tree-ssa-loop-niter.c (find_loop_niter): Remove just_once_each_iteration_p.
[gcc.git] / gcc / tree-ssa-loop-niter.c
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "intl.h"
30 #include "tree-flow.h"
31 #include "dumpfile.h"
32 #include "cfgloop.h"
33 #include "ggc.h"
34 #include "tree-chrec.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-data-ref.h"
37 #include "params.h"
38 #include "flags.h"
39 #include "diagnostic-core.h"
40 #include "tree-inline.h"
41 #include "gmp.h"
42
43 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
44
45 /* The maximum number of dominator BBs we search for conditions
46 of loop header copies we use for simplifying a conditional
47 expression. */
48 #define MAX_DOMINATORS_TO_WALK 8
49
50 /*
51
52 Analysis of number of iterations of an affine exit test.
53
54 */
55
56 /* Bounds on some value, BELOW <= X <= UP. */
57
58 typedef struct
59 {
60 mpz_t below, up;
61 } bounds;
62
63
64 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
65
66 static void
67 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
68 {
69 tree type = TREE_TYPE (expr);
70 tree op0, op1;
71 double_int off;
72 bool negate = false;
73
74 *var = expr;
75 mpz_set_ui (offset, 0);
76
77 switch (TREE_CODE (expr))
78 {
79 case MINUS_EXPR:
80 negate = true;
81 /* Fallthru. */
82
83 case PLUS_EXPR:
84 case POINTER_PLUS_EXPR:
85 op0 = TREE_OPERAND (expr, 0);
86 op1 = TREE_OPERAND (expr, 1);
87
88 if (TREE_CODE (op1) != INTEGER_CST)
89 break;
90
91 *var = op0;
92 /* Always sign extend the offset. */
93 off = tree_to_double_int (op1);
94 off = off.sext (TYPE_PRECISION (type));
95 mpz_set_double_int (offset, off, false);
96 if (negate)
97 mpz_neg (offset, offset);
98 break;
99
100 case INTEGER_CST:
101 *var = build_int_cst_type (type, 0);
102 off = tree_to_double_int (expr);
103 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
104 break;
105
106 default:
107 break;
108 }
109 }
110
111 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
112 in TYPE to MIN and MAX. */
113
114 static void
115 determine_value_range (tree type, tree var, mpz_t off,
116 mpz_t min, mpz_t max)
117 {
118 /* If the expression is a constant, we know its value exactly. */
119 if (integer_zerop (var))
120 {
121 mpz_set (min, off);
122 mpz_set (max, off);
123 return;
124 }
125
126 /* If the computation may wrap, we know nothing about the value, except for
127 the range of the type. */
128 get_type_static_bounds (type, min, max);
129 if (!nowrap_type_p (type))
130 return;
131
132 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
133 add it to MIN, otherwise to MAX. */
134 if (mpz_sgn (off) < 0)
135 mpz_add (max, max, off);
136 else
137 mpz_add (min, min, off);
138 }
139
140 /* Stores the bounds on the difference of the values of the expressions
141 (var + X) and (var + Y), computed in TYPE, to BNDS. */
142
143 static void
144 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
145 bounds *bnds)
146 {
147 int rel = mpz_cmp (x, y);
148 bool may_wrap = !nowrap_type_p (type);
149 mpz_t m;
150
151 /* If X == Y, then the expressions are always equal.
152 If X > Y, there are the following possibilities:
153 a) neither of var + X and var + Y overflow or underflow, or both of
154 them do. Then their difference is X - Y.
155 b) var + X overflows, and var + Y does not. Then the values of the
156 expressions are var + X - M and var + Y, where M is the range of
157 the type, and their difference is X - Y - M.
158 c) var + Y underflows and var + X does not. Their difference again
159 is M - X + Y.
160 Therefore, if the arithmetics in type does not overflow, then the
161 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
162 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
163 (X - Y, X - Y + M). */
164
165 if (rel == 0)
166 {
167 mpz_set_ui (bnds->below, 0);
168 mpz_set_ui (bnds->up, 0);
169 return;
170 }
171
172 mpz_init (m);
173 mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
174 mpz_add_ui (m, m, 1);
175 mpz_sub (bnds->up, x, y);
176 mpz_set (bnds->below, bnds->up);
177
178 if (may_wrap)
179 {
180 if (rel > 0)
181 mpz_sub (bnds->below, bnds->below, m);
182 else
183 mpz_add (bnds->up, bnds->up, m);
184 }
185
186 mpz_clear (m);
187 }
188
189 /* From condition C0 CMP C1 derives information regarding the
190 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
191 and stores it to BNDS. */
192
193 static void
194 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
195 tree vary, mpz_t offy,
196 tree c0, enum tree_code cmp, tree c1,
197 bounds *bnds)
198 {
199 tree varc0, varc1, tmp, ctype;
200 mpz_t offc0, offc1, loffx, loffy, bnd;
201 bool lbound = false;
202 bool no_wrap = nowrap_type_p (type);
203 bool x_ok, y_ok;
204
205 switch (cmp)
206 {
207 case LT_EXPR:
208 case LE_EXPR:
209 case GT_EXPR:
210 case GE_EXPR:
211 STRIP_SIGN_NOPS (c0);
212 STRIP_SIGN_NOPS (c1);
213 ctype = TREE_TYPE (c0);
214 if (!useless_type_conversion_p (ctype, type))
215 return;
216
217 break;
218
219 case EQ_EXPR:
220 /* We could derive quite precise information from EQ_EXPR, however, such
221 a guard is unlikely to appear, so we do not bother with handling
222 it. */
223 return;
224
225 case NE_EXPR:
226 /* NE_EXPR comparisons do not contain much of useful information, except for
227 special case of comparing with the bounds of the type. */
228 if (TREE_CODE (c1) != INTEGER_CST
229 || !INTEGRAL_TYPE_P (type))
230 return;
231
232 /* Ensure that the condition speaks about an expression in the same type
233 as X and Y. */
234 ctype = TREE_TYPE (c0);
235 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
236 return;
237 c0 = fold_convert (type, c0);
238 c1 = fold_convert (type, c1);
239
240 if (TYPE_MIN_VALUE (type)
241 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
242 {
243 cmp = GT_EXPR;
244 break;
245 }
246 if (TYPE_MAX_VALUE (type)
247 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
248 {
249 cmp = LT_EXPR;
250 break;
251 }
252
253 return;
254 default:
255 return;
256 }
257
258 mpz_init (offc0);
259 mpz_init (offc1);
260 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
261 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
262
263 /* We are only interested in comparisons of expressions based on VARX and
264 VARY. TODO -- we might also be able to derive some bounds from
265 expressions containing just one of the variables. */
266
267 if (operand_equal_p (varx, varc1, 0))
268 {
269 tmp = varc0; varc0 = varc1; varc1 = tmp;
270 mpz_swap (offc0, offc1);
271 cmp = swap_tree_comparison (cmp);
272 }
273
274 if (!operand_equal_p (varx, varc0, 0)
275 || !operand_equal_p (vary, varc1, 0))
276 goto end;
277
278 mpz_init_set (loffx, offx);
279 mpz_init_set (loffy, offy);
280
281 if (cmp == GT_EXPR || cmp == GE_EXPR)
282 {
283 tmp = varx; varx = vary; vary = tmp;
284 mpz_swap (offc0, offc1);
285 mpz_swap (loffx, loffy);
286 cmp = swap_tree_comparison (cmp);
287 lbound = true;
288 }
289
290 /* If there is no overflow, the condition implies that
291
292 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
293
294 The overflows and underflows may complicate things a bit; each
295 overflow decreases the appropriate offset by M, and underflow
296 increases it by M. The above inequality would not necessarily be
297 true if
298
299 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
300 VARX + OFFC0 overflows, but VARX + OFFX does not.
301 This may only happen if OFFX < OFFC0.
302 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
303 VARY + OFFC1 underflows and VARY + OFFY does not.
304 This may only happen if OFFY > OFFC1. */
305
306 if (no_wrap)
307 {
308 x_ok = true;
309 y_ok = true;
310 }
311 else
312 {
313 x_ok = (integer_zerop (varx)
314 || mpz_cmp (loffx, offc0) >= 0);
315 y_ok = (integer_zerop (vary)
316 || mpz_cmp (loffy, offc1) <= 0);
317 }
318
319 if (x_ok && y_ok)
320 {
321 mpz_init (bnd);
322 mpz_sub (bnd, loffx, loffy);
323 mpz_add (bnd, bnd, offc1);
324 mpz_sub (bnd, bnd, offc0);
325
326 if (cmp == LT_EXPR)
327 mpz_sub_ui (bnd, bnd, 1);
328
329 if (lbound)
330 {
331 mpz_neg (bnd, bnd);
332 if (mpz_cmp (bnds->below, bnd) < 0)
333 mpz_set (bnds->below, bnd);
334 }
335 else
336 {
337 if (mpz_cmp (bnd, bnds->up) < 0)
338 mpz_set (bnds->up, bnd);
339 }
340 mpz_clear (bnd);
341 }
342
343 mpz_clear (loffx);
344 mpz_clear (loffy);
345 end:
346 mpz_clear (offc0);
347 mpz_clear (offc1);
348 }
349
350 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
351 The subtraction is considered to be performed in arbitrary precision,
352 without overflows.
353
354 We do not attempt to be too clever regarding the value ranges of X and
355 Y; most of the time, they are just integers or ssa names offsetted by
356 integer. However, we try to use the information contained in the
357 comparisons before the loop (usually created by loop header copying). */
358
359 static void
360 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
361 {
362 tree type = TREE_TYPE (x);
363 tree varx, vary;
364 mpz_t offx, offy;
365 mpz_t minx, maxx, miny, maxy;
366 int cnt = 0;
367 edge e;
368 basic_block bb;
369 tree c0, c1;
370 gimple cond;
371 enum tree_code cmp;
372
373 /* Get rid of unnecessary casts, but preserve the value of
374 the expressions. */
375 STRIP_SIGN_NOPS (x);
376 STRIP_SIGN_NOPS (y);
377
378 mpz_init (bnds->below);
379 mpz_init (bnds->up);
380 mpz_init (offx);
381 mpz_init (offy);
382 split_to_var_and_offset (x, &varx, offx);
383 split_to_var_and_offset (y, &vary, offy);
384
385 if (!integer_zerop (varx)
386 && operand_equal_p (varx, vary, 0))
387 {
388 /* Special case VARX == VARY -- we just need to compare the
389 offsets. The matters are a bit more complicated in the
390 case addition of offsets may wrap. */
391 bound_difference_of_offsetted_base (type, offx, offy, bnds);
392 }
393 else
394 {
395 /* Otherwise, use the value ranges to determine the initial
396 estimates on below and up. */
397 mpz_init (minx);
398 mpz_init (maxx);
399 mpz_init (miny);
400 mpz_init (maxy);
401 determine_value_range (type, varx, offx, minx, maxx);
402 determine_value_range (type, vary, offy, miny, maxy);
403
404 mpz_sub (bnds->below, minx, maxy);
405 mpz_sub (bnds->up, maxx, miny);
406 mpz_clear (minx);
407 mpz_clear (maxx);
408 mpz_clear (miny);
409 mpz_clear (maxy);
410 }
411
412 /* If both X and Y are constants, we cannot get any more precise. */
413 if (integer_zerop (varx) && integer_zerop (vary))
414 goto end;
415
416 /* Now walk the dominators of the loop header and use the entry
417 guards to refine the estimates. */
418 for (bb = loop->header;
419 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
420 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
421 {
422 if (!single_pred_p (bb))
423 continue;
424 e = single_pred_edge (bb);
425
426 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
427 continue;
428
429 cond = last_stmt (e->src);
430 c0 = gimple_cond_lhs (cond);
431 cmp = gimple_cond_code (cond);
432 c1 = gimple_cond_rhs (cond);
433
434 if (e->flags & EDGE_FALSE_VALUE)
435 cmp = invert_tree_comparison (cmp, false);
436
437 refine_bounds_using_guard (type, varx, offx, vary, offy,
438 c0, cmp, c1, bnds);
439 ++cnt;
440 }
441
442 end:
443 mpz_clear (offx);
444 mpz_clear (offy);
445 }
446
447 /* Update the bounds in BNDS that restrict the value of X to the bounds
448 that restrict the value of X + DELTA. X can be obtained as a
449 difference of two values in TYPE. */
450
451 static void
452 bounds_add (bounds *bnds, double_int delta, tree type)
453 {
454 mpz_t mdelta, max;
455
456 mpz_init (mdelta);
457 mpz_set_double_int (mdelta, delta, false);
458
459 mpz_init (max);
460 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
461
462 mpz_add (bnds->up, bnds->up, mdelta);
463 mpz_add (bnds->below, bnds->below, mdelta);
464
465 if (mpz_cmp (bnds->up, max) > 0)
466 mpz_set (bnds->up, max);
467
468 mpz_neg (max, max);
469 if (mpz_cmp (bnds->below, max) < 0)
470 mpz_set (bnds->below, max);
471
472 mpz_clear (mdelta);
473 mpz_clear (max);
474 }
475
476 /* Update the bounds in BNDS that restrict the value of X to the bounds
477 that restrict the value of -X. */
478
479 static void
480 bounds_negate (bounds *bnds)
481 {
482 mpz_t tmp;
483
484 mpz_init_set (tmp, bnds->up);
485 mpz_neg (bnds->up, bnds->below);
486 mpz_neg (bnds->below, tmp);
487 mpz_clear (tmp);
488 }
489
490 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
491
492 static tree
493 inverse (tree x, tree mask)
494 {
495 tree type = TREE_TYPE (x);
496 tree rslt;
497 unsigned ctr = tree_floor_log2 (mask);
498
499 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
500 {
501 unsigned HOST_WIDE_INT ix;
502 unsigned HOST_WIDE_INT imask;
503 unsigned HOST_WIDE_INT irslt = 1;
504
505 gcc_assert (cst_and_fits_in_hwi (x));
506 gcc_assert (cst_and_fits_in_hwi (mask));
507
508 ix = int_cst_value (x);
509 imask = int_cst_value (mask);
510
511 for (; ctr; ctr--)
512 {
513 irslt *= ix;
514 ix *= ix;
515 }
516 irslt &= imask;
517
518 rslt = build_int_cst_type (type, irslt);
519 }
520 else
521 {
522 rslt = build_int_cst (type, 1);
523 for (; ctr; ctr--)
524 {
525 rslt = int_const_binop (MULT_EXPR, rslt, x);
526 x = int_const_binop (MULT_EXPR, x, x);
527 }
528 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
529 }
530
531 return rslt;
532 }
533
534 /* Derives the upper bound BND on the number of executions of loop with exit
535 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
536 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
537 that the loop ends through this exit, i.e., the induction variable ever
538 reaches the value of C.
539
540 The value C is equal to final - base, where final and base are the final and
541 initial value of the actual induction variable in the analysed loop. BNDS
542 bounds the value of this difference when computed in signed type with
543 unbounded range, while the computation of C is performed in an unsigned
544 type with the range matching the range of the type of the induction variable.
545 In particular, BNDS.up contains an upper bound on C in the following cases:
546 -- if the iv must reach its final value without overflow, i.e., if
547 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
548 -- if final >= base, which we know to hold when BNDS.below >= 0. */
549
550 static void
551 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
552 bounds *bnds, bool exit_must_be_taken)
553 {
554 double_int max;
555 mpz_t d;
556 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
557 || mpz_sgn (bnds->below) >= 0);
558
559 if (multiple_of_p (TREE_TYPE (c), c, s))
560 {
561 /* If C is an exact multiple of S, then its value will be reached before
562 the induction variable overflows (unless the loop is exited in some
563 other way before). Note that the actual induction variable in the
564 loop (which ranges from base to final instead of from 0 to C) may
565 overflow, in which case BNDS.up will not be giving a correct upper
566 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
567 no_overflow = true;
568 exit_must_be_taken = true;
569 }
570
571 /* If the induction variable can overflow, the number of iterations is at
572 most the period of the control variable (or infinite, but in that case
573 the whole # of iterations analysis will fail). */
574 if (!no_overflow)
575 {
576 max = double_int::mask (TYPE_PRECISION (TREE_TYPE (c))
577 - tree_low_cst (num_ending_zeros (s), 1));
578 mpz_set_double_int (bnd, max, true);
579 return;
580 }
581
582 /* Now we know that the induction variable does not overflow, so the loop
583 iterates at most (range of type / S) times. */
584 mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (TREE_TYPE (c))),
585 true);
586
587 /* If the induction variable is guaranteed to reach the value of C before
588 overflow, ... */
589 if (exit_must_be_taken)
590 {
591 /* ... then we can strengthen this to C / S, and possibly we can use
592 the upper bound on C given by BNDS. */
593 if (TREE_CODE (c) == INTEGER_CST)
594 mpz_set_double_int (bnd, tree_to_double_int (c), true);
595 else if (bnds_u_valid)
596 mpz_set (bnd, bnds->up);
597 }
598
599 mpz_init (d);
600 mpz_set_double_int (d, tree_to_double_int (s), true);
601 mpz_fdiv_q (bnd, bnd, d);
602 mpz_clear (d);
603 }
604
605 /* Determines number of iterations of loop whose ending condition
606 is IV <> FINAL. TYPE is the type of the iv. The number of
607 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
608 we know that the exit must be taken eventually, i.e., that the IV
609 ever reaches the value FINAL (we derived this earlier, and possibly set
610 NITER->assumptions to make sure this is the case). BNDS contains the
611 bounds on the difference FINAL - IV->base. */
612
613 static bool
614 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
615 struct tree_niter_desc *niter, bool exit_must_be_taken,
616 bounds *bnds)
617 {
618 tree niter_type = unsigned_type_for (type);
619 tree s, c, d, bits, assumption, tmp, bound;
620 mpz_t max;
621
622 niter->control = *iv;
623 niter->bound = final;
624 niter->cmp = NE_EXPR;
625
626 /* Rearrange the terms so that we get inequality S * i <> C, with S
627 positive. Also cast everything to the unsigned type. If IV does
628 not overflow, BNDS bounds the value of C. Also, this is the
629 case if the computation |FINAL - IV->base| does not overflow, i.e.,
630 if BNDS->below in the result is nonnegative. */
631 if (tree_int_cst_sign_bit (iv->step))
632 {
633 s = fold_convert (niter_type,
634 fold_build1 (NEGATE_EXPR, type, iv->step));
635 c = fold_build2 (MINUS_EXPR, niter_type,
636 fold_convert (niter_type, iv->base),
637 fold_convert (niter_type, final));
638 bounds_negate (bnds);
639 }
640 else
641 {
642 s = fold_convert (niter_type, iv->step);
643 c = fold_build2 (MINUS_EXPR, niter_type,
644 fold_convert (niter_type, final),
645 fold_convert (niter_type, iv->base));
646 }
647
648 mpz_init (max);
649 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
650 exit_must_be_taken);
651 niter->max = mpz_get_double_int (niter_type, max, false);
652 mpz_clear (max);
653
654 /* First the trivial cases -- when the step is 1. */
655 if (integer_onep (s))
656 {
657 niter->niter = c;
658 return true;
659 }
660
661 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
662 is infinite. Otherwise, the number of iterations is
663 (inverse(s/d) * (c/d)) mod (size of mode/d). */
664 bits = num_ending_zeros (s);
665 bound = build_low_bits_mask (niter_type,
666 (TYPE_PRECISION (niter_type)
667 - tree_low_cst (bits, 1)));
668
669 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
670 build_int_cst (niter_type, 1), bits);
671 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
672
673 if (!exit_must_be_taken)
674 {
675 /* If we cannot assume that the exit is taken eventually, record the
676 assumptions for divisibility of c. */
677 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
678 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
679 assumption, build_int_cst (niter_type, 0));
680 if (!integer_nonzerop (assumption))
681 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
682 niter->assumptions, assumption);
683 }
684
685 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
686 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
687 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
688 return true;
689 }
690
691 /* Checks whether we can determine the final value of the control variable
692 of the loop with ending condition IV0 < IV1 (computed in TYPE).
693 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
694 of the step. The assumptions necessary to ensure that the computation
695 of the final value does not overflow are recorded in NITER. If we
696 find the final value, we adjust DELTA and return TRUE. Otherwise
697 we return false. BNDS bounds the value of IV1->base - IV0->base,
698 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
699 true if we know that the exit must be taken eventually. */
700
701 static bool
702 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
703 struct tree_niter_desc *niter,
704 tree *delta, tree step,
705 bool exit_must_be_taken, bounds *bnds)
706 {
707 tree niter_type = TREE_TYPE (step);
708 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
709 tree tmod;
710 mpz_t mmod;
711 tree assumption = boolean_true_node, bound, noloop;
712 bool ret = false, fv_comp_no_overflow;
713 tree type1 = type;
714 if (POINTER_TYPE_P (type))
715 type1 = sizetype;
716
717 if (TREE_CODE (mod) != INTEGER_CST)
718 return false;
719 if (integer_nonzerop (mod))
720 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
721 tmod = fold_convert (type1, mod);
722
723 mpz_init (mmod);
724 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
725 mpz_neg (mmod, mmod);
726
727 /* If the induction variable does not overflow and the exit is taken,
728 then the computation of the final value does not overflow. This is
729 also obviously the case if the new final value is equal to the
730 current one. Finally, we postulate this for pointer type variables,
731 as the code cannot rely on the object to that the pointer points being
732 placed at the end of the address space (and more pragmatically,
733 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
734 if (integer_zerop (mod) || POINTER_TYPE_P (type))
735 fv_comp_no_overflow = true;
736 else if (!exit_must_be_taken)
737 fv_comp_no_overflow = false;
738 else
739 fv_comp_no_overflow =
740 (iv0->no_overflow && integer_nonzerop (iv0->step))
741 || (iv1->no_overflow && integer_nonzerop (iv1->step));
742
743 if (integer_nonzerop (iv0->step))
744 {
745 /* The final value of the iv is iv1->base + MOD, assuming that this
746 computation does not overflow, and that
747 iv0->base <= iv1->base + MOD. */
748 if (!fv_comp_no_overflow)
749 {
750 bound = fold_build2 (MINUS_EXPR, type1,
751 TYPE_MAX_VALUE (type1), tmod);
752 assumption = fold_build2 (LE_EXPR, boolean_type_node,
753 iv1->base, bound);
754 if (integer_zerop (assumption))
755 goto end;
756 }
757 if (mpz_cmp (mmod, bnds->below) < 0)
758 noloop = boolean_false_node;
759 else if (POINTER_TYPE_P (type))
760 noloop = fold_build2 (GT_EXPR, boolean_type_node,
761 iv0->base,
762 fold_build_pointer_plus (iv1->base, tmod));
763 else
764 noloop = fold_build2 (GT_EXPR, boolean_type_node,
765 iv0->base,
766 fold_build2 (PLUS_EXPR, type1,
767 iv1->base, tmod));
768 }
769 else
770 {
771 /* The final value of the iv is iv0->base - MOD, assuming that this
772 computation does not overflow, and that
773 iv0->base - MOD <= iv1->base. */
774 if (!fv_comp_no_overflow)
775 {
776 bound = fold_build2 (PLUS_EXPR, type1,
777 TYPE_MIN_VALUE (type1), tmod);
778 assumption = fold_build2 (GE_EXPR, boolean_type_node,
779 iv0->base, bound);
780 if (integer_zerop (assumption))
781 goto end;
782 }
783 if (mpz_cmp (mmod, bnds->below) < 0)
784 noloop = boolean_false_node;
785 else if (POINTER_TYPE_P (type))
786 noloop = fold_build2 (GT_EXPR, boolean_type_node,
787 fold_build_pointer_plus (iv0->base,
788 fold_build1 (NEGATE_EXPR,
789 type1, tmod)),
790 iv1->base);
791 else
792 noloop = fold_build2 (GT_EXPR, boolean_type_node,
793 fold_build2 (MINUS_EXPR, type1,
794 iv0->base, tmod),
795 iv1->base);
796 }
797
798 if (!integer_nonzerop (assumption))
799 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
800 niter->assumptions,
801 assumption);
802 if (!integer_zerop (noloop))
803 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
804 niter->may_be_zero,
805 noloop);
806 bounds_add (bnds, tree_to_double_int (mod), type);
807 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
808
809 ret = true;
810 end:
811 mpz_clear (mmod);
812 return ret;
813 }
814
815 /* Add assertions to NITER that ensure that the control variable of the loop
816 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
817 are TYPE. Returns false if we can prove that there is an overflow, true
818 otherwise. STEP is the absolute value of the step. */
819
820 static bool
821 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
822 struct tree_niter_desc *niter, tree step)
823 {
824 tree bound, d, assumption, diff;
825 tree niter_type = TREE_TYPE (step);
826
827 if (integer_nonzerop (iv0->step))
828 {
829 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
830 if (iv0->no_overflow)
831 return true;
832
833 /* If iv0->base is a constant, we can determine the last value before
834 overflow precisely; otherwise we conservatively assume
835 MAX - STEP + 1. */
836
837 if (TREE_CODE (iv0->base) == INTEGER_CST)
838 {
839 d = fold_build2 (MINUS_EXPR, niter_type,
840 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
841 fold_convert (niter_type, iv0->base));
842 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
843 }
844 else
845 diff = fold_build2 (MINUS_EXPR, niter_type, step,
846 build_int_cst (niter_type, 1));
847 bound = fold_build2 (MINUS_EXPR, type,
848 TYPE_MAX_VALUE (type), fold_convert (type, diff));
849 assumption = fold_build2 (LE_EXPR, boolean_type_node,
850 iv1->base, bound);
851 }
852 else
853 {
854 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
855 if (iv1->no_overflow)
856 return true;
857
858 if (TREE_CODE (iv1->base) == INTEGER_CST)
859 {
860 d = fold_build2 (MINUS_EXPR, niter_type,
861 fold_convert (niter_type, iv1->base),
862 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
863 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
864 }
865 else
866 diff = fold_build2 (MINUS_EXPR, niter_type, step,
867 build_int_cst (niter_type, 1));
868 bound = fold_build2 (PLUS_EXPR, type,
869 TYPE_MIN_VALUE (type), fold_convert (type, diff));
870 assumption = fold_build2 (GE_EXPR, boolean_type_node,
871 iv0->base, bound);
872 }
873
874 if (integer_zerop (assumption))
875 return false;
876 if (!integer_nonzerop (assumption))
877 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
878 niter->assumptions, assumption);
879
880 iv0->no_overflow = true;
881 iv1->no_overflow = true;
882 return true;
883 }
884
885 /* Add an assumption to NITER that a loop whose ending condition
886 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
887 bounds the value of IV1->base - IV0->base. */
888
889 static void
890 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
891 struct tree_niter_desc *niter, bounds *bnds)
892 {
893 tree assumption = boolean_true_node, bound, diff;
894 tree mbz, mbzl, mbzr, type1;
895 bool rolls_p, no_overflow_p;
896 double_int dstep;
897 mpz_t mstep, max;
898
899 /* We are going to compute the number of iterations as
900 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
901 variant of TYPE. This formula only works if
902
903 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
904
905 (where MAX is the maximum value of the unsigned variant of TYPE, and
906 the computations in this formula are performed in full precision,
907 i.e., without overflows).
908
909 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
910 we have a condition of the form iv0->base - step < iv1->base before the loop,
911 and for loops iv0->base < iv1->base - step * i the condition
912 iv0->base < iv1->base + step, due to loop header copying, which enable us
913 to prove the lower bound.
914
915 The upper bound is more complicated. Unless the expressions for initial
916 and final value themselves contain enough information, we usually cannot
917 derive it from the context. */
918
919 /* First check whether the answer does not follow from the bounds we gathered
920 before. */
921 if (integer_nonzerop (iv0->step))
922 dstep = tree_to_double_int (iv0->step);
923 else
924 {
925 dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
926 dstep = -dstep;
927 }
928
929 mpz_init (mstep);
930 mpz_set_double_int (mstep, dstep, true);
931 mpz_neg (mstep, mstep);
932 mpz_add_ui (mstep, mstep, 1);
933
934 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
935
936 mpz_init (max);
937 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
938 mpz_add (max, max, mstep);
939 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
940 /* For pointers, only values lying inside a single object
941 can be compared or manipulated by pointer arithmetics.
942 Gcc in general does not allow or handle objects larger
943 than half of the address space, hence the upper bound
944 is satisfied for pointers. */
945 || POINTER_TYPE_P (type));
946 mpz_clear (mstep);
947 mpz_clear (max);
948
949 if (rolls_p && no_overflow_p)
950 return;
951
952 type1 = type;
953 if (POINTER_TYPE_P (type))
954 type1 = sizetype;
955
956 /* Now the hard part; we must formulate the assumption(s) as expressions, and
957 we must be careful not to introduce overflow. */
958
959 if (integer_nonzerop (iv0->step))
960 {
961 diff = fold_build2 (MINUS_EXPR, type1,
962 iv0->step, build_int_cst (type1, 1));
963
964 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
965 0 address never belongs to any object, we can assume this for
966 pointers. */
967 if (!POINTER_TYPE_P (type))
968 {
969 bound = fold_build2 (PLUS_EXPR, type1,
970 TYPE_MIN_VALUE (type), diff);
971 assumption = fold_build2 (GE_EXPR, boolean_type_node,
972 iv0->base, bound);
973 }
974
975 /* And then we can compute iv0->base - diff, and compare it with
976 iv1->base. */
977 mbzl = fold_build2 (MINUS_EXPR, type1,
978 fold_convert (type1, iv0->base), diff);
979 mbzr = fold_convert (type1, iv1->base);
980 }
981 else
982 {
983 diff = fold_build2 (PLUS_EXPR, type1,
984 iv1->step, build_int_cst (type1, 1));
985
986 if (!POINTER_TYPE_P (type))
987 {
988 bound = fold_build2 (PLUS_EXPR, type1,
989 TYPE_MAX_VALUE (type), diff);
990 assumption = fold_build2 (LE_EXPR, boolean_type_node,
991 iv1->base, bound);
992 }
993
994 mbzl = fold_convert (type1, iv0->base);
995 mbzr = fold_build2 (MINUS_EXPR, type1,
996 fold_convert (type1, iv1->base), diff);
997 }
998
999 if (!integer_nonzerop (assumption))
1000 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1001 niter->assumptions, assumption);
1002 if (!rolls_p)
1003 {
1004 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1005 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1006 niter->may_be_zero, mbz);
1007 }
1008 }
1009
1010 /* Determines number of iterations of loop whose ending condition
1011 is IV0 < IV1. TYPE is the type of the iv. The number of
1012 iterations is stored to NITER. BNDS bounds the difference
1013 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1014 that the exit must be taken eventually. */
1015
1016 static bool
1017 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1018 struct tree_niter_desc *niter,
1019 bool exit_must_be_taken, bounds *bnds)
1020 {
1021 tree niter_type = unsigned_type_for (type);
1022 tree delta, step, s;
1023 mpz_t mstep, tmp;
1024
1025 if (integer_nonzerop (iv0->step))
1026 {
1027 niter->control = *iv0;
1028 niter->cmp = LT_EXPR;
1029 niter->bound = iv1->base;
1030 }
1031 else
1032 {
1033 niter->control = *iv1;
1034 niter->cmp = GT_EXPR;
1035 niter->bound = iv0->base;
1036 }
1037
1038 delta = fold_build2 (MINUS_EXPR, niter_type,
1039 fold_convert (niter_type, iv1->base),
1040 fold_convert (niter_type, iv0->base));
1041
1042 /* First handle the special case that the step is +-1. */
1043 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1044 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1045 {
1046 /* for (i = iv0->base; i < iv1->base; i++)
1047
1048 or
1049
1050 for (i = iv1->base; i > iv0->base; i--).
1051
1052 In both cases # of iterations is iv1->base - iv0->base, assuming that
1053 iv1->base >= iv0->base.
1054
1055 First try to derive a lower bound on the value of
1056 iv1->base - iv0->base, computed in full precision. If the difference
1057 is nonnegative, we are done, otherwise we must record the
1058 condition. */
1059
1060 if (mpz_sgn (bnds->below) < 0)
1061 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1062 iv1->base, iv0->base);
1063 niter->niter = delta;
1064 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1065 return true;
1066 }
1067
1068 if (integer_nonzerop (iv0->step))
1069 step = fold_convert (niter_type, iv0->step);
1070 else
1071 step = fold_convert (niter_type,
1072 fold_build1 (NEGATE_EXPR, type, iv1->step));
1073
1074 /* If we can determine the final value of the control iv exactly, we can
1075 transform the condition to != comparison. In particular, this will be
1076 the case if DELTA is constant. */
1077 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1078 exit_must_be_taken, bnds))
1079 {
1080 affine_iv zps;
1081
1082 zps.base = build_int_cst (niter_type, 0);
1083 zps.step = step;
1084 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1085 zps does not overflow. */
1086 zps.no_overflow = true;
1087
1088 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1089 }
1090
1091 /* Make sure that the control iv does not overflow. */
1092 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1093 return false;
1094
1095 /* We determine the number of iterations as (delta + step - 1) / step. For
1096 this to work, we must know that iv1->base >= iv0->base - step + 1,
1097 otherwise the loop does not roll. */
1098 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1099
1100 s = fold_build2 (MINUS_EXPR, niter_type,
1101 step, build_int_cst (niter_type, 1));
1102 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1103 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1104
1105 mpz_init (mstep);
1106 mpz_init (tmp);
1107 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1108 mpz_add (tmp, bnds->up, mstep);
1109 mpz_sub_ui (tmp, tmp, 1);
1110 mpz_fdiv_q (tmp, tmp, mstep);
1111 niter->max = mpz_get_double_int (niter_type, tmp, false);
1112 mpz_clear (mstep);
1113 mpz_clear (tmp);
1114
1115 return true;
1116 }
1117
1118 /* Determines number of iterations of loop whose ending condition
1119 is IV0 <= IV1. TYPE is the type of the iv. The number of
1120 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1121 we know that this condition must eventually become false (we derived this
1122 earlier, and possibly set NITER->assumptions to make sure this
1123 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1124
1125 static bool
1126 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1127 struct tree_niter_desc *niter, bool exit_must_be_taken,
1128 bounds *bnds)
1129 {
1130 tree assumption;
1131 tree type1 = type;
1132 if (POINTER_TYPE_P (type))
1133 type1 = sizetype;
1134
1135 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1136 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1137 value of the type. This we must know anyway, since if it is
1138 equal to this value, the loop rolls forever. We do not check
1139 this condition for pointer type ivs, as the code cannot rely on
1140 the object to that the pointer points being placed at the end of
1141 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1142 not defined for pointers). */
1143
1144 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1145 {
1146 if (integer_nonzerop (iv0->step))
1147 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1148 iv1->base, TYPE_MAX_VALUE (type));
1149 else
1150 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1151 iv0->base, TYPE_MIN_VALUE (type));
1152
1153 if (integer_zerop (assumption))
1154 return false;
1155 if (!integer_nonzerop (assumption))
1156 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1157 niter->assumptions, assumption);
1158 }
1159
1160 if (integer_nonzerop (iv0->step))
1161 {
1162 if (POINTER_TYPE_P (type))
1163 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1164 else
1165 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1166 build_int_cst (type1, 1));
1167 }
1168 else if (POINTER_TYPE_P (type))
1169 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1170 else
1171 iv0->base = fold_build2 (MINUS_EXPR, type1,
1172 iv0->base, build_int_cst (type1, 1));
1173
1174 bounds_add (bnds, double_int_one, type1);
1175
1176 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1177 bnds);
1178 }
1179
1180 /* Dumps description of affine induction variable IV to FILE. */
1181
1182 static void
1183 dump_affine_iv (FILE *file, affine_iv *iv)
1184 {
1185 if (!integer_zerop (iv->step))
1186 fprintf (file, "[");
1187
1188 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1189
1190 if (!integer_zerop (iv->step))
1191 {
1192 fprintf (file, ", + , ");
1193 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1194 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1195 }
1196 }
1197
1198 /* Determine the number of iterations according to condition (for staying
1199 inside loop) which compares two induction variables using comparison
1200 operator CODE. The induction variable on left side of the comparison
1201 is IV0, the right-hand side is IV1. Both induction variables must have
1202 type TYPE, which must be an integer or pointer type. The steps of the
1203 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1204
1205 LOOP is the loop whose number of iterations we are determining.
1206
1207 ONLY_EXIT is true if we are sure this is the only way the loop could be
1208 exited (including possibly non-returning function calls, exceptions, etc.)
1209 -- in this case we can use the information whether the control induction
1210 variables can overflow or not in a more efficient way.
1211
1212 The results (number of iterations and assumptions as described in
1213 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1214 Returns false if it fails to determine number of iterations, true if it
1215 was determined (possibly with some assumptions). */
1216
1217 static bool
1218 number_of_iterations_cond (struct loop *loop,
1219 tree type, affine_iv *iv0, enum tree_code code,
1220 affine_iv *iv1, struct tree_niter_desc *niter,
1221 bool only_exit)
1222 {
1223 bool exit_must_be_taken = false, ret;
1224 bounds bnds;
1225
1226 /* The meaning of these assumptions is this:
1227 if !assumptions
1228 then the rest of information does not have to be valid
1229 if may_be_zero then the loop does not roll, even if
1230 niter != 0. */
1231 niter->assumptions = boolean_true_node;
1232 niter->may_be_zero = boolean_false_node;
1233 niter->niter = NULL_TREE;
1234 niter->max = double_int_zero;
1235
1236 niter->bound = NULL_TREE;
1237 niter->cmp = ERROR_MARK;
1238
1239 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1240 the control variable is on lhs. */
1241 if (code == GE_EXPR || code == GT_EXPR
1242 || (code == NE_EXPR && integer_zerop (iv0->step)))
1243 {
1244 SWAP (iv0, iv1);
1245 code = swap_tree_comparison (code);
1246 }
1247
1248 if (POINTER_TYPE_P (type))
1249 {
1250 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1251 to the same object. If they do, the control variable cannot wrap
1252 (as wrap around the bounds of memory will never return a pointer
1253 that would be guaranteed to point to the same object, even if we
1254 avoid undefined behavior by casting to size_t and back). */
1255 iv0->no_overflow = true;
1256 iv1->no_overflow = true;
1257 }
1258
1259 /* If the control induction variable does not overflow and the only exit
1260 from the loop is the one that we analyze, we know it must be taken
1261 eventually. */
1262 if (only_exit)
1263 {
1264 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1265 exit_must_be_taken = true;
1266 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1267 exit_must_be_taken = true;
1268 }
1269
1270 /* We can handle the case when neither of the sides of the comparison is
1271 invariant, provided that the test is NE_EXPR. This rarely occurs in
1272 practice, but it is simple enough to manage. */
1273 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1274 {
1275 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1276 if (code != NE_EXPR)
1277 return false;
1278
1279 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1280 iv0->step, iv1->step);
1281 iv0->no_overflow = false;
1282 iv1->step = build_int_cst (step_type, 0);
1283 iv1->no_overflow = true;
1284 }
1285
1286 /* If the result of the comparison is a constant, the loop is weird. More
1287 precise handling would be possible, but the situation is not common enough
1288 to waste time on it. */
1289 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1290 return false;
1291
1292 /* Ignore loops of while (i-- < 10) type. */
1293 if (code != NE_EXPR)
1294 {
1295 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1296 return false;
1297
1298 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1299 return false;
1300 }
1301
1302 /* If the loop exits immediately, there is nothing to do. */
1303 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1304 {
1305 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1306 niter->max = double_int_zero;
1307 return true;
1308 }
1309
1310 /* OK, now we know we have a senseful loop. Handle several cases, depending
1311 on what comparison operator is used. */
1312 bound_difference (loop, iv1->base, iv0->base, &bnds);
1313
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 {
1316 fprintf (dump_file,
1317 "Analyzing # of iterations of loop %d\n", loop->num);
1318
1319 fprintf (dump_file, " exit condition ");
1320 dump_affine_iv (dump_file, iv0);
1321 fprintf (dump_file, " %s ",
1322 code == NE_EXPR ? "!="
1323 : code == LT_EXPR ? "<"
1324 : "<=");
1325 dump_affine_iv (dump_file, iv1);
1326 fprintf (dump_file, "\n");
1327
1328 fprintf (dump_file, " bounds on difference of bases: ");
1329 mpz_out_str (dump_file, 10, bnds.below);
1330 fprintf (dump_file, " ... ");
1331 mpz_out_str (dump_file, 10, bnds.up);
1332 fprintf (dump_file, "\n");
1333 }
1334
1335 switch (code)
1336 {
1337 case NE_EXPR:
1338 gcc_assert (integer_zerop (iv1->step));
1339 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1340 exit_must_be_taken, &bnds);
1341 break;
1342
1343 case LT_EXPR:
1344 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1345 &bnds);
1346 break;
1347
1348 case LE_EXPR:
1349 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1350 &bnds);
1351 break;
1352
1353 default:
1354 gcc_unreachable ();
1355 }
1356
1357 mpz_clear (bnds.up);
1358 mpz_clear (bnds.below);
1359
1360 if (dump_file && (dump_flags & TDF_DETAILS))
1361 {
1362 if (ret)
1363 {
1364 fprintf (dump_file, " result:\n");
1365 if (!integer_nonzerop (niter->assumptions))
1366 {
1367 fprintf (dump_file, " under assumptions ");
1368 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1369 fprintf (dump_file, "\n");
1370 }
1371
1372 if (!integer_zerop (niter->may_be_zero))
1373 {
1374 fprintf (dump_file, " zero if ");
1375 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1376 fprintf (dump_file, "\n");
1377 }
1378
1379 fprintf (dump_file, " # of iterations ");
1380 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1381 fprintf (dump_file, ", bounded by ");
1382 dump_double_int (dump_file, niter->max, true);
1383 fprintf (dump_file, "\n");
1384 }
1385 else
1386 fprintf (dump_file, " failed\n\n");
1387 }
1388 return ret;
1389 }
1390
1391 /* Substitute NEW for OLD in EXPR and fold the result. */
1392
1393 static tree
1394 simplify_replace_tree (tree expr, tree old, tree new_tree)
1395 {
1396 unsigned i, n;
1397 tree ret = NULL_TREE, e, se;
1398
1399 if (!expr)
1400 return NULL_TREE;
1401
1402 /* Do not bother to replace constants. */
1403 if (CONSTANT_CLASS_P (old))
1404 return expr;
1405
1406 if (expr == old
1407 || operand_equal_p (expr, old, 0))
1408 return unshare_expr (new_tree);
1409
1410 if (!EXPR_P (expr))
1411 return expr;
1412
1413 n = TREE_OPERAND_LENGTH (expr);
1414 for (i = 0; i < n; i++)
1415 {
1416 e = TREE_OPERAND (expr, i);
1417 se = simplify_replace_tree (e, old, new_tree);
1418 if (e == se)
1419 continue;
1420
1421 if (!ret)
1422 ret = copy_node (expr);
1423
1424 TREE_OPERAND (ret, i) = se;
1425 }
1426
1427 return (ret ? fold (ret) : expr);
1428 }
1429
1430 /* Expand definitions of ssa names in EXPR as long as they are simple
1431 enough, and return the new expression. */
1432
1433 tree
1434 expand_simple_operations (tree expr)
1435 {
1436 unsigned i, n;
1437 tree ret = NULL_TREE, e, ee, e1;
1438 enum tree_code code;
1439 gimple stmt;
1440
1441 if (expr == NULL_TREE)
1442 return expr;
1443
1444 if (is_gimple_min_invariant (expr))
1445 return expr;
1446
1447 code = TREE_CODE (expr);
1448 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1449 {
1450 n = TREE_OPERAND_LENGTH (expr);
1451 for (i = 0; i < n; i++)
1452 {
1453 e = TREE_OPERAND (expr, i);
1454 ee = expand_simple_operations (e);
1455 if (e == ee)
1456 continue;
1457
1458 if (!ret)
1459 ret = copy_node (expr);
1460
1461 TREE_OPERAND (ret, i) = ee;
1462 }
1463
1464 if (!ret)
1465 return expr;
1466
1467 fold_defer_overflow_warnings ();
1468 ret = fold (ret);
1469 fold_undefer_and_ignore_overflow_warnings ();
1470 return ret;
1471 }
1472
1473 if (TREE_CODE (expr) != SSA_NAME)
1474 return expr;
1475
1476 stmt = SSA_NAME_DEF_STMT (expr);
1477 if (gimple_code (stmt) == GIMPLE_PHI)
1478 {
1479 basic_block src, dest;
1480
1481 if (gimple_phi_num_args (stmt) != 1)
1482 return expr;
1483 e = PHI_ARG_DEF (stmt, 0);
1484
1485 /* Avoid propagating through loop exit phi nodes, which
1486 could break loop-closed SSA form restrictions. */
1487 dest = gimple_bb (stmt);
1488 src = single_pred (dest);
1489 if (TREE_CODE (e) == SSA_NAME
1490 && src->loop_father != dest->loop_father)
1491 return expr;
1492
1493 return expand_simple_operations (e);
1494 }
1495 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1496 return expr;
1497
1498 e = gimple_assign_rhs1 (stmt);
1499 code = gimple_assign_rhs_code (stmt);
1500 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1501 {
1502 if (is_gimple_min_invariant (e))
1503 return e;
1504
1505 if (code == SSA_NAME)
1506 return expand_simple_operations (e);
1507
1508 return expr;
1509 }
1510
1511 switch (code)
1512 {
1513 CASE_CONVERT:
1514 /* Casts are simple. */
1515 ee = expand_simple_operations (e);
1516 return fold_build1 (code, TREE_TYPE (expr), ee);
1517
1518 case PLUS_EXPR:
1519 case MINUS_EXPR:
1520 case POINTER_PLUS_EXPR:
1521 /* And increments and decrements by a constant are simple. */
1522 e1 = gimple_assign_rhs2 (stmt);
1523 if (!is_gimple_min_invariant (e1))
1524 return expr;
1525
1526 ee = expand_simple_operations (e);
1527 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1528
1529 default:
1530 return expr;
1531 }
1532 }
1533
1534 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1535 expression (or EXPR unchanged, if no simplification was possible). */
1536
1537 static tree
1538 tree_simplify_using_condition_1 (tree cond, tree expr)
1539 {
1540 bool changed;
1541 tree e, te, e0, e1, e2, notcond;
1542 enum tree_code code = TREE_CODE (expr);
1543
1544 if (code == INTEGER_CST)
1545 return expr;
1546
1547 if (code == TRUTH_OR_EXPR
1548 || code == TRUTH_AND_EXPR
1549 || code == COND_EXPR)
1550 {
1551 changed = false;
1552
1553 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1554 if (TREE_OPERAND (expr, 0) != e0)
1555 changed = true;
1556
1557 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1558 if (TREE_OPERAND (expr, 1) != e1)
1559 changed = true;
1560
1561 if (code == COND_EXPR)
1562 {
1563 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1564 if (TREE_OPERAND (expr, 2) != e2)
1565 changed = true;
1566 }
1567 else
1568 e2 = NULL_TREE;
1569
1570 if (changed)
1571 {
1572 if (code == COND_EXPR)
1573 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1574 else
1575 expr = fold_build2 (code, boolean_type_node, e0, e1);
1576 }
1577
1578 return expr;
1579 }
1580
1581 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1582 propagation, and vice versa. Fold does not handle this, since it is
1583 considered too expensive. */
1584 if (TREE_CODE (cond) == EQ_EXPR)
1585 {
1586 e0 = TREE_OPERAND (cond, 0);
1587 e1 = TREE_OPERAND (cond, 1);
1588
1589 /* We know that e0 == e1. Check whether we cannot simplify expr
1590 using this fact. */
1591 e = simplify_replace_tree (expr, e0, e1);
1592 if (integer_zerop (e) || integer_nonzerop (e))
1593 return e;
1594
1595 e = simplify_replace_tree (expr, e1, e0);
1596 if (integer_zerop (e) || integer_nonzerop (e))
1597 return e;
1598 }
1599 if (TREE_CODE (expr) == EQ_EXPR)
1600 {
1601 e0 = TREE_OPERAND (expr, 0);
1602 e1 = TREE_OPERAND (expr, 1);
1603
1604 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1605 e = simplify_replace_tree (cond, e0, e1);
1606 if (integer_zerop (e))
1607 return e;
1608 e = simplify_replace_tree (cond, e1, e0);
1609 if (integer_zerop (e))
1610 return e;
1611 }
1612 if (TREE_CODE (expr) == NE_EXPR)
1613 {
1614 e0 = TREE_OPERAND (expr, 0);
1615 e1 = TREE_OPERAND (expr, 1);
1616
1617 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1618 e = simplify_replace_tree (cond, e0, e1);
1619 if (integer_zerop (e))
1620 return boolean_true_node;
1621 e = simplify_replace_tree (cond, e1, e0);
1622 if (integer_zerop (e))
1623 return boolean_true_node;
1624 }
1625
1626 te = expand_simple_operations (expr);
1627
1628 /* Check whether COND ==> EXPR. */
1629 notcond = invert_truthvalue (cond);
1630 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1631 if (e && integer_nonzerop (e))
1632 return e;
1633
1634 /* Check whether COND ==> not EXPR. */
1635 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1636 if (e && integer_zerop (e))
1637 return e;
1638
1639 return expr;
1640 }
1641
1642 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1643 expression (or EXPR unchanged, if no simplification was possible).
1644 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1645 of simple operations in definitions of ssa names in COND are expanded,
1646 so that things like casts or incrementing the value of the bound before
1647 the loop do not cause us to fail. */
1648
1649 static tree
1650 tree_simplify_using_condition (tree cond, tree expr)
1651 {
1652 cond = expand_simple_operations (cond);
1653
1654 return tree_simplify_using_condition_1 (cond, expr);
1655 }
1656
1657 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1658 Returns the simplified expression (or EXPR unchanged, if no
1659 simplification was possible).*/
1660
1661 static tree
1662 simplify_using_initial_conditions (struct loop *loop, tree expr)
1663 {
1664 edge e;
1665 basic_block bb;
1666 gimple stmt;
1667 tree cond;
1668 int cnt = 0;
1669
1670 if (TREE_CODE (expr) == INTEGER_CST)
1671 return expr;
1672
1673 /* Limit walking the dominators to avoid quadraticness in
1674 the number of BBs times the number of loops in degenerate
1675 cases. */
1676 for (bb = loop->header;
1677 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1678 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1679 {
1680 if (!single_pred_p (bb))
1681 continue;
1682 e = single_pred_edge (bb);
1683
1684 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1685 continue;
1686
1687 stmt = last_stmt (e->src);
1688 cond = fold_build2 (gimple_cond_code (stmt),
1689 boolean_type_node,
1690 gimple_cond_lhs (stmt),
1691 gimple_cond_rhs (stmt));
1692 if (e->flags & EDGE_FALSE_VALUE)
1693 cond = invert_truthvalue (cond);
1694 expr = tree_simplify_using_condition (cond, expr);
1695 ++cnt;
1696 }
1697
1698 return expr;
1699 }
1700
1701 /* Tries to simplify EXPR using the evolutions of the loop invariants
1702 in the superloops of LOOP. Returns the simplified expression
1703 (or EXPR unchanged, if no simplification was possible). */
1704
1705 static tree
1706 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1707 {
1708 enum tree_code code = TREE_CODE (expr);
1709 bool changed;
1710 tree e, e0, e1, e2;
1711
1712 if (is_gimple_min_invariant (expr))
1713 return expr;
1714
1715 if (code == TRUTH_OR_EXPR
1716 || code == TRUTH_AND_EXPR
1717 || code == COND_EXPR)
1718 {
1719 changed = false;
1720
1721 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1722 if (TREE_OPERAND (expr, 0) != e0)
1723 changed = true;
1724
1725 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1726 if (TREE_OPERAND (expr, 1) != e1)
1727 changed = true;
1728
1729 if (code == COND_EXPR)
1730 {
1731 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1732 if (TREE_OPERAND (expr, 2) != e2)
1733 changed = true;
1734 }
1735 else
1736 e2 = NULL_TREE;
1737
1738 if (changed)
1739 {
1740 if (code == COND_EXPR)
1741 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1742 else
1743 expr = fold_build2 (code, boolean_type_node, e0, e1);
1744 }
1745
1746 return expr;
1747 }
1748
1749 e = instantiate_parameters (loop, expr);
1750 if (is_gimple_min_invariant (e))
1751 return e;
1752
1753 return expr;
1754 }
1755
1756 /* Returns true if EXIT is the only possible exit from LOOP. */
1757
1758 bool
1759 loop_only_exit_p (const struct loop *loop, const_edge exit)
1760 {
1761 basic_block *body;
1762 gimple_stmt_iterator bsi;
1763 unsigned i;
1764 gimple call;
1765
1766 if (exit != single_exit (loop))
1767 return false;
1768
1769 body = get_loop_body (loop);
1770 for (i = 0; i < loop->num_nodes; i++)
1771 {
1772 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1773 {
1774 call = gsi_stmt (bsi);
1775 if (gimple_code (call) != GIMPLE_CALL)
1776 continue;
1777
1778 if (gimple_has_side_effects (call))
1779 {
1780 free (body);
1781 return false;
1782 }
1783 }
1784 }
1785
1786 free (body);
1787 return true;
1788 }
1789
1790 /* Stores description of number of iterations of LOOP derived from
1791 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1792 useful information could be derived (and fields of NITER has
1793 meaning described in comments at struct tree_niter_desc
1794 declaration), false otherwise. If WARN is true and
1795 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1796 potentially unsafe assumptions.
1797 When EVERY_ITERATION is true, only tests that are known to be executed
1798 every iteration are considered (i.e. only test that alone bounds the loop).
1799 */
1800
1801 bool
1802 number_of_iterations_exit (struct loop *loop, edge exit,
1803 struct tree_niter_desc *niter,
1804 bool warn, bool every_iteration)
1805 {
1806 gimple stmt;
1807 tree type;
1808 tree op0, op1;
1809 enum tree_code code;
1810 affine_iv iv0, iv1;
1811
1812 if (every_iteration
1813 && !dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1814 return false;
1815
1816 niter->assumptions = boolean_false_node;
1817 stmt = last_stmt (exit->src);
1818 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1819 return false;
1820
1821 /* We want the condition for staying inside loop. */
1822 code = gimple_cond_code (stmt);
1823 if (exit->flags & EDGE_TRUE_VALUE)
1824 code = invert_tree_comparison (code, false);
1825
1826 switch (code)
1827 {
1828 case GT_EXPR:
1829 case GE_EXPR:
1830 case NE_EXPR:
1831 case LT_EXPR:
1832 case LE_EXPR:
1833 break;
1834
1835 default:
1836 return false;
1837 }
1838
1839 op0 = gimple_cond_lhs (stmt);
1840 op1 = gimple_cond_rhs (stmt);
1841 type = TREE_TYPE (op0);
1842
1843 if (TREE_CODE (type) != INTEGER_TYPE
1844 && !POINTER_TYPE_P (type))
1845 return false;
1846
1847 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1848 return false;
1849 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1850 return false;
1851
1852 /* We don't want to see undefined signed overflow warnings while
1853 computing the number of iterations. */
1854 fold_defer_overflow_warnings ();
1855
1856 iv0.base = expand_simple_operations (iv0.base);
1857 iv1.base = expand_simple_operations (iv1.base);
1858 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1859 loop_only_exit_p (loop, exit)))
1860 {
1861 fold_undefer_and_ignore_overflow_warnings ();
1862 return false;
1863 }
1864
1865 if (optimize >= 3)
1866 {
1867 niter->assumptions = simplify_using_outer_evolutions (loop,
1868 niter->assumptions);
1869 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1870 niter->may_be_zero);
1871 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1872 }
1873
1874 niter->assumptions
1875 = simplify_using_initial_conditions (loop,
1876 niter->assumptions);
1877 niter->may_be_zero
1878 = simplify_using_initial_conditions (loop,
1879 niter->may_be_zero);
1880
1881 fold_undefer_and_ignore_overflow_warnings ();
1882
1883 /* If NITER has simplified into a constant, update MAX. */
1884 if (TREE_CODE (niter->niter) == INTEGER_CST)
1885 niter->max = tree_to_double_int (niter->niter);
1886
1887 if (integer_onep (niter->assumptions))
1888 return true;
1889
1890 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1891 But if we can prove that there is overflow or some other source of weird
1892 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1893 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1894 return false;
1895
1896 if (flag_unsafe_loop_optimizations)
1897 niter->assumptions = boolean_true_node;
1898
1899 if (warn)
1900 {
1901 const char *wording;
1902 location_t loc = gimple_location (stmt);
1903
1904 /* We can provide a more specific warning if one of the operator is
1905 constant and the other advances by +1 or -1. */
1906 if (!integer_zerop (iv1.step)
1907 ? (integer_zerop (iv0.step)
1908 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1909 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1910 wording =
1911 flag_unsafe_loop_optimizations
1912 ? N_("assuming that the loop is not infinite")
1913 : N_("cannot optimize possibly infinite loops");
1914 else
1915 wording =
1916 flag_unsafe_loop_optimizations
1917 ? N_("assuming that the loop counter does not overflow")
1918 : N_("cannot optimize loop, the loop counter may overflow");
1919
1920 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1921 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1922 }
1923
1924 return flag_unsafe_loop_optimizations;
1925 }
1926
1927 /* Try to determine the number of iterations of LOOP. If we succeed,
1928 expression giving number of iterations is returned and *EXIT is
1929 set to the edge from that the information is obtained. Otherwise
1930 chrec_dont_know is returned. */
1931
1932 tree
1933 find_loop_niter (struct loop *loop, edge *exit)
1934 {
1935 unsigned i;
1936 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1937 edge ex;
1938 tree niter = NULL_TREE, aniter;
1939 struct tree_niter_desc desc;
1940
1941 *exit = NULL;
1942 FOR_EACH_VEC_ELT (edge, exits, i, ex)
1943 {
1944 if (!number_of_iterations_exit (loop, ex, &desc, false))
1945 continue;
1946
1947 if (integer_nonzerop (desc.may_be_zero))
1948 {
1949 /* We exit in the first iteration through this exit.
1950 We won't find anything better. */
1951 niter = build_int_cst (unsigned_type_node, 0);
1952 *exit = ex;
1953 break;
1954 }
1955
1956 if (!integer_zerop (desc.may_be_zero))
1957 continue;
1958
1959 aniter = desc.niter;
1960
1961 if (!niter)
1962 {
1963 /* Nothing recorded yet. */
1964 niter = aniter;
1965 *exit = ex;
1966 continue;
1967 }
1968
1969 /* Prefer constants, the lower the better. */
1970 if (TREE_CODE (aniter) != INTEGER_CST)
1971 continue;
1972
1973 if (TREE_CODE (niter) != INTEGER_CST)
1974 {
1975 niter = aniter;
1976 *exit = ex;
1977 continue;
1978 }
1979
1980 if (tree_int_cst_lt (aniter, niter))
1981 {
1982 niter = aniter;
1983 *exit = ex;
1984 continue;
1985 }
1986 }
1987 VEC_free (edge, heap, exits);
1988
1989 return niter ? niter : chrec_dont_know;
1990 }
1991
1992 /* Return true if loop is known to have bounded number of iterations. */
1993
1994 bool
1995 finite_loop_p (struct loop *loop)
1996 {
1997 unsigned i;
1998 VEC (edge, heap) *exits;
1999 edge ex;
2000 struct tree_niter_desc desc;
2001 bool finite = false;
2002 int flags;
2003
2004 if (flag_unsafe_loop_optimizations)
2005 return true;
2006 flags = flags_from_decl_or_type (current_function_decl);
2007 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2008 {
2009 if (dump_file && (dump_flags & TDF_DETAILS))
2010 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2011 loop->num);
2012 return true;
2013 }
2014
2015 exits = get_loop_exit_edges (loop);
2016 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2017 {
2018 if (!just_once_each_iteration_p (loop, ex->src))
2019 continue;
2020
2021 if (number_of_iterations_exit (loop, ex, &desc, false))
2022 {
2023 if (dump_file && (dump_flags & TDF_DETAILS))
2024 {
2025 fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2026 print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2027 fprintf (dump_file, " times\n");
2028 }
2029 finite = true;
2030 break;
2031 }
2032 }
2033 VEC_free (edge, heap, exits);
2034 return finite;
2035 }
2036
2037 /*
2038
2039 Analysis of a number of iterations of a loop by a brute-force evaluation.
2040
2041 */
2042
2043 /* Bound on the number of iterations we try to evaluate. */
2044
2045 #define MAX_ITERATIONS_TO_TRACK \
2046 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2047
2048 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2049 result by a chain of operations such that all but exactly one of their
2050 operands are constants. */
2051
2052 static gimple
2053 chain_of_csts_start (struct loop *loop, tree x)
2054 {
2055 gimple stmt = SSA_NAME_DEF_STMT (x);
2056 tree use;
2057 basic_block bb = gimple_bb (stmt);
2058 enum tree_code code;
2059
2060 if (!bb
2061 || !flow_bb_inside_loop_p (loop, bb))
2062 return NULL;
2063
2064 if (gimple_code (stmt) == GIMPLE_PHI)
2065 {
2066 if (bb == loop->header)
2067 return stmt;
2068
2069 return NULL;
2070 }
2071
2072 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2073 return NULL;
2074
2075 code = gimple_assign_rhs_code (stmt);
2076 if (gimple_references_memory_p (stmt)
2077 || TREE_CODE_CLASS (code) == tcc_reference
2078 || (code == ADDR_EXPR
2079 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2080 return NULL;
2081
2082 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2083 if (use == NULL_TREE)
2084 return NULL;
2085
2086 return chain_of_csts_start (loop, use);
2087 }
2088
2089 /* Determines whether the expression X is derived from a result of a phi node
2090 in header of LOOP such that
2091
2092 * the derivation of X consists only from operations with constants
2093 * the initial value of the phi node is constant
2094 * the value of the phi node in the next iteration can be derived from the
2095 value in the current iteration by a chain of operations with constants.
2096
2097 If such phi node exists, it is returned, otherwise NULL is returned. */
2098
2099 static gimple
2100 get_base_for (struct loop *loop, tree x)
2101 {
2102 gimple phi;
2103 tree init, next;
2104
2105 if (is_gimple_min_invariant (x))
2106 return NULL;
2107
2108 phi = chain_of_csts_start (loop, x);
2109 if (!phi)
2110 return NULL;
2111
2112 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2113 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2114
2115 if (TREE_CODE (next) != SSA_NAME)
2116 return NULL;
2117
2118 if (!is_gimple_min_invariant (init))
2119 return NULL;
2120
2121 if (chain_of_csts_start (loop, next) != phi)
2122 return NULL;
2123
2124 return phi;
2125 }
2126
2127 /* Given an expression X, then
2128
2129 * if X is NULL_TREE, we return the constant BASE.
2130 * otherwise X is a SSA name, whose value in the considered loop is derived
2131 by a chain of operations with constant from a result of a phi node in
2132 the header of the loop. Then we return value of X when the value of the
2133 result of this phi node is given by the constant BASE. */
2134
2135 static tree
2136 get_val_for (tree x, tree base)
2137 {
2138 gimple stmt;
2139
2140 gcc_assert (is_gimple_min_invariant (base));
2141
2142 if (!x)
2143 return base;
2144
2145 stmt = SSA_NAME_DEF_STMT (x);
2146 if (gimple_code (stmt) == GIMPLE_PHI)
2147 return base;
2148
2149 gcc_assert (is_gimple_assign (stmt));
2150
2151 /* STMT must be either an assignment of a single SSA name or an
2152 expression involving an SSA name and a constant. Try to fold that
2153 expression using the value for the SSA name. */
2154 if (gimple_assign_ssa_name_copy_p (stmt))
2155 return get_val_for (gimple_assign_rhs1 (stmt), base);
2156 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2157 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2158 {
2159 return fold_build1 (gimple_assign_rhs_code (stmt),
2160 gimple_expr_type (stmt),
2161 get_val_for (gimple_assign_rhs1 (stmt), base));
2162 }
2163 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2164 {
2165 tree rhs1 = gimple_assign_rhs1 (stmt);
2166 tree rhs2 = gimple_assign_rhs2 (stmt);
2167 if (TREE_CODE (rhs1) == SSA_NAME)
2168 rhs1 = get_val_for (rhs1, base);
2169 else if (TREE_CODE (rhs2) == SSA_NAME)
2170 rhs2 = get_val_for (rhs2, base);
2171 else
2172 gcc_unreachable ();
2173 return fold_build2 (gimple_assign_rhs_code (stmt),
2174 gimple_expr_type (stmt), rhs1, rhs2);
2175 }
2176 else
2177 gcc_unreachable ();
2178 }
2179
2180
2181 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2182 by brute force -- i.e. by determining the value of the operands of the
2183 condition at EXIT in first few iterations of the loop (assuming that
2184 these values are constant) and determining the first one in that the
2185 condition is not satisfied. Returns the constant giving the number
2186 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2187
2188 tree
2189 loop_niter_by_eval (struct loop *loop, edge exit)
2190 {
2191 tree acnd;
2192 tree op[2], val[2], next[2], aval[2];
2193 gimple phi, cond;
2194 unsigned i, j;
2195 enum tree_code cmp;
2196
2197 cond = last_stmt (exit->src);
2198 if (!cond || gimple_code (cond) != GIMPLE_COND)
2199 return chrec_dont_know;
2200
2201 cmp = gimple_cond_code (cond);
2202 if (exit->flags & EDGE_TRUE_VALUE)
2203 cmp = invert_tree_comparison (cmp, false);
2204
2205 switch (cmp)
2206 {
2207 case EQ_EXPR:
2208 case NE_EXPR:
2209 case GT_EXPR:
2210 case GE_EXPR:
2211 case LT_EXPR:
2212 case LE_EXPR:
2213 op[0] = gimple_cond_lhs (cond);
2214 op[1] = gimple_cond_rhs (cond);
2215 break;
2216
2217 default:
2218 return chrec_dont_know;
2219 }
2220
2221 for (j = 0; j < 2; j++)
2222 {
2223 if (is_gimple_min_invariant (op[j]))
2224 {
2225 val[j] = op[j];
2226 next[j] = NULL_TREE;
2227 op[j] = NULL_TREE;
2228 }
2229 else
2230 {
2231 phi = get_base_for (loop, op[j]);
2232 if (!phi)
2233 return chrec_dont_know;
2234 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2235 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2236 }
2237 }
2238
2239 /* Don't issue signed overflow warnings. */
2240 fold_defer_overflow_warnings ();
2241
2242 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2243 {
2244 for (j = 0; j < 2; j++)
2245 aval[j] = get_val_for (op[j], val[j]);
2246
2247 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2248 if (acnd && integer_zerop (acnd))
2249 {
2250 fold_undefer_and_ignore_overflow_warnings ();
2251 if (dump_file && (dump_flags & TDF_DETAILS))
2252 fprintf (dump_file,
2253 "Proved that loop %d iterates %d times using brute force.\n",
2254 loop->num, i);
2255 return build_int_cst (unsigned_type_node, i);
2256 }
2257
2258 for (j = 0; j < 2; j++)
2259 {
2260 val[j] = get_val_for (next[j], val[j]);
2261 if (!is_gimple_min_invariant (val[j]))
2262 {
2263 fold_undefer_and_ignore_overflow_warnings ();
2264 return chrec_dont_know;
2265 }
2266 }
2267 }
2268
2269 fold_undefer_and_ignore_overflow_warnings ();
2270
2271 return chrec_dont_know;
2272 }
2273
2274 /* Finds the exit of the LOOP by that the loop exits after a constant
2275 number of iterations and stores the exit edge to *EXIT. The constant
2276 giving the number of iterations of LOOP is returned. The number of
2277 iterations is determined using loop_niter_by_eval (i.e. by brute force
2278 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2279 determines the number of iterations, chrec_dont_know is returned. */
2280
2281 tree
2282 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2283 {
2284 unsigned i;
2285 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2286 edge ex;
2287 tree niter = NULL_TREE, aniter;
2288
2289 *exit = NULL;
2290
2291 /* Loops with multiple exits are expensive to handle and less important. */
2292 if (!flag_expensive_optimizations
2293 && VEC_length (edge, exits) > 1)
2294 {
2295 VEC_free (edge, heap, exits);
2296 return chrec_dont_know;
2297 }
2298
2299 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2300 {
2301 if (!just_once_each_iteration_p (loop, ex->src))
2302 continue;
2303
2304 aniter = loop_niter_by_eval (loop, ex);
2305 if (chrec_contains_undetermined (aniter))
2306 continue;
2307
2308 if (niter
2309 && !tree_int_cst_lt (aniter, niter))
2310 continue;
2311
2312 niter = aniter;
2313 *exit = ex;
2314 }
2315 VEC_free (edge, heap, exits);
2316
2317 return niter ? niter : chrec_dont_know;
2318 }
2319
2320 /*
2321
2322 Analysis of upper bounds on number of iterations of a loop.
2323
2324 */
2325
2326 static double_int derive_constant_upper_bound_ops (tree, tree,
2327 enum tree_code, tree);
2328
2329 /* Returns a constant upper bound on the value of the right-hand side of
2330 an assignment statement STMT. */
2331
2332 static double_int
2333 derive_constant_upper_bound_assign (gimple stmt)
2334 {
2335 enum tree_code code = gimple_assign_rhs_code (stmt);
2336 tree op0 = gimple_assign_rhs1 (stmt);
2337 tree op1 = gimple_assign_rhs2 (stmt);
2338
2339 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2340 op0, code, op1);
2341 }
2342
2343 /* Returns a constant upper bound on the value of expression VAL. VAL
2344 is considered to be unsigned. If its type is signed, its value must
2345 be nonnegative. */
2346
2347 static double_int
2348 derive_constant_upper_bound (tree val)
2349 {
2350 enum tree_code code;
2351 tree op0, op1;
2352
2353 extract_ops_from_tree (val, &code, &op0, &op1);
2354 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2355 }
2356
2357 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2358 whose type is TYPE. The expression is considered to be unsigned. If
2359 its type is signed, its value must be nonnegative. */
2360
2361 static double_int
2362 derive_constant_upper_bound_ops (tree type, tree op0,
2363 enum tree_code code, tree op1)
2364 {
2365 tree subtype, maxt;
2366 double_int bnd, max, mmax, cst;
2367 gimple stmt;
2368
2369 if (INTEGRAL_TYPE_P (type))
2370 maxt = TYPE_MAX_VALUE (type);
2371 else
2372 maxt = upper_bound_in_type (type, type);
2373
2374 max = tree_to_double_int (maxt);
2375
2376 switch (code)
2377 {
2378 case INTEGER_CST:
2379 return tree_to_double_int (op0);
2380
2381 CASE_CONVERT:
2382 subtype = TREE_TYPE (op0);
2383 if (!TYPE_UNSIGNED (subtype)
2384 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2385 that OP0 is nonnegative. */
2386 && TYPE_UNSIGNED (type)
2387 && !tree_expr_nonnegative_p (op0))
2388 {
2389 /* If we cannot prove that the casted expression is nonnegative,
2390 we cannot establish more useful upper bound than the precision
2391 of the type gives us. */
2392 return max;
2393 }
2394
2395 /* We now know that op0 is an nonnegative value. Try deriving an upper
2396 bound for it. */
2397 bnd = derive_constant_upper_bound (op0);
2398
2399 /* If the bound does not fit in TYPE, max. value of TYPE could be
2400 attained. */
2401 if (max.ult (bnd))
2402 return max;
2403
2404 return bnd;
2405
2406 case PLUS_EXPR:
2407 case POINTER_PLUS_EXPR:
2408 case MINUS_EXPR:
2409 if (TREE_CODE (op1) != INTEGER_CST
2410 || !tree_expr_nonnegative_p (op0))
2411 return max;
2412
2413 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2414 choose the most logical way how to treat this constant regardless
2415 of the signedness of the type. */
2416 cst = tree_to_double_int (op1);
2417 cst = cst.sext (TYPE_PRECISION (type));
2418 if (code != MINUS_EXPR)
2419 cst = -cst;
2420
2421 bnd = derive_constant_upper_bound (op0);
2422
2423 if (cst.is_negative ())
2424 {
2425 cst = -cst;
2426 /* Avoid CST == 0x80000... */
2427 if (cst.is_negative ())
2428 return max;;
2429
2430 /* OP0 + CST. We need to check that
2431 BND <= MAX (type) - CST. */
2432
2433 mmax -= cst;
2434 if (bnd.ugt (mmax))
2435 return max;
2436
2437 return bnd + cst;
2438 }
2439 else
2440 {
2441 /* OP0 - CST, where CST >= 0.
2442
2443 If TYPE is signed, we have already verified that OP0 >= 0, and we
2444 know that the result is nonnegative. This implies that
2445 VAL <= BND - CST.
2446
2447 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2448 otherwise the operation underflows.
2449 */
2450
2451 /* This should only happen if the type is unsigned; however, for
2452 buggy programs that use overflowing signed arithmetics even with
2453 -fno-wrapv, this condition may also be true for signed values. */
2454 if (bnd.ult (cst))
2455 return max;
2456
2457 if (TYPE_UNSIGNED (type))
2458 {
2459 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2460 double_int_to_tree (type, cst));
2461 if (!tem || integer_nonzerop (tem))
2462 return max;
2463 }
2464
2465 bnd -= cst;
2466 }
2467
2468 return bnd;
2469
2470 case FLOOR_DIV_EXPR:
2471 case EXACT_DIV_EXPR:
2472 if (TREE_CODE (op1) != INTEGER_CST
2473 || tree_int_cst_sign_bit (op1))
2474 return max;
2475
2476 bnd = derive_constant_upper_bound (op0);
2477 return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
2478
2479 case BIT_AND_EXPR:
2480 if (TREE_CODE (op1) != INTEGER_CST
2481 || tree_int_cst_sign_bit (op1))
2482 return max;
2483 return tree_to_double_int (op1);
2484
2485 case SSA_NAME:
2486 stmt = SSA_NAME_DEF_STMT (op0);
2487 if (gimple_code (stmt) != GIMPLE_ASSIGN
2488 || gimple_assign_lhs (stmt) != op0)
2489 return max;
2490 return derive_constant_upper_bound_assign (stmt);
2491
2492 default:
2493 return max;
2494 }
2495 }
2496
2497 /* Records that every statement in LOOP is executed I_BOUND times.
2498 REALISTIC is true if I_BOUND is expected to be close to the real number
2499 of iterations. UPPER is true if we are sure the loop iterates at most
2500 I_BOUND times. */
2501
2502 void
2503 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2504 bool upper)
2505 {
2506 /* Update the bounds only when there is no previous estimation, or when the
2507 current estimation is smaller. */
2508 if (upper
2509 && (!loop->any_upper_bound
2510 || i_bound.ult (loop->nb_iterations_upper_bound)))
2511 {
2512 loop->any_upper_bound = true;
2513 loop->nb_iterations_upper_bound = i_bound;
2514 }
2515 if (realistic
2516 && (!loop->any_estimate
2517 || i_bound.ult (loop->nb_iterations_estimate)))
2518 {
2519 loop->any_estimate = true;
2520 loop->nb_iterations_estimate = i_bound;
2521 }
2522
2523 /* If an upper bound is smaller than the realistic estimate of the
2524 number of iterations, use the upper bound instead. */
2525 if (loop->any_upper_bound
2526 && loop->any_estimate
2527 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
2528 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2529 }
2530
2531 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2532 is true if the loop is exited immediately after STMT, and this exit
2533 is taken at last when the STMT is executed BOUND + 1 times.
2534 REALISTIC is true if BOUND is expected to be close to the real number
2535 of iterations. UPPER is true if we are sure the loop iterates at most
2536 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2537
2538 static void
2539 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2540 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2541 {
2542 double_int delta;
2543
2544 if (dump_file && (dump_flags & TDF_DETAILS))
2545 {
2546 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2547 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2548 fprintf (dump_file, " is %sexecuted at most ",
2549 upper ? "" : "probably ");
2550 print_generic_expr (dump_file, bound, TDF_SLIM);
2551 fprintf (dump_file, " (bounded by ");
2552 dump_double_int (dump_file, i_bound, true);
2553 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2554 }
2555
2556 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2557 real number of iterations. */
2558 if (TREE_CODE (bound) != INTEGER_CST)
2559 realistic = false;
2560 else
2561 gcc_checking_assert (i_bound == tree_to_double_int (bound));
2562 if (!upper && !realistic)
2563 return;
2564
2565 /* If we have a guaranteed upper bound, record it in the appropriate
2566 list. */
2567 if (upper)
2568 {
2569 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2570
2571 elt->bound = i_bound;
2572 elt->stmt = at_stmt;
2573 elt->is_exit = is_exit;
2574 elt->next = loop->bounds;
2575 loop->bounds = elt;
2576 }
2577
2578 /* If statement is executed on every path to the loop latch, we can directly
2579 infer the upper bound on the # of iterations of the loop. */
2580 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2581 return;
2582
2583 /* Update the number of iteration estimates according to the bound.
2584 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2585 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2586 later if such statement must be executed on last iteration */
2587 if (is_exit)
2588 delta = double_int_zero;
2589 else
2590 delta = double_int_one;
2591 i_bound += delta;
2592
2593 /* If an overflow occurred, ignore the result. */
2594 if (i_bound.ult (delta))
2595 return;
2596
2597 record_niter_bound (loop, i_bound, realistic, upper);
2598 }
2599
2600 /* Record the estimate on number of iterations of LOOP based on the fact that
2601 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2602 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2603 estimated number of iterations is expected to be close to the real one.
2604 UPPER is true if we are sure the induction variable does not wrap. */
2605
2606 static void
2607 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2608 tree low, tree high, bool realistic, bool upper)
2609 {
2610 tree niter_bound, extreme, delta;
2611 tree type = TREE_TYPE (base), unsigned_type;
2612 double_int max;
2613
2614 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2615 return;
2616
2617 if (dump_file && (dump_flags & TDF_DETAILS))
2618 {
2619 fprintf (dump_file, "Induction variable (");
2620 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2621 fprintf (dump_file, ") ");
2622 print_generic_expr (dump_file, base, TDF_SLIM);
2623 fprintf (dump_file, " + ");
2624 print_generic_expr (dump_file, step, TDF_SLIM);
2625 fprintf (dump_file, " * iteration does not wrap in statement ");
2626 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2627 fprintf (dump_file, " in loop %d.\n", loop->num);
2628 }
2629
2630 unsigned_type = unsigned_type_for (type);
2631 base = fold_convert (unsigned_type, base);
2632 step = fold_convert (unsigned_type, step);
2633
2634 if (tree_int_cst_sign_bit (step))
2635 {
2636 extreme = fold_convert (unsigned_type, low);
2637 if (TREE_CODE (base) != INTEGER_CST)
2638 base = fold_convert (unsigned_type, high);
2639 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2640 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2641 }
2642 else
2643 {
2644 extreme = fold_convert (unsigned_type, high);
2645 if (TREE_CODE (base) != INTEGER_CST)
2646 base = fold_convert (unsigned_type, low);
2647 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2648 }
2649
2650 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2651 would get out of the range. */
2652 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2653 max = derive_constant_upper_bound (niter_bound);
2654 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2655 }
2656
2657 /* Determine information about number of iterations a LOOP from the index
2658 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2659 guaranteed to be executed in every iteration of LOOP. Callback for
2660 for_each_index. */
2661
2662 struct ilb_data
2663 {
2664 struct loop *loop;
2665 gimple stmt;
2666 };
2667
2668 static bool
2669 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2670 {
2671 struct ilb_data *data = (struct ilb_data *) dta;
2672 tree ev, init, step;
2673 tree low, high, type, next;
2674 bool sign, upper = true, at_end = false;
2675 struct loop *loop = data->loop;
2676
2677 if (TREE_CODE (base) != ARRAY_REF)
2678 return true;
2679
2680 /* For arrays at the end of the structure, we are not guaranteed that they
2681 do not really extend over their declared size. However, for arrays of
2682 size greater than one, this is unlikely to be intended. */
2683 if (array_at_struct_end_p (base))
2684 {
2685 at_end = true;
2686 upper = false;
2687 }
2688
2689 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2690 init = initial_condition (ev);
2691 step = evolution_part_in_loop_num (ev, loop->num);
2692
2693 if (!init
2694 || !step
2695 || TREE_CODE (step) != INTEGER_CST
2696 || integer_zerop (step)
2697 || tree_contains_chrecs (init, NULL)
2698 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2699 return true;
2700
2701 low = array_ref_low_bound (base);
2702 high = array_ref_up_bound (base);
2703
2704 /* The case of nonconstant bounds could be handled, but it would be
2705 complicated. */
2706 if (TREE_CODE (low) != INTEGER_CST
2707 || !high
2708 || TREE_CODE (high) != INTEGER_CST)
2709 return true;
2710 sign = tree_int_cst_sign_bit (step);
2711 type = TREE_TYPE (step);
2712
2713 /* The array of length 1 at the end of a structure most likely extends
2714 beyond its bounds. */
2715 if (at_end
2716 && operand_equal_p (low, high, 0))
2717 return true;
2718
2719 /* In case the relevant bound of the array does not fit in type, or
2720 it does, but bound + step (in type) still belongs into the range of the
2721 array, the index may wrap and still stay within the range of the array
2722 (consider e.g. if the array is indexed by the full range of
2723 unsigned char).
2724
2725 To make things simpler, we require both bounds to fit into type, although
2726 there are cases where this would not be strictly necessary. */
2727 if (!int_fits_type_p (high, type)
2728 || !int_fits_type_p (low, type))
2729 return true;
2730 low = fold_convert (type, low);
2731 high = fold_convert (type, high);
2732
2733 if (sign)
2734 next = fold_binary (PLUS_EXPR, type, low, step);
2735 else
2736 next = fold_binary (PLUS_EXPR, type, high, step);
2737
2738 if (tree_int_cst_compare (low, next) <= 0
2739 && tree_int_cst_compare (next, high) <= 0)
2740 return true;
2741
2742 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2743 return true;
2744 }
2745
2746 /* Determine information about number of iterations a LOOP from the bounds
2747 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2748 STMT is guaranteed to be executed in every iteration of LOOP.*/
2749
2750 static void
2751 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2752 {
2753 struct ilb_data data;
2754
2755 data.loop = loop;
2756 data.stmt = stmt;
2757 for_each_index (&ref, idx_infer_loop_bounds, &data);
2758 }
2759
2760 /* Determine information about number of iterations of a LOOP from the way
2761 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2762 executed in every iteration of LOOP. */
2763
2764 static void
2765 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2766 {
2767 if (is_gimple_assign (stmt))
2768 {
2769 tree op0 = gimple_assign_lhs (stmt);
2770 tree op1 = gimple_assign_rhs1 (stmt);
2771
2772 /* For each memory access, analyze its access function
2773 and record a bound on the loop iteration domain. */
2774 if (REFERENCE_CLASS_P (op0))
2775 infer_loop_bounds_from_ref (loop, stmt, op0);
2776
2777 if (REFERENCE_CLASS_P (op1))
2778 infer_loop_bounds_from_ref (loop, stmt, op1);
2779 }
2780 else if (is_gimple_call (stmt))
2781 {
2782 tree arg, lhs;
2783 unsigned i, n = gimple_call_num_args (stmt);
2784
2785 lhs = gimple_call_lhs (stmt);
2786 if (lhs && REFERENCE_CLASS_P (lhs))
2787 infer_loop_bounds_from_ref (loop, stmt, lhs);
2788
2789 for (i = 0; i < n; i++)
2790 {
2791 arg = gimple_call_arg (stmt, i);
2792 if (REFERENCE_CLASS_P (arg))
2793 infer_loop_bounds_from_ref (loop, stmt, arg);
2794 }
2795 }
2796 }
2797
2798 /* Determine information about number of iterations of a LOOP from the fact
2799 that pointer arithmetics in STMT does not overflow. */
2800
2801 static void
2802 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2803 {
2804 tree def, base, step, scev, type, low, high;
2805 tree var, ptr;
2806
2807 if (!is_gimple_assign (stmt)
2808 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2809 return;
2810
2811 def = gimple_assign_lhs (stmt);
2812 if (TREE_CODE (def) != SSA_NAME)
2813 return;
2814
2815 type = TREE_TYPE (def);
2816 if (!nowrap_type_p (type))
2817 return;
2818
2819 ptr = gimple_assign_rhs1 (stmt);
2820 if (!expr_invariant_in_loop_p (loop, ptr))
2821 return;
2822
2823 var = gimple_assign_rhs2 (stmt);
2824 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2825 return;
2826
2827 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2828 if (chrec_contains_undetermined (scev))
2829 return;
2830
2831 base = initial_condition_in_loop_num (scev, loop->num);
2832 step = evolution_part_in_loop_num (scev, loop->num);
2833
2834 if (!base || !step
2835 || TREE_CODE (step) != INTEGER_CST
2836 || tree_contains_chrecs (base, NULL)
2837 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2838 return;
2839
2840 low = lower_bound_in_type (type, type);
2841 high = upper_bound_in_type (type, type);
2842
2843 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2844 produce a NULL pointer. The contrary would mean NULL points to an object,
2845 while NULL is supposed to compare unequal with the address of all objects.
2846 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2847 NULL pointer since that would mean wrapping, which we assume here not to
2848 happen. So, we can exclude NULL from the valid range of pointer
2849 arithmetic. */
2850 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2851 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2852
2853 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2854 }
2855
2856 /* Determine information about number of iterations of a LOOP from the fact
2857 that signed arithmetics in STMT does not overflow. */
2858
2859 static void
2860 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2861 {
2862 tree def, base, step, scev, type, low, high;
2863
2864 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2865 return;
2866
2867 def = gimple_assign_lhs (stmt);
2868
2869 if (TREE_CODE (def) != SSA_NAME)
2870 return;
2871
2872 type = TREE_TYPE (def);
2873 if (!INTEGRAL_TYPE_P (type)
2874 || !TYPE_OVERFLOW_UNDEFINED (type))
2875 return;
2876
2877 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2878 if (chrec_contains_undetermined (scev))
2879 return;
2880
2881 base = initial_condition_in_loop_num (scev, loop->num);
2882 step = evolution_part_in_loop_num (scev, loop->num);
2883
2884 if (!base || !step
2885 || TREE_CODE (step) != INTEGER_CST
2886 || tree_contains_chrecs (base, NULL)
2887 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2888 return;
2889
2890 low = lower_bound_in_type (type, type);
2891 high = upper_bound_in_type (type, type);
2892
2893 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2894 }
2895
2896 /* The following analyzers are extracting informations on the bounds
2897 of LOOP from the following undefined behaviors:
2898
2899 - data references should not access elements over the statically
2900 allocated size,
2901
2902 - signed variables should not overflow when flag_wrapv is not set.
2903 */
2904
2905 static void
2906 infer_loop_bounds_from_undefined (struct loop *loop)
2907 {
2908 unsigned i;
2909 basic_block *bbs;
2910 gimple_stmt_iterator bsi;
2911 basic_block bb;
2912 bool reliable;
2913
2914 bbs = get_loop_body (loop);
2915
2916 for (i = 0; i < loop->num_nodes; i++)
2917 {
2918 bb = bbs[i];
2919
2920 /* If BB is not executed in each iteration of the loop, we cannot
2921 use the operations in it to infer reliable upper bound on the
2922 # of iterations of the loop. However, we can use it as a guess.
2923 Reliable guesses come only from array bounds. */
2924 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2925
2926 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2927 {
2928 gimple stmt = gsi_stmt (bsi);
2929
2930 infer_loop_bounds_from_array (loop, stmt);
2931
2932 if (reliable)
2933 {
2934 infer_loop_bounds_from_signedness (loop, stmt);
2935 infer_loop_bounds_from_pointer_arith (loop, stmt);
2936 }
2937 }
2938
2939 }
2940
2941 free (bbs);
2942 }
2943
2944 /* Converts VAL to double_int. */
2945
2946 static double_int
2947 gcov_type_to_double_int (gcov_type val)
2948 {
2949 double_int ret;
2950
2951 ret.low = (unsigned HOST_WIDE_INT) val;
2952 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2953 the size of type. */
2954 val >>= HOST_BITS_PER_WIDE_INT - 1;
2955 val >>= 1;
2956 ret.high = (unsigned HOST_WIDE_INT) val;
2957
2958 return ret;
2959 }
2960
2961 /* Compare double ints, callback for qsort. */
2962
2963 int
2964 double_int_cmp (const void *p1, const void *p2)
2965 {
2966 const double_int *d1 = (const double_int *)p1;
2967 const double_int *d2 = (const double_int *)p2;
2968 if (*d1 == *d2)
2969 return 0;
2970 if (d1->ult (*d2))
2971 return -1;
2972 return 1;
2973 }
2974
2975 /* Return index of BOUND in BOUNDS array sorted in increasing order.
2976 Lookup by binary search. */
2977
2978 int
2979 bound_index (VEC (double_int, heap) *bounds, double_int bound)
2980 {
2981 unsigned int end = VEC_length (double_int, bounds);
2982 unsigned int begin = 0;
2983
2984 /* Find a matching index by means of a binary search. */
2985 while (begin != end)
2986 {
2987 unsigned int middle = (begin + end) / 2;
2988 double_int index = VEC_index (double_int, bounds, middle);
2989
2990 if (index == bound)
2991 return middle;
2992 else if (index.ult (bound))
2993 begin = middle + 1;
2994 else
2995 end = middle;
2996 }
2997 gcc_unreachable ();
2998 }
2999
3000 /* Used to hold vector of queues of basic blocks bellow. */
3001 typedef VEC (basic_block, heap) *bb_queue;
3002 DEF_VEC_P(bb_queue);
3003 DEF_VEC_ALLOC_P(bb_queue,heap);
3004
3005 /* We recorded loop bounds only for statements dominating loop latch (and thus
3006 executed each loop iteration). If there are any bounds on statements not
3007 dominating the loop latch we can improve the estimate by walking the loop
3008 body and seeing if every path from loop header to loop latch contains
3009 some bounded statement. */
3010
3011 static void
3012 discover_iteration_bound_by_body_walk (struct loop *loop)
3013 {
3014 pointer_map_t *bb_bounds;
3015 struct nb_iter_bound *elt;
3016 VEC (double_int, heap) *bounds = NULL;
3017 VEC (bb_queue, heap) *queues = NULL;
3018 bb_queue queue = NULL;
3019 ptrdiff_t queue_index;
3020 ptrdiff_t latch_index = 0;
3021 pointer_map_t *block_priority;
3022
3023 /* Discover what bounds may interest us. */
3024 for (elt = loop->bounds; elt; elt = elt->next)
3025 {
3026 double_int bound = elt->bound;
3027
3028 /* Exit terminates loop at given iteration, while non-exits produce undefined
3029 effect on the next iteration. */
3030 if (!elt->is_exit)
3031 bound += double_int_one;
3032
3033 if (!loop->any_upper_bound
3034 || bound.ult (loop->nb_iterations_upper_bound))
3035 VEC_safe_push (double_int, heap, bounds, bound);
3036 }
3037
3038 /* Exit early if there is nothing to do. */
3039 if (!bounds)
3040 return;
3041
3042 if (dump_file && (dump_flags & TDF_DETAILS))
3043 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3044
3045 /* Sort the bounds in decreasing order. */
3046 qsort (VEC_address (double_int, bounds), VEC_length (double_int, bounds),
3047 sizeof (double_int), double_int_cmp);
3048
3049 /* For every basic block record the lowest bound that is guaranteed to
3050 terminate the loop. */
3051
3052 bb_bounds = pointer_map_create ();
3053 for (elt = loop->bounds; elt; elt = elt->next)
3054 {
3055 double_int bound = elt->bound;
3056 if (!elt->is_exit)
3057 bound += double_int_one;
3058
3059 if (!loop->any_upper_bound
3060 || bound.ult (loop->nb_iterations_upper_bound))
3061 {
3062 ptrdiff_t index = bound_index (bounds, bound);
3063 void **entry = pointer_map_contains (bb_bounds,
3064 gimple_bb (elt->stmt));
3065 if (!entry)
3066 *pointer_map_insert (bb_bounds,
3067 gimple_bb (elt->stmt)) = (void *)index;
3068 else if ((ptrdiff_t)*entry > index)
3069 *entry = (void *)index;
3070 }
3071 }
3072
3073 block_priority = pointer_map_create ();
3074
3075 /* Perform shortest path discovery loop->header ... loop->latch.
3076
3077 The "distance" is given by the smallest loop bound of basic block
3078 present in the path and we look for path with largest smallest bound
3079 on it.
3080
3081 To avoid the need for fibonaci heap on double ints we simply compress
3082 double ints into indexes to BOUNDS array and then represent the queue
3083 as arrays of queues for every index.
3084 Index of VEC_length (BOUNDS) means that the execution of given BB has
3085 no bounds determined.
3086
3087 VISITED is a pointer map translating basic block into smallest index
3088 it was inserted into the priority queue with. */
3089 latch_index = -1;
3090
3091 /* Start walk in loop header with index set to infinite bound. */
3092 queue_index = VEC_length (double_int, bounds);
3093 VEC_safe_grow_cleared (bb_queue, heap, queues, queue_index + 1);
3094 VEC_safe_push (basic_block, heap, queue, loop->header);
3095 VEC_replace (bb_queue, queues, queue_index, queue);
3096 *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3097
3098 for (; queue_index >= 0; queue_index--)
3099 {
3100 if (latch_index < queue_index)
3101 {
3102 while (VEC_length (basic_block,
3103 VEC_index (bb_queue, queues, queue_index)))
3104 {
3105 basic_block bb;
3106 ptrdiff_t bound_index = queue_index;
3107 void **entry;
3108 edge e;
3109 edge_iterator ei;
3110
3111 queue = VEC_index (bb_queue, queues, queue_index);
3112 bb = VEC_pop (basic_block, queue);
3113
3114 /* OK, we later inserted the BB with lower priority, skip it. */
3115 if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3116 continue;
3117
3118 /* See if we can improve the bound. */
3119 entry = pointer_map_contains (bb_bounds, bb);
3120 if (entry && (ptrdiff_t)*entry < bound_index)
3121 bound_index = (ptrdiff_t)*entry;
3122
3123 /* Insert succesors into the queue, watch for latch edge
3124 and record greatest index we saw. */
3125 FOR_EACH_EDGE (e, ei, bb->succs)
3126 {
3127 bool insert = false;
3128 void **entry;
3129
3130 if (loop_exit_edge_p (loop, e))
3131 continue;
3132
3133 if (e == loop_latch_edge (loop)
3134 && latch_index < bound_index)
3135 latch_index = bound_index;
3136 else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3137 {
3138 insert = true;
3139 *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3140 }
3141 else if ((ptrdiff_t)*entry < bound_index)
3142 {
3143 insert = true;
3144 *entry = (void *)bound_index;
3145 }
3146
3147 if (insert)
3148 {
3149 bb_queue queue2 = VEC_index (bb_queue, queues, bound_index);
3150 VEC_safe_push (basic_block, heap, queue2, e->dest);
3151 VEC_replace (bb_queue, queues, bound_index, queue2);
3152 }
3153 }
3154 }
3155 }
3156 else
3157 VEC_free (basic_block, heap, VEC_index (bb_queue, queues, queue_index));
3158 }
3159
3160 gcc_assert (latch_index >= 0);
3161 if ((unsigned)latch_index < VEC_length (double_int, bounds))
3162 {
3163 if (dump_file && (dump_flags & TDF_DETAILS))
3164 {
3165 fprintf (dump_file, "Found better loop bound ");
3166 dump_double_int (dump_file,
3167 VEC_index (double_int, bounds, latch_index), true);
3168 fprintf (dump_file, "\n");
3169 }
3170 record_niter_bound (loop, VEC_index (double_int, bounds, latch_index),
3171 false, true);
3172 }
3173
3174 VEC_free (bb_queue, heap, queues);
3175 pointer_map_destroy (bb_bounds);
3176 pointer_map_destroy (block_priority);
3177 }
3178
3179 /* See if every path cross the loop goes through a statement that is known
3180 to not execute at the last iteration. In that case we can decrese iteration
3181 count by 1. */
3182
3183 static void
3184 maybe_lower_iteration_bound (struct loop *loop)
3185 {
3186 pointer_set_t *not_executed_last_iteration = NULL;
3187 struct nb_iter_bound *elt;
3188 bool found_exit = false;
3189 VEC (basic_block, heap) *queue = NULL;
3190 bitmap visited;
3191
3192 /* Collect all statements with interesting (i.e. lower than
3193 nb_iterations_upper_bound) bound on them.
3194
3195 TODO: Due to the way record_estimate choose estimates to store, the bounds
3196 will be always nb_iterations_upper_bound-1. We can change this to record
3197 also statements not dominating the loop latch and update the walk bellow
3198 to the shortest path algorthm. */
3199 for (elt = loop->bounds; elt; elt = elt->next)
3200 {
3201 if (!elt->is_exit
3202 && elt->bound.ult (loop->nb_iterations_upper_bound))
3203 {
3204 if (!not_executed_last_iteration)
3205 not_executed_last_iteration = pointer_set_create ();
3206 pointer_set_insert (not_executed_last_iteration, elt->stmt);
3207 }
3208 }
3209 if (!not_executed_last_iteration)
3210 return;
3211
3212 /* Start DFS walk in the loop header and see if we can reach the
3213 loop latch or any of the exits (including statements with side
3214 effects that may terminate the loop otherwise) without visiting
3215 any of the statements known to have undefined effect on the last
3216 iteration. */
3217 VEC_safe_push (basic_block, heap, queue, loop->header);
3218 visited = BITMAP_ALLOC (NULL);
3219 bitmap_set_bit (visited, loop->header->index);
3220 found_exit = false;
3221
3222 do
3223 {
3224 basic_block bb = VEC_pop (basic_block, queue);
3225 gimple_stmt_iterator gsi;
3226 bool stmt_found = false;
3227
3228 /* Loop for possible exits and statements bounding the execution. */
3229 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3230 {
3231 gimple stmt = gsi_stmt (gsi);
3232 if (pointer_set_contains (not_executed_last_iteration, stmt))
3233 {
3234 stmt_found = true;
3235 break;
3236 }
3237 if (gimple_has_side_effects (stmt))
3238 {
3239 found_exit = true;
3240 break;
3241 }
3242 }
3243 if (found_exit)
3244 break;
3245
3246 /* If no bounding statement is found, continue the walk. */
3247 if (!stmt_found)
3248 {
3249 edge e;
3250 edge_iterator ei;
3251
3252 FOR_EACH_EDGE (e, ei, bb->succs)
3253 {
3254 if (loop_exit_edge_p (loop, e)
3255 || e == loop_latch_edge (loop))
3256 {
3257 found_exit = true;
3258 break;
3259 }
3260 if (bitmap_set_bit (visited, e->dest->index))
3261 VEC_safe_push (basic_block, heap, queue, e->dest);
3262 }
3263 }
3264 }
3265 while (VEC_length (basic_block, queue) && !found_exit);
3266
3267 /* If every path through the loop reach bounding statement before exit,
3268 then we know the last iteration of the loop will have undefined effect
3269 and we can decrease number of iterations. */
3270
3271 if (!found_exit)
3272 {
3273 if (dump_file && (dump_flags & TDF_DETAILS))
3274 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3275 "undefined statement must be executed at the last iteration.\n");
3276 record_niter_bound (loop, loop->nb_iterations_upper_bound - double_int_one,
3277 false, true);
3278 }
3279 BITMAP_FREE (visited);
3280 VEC_free (basic_block, heap, queue);
3281 }
3282
3283 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3284 is true also use estimates derived from undefined behavior. */
3285
3286 void
3287 estimate_numbers_of_iterations_loop (struct loop *loop)
3288 {
3289 VEC (edge, heap) *exits;
3290 tree niter, type;
3291 unsigned i;
3292 struct tree_niter_desc niter_desc;
3293 edge ex;
3294 double_int bound;
3295 edge likely_exit;
3296
3297 /* Give up if we already have tried to compute an estimation. */
3298 if (loop->estimate_state != EST_NOT_COMPUTED)
3299 return;
3300
3301 loop->estimate_state = EST_AVAILABLE;
3302 /* Force estimate compuation but leave any existing upper bound in place. */
3303 loop->any_estimate = false;
3304
3305 exits = get_loop_exit_edges (loop);
3306 likely_exit = single_likely_exit (loop);
3307 FOR_EACH_VEC_ELT (edge, exits, i, ex)
3308 {
3309 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3310 continue;
3311
3312 niter = niter_desc.niter;
3313 type = TREE_TYPE (niter);
3314 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3315 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3316 build_int_cst (type, 0),
3317 niter);
3318 record_estimate (loop, niter, niter_desc.max,
3319 last_stmt (ex->src),
3320 true, ex == likely_exit, true);
3321 }
3322 VEC_free (edge, heap, exits);
3323
3324 infer_loop_bounds_from_undefined (loop);
3325
3326 discover_iteration_bound_by_body_walk (loop);
3327
3328 maybe_lower_iteration_bound (loop);
3329
3330 /* If we have a measured profile, use it to estimate the number of
3331 iterations. */
3332 if (loop->header->count != 0)
3333 {
3334 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3335 bound = gcov_type_to_double_int (nit);
3336 record_niter_bound (loop, bound, true, false);
3337 }
3338 }
3339
3340 /* Sets NIT to the estimated number of executions of the latch of the
3341 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3342 large as the number of iterations. If we have no reliable estimate,
3343 the function returns false, otherwise returns true. */
3344
3345 bool
3346 estimated_loop_iterations (struct loop *loop, double_int *nit)
3347 {
3348 /* When SCEV information is available, try to update loop iterations
3349 estimate. Otherwise just return whatever we recorded earlier. */
3350 if (scev_initialized_p ())
3351 estimate_numbers_of_iterations_loop (loop);
3352
3353 /* Even if the bound is not recorded, possibly we can derrive one from
3354 profile. */
3355 if (!loop->any_estimate)
3356 {
3357 if (loop->header->count)
3358 {
3359 *nit = gcov_type_to_double_int
3360 (expected_loop_iterations_unbounded (loop) + 1);
3361 return true;
3362 }
3363 return false;
3364 }
3365
3366 *nit = loop->nb_iterations_estimate;
3367 return true;
3368 }
3369
3370 /* Sets NIT to an upper bound for the maximum number of executions of the
3371 latch of the LOOP. If we have no reliable estimate, the function returns
3372 false, otherwise returns true. */
3373
3374 bool
3375 max_loop_iterations (struct loop *loop, double_int *nit)
3376 {
3377 /* When SCEV information is available, try to update loop iterations
3378 estimate. Otherwise just return whatever we recorded earlier. */
3379 if (scev_initialized_p ())
3380 estimate_numbers_of_iterations_loop (loop);
3381 if (!loop->any_upper_bound)
3382 return false;
3383
3384 *nit = loop->nb_iterations_upper_bound;
3385 return true;
3386 }
3387
3388 /* Similar to estimated_loop_iterations, but returns the estimate only
3389 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3390 on the number of iterations of LOOP could not be derived, returns -1. */
3391
3392 HOST_WIDE_INT
3393 estimated_loop_iterations_int (struct loop *loop)
3394 {
3395 double_int nit;
3396 HOST_WIDE_INT hwi_nit;
3397
3398 if (!estimated_loop_iterations (loop, &nit))
3399 return -1;
3400
3401 if (!nit.fits_shwi ())
3402 return -1;
3403 hwi_nit = nit.to_shwi ();
3404
3405 return hwi_nit < 0 ? -1 : hwi_nit;
3406 }
3407
3408 /* Similar to max_loop_iterations, but returns the estimate only
3409 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3410 on the number of iterations of LOOP could not be derived, returns -1. */
3411
3412 HOST_WIDE_INT
3413 max_loop_iterations_int (struct loop *loop)
3414 {
3415 double_int nit;
3416 HOST_WIDE_INT hwi_nit;
3417
3418 if (!max_loop_iterations (loop, &nit))
3419 return -1;
3420
3421 if (!nit.fits_shwi ())
3422 return -1;
3423 hwi_nit = nit.to_shwi ();
3424
3425 return hwi_nit < 0 ? -1 : hwi_nit;
3426 }
3427
3428 /* Returns an upper bound on the number of executions of statements
3429 in the LOOP. For statements before the loop exit, this exceeds
3430 the number of execution of the latch by one. */
3431
3432 HOST_WIDE_INT
3433 max_stmt_executions_int (struct loop *loop)
3434 {
3435 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3436 HOST_WIDE_INT snit;
3437
3438 if (nit == -1)
3439 return -1;
3440
3441 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3442
3443 /* If the computation overflows, return -1. */
3444 return snit < 0 ? -1 : snit;
3445 }
3446
3447 /* Returns an estimate for the number of executions of statements
3448 in the LOOP. For statements before the loop exit, this exceeds
3449 the number of execution of the latch by one. */
3450
3451 HOST_WIDE_INT
3452 estimated_stmt_executions_int (struct loop *loop)
3453 {
3454 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3455 HOST_WIDE_INT snit;
3456
3457 if (nit == -1)
3458 return -1;
3459
3460 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3461
3462 /* If the computation overflows, return -1. */
3463 return snit < 0 ? -1 : snit;
3464 }
3465
3466 /* Sets NIT to the estimated maximum number of executions of the latch of the
3467 LOOP, plus one. If we have no reliable estimate, the function returns
3468 false, otherwise returns true. */
3469
3470 bool
3471 max_stmt_executions (struct loop *loop, double_int *nit)
3472 {
3473 double_int nit_minus_one;
3474
3475 if (!max_loop_iterations (loop, nit))
3476 return false;
3477
3478 nit_minus_one = *nit;
3479
3480 *nit += double_int_one;
3481
3482 return (*nit).ugt (nit_minus_one);
3483 }
3484
3485 /* Sets NIT to the estimated number of executions of the latch of the
3486 LOOP, plus one. If we have no reliable estimate, the function returns
3487 false, otherwise returns true. */
3488
3489 bool
3490 estimated_stmt_executions (struct loop *loop, double_int *nit)
3491 {
3492 double_int nit_minus_one;
3493
3494 if (!estimated_loop_iterations (loop, nit))
3495 return false;
3496
3497 nit_minus_one = *nit;
3498
3499 *nit += double_int_one;
3500
3501 return (*nit).ugt (nit_minus_one);
3502 }
3503
3504 /* Records estimates on numbers of iterations of loops. */
3505
3506 void
3507 estimate_numbers_of_iterations (void)
3508 {
3509 loop_iterator li;
3510 struct loop *loop;
3511
3512 /* We don't want to issue signed overflow warnings while getting
3513 loop iteration estimates. */
3514 fold_defer_overflow_warnings ();
3515
3516 FOR_EACH_LOOP (li, loop, 0)
3517 {
3518 estimate_numbers_of_iterations_loop (loop);
3519 }
3520
3521 fold_undefer_and_ignore_overflow_warnings ();
3522 }
3523
3524 /* Returns true if statement S1 dominates statement S2. */
3525
3526 bool
3527 stmt_dominates_stmt_p (gimple s1, gimple s2)
3528 {
3529 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3530
3531 if (!bb1
3532 || s1 == s2)
3533 return true;
3534
3535 if (bb1 == bb2)
3536 {
3537 gimple_stmt_iterator bsi;
3538
3539 if (gimple_code (s2) == GIMPLE_PHI)
3540 return false;
3541
3542 if (gimple_code (s1) == GIMPLE_PHI)
3543 return true;
3544
3545 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3546 if (gsi_stmt (bsi) == s1)
3547 return true;
3548
3549 return false;
3550 }
3551
3552 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3553 }
3554
3555 /* Returns true when we can prove that the number of executions of
3556 STMT in the loop is at most NITER, according to the bound on
3557 the number of executions of the statement NITER_BOUND->stmt recorded in
3558 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3559 statements in the loop. */
3560
3561 static bool
3562 n_of_executions_at_most (gimple stmt,
3563 struct nb_iter_bound *niter_bound,
3564 tree niter)
3565 {
3566 double_int bound = niter_bound->bound;
3567 tree nit_type = TREE_TYPE (niter), e;
3568 enum tree_code cmp;
3569
3570 gcc_assert (TYPE_UNSIGNED (nit_type));
3571
3572 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3573 the number of iterations is small. */
3574 if (!double_int_fits_to_tree_p (nit_type, bound))
3575 return false;
3576
3577 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3578 times. This means that:
3579
3580 -- if NITER_BOUND->is_exit is true, then everything before
3581 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3582 times, and everything after it at most NITER_BOUND->bound times.
3583
3584 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3585 is executed, then NITER_BOUND->stmt is executed as well in the same
3586 iteration (we conclude that if both statements belong to the same
3587 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3588 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3589 executed at most NITER_BOUND->bound + 2 times. */
3590
3591 if (niter_bound->is_exit)
3592 {
3593 if (stmt
3594 && stmt != niter_bound->stmt
3595 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3596 cmp = GE_EXPR;
3597 else
3598 cmp = GT_EXPR;
3599 }
3600 else
3601 {
3602 if (!stmt
3603 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3604 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3605 {
3606 bound += double_int_one;
3607 if (bound.is_zero ()
3608 || !double_int_fits_to_tree_p (nit_type, bound))
3609 return false;
3610 }
3611 cmp = GT_EXPR;
3612 }
3613
3614 e = fold_binary (cmp, boolean_type_node,
3615 niter, double_int_to_tree (nit_type, bound));
3616 return e && integer_nonzerop (e);
3617 }
3618
3619 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3620
3621 bool
3622 nowrap_type_p (tree type)
3623 {
3624 if (INTEGRAL_TYPE_P (type)
3625 && TYPE_OVERFLOW_UNDEFINED (type))
3626 return true;
3627
3628 if (POINTER_TYPE_P (type))
3629 return true;
3630
3631 return false;
3632 }
3633
3634 /* Return false only when the induction variable BASE + STEP * I is
3635 known to not overflow: i.e. when the number of iterations is small
3636 enough with respect to the step and initial condition in order to
3637 keep the evolution confined in TYPEs bounds. Return true when the
3638 iv is known to overflow or when the property is not computable.
3639
3640 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3641 the rules for overflow of the given language apply (e.g., that signed
3642 arithmetics in C does not overflow). */
3643
3644 bool
3645 scev_probably_wraps_p (tree base, tree step,
3646 gimple at_stmt, struct loop *loop,
3647 bool use_overflow_semantics)
3648 {
3649 struct nb_iter_bound *bound;
3650 tree delta, step_abs;
3651 tree unsigned_type, valid_niter;
3652 tree type = TREE_TYPE (step);
3653
3654 /* FIXME: We really need something like
3655 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3656
3657 We used to test for the following situation that frequently appears
3658 during address arithmetics:
3659
3660 D.1621_13 = (long unsigned intD.4) D.1620_12;
3661 D.1622_14 = D.1621_13 * 8;
3662 D.1623_15 = (doubleD.29 *) D.1622_14;
3663
3664 And derived that the sequence corresponding to D_14
3665 can be proved to not wrap because it is used for computing a
3666 memory access; however, this is not really the case -- for example,
3667 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3668 2032, 2040, 0, 8, ..., but the code is still legal. */
3669
3670 if (chrec_contains_undetermined (base)
3671 || chrec_contains_undetermined (step))
3672 return true;
3673
3674 if (integer_zerop (step))
3675 return false;
3676
3677 /* If we can use the fact that signed and pointer arithmetics does not
3678 wrap, we are done. */
3679 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3680 return false;
3681
3682 /* To be able to use estimates on number of iterations of the loop,
3683 we must have an upper bound on the absolute value of the step. */
3684 if (TREE_CODE (step) != INTEGER_CST)
3685 return true;
3686
3687 /* Don't issue signed overflow warnings. */
3688 fold_defer_overflow_warnings ();
3689
3690 /* Otherwise, compute the number of iterations before we reach the
3691 bound of the type, and verify that the loop is exited before this
3692 occurs. */
3693 unsigned_type = unsigned_type_for (type);
3694 base = fold_convert (unsigned_type, base);
3695
3696 if (tree_int_cst_sign_bit (step))
3697 {
3698 tree extreme = fold_convert (unsigned_type,
3699 lower_bound_in_type (type, type));
3700 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3701 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3702 fold_convert (unsigned_type, step));
3703 }
3704 else
3705 {
3706 tree extreme = fold_convert (unsigned_type,
3707 upper_bound_in_type (type, type));
3708 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3709 step_abs = fold_convert (unsigned_type, step);
3710 }
3711
3712 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3713
3714 estimate_numbers_of_iterations_loop (loop);
3715 for (bound = loop->bounds; bound; bound = bound->next)
3716 {
3717 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3718 {
3719 fold_undefer_and_ignore_overflow_warnings ();
3720 return false;
3721 }
3722 }
3723
3724 fold_undefer_and_ignore_overflow_warnings ();
3725
3726 /* At this point we still don't have a proof that the iv does not
3727 overflow: give up. */
3728 return true;
3729 }
3730
3731 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3732
3733 void
3734 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3735 {
3736 struct nb_iter_bound *bound, *next;
3737
3738 loop->nb_iterations = NULL;
3739 loop->estimate_state = EST_NOT_COMPUTED;
3740 for (bound = loop->bounds; bound; bound = next)
3741 {
3742 next = bound->next;
3743 ggc_free (bound);
3744 }
3745
3746 loop->bounds = NULL;
3747 }
3748
3749 /* Frees the information on upper bounds on numbers of iterations of loops. */
3750
3751 void
3752 free_numbers_of_iterations_estimates (void)
3753 {
3754 loop_iterator li;
3755 struct loop *loop;
3756
3757 FOR_EACH_LOOP (li, loop, 0)
3758 {
3759 free_numbers_of_iterations_estimates_loop (loop);
3760 }
3761 }
3762
3763 /* Substitute value VAL for ssa name NAME inside expressions held
3764 at LOOP. */
3765
3766 void
3767 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3768 {
3769 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3770 }