 }
2903
2904 return bnd;
2905
2906 case FLOOR_DIV_EXPR:
2907 case EXACT_DIV_EXPR:
2908 if (TREE_CODE (op1) != INTEGER_CST
2909 || tree_int_cst_sign_bit (op1))
2910 return max;
2911
2912 bnd = derive_constant_upper_bound (op0);
2913 return wi::udiv_floor (bnd, wi::to_widest (op1));
2914
2915 case BIT_AND_EXPR:
2916 if (TREE_CODE (op1) != INTEGER_CST
2917 || tree_int_cst_sign_bit (op1))
2918 return max;
2919 return wi::to_widest (op1);
2920
2921 case SSA_NAME:
2922 stmt = SSA_NAME_DEF_STMT (op0);
2923 if (gimple_code (stmt) != GIMPLE_ASSIGN
2924 || gimple_assign_lhs (stmt) != op0)
2925 return max;
2926 return derive_constant_upper_bound_assign (stmt);
2927
2928 default:
2929 return max;
2930 }
2931 }
2932
2933 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2934
2935 static void
2936 do_warn_aggressive_loop_optimizations (struct loop *loop,
2937 widest_int i_bound, gimple *stmt)
2938 {
2939 /* Don't warn if the loop doesn't have known constant bound. */
2940 if (!loop->nb_iterations
2941 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2942 || !warn_aggressive_loop_optimizations
2943 /* To avoid warning multiple times for the same loop,
2944 only start warning when we preserve loops. */
2945 || (cfun->curr_properties & PROP_loops) == 0
2946 /* Only warn once per loop. */
2947 || loop->warned_aggressive_loop_optimizations
2948 /* Only warn if undefined behavior gives us lower estimate than the
2949 known constant bound. */
2950 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
2951 /* And undefined behavior happens unconditionally. */
2952 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2953 return;
2954
2955 edge e = single_exit (loop);
2956 if (e == NULL)
2957 return;
2958
2959 gimple *estmt = last_stmt (e->src);
2960 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
2961 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
2962 ? UNSIGNED : SIGNED);
2963 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2964 "iteration %s invokes undefined behavior", buf))
2965 inform (gimple_location (estmt), "within this loop");
2966 loop->warned_aggressive_loop_optimizations = true;
2967 }
2968
2969 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2970 is true if the loop is exited immediately after STMT, and this exit
2971 is taken at last when the STMT is executed BOUND + 1 times.
2972 REALISTIC is true if BOUND is expected to be close to the real number
2973 of iterations. UPPER is true if we are sure the loop iterates at most
2974 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
2975
2976 static void
2977 record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
2978 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
2979 {
2980 widest_int delta;
2981
2982 if (dump_file && (dump_flags & TDF_DETAILS))
2983 {
2984 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2985 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2986 fprintf (dump_file, " is %sexecuted at most ",
2987 upper ? "" : "probably ");
2988 print_generic_expr (dump_file, bound, TDF_SLIM);
2989 fprintf (dump_file, " (bounded by ");
2990 print_decu (i_bound, dump_file);
2991 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2992 }
2993
2994 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2995 real number of iterations. */
2996 if (TREE_CODE (bound) != INTEGER_CST)
2997 realistic = false;
2998 else
2999 gcc_checking_assert (i_bound == wi::to_widest (bound));
3000
3001 /* If we have a guaranteed upper bound, record it in the appropriate
3002 list, unless this is an !is_exit bound (i.e. undefined behavior in
3003 at_stmt) in a loop with known constant number of iterations. */
3004 if (upper
3005 && (is_exit
3006 || loop->nb_iterations == NULL_TREE
3007 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3008 {
3009 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3010
3011 elt->bound = i_bound;
3012 elt->stmt = at_stmt;
3013 elt->is_exit = is_exit;
3014 elt->next = loop->bounds;
3015 loop->bounds = elt;
3016 }
3017
3018 /* If statement is executed on every path to the loop latch, we can directly
3019 infer the upper bound on the # of iterations of the loop. */
3020 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3021 upper = false;
3022
3023 /* Update the number of iteration estimates according to the bound.
3024 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3025 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3026 later if such statement must be executed on last iteration */
3027 if (is_exit)
3028 delta = 0;
3029 else
3030 delta = 1;
3031 widest_int new_i_bound = i_bound + delta;
3032
3033 /* If an overflow occurred, ignore the result. */
3034 if (wi::ltu_p (new_i_bound, delta))
3035 return;
3036
3037 if (upper && !is_exit)
3038 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3039 record_niter_bound (loop, new_i_bound, realistic, upper);
3040 }
3041
3042 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3043 and doesn't overflow. */
3044
3045 static void
3046 record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
3047 {
3048 struct control_iv *iv;
3049
3050 if (!niter->control.base || !niter->control.step)
3051 return;
3052
3053 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3054 return;
3055
3056 iv = ggc_alloc<control_iv> ();
3057 iv->base = niter->control.base;
3058 iv->step = niter->control.step;
3059 iv->next = loop->control_ivs;
3060 loop->control_ivs = iv;
3061
3062 return;
3063 }
3064
3065 /* This function returns TRUE if below conditions are satisfied:
3066 1) VAR is SSA variable.
3067 2) VAR is an IV:{base, step} in its defining loop.
3068 3) IV doesn't overflow.
3069 4) Both base and step are integer constants.
3070 5) Base is the MIN/MAX value depends on IS_MIN.
3071 Store value of base to INIT correspondingly. */
3072
3073 static bool
3074 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3075 {
3076 if (TREE_CODE (var) != SSA_NAME)
3077 return false;
3078
3079 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3080 struct loop *loop = loop_containing_stmt (def_stmt);
3081
3082 if (loop == NULL)
3083 return false;
3084
3085 affine_iv iv;
3086 if (!simple_iv (loop, loop, var, &iv, false))
3087 return false;
3088
3089 if (!iv.no_overflow)
3090 return false;
3091
3092 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
3093 return false;
3094
3095 if (is_min == tree_int_cst_sign_bit (iv.step))
3096 return false;
3097
3098 *init = iv.base;
3099 return true;
3100 }
3101
3102 /* Record the estimate on number of iterations of LOOP based on the fact that
3103 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3104 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3105 estimated number of iterations is expected to be close to the real one.
3106 UPPER is true if we are sure the induction variable does not wrap. */
3107
3108 static void
3109 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple *stmt,
3110 tree low, tree high, bool realistic, bool upper)
3111 {
3112 tree niter_bound, extreme, delta;
3113 tree type = TREE_TYPE (base), unsigned_type;
3114 tree orig_base = base;
3115
3116 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3117 return;
3118
3119 if (dump_file && (dump_flags & TDF_DETAILS))
3120 {
3121 fprintf (dump_file, "Induction variable (");
3122 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3123 fprintf (dump_file, ") ");
3124 print_generic_expr (dump_file, base, TDF_SLIM);
3125 fprintf (dump_file, " + ");
3126 print_generic_expr (dump_file, step, TDF_SLIM);
3127 fprintf (dump_file, " * iteration does not wrap in statement ");
3128 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3129 fprintf (dump_file, " in loop %d.\n", loop->num);
3130 }
3131
3132 unsigned_type = unsigned_type_for (type);
3133 base = fold_convert (unsigned_type, base);
3134 step = fold_convert (unsigned_type, step);
3135
3136 if (tree_int_cst_sign_bit (step))
3137 {
3138 wide_int min, max;
3139 extreme = fold_convert (unsigned_type, low);
3140 if (TREE_CODE (orig_base) == SSA_NAME
3141 && TREE_CODE (high) == INTEGER_CST
3142 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3143 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3144 || get_cst_init_from_scev (orig_base, &max, false))
3145 && wi::gts_p (high, max))
3146 base = wide_int_to_tree (unsigned_type, max);
3147 else if (TREE_CODE (base) != INTEGER_CST
3148 && dominated_by_p (CDI_DOMINATORS,
3149 loop->latch, gimple_bb (stmt)))
3150 base = fold_convert (unsigned_type, high);
3151 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3152 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3153 }
3154 else
3155 {
3156 wide_int min, max;
3157 extreme = fold_convert (unsigned_type, high);
3158 if (TREE_CODE (orig_base) == SSA_NAME
3159 && TREE_CODE (low) == INTEGER_CST
3160 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3161 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3162 || get_cst_init_from_scev (orig_base, &min, true))
3163 && wi::gts_p (min, low))
3164 base = wide_int_to_tree (unsigned_type, min);
3165 else if (TREE_CODE (base) != INTEGER_CST
3166 && dominated_by_p (CDI_DOMINATORS,
3167 loop->latch, gimple_bb (stmt)))
3168 base = fold_convert (unsigned_type, low);
3169 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3170 }
3171
3172 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3173 would get out of the range. */
3174 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3175 widest_int max = derive_constant_upper_bound (niter_bound);
3176 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3177 }
3178
3179 /* Determine information about number of iterations a LOOP from the index
3180 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3181 guaranteed to be executed in every iteration of LOOP. Callback for
3182 for_each_index. */
3183
3184 struct ilb_data
3185 {
3186 struct loop *loop;
3187 gimple *stmt;
3188 };
3189
3190 static bool
3191 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3192 {
3193 struct ilb_data *data = (struct ilb_data *) dta;
3194 tree ev, init, step;
3195 tree low, high, type, next;
3196 bool sign, upper = true, at_end = false;
3197 struct loop *loop = data->loop;
3198
3199 if (TREE_CODE (base) != ARRAY_REF)
3200 return true;
3201
3202 /* For arrays at the end of the structure, we are not guaranteed that they
3203 do not really extend over their declared size. However, for arrays of
3204 size greater than one, this is unlikely to be intended. */
3205 if (array_at_struct_end_p (base))
3206 {
3207 at_end = true;
3208 upper = false;
3209 }
3210
3211 struct loop *dloop = loop_containing_stmt (data->stmt);
3212 if (!dloop)
3213 return true;
3214
3215 ev = analyze_scalar_evolution (dloop, *idx);
3216 ev = instantiate_parameters (loop, ev);
3217 init = initial_condition (ev);
3218 step = evolution_part_in_loop_num (ev, loop->num);
3219
3220 if (!init
3221 || !step
3222 || TREE_CODE (step) != INTEGER_CST
3223 || integer_zerop (step)
3224 || tree_contains_chrecs (init, NULL)
3225 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3226 return true;
3227
3228 low = array_ref_low_bound (base);
3229 high = array_ref_up_bound (base);
3230
3231 /* The case of nonconstant bounds could be handled, but it would be
3232 complicated. */
3233 if (TREE_CODE (low) != INTEGER_CST
3234 || !high
3235 || TREE_CODE (high) != INTEGER_CST)
3236 return true;
3237 sign = tree_int_cst_sign_bit (step);
3238 type = TREE_TYPE (step);
3239
3240 /* The array of length 1 at the end of a structure most likely extends
3241 beyond its bounds. */
3242 if (at_end
3243 && operand_equal_p (low, high, 0))
3244 return true;
3245
3246 /* In case the relevant bound of the array does not fit in type, or
3247 it does, but bound + step (in type) still belongs into the range of the
3248 array, the index may wrap and still stay within the range of the array
3249 (consider e.g. if the array is indexed by the full range of
3250 unsigned char).
3251
3252 To make things simpler, we require both bounds to fit into type, although
3253 there are cases where this would not be strictly necessary. */
3254 if (!int_fits_type_p (high, type)
3255 || !int_fits_type_p (low, type))
3256 return true;
3257 low = fold_convert (type, low);
3258 high = fold_convert (type, high);
3259
3260 if (sign)
3261 next = fold_binary (PLUS_EXPR, type, low, step);
3262 else
3263 next = fold_binary (PLUS_EXPR, type, high, step);
3264
3265 if (tree_int_cst_compare (low, next) <= 0
3266 && tree_int_cst_compare (next, high) <= 0)
3267 return true;
3268
3269 /* If access is not executed on every iteration, we must ensure that overlow
3270 may not make the access valid later. */
3271 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3272 && scev_probably_wraps_p (NULL_TREE,
3273 initial_condition_in_loop_num (ev, loop->num),
3274 step, data->stmt, loop, true))
3275 upper = false;
3276
3277 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
3278 return true;
3279 }
3280
3281 /* Determine information about number of iterations a LOOP from the bounds
3282 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3283 STMT is guaranteed to be executed in every iteration of LOOP.*/
3284
3285 static void
3286 infer_loop_bounds_from_ref (struct loop *loop, gimple *stmt, tree ref)
3287 {
3288 struct ilb_data data;
3289
3290 data.loop = loop;
3291 data.stmt = stmt;
3292 for_each_index (&ref, idx_infer_loop_bounds, &data);
3293 }
3294
3295 /* Determine information about number of iterations of a LOOP from the way
3296 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3297 executed in every iteration of LOOP. */
3298
3299 static void
3300 infer_loop_bounds_from_array (struct loop *loop, gimple *stmt)
3301 {
3302 if (is_gimple_assign (stmt))
3303 {
3304 tree op0 = gimple_assign_lhs (stmt);
3305 tree op1 = gimple_assign_rhs1 (stmt);
3306
3307 /* For each memory access, analyze its access function
3308 and record a bound on the loop iteration domain. */
3309 if (REFERENCE_CLASS_P (op0))
3310 infer_loop_bounds_from_ref (loop, stmt, op0);
3311
3312 if (REFERENCE_CLASS_P (op1))
3313 infer_loop_bounds_from_ref (loop, stmt, op1);
3314 }
3315 else if (is_gimple_call (stmt))
3316 {
3317 tree arg, lhs;
3318 unsigned i, n = gimple_call_num_args (stmt);
3319
3320 lhs = gimple_call_lhs (stmt);
3321 if (lhs && REFERENCE_CLASS_P (lhs))
3322 infer_loop_bounds_from_ref (loop, stmt, lhs);
3323
3324 for (i = 0; i < n; i++)
3325 {
3326 arg = gimple_call_arg (stmt, i);
3327 if (REFERENCE_CLASS_P (arg))
3328 infer_loop_bounds_from_ref (loop, stmt, arg);
3329 }
3330 }
3331 }
3332
3333 /* Determine information about number of iterations of a LOOP from the fact
3334 that pointer arithmetics in STMT does not overflow. */
3335
3336 static void
3337 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple *stmt)
3338 {
3339 tree def, base, step, scev, type, low, high;
3340 tree var, ptr;
3341
3342 if (!is_gimple_assign (stmt)
3343 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3344 return;
3345
3346 def = gimple_assign_lhs (stmt);
3347 if (TREE_CODE (def) != SSA_NAME)
3348 return;
3349
3350 type = TREE_TYPE (def);
3351 if (!nowrap_type_p (type))
3352 return;
3353
3354 ptr = gimple_assign_rhs1 (stmt);
3355 if (!expr_invariant_in_loop_p (loop, ptr))
3356 return;
3357
3358 var = gimple_assign_rhs2 (stmt);
3359 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3360 return;
3361
3362 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3363 if (chrec_contains_undetermined (scev))
3364 return;
3365
3366 base = initial_condition_in_loop_num (scev, loop->num);
3367 step = evolution_part_in_loop_num (scev, loop->num);
3368
3369 if (!base || !step
3370 || TREE_CODE (step) != INTEGER_CST
3371 || tree_contains_chrecs (base, NULL)
3372 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3373 return;
3374
3375 low = lower_bound_in_type (type, type);
3376 high = upper_bound_in_type (type, type);
3377
3378 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3379 produce a NULL pointer. The contrary would mean NULL points to an object,
3380 while NULL is supposed to compare unequal with the address of all objects.
3381 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3382 NULL pointer since that would mean wrapping, which we assume here not to
3383 happen. So, we can exclude NULL from the valid range of pointer
3384 arithmetic. */
3385 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3386 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3387
3388 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3389 }
3390
3391 /* Determine information about number of iterations of a LOOP from the fact
3392 that signed arithmetics in STMT does not overflow. */
3393
3394 static void
3395 infer_loop_bounds_from_signedness (struct loop *loop, gimple *stmt)
3396 {
3397 tree def, base, step, scev, type, low, high;
3398
3399 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3400 return;
3401
3402 def = gimple_assign_lhs (stmt);
3403
3404 if (TREE_CODE (def) != SSA_NAME)
3405 return;
3406
3407 type = TREE_TYPE (def);
3408 if (!INTEGRAL_TYPE_P (type)
3409 || !TYPE_OVERFLOW_UNDEFINED (type))
3410 return;
3411
3412 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3413 if (chrec_contains_undetermined (scev))
3414 return;
3415
3416 base = initial_condition_in_loop_num (scev, loop->num);
3417 step = evolution_part_in_loop_num (scev, loop->num);
3418
3419 if (!base || !step
3420 || TREE_CODE (step) != INTEGER_CST
3421 || tree_contains_chrecs (base, NULL)
3422 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3423 return;
3424
3425 low = lower_bound_in_type (type, type);
3426 high = upper_bound_in_type (type, type);
3427
3428 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3429 }
3430
3431 /* The following analyzers are extracting informations on the bounds
3432 of LOOP from the following undefined behaviors:
3433
3434 - data references should not access elements over the statically
3435 allocated size,
3436
3437 - signed variables should not overflow when flag_wrapv is not set.
3438 */
3439
3440 static void
3441 infer_loop_bounds_from_undefined (struct loop *loop)
3442 {
3443 unsigned i;
3444 basic_block *bbs;
3445 gimple_stmt_iterator bsi;
3446 basic_block bb;
3447 bool reliable;
3448
3449 bbs = get_loop_body (loop);
3450
3451 for (i = 0; i < loop->num_nodes; i++)
3452 {
3453 bb = bbs[i];
3454
3455 /* If BB is not executed in each iteration of the loop, we cannot
3456 use the operations in it to infer reliable upper bound on the
3457 # of iterations of the loop. However, we can use it as a guess.
3458 Reliable guesses come only from array bounds. */
3459 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3460
3461 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3462 {
3463 gimple *stmt = gsi_stmt (bsi);
3464
3465 infer_loop_bounds_from_array (loop, stmt);
3466
3467 if (reliable)
3468 {
3469 infer_loop_bounds_from_signedness (loop, stmt);
3470 infer_loop_bounds_from_pointer_arith (loop, stmt);
3471 }
3472 }
3473
3474 }
3475
3476 free (bbs);
3477 }
3478
3479 /* Compare wide ints, callback for qsort. */
3480
3481 static int
3482 wide_int_cmp (const void *p1, const void *p2)
3483 {
3484 const widest_int *d1 = (const widest_int *) p1;
3485 const widest_int *d2 = (const widest_int *) p2;
3486 return wi::cmpu (*d1, *d2);
3487 }
3488
3489 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3490 Lookup by binary search. */
3491
3492 static int
3493 bound_index (vec<widest_int> bounds, const widest_int &bound)
3494 {
3495 unsigned int end = bounds.length ();
3496 unsigned int begin = 0;
3497
3498 /* Find a matching index by means of a binary search. */
3499 while (begin != end)
3500 {
3501 unsigned int middle = (begin + end) / 2;
3502 widest_int index = bounds[middle];
3503
3504 if (index == bound)
3505 return middle;
3506 else if (wi::ltu_p (index, bound))
3507 begin = middle + 1;
3508 else
3509 end = middle;
3510 }
3511 gcc_unreachable ();
3512 }
3513
3514 /* We recorded loop bounds only for statements dominating loop latch (and thus
3515 executed each loop iteration). If there are any bounds on statements not
3516 dominating the loop latch we can improve the estimate by walking the loop
3517 body and seeing if every path from loop header to loop latch contains
3518 some bounded statement. */
3519
3520 static void
3521 discover_iteration_bound_by_body_walk (struct loop *loop)
3522 {
3523 struct nb_iter_bound *elt;
3524 auto_vec<widest_int> bounds;
3525 vec<vec<basic_block> > queues = vNULL;
3526 vec<basic_block> queue = vNULL;
3527 ptrdiff_t queue_index;
3528 ptrdiff_t latch_index = 0;
3529
3530 /* Discover what bounds may interest us. */
3531 for (elt = loop->bounds; elt; elt = elt->next)
3532 {
3533 widest_int bound = elt->bound;
3534
3535 /* Exit terminates loop at given iteration, while non-exits produce undefined
3536 effect on the next iteration. */
3537 if (!elt->is_exit)
3538 {
3539 bound += 1;
3540 /* If an overflow occurred, ignore the result. */
3541 if (bound == 0)
3542 continue;
3543 }
3544
3545 if (!loop->any_upper_bound
3546 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3547 bounds.safe_push (bound);
3548 }
3549
3550 /* Exit early if there is nothing to do. */
3551 if (!bounds.exists ())
3552 return;
3553
3554 if (dump_file && (dump_flags & TDF_DETAILS))
3555 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3556
3557 /* Sort the bounds in decreasing order. */
3558 bounds.qsort (wide_int_cmp);
3559
3560 /* For every basic block record the lowest bound that is guaranteed to
3561 terminate the loop. */
3562
3563 hash_map<basic_block, ptrdiff_t> bb_bounds;
3564 for (elt = loop->bounds; elt; elt = elt->next)
3565 {
3566 widest_int bound = elt->bound;
3567 if (!elt->is_exit)
3568 {
3569 bound += 1;
3570 /* If an overflow occurred, ignore the result. */
3571 if (bound == 0)
3572 continue;
3573 }
3574
3575 if (!loop->any_upper_bound
3576 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3577 {
3578 ptrdiff_t index = bound_index (bounds, bound);
3579 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3580 if (!entry)
3581 bb_bounds.put (gimple_bb (elt->stmt), index);
3582 else if ((ptrdiff_t)*entry > index)
3583 *entry = index;
3584 }
3585 }
3586
3587 hash_map<basic_block, ptrdiff_t> block_priority;
3588
3589 /* Perform shortest path discovery loop->header ... loop->latch.
3590
3591 The "distance" is given by the smallest loop bound of basic block
3592 present in the path and we look for path with largest smallest bound
3593 on it.
3594
3595 To avoid the need for fibonacci heap on double ints we simply compress
3596 double ints into indexes to BOUNDS array and then represent the queue
3597 as arrays of queues for every index.
3598 Index of BOUNDS.length() means that the execution of given BB has
3599 no bounds determined.
3600
3601 VISITED is a pointer map translating basic block into smallest index
3602 it was inserted into the priority queue with. */
3603 latch_index = -1;
3604
3605 /* Start walk in loop header with index set to infinite bound. */
3606 queue_index = bounds.length ();
3607 queues.safe_grow_cleared (queue_index + 1);
3608 queue.safe_push (loop->header);
3609 queues[queue_index] = queue;
3610 block_priority.put (loop->header, queue_index);
3611
3612 for (; queue_index >= 0; queue_index--)
3613 {
3614 if (latch_index < queue_index)
3615 {
3616 while (queues[queue_index].length ())
3617 {
3618 basic_block bb;
3619 ptrdiff_t bound_index = queue_index;
3620 edge e;
3621 edge_iterator ei;
3622
3623 queue = queues[queue_index];
3624 bb = queue.pop ();
3625
3626 /* OK, we later inserted the BB with lower priority, skip it. */
3627 if (*block_priority.get (bb) > queue_index)
3628 continue;
3629
3630 /* See if we can improve the bound. */
3631 ptrdiff_t *entry = bb_bounds.get (bb);
3632 if (entry && *entry < bound_index)
3633 bound_index = *entry;
3634
3635 /* Insert succesors into the queue, watch for latch edge
3636 and record greatest index we saw. */
3637 FOR_EACH_EDGE (e, ei, bb->succs)
3638 {
3639 bool insert = false;
3640
3641 if (loop_exit_edge_p (loop, e))
3642 continue;
3643
3644 if (e == loop_latch_edge (loop)
3645 && latch_index < bound_index)
3646 latch_index = bound_index;
3647 else if (!(entry = block_priority.get (e->dest)))
3648 {
3649 insert = true;
3650 block_priority.put (e->dest, bound_index);
3651 }
3652 else if (*entry < bound_index)
3653 {
3654 insert = true;
3655 *entry = bound_index;
3656 }
3657
3658 if (insert)
3659 queues[bound_index].safe_push (e->dest);
3660 }
3661 }
3662 }
3663 queues[queue_index].release ();
3664 }
3665
3666 gcc_assert (latch_index >= 0);
3667 if ((unsigned)latch_index < bounds.length ())
3668 {
3669 if (dump_file && (dump_flags & TDF_DETAILS))
3670 {
3671 fprintf (dump_file, "Found better loop bound ");
3672 print_decu (bounds[latch_index], dump_file);
3673 fprintf (dump_file, "\n");
3674 }
3675 record_niter_bound (loop, bounds[latch_index], false, true);
3676 }
3677
3678 queues.release ();
3679 }
3680
3681 /* See if every path cross the loop goes through a statement that is known
3682 to not execute at the last iteration. In that case we can decrese iteration
3683 count by 1. */
3684
3685 static void
3686 maybe_lower_iteration_bound (struct loop *loop)
3687 {
3688 hash_set<gimple *> *not_executed_last_iteration = NULL;
3689 struct nb_iter_bound *elt;
3690 bool found_exit = false;
3691 auto_vec<basic_block> queue;
3692 bitmap visited;
3693
3694 /* Collect all statements with interesting (i.e. lower than
3695 nb_iterations_upper_bound) bound on them.
3696
3697 TODO: Due to the way record_estimate choose estimates to store, the bounds
3698 will be always nb_iterations_upper_bound-1. We can change this to record
3699 also statements not dominating the loop latch and update the walk bellow
3700 to the shortest path algorithm. */
3701 for (elt = loop->bounds; elt; elt = elt->next)
3702 {
3703 if (!elt->is_exit
3704 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
3705 {
3706 if (!not_executed_last_iteration)
3707 not_executed_last_iteration = new hash_set<gimple *>;
3708 not_executed_last_iteration->add (elt->stmt);
3709 }
3710 }
3711 if (!not_executed_last_iteration)
3712 return;
3713
3714 /* Start DFS walk in the loop header and see if we can reach the
3715 loop latch or any of the exits (including statements with side
3716 effects that may terminate the loop otherwise) without visiting
3717 any of the statements known to have undefined effect on the last
3718 iteration. */
3719 queue.safe_push (loop->header);
3720 visited = BITMAP_ALLOC (NULL);
3721 bitmap_set_bit (visited, loop->header->index);
3722 found_exit = false;
3723
3724 do
3725 {
3726 basic_block bb = queue.pop ();
3727 gimple_stmt_iterator gsi;
3728 bool stmt_found = false;
3729
3730 /* Loop for possible exits and statements bounding the execution. */
3731 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3732 {
3733 gimple *stmt = gsi_stmt (gsi);
3734 if (not_executed_last_iteration->contains (stmt))
3735 {
3736 stmt_found = true;
3737 break;
3738 }
3739 if (gimple_has_side_effects (stmt))
3740 {
3741 found_exit = true;
3742 break;
3743 }
3744 }
3745 if (found_exit)
3746 break;
3747
3748 /* If no bounding statement is found, continue the walk. */
3749 if (!stmt_found)
3750 {
3751 edge e;
3752 edge_iterator ei;
3753
3754 FOR_EACH_EDGE (e, ei, bb->succs)
3755 {
3756 if (loop_exit_edge_p (loop, e)
3757 || e == loop_latch_edge (loop))
3758 {
3759 found_exit = true;
3760 break;
3761 }
3762 if (bitmap_set_bit (visited, e->dest->index))
3763 queue.safe_push (e->dest);
3764 }
3765 }
3766 }
3767 while (queue.length () && !found_exit);
3768
3769 /* If every path through the loop reach bounding statement before exit,
3770 then we know the last iteration of the loop will have undefined effect
3771 and we can decrease number of iterations. */
3772
3773 if (!found_exit)
3774 {
3775 if (dump_file && (dump_flags & TDF_DETAILS))
3776 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3777 "undefined statement must be executed at the last iteration.\n");
3778 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
3779 false, true);
3780 }
3781
3782 BITMAP_FREE (visited);
3783 delete not_executed_last_iteration;
3784 }
3785
3786 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3787 is true also use estimates derived from undefined behavior. */
3788
3789 static void
3790 estimate_numbers_of_iterations_loop (struct loop *loop)
3791 {
3792 vec<edge> exits;
3793 tree niter, type;
3794 unsigned i;
3795 struct tree_niter_desc niter_desc;
3796 edge ex;
3797 widest_int bound;
3798 edge likely_exit;
3799
3800 /* Give up if we already have tried to compute an estimation. */
3801 if (loop->estimate_state != EST_NOT_COMPUTED)
3802 return;
3803
3804 loop->estimate_state = EST_AVAILABLE;
3805
3806 /* If we have a measured profile, use it to estimate the number of
3807 iterations. Normally this is recorded by branch_prob right after
3808 reading the profile. In case we however found a new loop, record the
3809 information here.
3810
3811 Explicitly check for profile status so we do not report
3812 wrong prediction hitrates for guessed loop iterations heuristics.
3813 Do not recompute already recorded bounds - we ought to be better on
3814 updating iteration bounds than updating profile in general and thus
3815 recomputing iteration bounds later in the compilation process will just
3816 introduce random roundoff errors. */
3817 if (!loop->any_estimate
3818 && loop->header->count != 0
3819 && profile_status_for_fn (cfun) >= PROFILE_READ)
3820 {
3821 gcov_type nit = expected_loop_iterations_unbounded (loop);
3822 bound = gcov_type_to_wide_int (nit);
3823 record_niter_bound (loop, bound, true, false);
3824 }
3825
3826 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3827 to be constant, we avoid undefined behavior implied bounds and instead
3828 diagnose those loops with -Waggressive-loop-optimizations. */
3829 number_of_latch_executions (loop);
3830
3831 exits = get_loop_exit_edges (loop);
3832 likely_exit = single_likely_exit (loop);
3833 FOR_EACH_VEC_ELT (exits, i, ex)
3834 {
3835 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3836 continue;
3837
3838 niter = niter_desc.niter;
3839 type = TREE_TYPE (niter);
3840 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3841 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3842 build_int_cst (type, 0),
3843 niter);
3844 record_estimate (loop, niter, niter_desc.max,
3845 last_stmt (ex->src),
3846 true, ex == likely_exit, true);
3847 record_control_iv (loop, &niter_desc);
3848 }
3849 exits.release ();
3850
3851 if (flag_aggressive_loop_optimizations)
3852 infer_loop_bounds_from_undefined (loop);
3853
3854 discover_iteration_bound_by_body_walk (loop);
3855
3856 maybe_lower_iteration_bound (loop);
3857
3858 /* If we know the exact number of iterations of this loop, try to
3859 not break code with undefined behavior by not recording smaller
3860 maximum number of iterations. */
3861 if (loop->nb_iterations
3862 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3863 {
3864 loop->any_upper_bound = true;
3865 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
3866 }
3867 }
3868
3869 /* Sets NIT to the estimated number of executions of the latch of the
3870 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3871 large as the number of iterations. If we have no reliable estimate,
3872 the function returns false, otherwise returns true. */
3873
3874 bool
3875 estimated_loop_iterations (struct loop *loop, widest_int *nit)
3876 {
3877 /* When SCEV information is available, try to update loop iterations
3878 estimate. Otherwise just return whatever we recorded earlier. */
3879 if (scev_initialized_p ())
3880 estimate_numbers_of_iterations_loop (loop);
3881
3882 return (get_estimated_loop_iterations (loop, nit));
3883 }
3884
3885 /* Similar to estimated_loop_iterations, but returns the estimate only
3886 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3887 on the number of iterations of LOOP could not be derived, returns -1. */
3888
3889 HOST_WIDE_INT
3890 estimated_loop_iterations_int (struct loop *loop)
3891 {
3892 widest_int nit;
3893 HOST_WIDE_INT hwi_nit;
3894
3895 if (!estimated_loop_iterations (loop, &nit))
3896 return -1;
3897
3898 if (!wi::fits_shwi_p (nit))
3899 return -1;
3900 hwi_nit = nit.to_shwi ();
3901
3902 return hwi_nit < 0 ? -1 : hwi_nit;
3903 }
3904
3905
3906 /* Sets NIT to an upper bound for the maximum number of executions of the
3907 latch of the LOOP. If we have no reliable estimate, the function returns
3908 false, otherwise returns true. */
3909
3910 bool
3911 max_loop_iterations (struct loop *loop, widest_int *nit)
3912 {
3913 /* When SCEV information is available, try to update loop iterations
3914 estimate. Otherwise just return whatever we recorded earlier. */
3915 if (scev_initialized_p ())
3916 estimate_numbers_of_iterations_loop (loop);
3917
3918 return get_max_loop_iterations (loop, nit);
3919 }
3920
3921 /* Similar to max_loop_iterations, but returns the estimate only
3922 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3923 on the number of iterations of LOOP could not be derived, returns -1. */
3924
3925 HOST_WIDE_INT
3926 max_loop_iterations_int (struct loop *loop)
3927 {
3928 widest_int nit;
3929 HOST_WIDE_INT hwi_nit;
3930
3931 if (!max_loop_iterations (loop, &nit))
3932 return -1;
3933
3934 if (!wi::fits_shwi_p (nit))
3935 return -1;
3936 hwi_nit = nit.to_shwi ();
3937
3938 return hwi_nit < 0 ? -1 : hwi_nit;
3939 }
3940
3941 /* Sets NIT to an likely upper bound for the maximum number of executions of the
3942 latch of the LOOP. If we have no reliable estimate, the function returns
3943 false, otherwise returns true. */
3944
3945 bool
3946 likely_max_loop_iterations (struct loop *loop, widest_int *nit)
3947 {
3948 /* When SCEV information is available, try to update loop iterations
3949 estimate. Otherwise just return whatever we recorded earlier. */
3950 if (scev_initialized_p ())
3951 estimate_numbers_of_iterations_loop (loop);
3952
3953 return get_likely_max_loop_iterations (loop, nit);
3954 }
3955
3956 /* Similar to max_loop_iterations, but returns the estimate only
3957 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3958 on the number of iterations of LOOP could not be derived, returns -1. */
3959
3960 HOST_WIDE_INT
3961 likely_max_loop_iterations_int (struct loop *loop)
3962 {
3963 widest_int nit;
3964 HOST_WIDE_INT hwi_nit;
3965
3966 if (!likely_max_loop_iterations (loop, &nit))
3967 return -1;
3968
3969 if (!wi::fits_shwi_p (nit))
3970 return -1;
3971 hwi_nit = nit.to_shwi ();
3972
3973 return hwi_nit < 0 ? -1 : hwi_nit;
3974 }
3975
3976 /* Returns an estimate for the number of executions of statements
3977 in the LOOP. For statements before the loop exit, this exceeds
3978 the number of execution of the latch by one. */
3979
3980 HOST_WIDE_INT
3981 estimated_stmt_executions_int (struct loop *loop)
3982 {
3983 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3984 HOST_WIDE_INT snit;
3985
3986 if (nit == -1)
3987 return -1;
3988
3989 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3990
3991 /* If the computation overflows, return -1. */
3992 return snit < 0 ? -1 : snit;
3993 }
3994
3995 /* Sets NIT to the maximum number of executions of the latch of the
3996 LOOP, plus one. If we have no reliable estimate, the function returns
3997 false, otherwise returns true. */
3998
3999 bool
4000 max_stmt_executions (struct loop *loop, widest_int *nit)
4001 {
4002 widest_int nit_minus_one;
4003
4004 if (!max_loop_iterations (loop, nit))
4005 return false;
4006
4007 nit_minus_one = *nit;
4008
4009 *nit += 1;
4010
4011 return wi::gtu_p (*nit, nit_minus_one);
4012 }
4013
4014 /* Sets NIT to the estimated maximum number of executions of the latch of the
4015 LOOP, plus one. If we have no likely estimate, the function returns
4016 false, otherwise returns true. */
4017
4018 bool
4019 likely_max_stmt_executions (struct loop *loop, widest_int *nit)
4020 {
4021 widest_int nit_minus_one;
4022
4023 if (!likely_max_loop_iterations (loop, nit))
4024 return false;
4025
4026 nit_minus_one = *nit;
4027
4028 *nit += 1;
4029
4030 return wi::gtu_p (*nit, nit_minus_one);
4031 }
4032
4033 /* Sets NIT to the estimated number of executions of the latch of the
4034 LOOP, plus one. If we have no reliable estimate, the function returns
4035 false, otherwise returns true. */
4036
4037 bool
4038 estimated_stmt_executions (struct loop *loop, widest_int *nit)
4039 {
4040 widest_int nit_minus_one;
4041
4042 if (!estimated_loop_iterations (loop, nit))
4043 return false;
4044
4045 nit_minus_one = *nit;
4046
4047 *nit += 1;
4048
4049 return wi::gtu_p (*nit, nit_minus_one);
4050 }
4051
4052 /* Records estimates on numbers of iterations of loops. */
4053
4054 void
4055 estimate_numbers_of_iterations (void)
4056 {
4057 struct loop *loop;
4058
4059 /* We don't want to issue signed overflow warnings while getting
4060 loop iteration estimates. */
4061 fold_defer_overflow_warnings ();
4062
4063 FOR_EACH_LOOP (loop, 0)
4064 {
4065 estimate_numbers_of_iterations_loop (loop);
4066 }
4067
4068 fold_undefer_and_ignore_overflow_warnings ();
4069 }
4070
4071 /* Returns true if statement S1 dominates statement S2. */
4072
4073 bool
4074 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
4075 {
4076 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
4077
4078 if (!bb1
4079 || s1 == s2)
4080 return true;
4081
4082 if (bb1 == bb2)
4083 {
4084 gimple_stmt_iterator bsi;
4085
4086 if (gimple_code (s2) == GIMPLE_PHI)
4087 return false;
4088
4089 if (gimple_code (s1) == GIMPLE_PHI)
4090 return true;
4091
4092 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
4093 if (gsi_stmt (bsi) == s1)
4094 return true;
4095
4096 return false;
4097 }
4098
4099 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
4100 }
4101
4102 /* Returns true when we can prove that the number of executions of
4103 STMT in the loop is at most NITER, according to the bound on
4104 the number of executions of the statement NITER_BOUND->stmt recorded in
4105 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4106
4107 ??? This code can become quite a CPU hog - we can have many bounds,
4108 and large basic block forcing stmt_dominates_stmt_p to be queried
4109 many times on a large basic blocks, so the whole thing is O(n^2)
4110 for scev_probably_wraps_p invocation (that can be done n times).
4111
4112 It would make more sense (and give better answers) to remember BB
4113 bounds computed by discover_iteration_bound_by_body_walk. */
4114
4115 static bool
4116 n_of_executions_at_most (gimple *stmt,
4117 struct nb_iter_bound *niter_bound,
4118 tree niter)
4119 {
4120 widest_int bound = niter_bound->bound;
4121 tree nit_type = TREE_TYPE (niter), e;
4122 enum tree_code cmp;
4123
4124 gcc_assert (TYPE_UNSIGNED (nit_type));
4125
4126 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4127 the number of iterations is small. */
4128 if (!wi::fits_to_tree_p (bound, nit_type))
4129 return false;
4130
4131 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4132 times. This means that:
4133
4134 -- if NITER_BOUND->is_exit is true, then everything after
4135 it at most NITER_BOUND->bound times.
4136
4137 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4138 is executed, then NITER_BOUND->stmt is executed as well in the same
4139 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4140
4141 If we can determine that NITER_BOUND->stmt is always executed
4142 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4143 We conclude that if both statements belong to the same
4144 basic block and STMT is before NITER_BOUND->stmt and there are no
4145 statements with side effects in between. */
4146
4147 if (niter_bound->is_exit)
4148 {
4149 if (stmt == niter_bound->stmt
4150 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4151 return false;
4152 cmp = GE_EXPR;
4153 }
4154 else
4155 {
4156 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4157 {
4158 gimple_stmt_iterator bsi;
4159 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4160 || gimple_code (stmt) == GIMPLE_PHI
4161 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4162 return false;
4163
4164 /* By stmt_dominates_stmt_p we already know that STMT appears
4165 before NITER_BOUND->STMT. Still need to test that the loop
4166 can not be terinated by a side effect in between. */
4167 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4168 gsi_next (&bsi))
4169 if (gimple_has_side_effects (gsi_stmt (bsi)))
4170 return false;
4171 bound += 1;
4172 if (bound == 0
4173 || !wi::fits_to_tree_p (bound, nit_type))
4174 return false;
4175 }
4176 cmp = GT_EXPR;
4177 }
4178
4179 e = fold_binary (cmp, boolean_type_node,
4180 niter, wide_int_to_tree (nit_type, bound));
4181 return e && integer_nonzerop (e);
4182 }
4183
4184 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4185
4186 bool
4187 nowrap_type_p (tree type)
4188 {
4189 if (ANY_INTEGRAL_TYPE_P (type)
4190 && TYPE_OVERFLOW_UNDEFINED (type))
4191 return true;
4192
4193 if (POINTER_TYPE_P (type))
4194 return true;
4195
4196 return false;
4197 }
4198
4199 /* Return true if we can prove LOOP is exited before evolution of induction
4200 variable {BASE, STEP} overflows with respect to its type bound. */
4201
4202 static bool
4203 loop_exits_before_overflow (tree base, tree step,
4204 gimple *at_stmt, struct loop *loop)
4205 {
4206 widest_int niter;
4207 struct control_iv *civ;
4208 struct nb_iter_bound *bound;
4209 tree e, delta, step_abs, unsigned_base;
4210 tree type = TREE_TYPE (step);
4211 tree unsigned_type, valid_niter;
4212
4213 /* Don't issue signed overflow warnings. */
4214 fold_defer_overflow_warnings ();
4215
4216 /* Compute the number of iterations before we reach the bound of the
4217 type, and verify that the loop is exited before this occurs. */
4218 unsigned_type = unsigned_type_for (type);
4219 unsigned_base = fold_convert (unsigned_type, base);
4220
4221 if (tree_int_cst_sign_bit (step))
4222 {
4223 tree extreme = fold_convert (unsigned_type,
4224 lower_bound_in_type (type, type));
4225 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4226 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4227 fold_convert (unsigned_type, step));
4228 }
4229 else
4230 {
4231 tree extreme = fold_convert (unsigned_type,
4232 upper_bound_in_type (type, type));
4233 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4234 step_abs = fold_convert (unsigned_type, step);
4235 }
4236
4237 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4238
4239 estimate_numbers_of_iterations_loop (loop);
4240
4241 if (max_loop_iterations (loop, &niter)
4242 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4243 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4244 wide_int_to_tree (TREE_TYPE (valid_niter),
4245 niter))) != NULL
4246 && integer_nonzerop (e))
4247 {
4248 fold_undefer_and_ignore_overflow_warnings ();
4249 return true;
4250 }
4251 if (at_stmt)
4252 for (bound = loop->bounds; bound; bound = bound->next)
4253 {
4254 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4255 {
4256 fold_undefer_and_ignore_overflow_warnings ();
4257 return true;
4258 }
4259 }
4260 fold_undefer_and_ignore_overflow_warnings ();
4261
4262 /* Try to prove loop is exited before {base, step} overflows with the
4263 help of analyzed loop control IV. This is done only for IVs with
4264 constant step because otherwise we don't have the information. */
4265 if (TREE_CODE (step) == INTEGER_CST)
4266 {
4267 for (civ = loop->control_ivs; civ; civ = civ->next)
4268 {
4269 enum tree_code code;
4270 tree civ_type = TREE_TYPE (civ->step);
4271
4272 /* Have to consider type difference because operand_equal_p ignores
4273 that for constants. */
4274 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4275 || element_precision (type) != element_precision (civ_type))
4276 continue;
4277
4278 /* Only consider control IV with same step. */
4279 if (!operand_equal_p (step, civ->step, 0))
4280 continue;
4281
4282 /* Done proving if this is a no-overflow control IV. */
4283 if (operand_equal_p (base, civ->base, 0))
4284 return true;
4285
4286 /* Control IV is recorded after expanding simple operations,
4287 Here we expand base and compare it too. */
4288 tree expanded_base = expand_simple_operations (base);
4289 if (operand_equal_p (expanded_base, civ->base, 0))
4290 return true;
4291
4292 /* If this is a before stepping control IV, in other words, we have
4293
4294 {civ_base, step} = {base + step, step}
4295
4296 Because civ {base + step, step} doesn't overflow during loop
4297 iterations, {base, step} will not overflow if we can prove the
4298 operation "base + step" does not overflow. Specifically, we try
4299 to prove below conditions are satisfied:
4300
4301 base <= UPPER_BOUND (type) - step ;;step > 0
4302 base >= LOWER_BOUND (type) - step ;;step < 0
4303
4304 by proving the reverse conditions are false using loop's initial
4305 condition. */
4306 if (POINTER_TYPE_P (TREE_TYPE (base)))
4307 code = POINTER_PLUS_EXPR;
4308 else
4309 code = PLUS_EXPR;
4310
4311 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4312 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
4313 expanded_base, step);
4314 if (operand_equal_p (stepped, civ->base, 0)
4315 || operand_equal_p (expanded_stepped, civ->base, 0))
4316 {
4317 tree extreme;
4318
4319 if (tree_int_cst_sign_bit (step))
4320 {
4321 code = LT_EXPR;
4322 extreme = lower_bound_in_type (type, type);
4323 }
4324 else
4325 {
4326 code = GT_EXPR;
4327 extreme = upper_bound_in_type (type, type);
4328 }
4329 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4330 e = fold_build2 (code, boolean_type_node, base, extreme);
4331 e = simplify_using_initial_conditions (loop, e);
4332 if (integer_zerop (e))
4333 return true;
4334 }
4335 }
4336 }
4337
4338 return false;
4339 }
4340
4341 /* VAR is scev variable whose evolution part is constant STEP, this function
4342 proves that VAR can't overflow by using value range info. If VAR's value
4343 range is [MIN, MAX], it can be proven by:
4344 MAX + step doesn't overflow ; if step > 0
4345 or
4346 MIN + step doesn't underflow ; if step < 0.
4347
4348 We can only do this if var is computed in every loop iteration, i.e, var's
4349 definition has to dominate loop latch. Consider below example:
4350
4351 {
4352 unsigned int i;
4353
4354 <bb 3>:
4355
4356 <bb 4>:
4357 # RANGE [0, 4294967294] NONZERO 65535
4358 # i_21 = PHI <0(3), i_18(9)>
4359 if (i_21 != 0)
4360 goto <bb 6>;
4361 else
4362 goto <bb 8>;
4363
4364 <bb 6>:
4365 # RANGE [0, 65533] NONZERO 65535
4366 _6 = i_21 + 4294967295;
4367 # RANGE [0, 65533] NONZERO 65535
4368 _7 = (long unsigned int) _6;
4369 # RANGE [0, 524264] NONZERO 524280
4370 _8 = _7 * 8;
4371 # PT = nonlocal escaped
4372 _9 = a_14 + _8;
4373 *_9 = 0;
4374
4375 <bb 8>:
4376 # RANGE [1, 65535] NONZERO 65535
4377 i_18 = i_21 + 1;
4378 if (i_18 >= 65535)
4379 goto <bb 10>;
4380 else
4381 goto <bb 9>;
4382
4383 <bb 9>:
4384 goto <bb 4>;
4385
4386 <bb 10>:
4387 return;
4388 }
4389
4390 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
4391 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
4392 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
4393 (4294967295, 4294967296, ...). */
4394
4395 static bool
4396 scev_var_range_cant_overflow (tree var, tree step, struct loop *loop)
4397 {
4398 tree type;
4399 wide_int minv, maxv, diff, step_wi;
4400 enum value_range_type rtype;
4401
4402 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
4403 return false;
4404
4405 /* Check if VAR evaluates in every loop iteration. It's not the case
4406 if VAR is default definition or does not dominate loop's latch. */
4407 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
4408 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
4409 return false;
4410
4411 rtype = get_range_info (var, &minv, &maxv);
4412 if (rtype != VR_RANGE)
4413 return false;
4414
4415 /* VAR is a scev whose evolution part is STEP and value range info
4416 is [MIN, MAX], we can prove its no-overflowness by conditions:
4417
4418 type_MAX - MAX >= step ; if step > 0
4419 MIN - type_MIN >= |step| ; if step < 0.
4420
4421 Or VAR must take value outside of value range, which is not true. */
4422 step_wi = step;
4423 type = TREE_TYPE (var);
4424 if (tree_int_cst_sign_bit (step))
4425 {
4426 diff = lower_bound_in_type (type, type);
4427 diff = minv - diff;
4428 step_wi = - step_wi;
4429 }
4430 else
4431 {
4432 diff = upper_bound_in_type (type, type);
4433 diff = diff - maxv;
4434 }
4435
4436 return (wi::geu_p (diff, step_wi));
4437 }
4438
4439 /* Return false only when the induction variable BASE + STEP * I is
4440 known to not overflow: i.e. when the number of iterations is small
4441 enough with respect to the step and initial condition in order to
4442 keep the evolution confined in TYPEs bounds. Return true when the
4443 iv is known to overflow or when the property is not computable.
4444
4445 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4446 the rules for overflow of the given language apply (e.g., that signed
4447 arithmetics in C does not overflow).
4448
4449 If VAR is a ssa variable, this function also returns false if VAR can
4450 be proven not overflow with value range info. */
4451
4452 bool
4453 scev_probably_wraps_p (tree var, tree base, tree step,
4454 gimple *at_stmt, struct loop *loop,
4455 bool use_overflow_semantics)
4456 {
4457 /* FIXME: We really need something like
4458 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4459
4460 We used to test for the following situation that frequently appears
4461 during address arithmetics:
4462
4463 D.1621_13 = (long unsigned intD.4) D.1620_12;
4464 D.1622_14 = D.1621_13 * 8;
4465 D.1623_15 = (doubleD.29 *) D.1622_14;
4466
4467 And derived that the sequence corresponding to D_14
4468 can be proved to not wrap because it is used for computing a
4469 memory access; however, this is not really the case -- for example,
4470 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4471 2032, 2040, 0, 8, ..., but the code is still legal. */
4472
4473 if (chrec_contains_undetermined (base)
4474 || chrec_contains_undetermined (step))
4475 return true;
4476
4477 if (integer_zerop (step))
4478 return false;
4479
4480 /* If we can use the fact that signed and pointer arithmetics does not
4481 wrap, we are done. */
4482 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4483 return false;
4484
4485 /* To be able to use estimates on number of iterations of the loop,
4486 we must have an upper bound on the absolute value of the step. */
4487 if (TREE_CODE (step) != INTEGER_CST)
4488 return true;
4489
4490 /* Check if var can be proven not overflow with value range info. */
4491 if (var && TREE_CODE (var) == SSA_NAME
4492 && scev_var_range_cant_overflow (var, step, loop))
4493 return false;
4494
4495 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4496 return false;
4497
4498 /* At this point we still don't have a proof that the iv does not
4499 overflow: give up. */
4500 return true;
4501 }
4502
4503 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4504
4505 void
4506 free_numbers_of_iterations_estimates_loop (struct loop *loop)
4507 {
4508 struct control_iv *civ;
4509 struct nb_iter_bound *bound;
4510
4511 loop->nb_iterations = NULL;
4512 loop->estimate_state = EST_NOT_COMPUTED;
4513 for (bound = loop->bounds; bound;)
4514 {
4515 struct nb_iter_bound *next = bound->next;
4516 ggc_free (bound);
4517 bound = next;
4518 }
4519 loop->bounds = NULL;
4520
4521 for (civ = loop->control_ivs; civ;)
4522 {
4523 struct control_iv *next = civ->next;
4524 ggc_free (civ);
4525 civ = next;
4526 }
4527 loop->control_ivs = NULL;
4528 }
4529
4530 /* Frees the information on upper bounds on numbers of iterations of loops. */
4531
4532 void
4533 free_numbers_of_iterations_estimates (function *fn)
4534 {
4535 struct loop *loop;
4536
4537 FOR_EACH_LOOP_FN (fn, loop, 0)
4538 {
4539 free_numbers_of_iterations_estimates_loop (loop);
4540 }
4541 }
4542
4543 /* Substitute value VAL for ssa name NAME inside expressions held
4544 at LOOP. */
4545
4546 void
4547 substitute_in_loop_info (struct loop *loop, tree name, tree val)
4548 {
4549 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
4550 }