re PR bootstrap/54659 (Bootstrap with --disable-nls broken under Windows)
[gcc.git] / gcc / tree-ssa-loop-niter.c
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "intl.h"
30 #include "tree-flow.h"
31 #include "dumpfile.h"
32 #include "cfgloop.h"
33 #include "ggc.h"
34 #include "tree-chrec.h"
35 #include "tree-scalar-evolution.h"
36 #include "tree-data-ref.h"
37 #include "params.h"
38 #include "flags.h"
39 #include "diagnostic-core.h"
40 #include "tree-inline.h"
41
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
43
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
46 expression. */
47 #define MAX_DOMINATORS_TO_WALK 8
48
49 /*
50
51 Analysis of number of iterations of an affine exit test.
52
53 */
54
55 /* Bounds on some value, BELOW <= X <= UP. */
56
57 typedef struct
58 {
59 mpz_t below, up;
60 } bounds;
61
62
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
64
65 static void
66 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
67 {
68 tree type = TREE_TYPE (expr);
69 tree op0, op1;
70 double_int off;
71 bool negate = false;
72
73 *var = expr;
74 mpz_set_ui (offset, 0);
75
76 switch (TREE_CODE (expr))
77 {
78 case MINUS_EXPR:
79 negate = true;
80 /* Fallthru. */
81
82 case PLUS_EXPR:
83 case POINTER_PLUS_EXPR:
84 op0 = TREE_OPERAND (expr, 0);
85 op1 = TREE_OPERAND (expr, 1);
86
87 if (TREE_CODE (op1) != INTEGER_CST)
88 break;
89
90 *var = op0;
91 /* Always sign extend the offset. */
92 off = tree_to_double_int (op1);
93 off = off.sext (TYPE_PRECISION (type));
94 mpz_set_double_int (offset, off, false);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
98
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 off = tree_to_double_int (expr);
102 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
103 break;
104
105 default:
106 break;
107 }
108 }
109
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
112
113 static void
114 determine_value_range (tree type, tree var, mpz_t off,
115 mpz_t min, mpz_t max)
116 {
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var))
119 {
120 mpz_set (min, off);
121 mpz_set (max, off);
122 return;
123 }
124
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type, min, max);
128 if (!nowrap_type_p (type))
129 return;
130
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off) < 0)
134 mpz_add (max, max, off);
135 else
136 mpz_add (min, min, off);
137 }
138
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
141
142 static void
143 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
144 bounds *bnds)
145 {
146 int rel = mpz_cmp (x, y);
147 bool may_wrap = !nowrap_type_p (type);
148 mpz_t m;
149
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
158 is M - X + Y.
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
163
164 if (rel == 0)
165 {
166 mpz_set_ui (bnds->below, 0);
167 mpz_set_ui (bnds->up, 0);
168 return;
169 }
170
171 mpz_init (m);
172 mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
173 mpz_add_ui (m, m, 1);
174 mpz_sub (bnds->up, x, y);
175 mpz_set (bnds->below, bnds->up);
176
177 if (may_wrap)
178 {
179 if (rel > 0)
180 mpz_sub (bnds->below, bnds->below, m);
181 else
182 mpz_add (bnds->up, bnds->up, m);
183 }
184
185 mpz_clear (m);
186 }
187
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
191
192 static void
193 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
194 tree vary, mpz_t offy,
195 tree c0, enum tree_code cmp, tree c1,
196 bounds *bnds)
197 {
198 tree varc0, varc1, tmp, ctype;
199 mpz_t offc0, offc1, loffx, loffy, bnd;
200 bool lbound = false;
201 bool no_wrap = nowrap_type_p (type);
202 bool x_ok, y_ok;
203
204 switch (cmp)
205 {
206 case LT_EXPR:
207 case LE_EXPR:
208 case GT_EXPR:
209 case GE_EXPR:
210 STRIP_SIGN_NOPS (c0);
211 STRIP_SIGN_NOPS (c1);
212 ctype = TREE_TYPE (c0);
213 if (!useless_type_conversion_p (ctype, type))
214 return;
215
216 break;
217
218 case EQ_EXPR:
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
221 it. */
222 return;
223
224 case NE_EXPR:
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type))
229 return;
230
231 /* Ensure that the condition speaks about an expression in the same type
232 as X and Y. */
233 ctype = TREE_TYPE (c0);
234 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
235 return;
236 c0 = fold_convert (type, c0);
237 c1 = fold_convert (type, c1);
238
239 if (TYPE_MIN_VALUE (type)
240 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
241 {
242 cmp = GT_EXPR;
243 break;
244 }
245 if (TYPE_MAX_VALUE (type)
246 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
247 {
248 cmp = LT_EXPR;
249 break;
250 }
251
252 return;
253 default:
254 return;
255 }
256
257 mpz_init (offc0);
258 mpz_init (offc1);
259 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
260 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
261
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
265
266 if (operand_equal_p (varx, varc1, 0))
267 {
268 tmp = varc0; varc0 = varc1; varc1 = tmp;
269 mpz_swap (offc0, offc1);
270 cmp = swap_tree_comparison (cmp);
271 }
272
273 if (!operand_equal_p (varx, varc0, 0)
274 || !operand_equal_p (vary, varc1, 0))
275 goto end;
276
277 mpz_init_set (loffx, offx);
278 mpz_init_set (loffy, offy);
279
280 if (cmp == GT_EXPR || cmp == GE_EXPR)
281 {
282 tmp = varx; varx = vary; vary = tmp;
283 mpz_swap (offc0, offc1);
284 mpz_swap (loffx, loffy);
285 cmp = swap_tree_comparison (cmp);
286 lbound = true;
287 }
288
289 /* If there is no overflow, the condition implies that
290
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
292
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
296 true if
297
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
304
305 if (no_wrap)
306 {
307 x_ok = true;
308 y_ok = true;
309 }
310 else
311 {
312 x_ok = (integer_zerop (varx)
313 || mpz_cmp (loffx, offc0) >= 0);
314 y_ok = (integer_zerop (vary)
315 || mpz_cmp (loffy, offc1) <= 0);
316 }
317
318 if (x_ok && y_ok)
319 {
320 mpz_init (bnd);
321 mpz_sub (bnd, loffx, loffy);
322 mpz_add (bnd, bnd, offc1);
323 mpz_sub (bnd, bnd, offc0);
324
325 if (cmp == LT_EXPR)
326 mpz_sub_ui (bnd, bnd, 1);
327
328 if (lbound)
329 {
330 mpz_neg (bnd, bnd);
331 if (mpz_cmp (bnds->below, bnd) < 0)
332 mpz_set (bnds->below, bnd);
333 }
334 else
335 {
336 if (mpz_cmp (bnd, bnds->up) < 0)
337 mpz_set (bnds->up, bnd);
338 }
339 mpz_clear (bnd);
340 }
341
342 mpz_clear (loffx);
343 mpz_clear (loffy);
344 end:
345 mpz_clear (offc0);
346 mpz_clear (offc1);
347 }
348
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
351 without overflows.
352
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
357
358 static void
359 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
360 {
361 tree type = TREE_TYPE (x);
362 tree varx, vary;
363 mpz_t offx, offy;
364 mpz_t minx, maxx, miny, maxy;
365 int cnt = 0;
366 edge e;
367 basic_block bb;
368 tree c0, c1;
369 gimple cond;
370 enum tree_code cmp;
371
372 /* Get rid of unnecessary casts, but preserve the value of
373 the expressions. */
374 STRIP_SIGN_NOPS (x);
375 STRIP_SIGN_NOPS (y);
376
377 mpz_init (bnds->below);
378 mpz_init (bnds->up);
379 mpz_init (offx);
380 mpz_init (offy);
381 split_to_var_and_offset (x, &varx, offx);
382 split_to_var_and_offset (y, &vary, offy);
383
384 if (!integer_zerop (varx)
385 && operand_equal_p (varx, vary, 0))
386 {
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type, offx, offy, bnds);
391 }
392 else
393 {
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
396 mpz_init (minx);
397 mpz_init (maxx);
398 mpz_init (miny);
399 mpz_init (maxy);
400 determine_value_range (type, varx, offx, minx, maxx);
401 determine_value_range (type, vary, offy, miny, maxy);
402
403 mpz_sub (bnds->below, minx, maxy);
404 mpz_sub (bnds->up, maxx, miny);
405 mpz_clear (minx);
406 mpz_clear (maxx);
407 mpz_clear (miny);
408 mpz_clear (maxy);
409 }
410
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx) && integer_zerop (vary))
413 goto end;
414
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb = loop->header;
418 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
419 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
420 {
421 if (!single_pred_p (bb))
422 continue;
423 e = single_pred_edge (bb);
424
425 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
426 continue;
427
428 cond = last_stmt (e->src);
429 c0 = gimple_cond_lhs (cond);
430 cmp = gimple_cond_code (cond);
431 c1 = gimple_cond_rhs (cond);
432
433 if (e->flags & EDGE_FALSE_VALUE)
434 cmp = invert_tree_comparison (cmp, false);
435
436 refine_bounds_using_guard (type, varx, offx, vary, offy,
437 c0, cmp, c1, bnds);
438 ++cnt;
439 }
440
441 end:
442 mpz_clear (offx);
443 mpz_clear (offy);
444 }
445
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
449
450 static void
451 bounds_add (bounds *bnds, double_int delta, tree type)
452 {
453 mpz_t mdelta, max;
454
455 mpz_init (mdelta);
456 mpz_set_double_int (mdelta, delta, false);
457
458 mpz_init (max);
459 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
460
461 mpz_add (bnds->up, bnds->up, mdelta);
462 mpz_add (bnds->below, bnds->below, mdelta);
463
464 if (mpz_cmp (bnds->up, max) > 0)
465 mpz_set (bnds->up, max);
466
467 mpz_neg (max, max);
468 if (mpz_cmp (bnds->below, max) < 0)
469 mpz_set (bnds->below, max);
470
471 mpz_clear (mdelta);
472 mpz_clear (max);
473 }
474
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
477
478 static void
479 bounds_negate (bounds *bnds)
480 {
481 mpz_t tmp;
482
483 mpz_init_set (tmp, bnds->up);
484 mpz_neg (bnds->up, bnds->below);
485 mpz_neg (bnds->below, tmp);
486 mpz_clear (tmp);
487 }
488
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
490
491 static tree
492 inverse (tree x, tree mask)
493 {
494 tree type = TREE_TYPE (x);
495 tree rslt;
496 unsigned ctr = tree_floor_log2 (mask);
497
498 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
499 {
500 unsigned HOST_WIDE_INT ix;
501 unsigned HOST_WIDE_INT imask;
502 unsigned HOST_WIDE_INT irslt = 1;
503
504 gcc_assert (cst_and_fits_in_hwi (x));
505 gcc_assert (cst_and_fits_in_hwi (mask));
506
507 ix = int_cst_value (x);
508 imask = int_cst_value (mask);
509
510 for (; ctr; ctr--)
511 {
512 irslt *= ix;
513 ix *= ix;
514 }
515 irslt &= imask;
516
517 rslt = build_int_cst_type (type, irslt);
518 }
519 else
520 {
521 rslt = build_int_cst (type, 1);
522 for (; ctr; ctr--)
523 {
524 rslt = int_const_binop (MULT_EXPR, rslt, x);
525 x = int_const_binop (MULT_EXPR, x, x);
526 }
527 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
528 }
529
530 return rslt;
531 }
532
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
538
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
548
549 static void
550 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
551 bounds *bnds, bool exit_must_be_taken)
552 {
553 double_int max;
554 mpz_t d;
555 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
556 || mpz_sgn (bnds->below) >= 0);
557
558 if (multiple_of_p (TREE_TYPE (c), c, s))
559 {
560 /* If C is an exact multiple of S, then its value will be reached before
561 the induction variable overflows (unless the loop is exited in some
562 other way before). Note that the actual induction variable in the
563 loop (which ranges from base to final instead of from 0 to C) may
564 overflow, in which case BNDS.up will not be giving a correct upper
565 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
566 no_overflow = true;
567 exit_must_be_taken = true;
568 }
569
570 /* If the induction variable can overflow, the number of iterations is at
571 most the period of the control variable (or infinite, but in that case
572 the whole # of iterations analysis will fail). */
573 if (!no_overflow)
574 {
575 max = double_int::mask (TYPE_PRECISION (TREE_TYPE (c))
576 - tree_low_cst (num_ending_zeros (s), 1));
577 mpz_set_double_int (bnd, max, true);
578 return;
579 }
580
581 /* Now we know that the induction variable does not overflow, so the loop
582 iterates at most (range of type / S) times. */
583 mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (TREE_TYPE (c))),
584 true);
585
586 /* If the induction variable is guaranteed to reach the value of C before
587 overflow, ... */
588 if (exit_must_be_taken)
589 {
590 /* ... then we can strengthen this to C / S, and possibly we can use
591 the upper bound on C given by BNDS. */
592 if (TREE_CODE (c) == INTEGER_CST)
593 mpz_set_double_int (bnd, tree_to_double_int (c), true);
594 else if (bnds_u_valid)
595 mpz_set (bnd, bnds->up);
596 }
597
598 mpz_init (d);
599 mpz_set_double_int (d, tree_to_double_int (s), true);
600 mpz_fdiv_q (bnd, bnd, d);
601 mpz_clear (d);
602 }
603
604 /* Determines number of iterations of loop whose ending condition
605 is IV <> FINAL. TYPE is the type of the iv. The number of
606 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
607 we know that the exit must be taken eventually, i.e., that the IV
608 ever reaches the value FINAL (we derived this earlier, and possibly set
609 NITER->assumptions to make sure this is the case). BNDS contains the
610 bounds on the difference FINAL - IV->base. */
611
612 static bool
613 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
614 struct tree_niter_desc *niter, bool exit_must_be_taken,
615 bounds *bnds)
616 {
617 tree niter_type = unsigned_type_for (type);
618 tree s, c, d, bits, assumption, tmp, bound;
619 mpz_t max;
620
621 niter->control = *iv;
622 niter->bound = final;
623 niter->cmp = NE_EXPR;
624
625 /* Rearrange the terms so that we get inequality S * i <> C, with S
626 positive. Also cast everything to the unsigned type. If IV does
627 not overflow, BNDS bounds the value of C. Also, this is the
628 case if the computation |FINAL - IV->base| does not overflow, i.e.,
629 if BNDS->below in the result is nonnegative. */
630 if (tree_int_cst_sign_bit (iv->step))
631 {
632 s = fold_convert (niter_type,
633 fold_build1 (NEGATE_EXPR, type, iv->step));
634 c = fold_build2 (MINUS_EXPR, niter_type,
635 fold_convert (niter_type, iv->base),
636 fold_convert (niter_type, final));
637 bounds_negate (bnds);
638 }
639 else
640 {
641 s = fold_convert (niter_type, iv->step);
642 c = fold_build2 (MINUS_EXPR, niter_type,
643 fold_convert (niter_type, final),
644 fold_convert (niter_type, iv->base));
645 }
646
647 mpz_init (max);
648 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
649 exit_must_be_taken);
650 niter->max = mpz_get_double_int (niter_type, max, false);
651 mpz_clear (max);
652
653 /* First the trivial cases -- when the step is 1. */
654 if (integer_onep (s))
655 {
656 niter->niter = c;
657 return true;
658 }
659
660 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
661 is infinite. Otherwise, the number of iterations is
662 (inverse(s/d) * (c/d)) mod (size of mode/d). */
663 bits = num_ending_zeros (s);
664 bound = build_low_bits_mask (niter_type,
665 (TYPE_PRECISION (niter_type)
666 - tree_low_cst (bits, 1)));
667
668 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
669 build_int_cst (niter_type, 1), bits);
670 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
671
672 if (!exit_must_be_taken)
673 {
674 /* If we cannot assume that the exit is taken eventually, record the
675 assumptions for divisibility of c. */
676 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
677 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
678 assumption, build_int_cst (niter_type, 0));
679 if (!integer_nonzerop (assumption))
680 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
681 niter->assumptions, assumption);
682 }
683
684 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
685 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
686 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
687 return true;
688 }
689
690 /* Checks whether we can determine the final value of the control variable
691 of the loop with ending condition IV0 < IV1 (computed in TYPE).
692 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
693 of the step. The assumptions necessary to ensure that the computation
694 of the final value does not overflow are recorded in NITER. If we
695 find the final value, we adjust DELTA and return TRUE. Otherwise
696 we return false. BNDS bounds the value of IV1->base - IV0->base,
697 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
698 true if we know that the exit must be taken eventually. */
699
700 static bool
701 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
702 struct tree_niter_desc *niter,
703 tree *delta, tree step,
704 bool exit_must_be_taken, bounds *bnds)
705 {
706 tree niter_type = TREE_TYPE (step);
707 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
708 tree tmod;
709 mpz_t mmod;
710 tree assumption = boolean_true_node, bound, noloop;
711 bool ret = false, fv_comp_no_overflow;
712 tree type1 = type;
713 if (POINTER_TYPE_P (type))
714 type1 = sizetype;
715
716 if (TREE_CODE (mod) != INTEGER_CST)
717 return false;
718 if (integer_nonzerop (mod))
719 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
720 tmod = fold_convert (type1, mod);
721
722 mpz_init (mmod);
723 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
724 mpz_neg (mmod, mmod);
725
726 /* If the induction variable does not overflow and the exit is taken,
727 then the computation of the final value does not overflow. This is
728 also obviously the case if the new final value is equal to the
729 current one. Finally, we postulate this for pointer type variables,
730 as the code cannot rely on the object to that the pointer points being
731 placed at the end of the address space (and more pragmatically,
732 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
733 if (integer_zerop (mod) || POINTER_TYPE_P (type))
734 fv_comp_no_overflow = true;
735 else if (!exit_must_be_taken)
736 fv_comp_no_overflow = false;
737 else
738 fv_comp_no_overflow =
739 (iv0->no_overflow && integer_nonzerop (iv0->step))
740 || (iv1->no_overflow && integer_nonzerop (iv1->step));
741
742 if (integer_nonzerop (iv0->step))
743 {
744 /* The final value of the iv is iv1->base + MOD, assuming that this
745 computation does not overflow, and that
746 iv0->base <= iv1->base + MOD. */
747 if (!fv_comp_no_overflow)
748 {
749 bound = fold_build2 (MINUS_EXPR, type1,
750 TYPE_MAX_VALUE (type1), tmod);
751 assumption = fold_build2 (LE_EXPR, boolean_type_node,
752 iv1->base, bound);
753 if (integer_zerop (assumption))
754 goto end;
755 }
756 if (mpz_cmp (mmod, bnds->below) < 0)
757 noloop = boolean_false_node;
758 else if (POINTER_TYPE_P (type))
759 noloop = fold_build2 (GT_EXPR, boolean_type_node,
760 iv0->base,
761 fold_build_pointer_plus (iv1->base, tmod));
762 else
763 noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 iv0->base,
765 fold_build2 (PLUS_EXPR, type1,
766 iv1->base, tmod));
767 }
768 else
769 {
770 /* The final value of the iv is iv0->base - MOD, assuming that this
771 computation does not overflow, and that
772 iv0->base - MOD <= iv1->base. */
773 if (!fv_comp_no_overflow)
774 {
775 bound = fold_build2 (PLUS_EXPR, type1,
776 TYPE_MIN_VALUE (type1), tmod);
777 assumption = fold_build2 (GE_EXPR, boolean_type_node,
778 iv0->base, bound);
779 if (integer_zerop (assumption))
780 goto end;
781 }
782 if (mpz_cmp (mmod, bnds->below) < 0)
783 noloop = boolean_false_node;
784 else if (POINTER_TYPE_P (type))
785 noloop = fold_build2 (GT_EXPR, boolean_type_node,
786 fold_build_pointer_plus (iv0->base,
787 fold_build1 (NEGATE_EXPR,
788 type1, tmod)),
789 iv1->base);
790 else
791 noloop = fold_build2 (GT_EXPR, boolean_type_node,
792 fold_build2 (MINUS_EXPR, type1,
793 iv0->base, tmod),
794 iv1->base);
795 }
796
797 if (!integer_nonzerop (assumption))
798 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
799 niter->assumptions,
800 assumption);
801 if (!integer_zerop (noloop))
802 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
803 niter->may_be_zero,
804 noloop);
805 bounds_add (bnds, tree_to_double_int (mod), type);
806 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
807
808 ret = true;
809 end:
810 mpz_clear (mmod);
811 return ret;
812 }
813
814 /* Add assertions to NITER that ensure that the control variable of the loop
815 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
816 are TYPE. Returns false if we can prove that there is an overflow, true
817 otherwise. STEP is the absolute value of the step. */
818
819 static bool
820 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
821 struct tree_niter_desc *niter, tree step)
822 {
823 tree bound, d, assumption, diff;
824 tree niter_type = TREE_TYPE (step);
825
826 if (integer_nonzerop (iv0->step))
827 {
828 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
829 if (iv0->no_overflow)
830 return true;
831
832 /* If iv0->base is a constant, we can determine the last value before
833 overflow precisely; otherwise we conservatively assume
834 MAX - STEP + 1. */
835
836 if (TREE_CODE (iv0->base) == INTEGER_CST)
837 {
838 d = fold_build2 (MINUS_EXPR, niter_type,
839 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
840 fold_convert (niter_type, iv0->base));
841 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
842 }
843 else
844 diff = fold_build2 (MINUS_EXPR, niter_type, step,
845 build_int_cst (niter_type, 1));
846 bound = fold_build2 (MINUS_EXPR, type,
847 TYPE_MAX_VALUE (type), fold_convert (type, diff));
848 assumption = fold_build2 (LE_EXPR, boolean_type_node,
849 iv1->base, bound);
850 }
851 else
852 {
853 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
854 if (iv1->no_overflow)
855 return true;
856
857 if (TREE_CODE (iv1->base) == INTEGER_CST)
858 {
859 d = fold_build2 (MINUS_EXPR, niter_type,
860 fold_convert (niter_type, iv1->base),
861 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
862 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
863 }
864 else
865 diff = fold_build2 (MINUS_EXPR, niter_type, step,
866 build_int_cst (niter_type, 1));
867 bound = fold_build2 (PLUS_EXPR, type,
868 TYPE_MIN_VALUE (type), fold_convert (type, diff));
869 assumption = fold_build2 (GE_EXPR, boolean_type_node,
870 iv0->base, bound);
871 }
872
873 if (integer_zerop (assumption))
874 return false;
875 if (!integer_nonzerop (assumption))
876 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
877 niter->assumptions, assumption);
878
879 iv0->no_overflow = true;
880 iv1->no_overflow = true;
881 return true;
882 }
883
884 /* Add an assumption to NITER that a loop whose ending condition
885 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
886 bounds the value of IV1->base - IV0->base. */
887
888 static void
889 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
890 struct tree_niter_desc *niter, bounds *bnds)
891 {
892 tree assumption = boolean_true_node, bound, diff;
893 tree mbz, mbzl, mbzr, type1;
894 bool rolls_p, no_overflow_p;
895 double_int dstep;
896 mpz_t mstep, max;
897
898 /* We are going to compute the number of iterations as
899 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
900 variant of TYPE. This formula only works if
901
902 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
903
904 (where MAX is the maximum value of the unsigned variant of TYPE, and
905 the computations in this formula are performed in full precision,
906 i.e., without overflows).
907
908 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
909 we have a condition of the form iv0->base - step < iv1->base before the loop,
910 and for loops iv0->base < iv1->base - step * i the condition
911 iv0->base < iv1->base + step, due to loop header copying, which enable us
912 to prove the lower bound.
913
914 The upper bound is more complicated. Unless the expressions for initial
915 and final value themselves contain enough information, we usually cannot
916 derive it from the context. */
917
918 /* First check whether the answer does not follow from the bounds we gathered
919 before. */
920 if (integer_nonzerop (iv0->step))
921 dstep = tree_to_double_int (iv0->step);
922 else
923 {
924 dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
925 dstep = -dstep;
926 }
927
928 mpz_init (mstep);
929 mpz_set_double_int (mstep, dstep, true);
930 mpz_neg (mstep, mstep);
931 mpz_add_ui (mstep, mstep, 1);
932
933 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
934
935 mpz_init (max);
936 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
937 mpz_add (max, max, mstep);
938 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
939 /* For pointers, only values lying inside a single object
940 can be compared or manipulated by pointer arithmetics.
941 Gcc in general does not allow or handle objects larger
942 than half of the address space, hence the upper bound
943 is satisfied for pointers. */
944 || POINTER_TYPE_P (type));
945 mpz_clear (mstep);
946 mpz_clear (max);
947
948 if (rolls_p && no_overflow_p)
949 return;
950
951 type1 = type;
952 if (POINTER_TYPE_P (type))
953 type1 = sizetype;
954
955 /* Now the hard part; we must formulate the assumption(s) as expressions, and
956 we must be careful not to introduce overflow. */
957
958 if (integer_nonzerop (iv0->step))
959 {
960 diff = fold_build2 (MINUS_EXPR, type1,
961 iv0->step, build_int_cst (type1, 1));
962
963 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
964 0 address never belongs to any object, we can assume this for
965 pointers. */
966 if (!POINTER_TYPE_P (type))
967 {
968 bound = fold_build2 (PLUS_EXPR, type1,
969 TYPE_MIN_VALUE (type), diff);
970 assumption = fold_build2 (GE_EXPR, boolean_type_node,
971 iv0->base, bound);
972 }
973
974 /* And then we can compute iv0->base - diff, and compare it with
975 iv1->base. */
976 mbzl = fold_build2 (MINUS_EXPR, type1,
977 fold_convert (type1, iv0->base), diff);
978 mbzr = fold_convert (type1, iv1->base);
979 }
980 else
981 {
982 diff = fold_build2 (PLUS_EXPR, type1,
983 iv1->step, build_int_cst (type1, 1));
984
985 if (!POINTER_TYPE_P (type))
986 {
987 bound = fold_build2 (PLUS_EXPR, type1,
988 TYPE_MAX_VALUE (type), diff);
989 assumption = fold_build2 (LE_EXPR, boolean_type_node,
990 iv1->base, bound);
991 }
992
993 mbzl = fold_convert (type1, iv0->base);
994 mbzr = fold_build2 (MINUS_EXPR, type1,
995 fold_convert (type1, iv1->base), diff);
996 }
997
998 if (!integer_nonzerop (assumption))
999 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1000 niter->assumptions, assumption);
1001 if (!rolls_p)
1002 {
1003 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1004 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1005 niter->may_be_zero, mbz);
1006 }
1007 }
1008
1009 /* Determines number of iterations of loop whose ending condition
1010 is IV0 < IV1. TYPE is the type of the iv. The number of
1011 iterations is stored to NITER. BNDS bounds the difference
1012 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1013 that the exit must be taken eventually. */
1014
1015 static bool
1016 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1017 struct tree_niter_desc *niter,
1018 bool exit_must_be_taken, bounds *bnds)
1019 {
1020 tree niter_type = unsigned_type_for (type);
1021 tree delta, step, s;
1022 mpz_t mstep, tmp;
1023
1024 if (integer_nonzerop (iv0->step))
1025 {
1026 niter->control = *iv0;
1027 niter->cmp = LT_EXPR;
1028 niter->bound = iv1->base;
1029 }
1030 else
1031 {
1032 niter->control = *iv1;
1033 niter->cmp = GT_EXPR;
1034 niter->bound = iv0->base;
1035 }
1036
1037 delta = fold_build2 (MINUS_EXPR, niter_type,
1038 fold_convert (niter_type, iv1->base),
1039 fold_convert (niter_type, iv0->base));
1040
1041 /* First handle the special case that the step is +-1. */
1042 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1043 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1044 {
1045 /* for (i = iv0->base; i < iv1->base; i++)
1046
1047 or
1048
1049 for (i = iv1->base; i > iv0->base; i--).
1050
1051 In both cases # of iterations is iv1->base - iv0->base, assuming that
1052 iv1->base >= iv0->base.
1053
1054 First try to derive a lower bound on the value of
1055 iv1->base - iv0->base, computed in full precision. If the difference
1056 is nonnegative, we are done, otherwise we must record the
1057 condition. */
1058
1059 if (mpz_sgn (bnds->below) < 0)
1060 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1061 iv1->base, iv0->base);
1062 niter->niter = delta;
1063 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1064 return true;
1065 }
1066
1067 if (integer_nonzerop (iv0->step))
1068 step = fold_convert (niter_type, iv0->step);
1069 else
1070 step = fold_convert (niter_type,
1071 fold_build1 (NEGATE_EXPR, type, iv1->step));
1072
1073 /* If we can determine the final value of the control iv exactly, we can
1074 transform the condition to != comparison. In particular, this will be
1075 the case if DELTA is constant. */
1076 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1077 exit_must_be_taken, bnds))
1078 {
1079 affine_iv zps;
1080
1081 zps.base = build_int_cst (niter_type, 0);
1082 zps.step = step;
1083 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1084 zps does not overflow. */
1085 zps.no_overflow = true;
1086
1087 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1088 }
1089
1090 /* Make sure that the control iv does not overflow. */
1091 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1092 return false;
1093
1094 /* We determine the number of iterations as (delta + step - 1) / step. For
1095 this to work, we must know that iv1->base >= iv0->base - step + 1,
1096 otherwise the loop does not roll. */
1097 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1098
1099 s = fold_build2 (MINUS_EXPR, niter_type,
1100 step, build_int_cst (niter_type, 1));
1101 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1102 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1103
1104 mpz_init (mstep);
1105 mpz_init (tmp);
1106 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1107 mpz_add (tmp, bnds->up, mstep);
1108 mpz_sub_ui (tmp, tmp, 1);
1109 mpz_fdiv_q (tmp, tmp, mstep);
1110 niter->max = mpz_get_double_int (niter_type, tmp, false);
1111 mpz_clear (mstep);
1112 mpz_clear (tmp);
1113
1114 return true;
1115 }
1116
1117 /* Determines number of iterations of loop whose ending condition
1118 is IV0 <= IV1. TYPE is the type of the iv. The number of
1119 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1120 we know that this condition must eventually become false (we derived this
1121 earlier, and possibly set NITER->assumptions to make sure this
1122 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1123
1124 static bool
1125 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1126 struct tree_niter_desc *niter, bool exit_must_be_taken,
1127 bounds *bnds)
1128 {
1129 tree assumption;
1130 tree type1 = type;
1131 if (POINTER_TYPE_P (type))
1132 type1 = sizetype;
1133
1134 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1135 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1136 value of the type. This we must know anyway, since if it is
1137 equal to this value, the loop rolls forever. We do not check
1138 this condition for pointer type ivs, as the code cannot rely on
1139 the object to that the pointer points being placed at the end of
1140 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1141 not defined for pointers). */
1142
1143 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1144 {
1145 if (integer_nonzerop (iv0->step))
1146 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1147 iv1->base, TYPE_MAX_VALUE (type));
1148 else
1149 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1150 iv0->base, TYPE_MIN_VALUE (type));
1151
1152 if (integer_zerop (assumption))
1153 return false;
1154 if (!integer_nonzerop (assumption))
1155 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1156 niter->assumptions, assumption);
1157 }
1158
1159 if (integer_nonzerop (iv0->step))
1160 {
1161 if (POINTER_TYPE_P (type))
1162 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1163 else
1164 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1165 build_int_cst (type1, 1));
1166 }
1167 else if (POINTER_TYPE_P (type))
1168 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1169 else
1170 iv0->base = fold_build2 (MINUS_EXPR, type1,
1171 iv0->base, build_int_cst (type1, 1));
1172
1173 bounds_add (bnds, double_int_one, type1);
1174
1175 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1176 bnds);
1177 }
1178
1179 /* Dumps description of affine induction variable IV to FILE. */
1180
1181 static void
1182 dump_affine_iv (FILE *file, affine_iv *iv)
1183 {
1184 if (!integer_zerop (iv->step))
1185 fprintf (file, "[");
1186
1187 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1188
1189 if (!integer_zerop (iv->step))
1190 {
1191 fprintf (file, ", + , ");
1192 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1193 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1194 }
1195 }
1196
1197 /* Determine the number of iterations according to condition (for staying
1198 inside loop) which compares two induction variables using comparison
1199 operator CODE. The induction variable on left side of the comparison
1200 is IV0, the right-hand side is IV1. Both induction variables must have
1201 type TYPE, which must be an integer or pointer type. The steps of the
1202 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1203
1204 LOOP is the loop whose number of iterations we are determining.
1205
1206 ONLY_EXIT is true if we are sure this is the only way the loop could be
1207 exited (including possibly non-returning function calls, exceptions, etc.)
1208 -- in this case we can use the information whether the control induction
1209 variables can overflow or not in a more efficient way.
1210
1211 The results (number of iterations and assumptions as described in
1212 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1213 Returns false if it fails to determine number of iterations, true if it
1214 was determined (possibly with some assumptions). */
1215
1216 static bool
1217 number_of_iterations_cond (struct loop *loop,
1218 tree type, affine_iv *iv0, enum tree_code code,
1219 affine_iv *iv1, struct tree_niter_desc *niter,
1220 bool only_exit)
1221 {
1222 bool exit_must_be_taken = false, ret;
1223 bounds bnds;
1224
1225 /* The meaning of these assumptions is this:
1226 if !assumptions
1227 then the rest of information does not have to be valid
1228 if may_be_zero then the loop does not roll, even if
1229 niter != 0. */
1230 niter->assumptions = boolean_true_node;
1231 niter->may_be_zero = boolean_false_node;
1232 niter->niter = NULL_TREE;
1233 niter->max = double_int_zero;
1234
1235 niter->bound = NULL_TREE;
1236 niter->cmp = ERROR_MARK;
1237
1238 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1239 the control variable is on lhs. */
1240 if (code == GE_EXPR || code == GT_EXPR
1241 || (code == NE_EXPR && integer_zerop (iv0->step)))
1242 {
1243 SWAP (iv0, iv1);
1244 code = swap_tree_comparison (code);
1245 }
1246
1247 if (POINTER_TYPE_P (type))
1248 {
1249 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1250 to the same object. If they do, the control variable cannot wrap
1251 (as wrap around the bounds of memory will never return a pointer
1252 that would be guaranteed to point to the same object, even if we
1253 avoid undefined behavior by casting to size_t and back). */
1254 iv0->no_overflow = true;
1255 iv1->no_overflow = true;
1256 }
1257
1258 /* If the control induction variable does not overflow and the only exit
1259 from the loop is the one that we analyze, we know it must be taken
1260 eventually. */
1261 if (only_exit)
1262 {
1263 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1264 exit_must_be_taken = true;
1265 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1266 exit_must_be_taken = true;
1267 }
1268
1269 /* We can handle the case when neither of the sides of the comparison is
1270 invariant, provided that the test is NE_EXPR. This rarely occurs in
1271 practice, but it is simple enough to manage. */
1272 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1273 {
1274 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1275 if (code != NE_EXPR)
1276 return false;
1277
1278 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1279 iv0->step, iv1->step);
1280 iv0->no_overflow = false;
1281 iv1->step = build_int_cst (step_type, 0);
1282 iv1->no_overflow = true;
1283 }
1284
1285 /* If the result of the comparison is a constant, the loop is weird. More
1286 precise handling would be possible, but the situation is not common enough
1287 to waste time on it. */
1288 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1289 return false;
1290
1291 /* Ignore loops of while (i-- < 10) type. */
1292 if (code != NE_EXPR)
1293 {
1294 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1295 return false;
1296
1297 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1298 return false;
1299 }
1300
1301 /* If the loop exits immediately, there is nothing to do. */
1302 if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1303 {
1304 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1305 niter->max = double_int_zero;
1306 return true;
1307 }
1308
1309 /* OK, now we know we have a senseful loop. Handle several cases, depending
1310 on what comparison operator is used. */
1311 bound_difference (loop, iv1->base, iv0->base, &bnds);
1312
1313 if (dump_file && (dump_flags & TDF_DETAILS))
1314 {
1315 fprintf (dump_file,
1316 "Analyzing # of iterations of loop %d\n", loop->num);
1317
1318 fprintf (dump_file, " exit condition ");
1319 dump_affine_iv (dump_file, iv0);
1320 fprintf (dump_file, " %s ",
1321 code == NE_EXPR ? "!="
1322 : code == LT_EXPR ? "<"
1323 : "<=");
1324 dump_affine_iv (dump_file, iv1);
1325 fprintf (dump_file, "\n");
1326
1327 fprintf (dump_file, " bounds on difference of bases: ");
1328 mpz_out_str (dump_file, 10, bnds.below);
1329 fprintf (dump_file, " ... ");
1330 mpz_out_str (dump_file, 10, bnds.up);
1331 fprintf (dump_file, "\n");
1332 }
1333
1334 switch (code)
1335 {
1336 case NE_EXPR:
1337 gcc_assert (integer_zerop (iv1->step));
1338 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1339 exit_must_be_taken, &bnds);
1340 break;
1341
1342 case LT_EXPR:
1343 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1344 &bnds);
1345 break;
1346
1347 case LE_EXPR:
1348 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1349 &bnds);
1350 break;
1351
1352 default:
1353 gcc_unreachable ();
1354 }
1355
1356 mpz_clear (bnds.up);
1357 mpz_clear (bnds.below);
1358
1359 if (dump_file && (dump_flags & TDF_DETAILS))
1360 {
1361 if (ret)
1362 {
1363 fprintf (dump_file, " result:\n");
1364 if (!integer_nonzerop (niter->assumptions))
1365 {
1366 fprintf (dump_file, " under assumptions ");
1367 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1368 fprintf (dump_file, "\n");
1369 }
1370
1371 if (!integer_zerop (niter->may_be_zero))
1372 {
1373 fprintf (dump_file, " zero if ");
1374 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1375 fprintf (dump_file, "\n");
1376 }
1377
1378 fprintf (dump_file, " # of iterations ");
1379 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1380 fprintf (dump_file, ", bounded by ");
1381 dump_double_int (dump_file, niter->max, true);
1382 fprintf (dump_file, "\n");
1383 }
1384 else
1385 fprintf (dump_file, " failed\n\n");
1386 }
1387 return ret;
1388 }
1389
1390 /* Substitute NEW for OLD in EXPR and fold the result. */
1391
1392 static tree
1393 simplify_replace_tree (tree expr, tree old, tree new_tree)
1394 {
1395 unsigned i, n;
1396 tree ret = NULL_TREE, e, se;
1397
1398 if (!expr)
1399 return NULL_TREE;
1400
1401 /* Do not bother to replace constants. */
1402 if (CONSTANT_CLASS_P (old))
1403 return expr;
1404
1405 if (expr == old
1406 || operand_equal_p (expr, old, 0))
1407 return unshare_expr (new_tree);
1408
1409 if (!EXPR_P (expr))
1410 return expr;
1411
1412 n = TREE_OPERAND_LENGTH (expr);
1413 for (i = 0; i < n; i++)
1414 {
1415 e = TREE_OPERAND (expr, i);
1416 se = simplify_replace_tree (e, old, new_tree);
1417 if (e == se)
1418 continue;
1419
1420 if (!ret)
1421 ret = copy_node (expr);
1422
1423 TREE_OPERAND (ret, i) = se;
1424 }
1425
1426 return (ret ? fold (ret) : expr);
1427 }
1428
1429 /* Expand definitions of ssa names in EXPR as long as they are simple
1430 enough, and return the new expression. */
1431
1432 tree
1433 expand_simple_operations (tree expr)
1434 {
1435 unsigned i, n;
1436 tree ret = NULL_TREE, e, ee, e1;
1437 enum tree_code code;
1438 gimple stmt;
1439
1440 if (expr == NULL_TREE)
1441 return expr;
1442
1443 if (is_gimple_min_invariant (expr))
1444 return expr;
1445
1446 code = TREE_CODE (expr);
1447 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1448 {
1449 n = TREE_OPERAND_LENGTH (expr);
1450 for (i = 0; i < n; i++)
1451 {
1452 e = TREE_OPERAND (expr, i);
1453 ee = expand_simple_operations (e);
1454 if (e == ee)
1455 continue;
1456
1457 if (!ret)
1458 ret = copy_node (expr);
1459
1460 TREE_OPERAND (ret, i) = ee;
1461 }
1462
1463 if (!ret)
1464 return expr;
1465
1466 fold_defer_overflow_warnings ();
1467 ret = fold (ret);
1468 fold_undefer_and_ignore_overflow_warnings ();
1469 return ret;
1470 }
1471
1472 if (TREE_CODE (expr) != SSA_NAME)
1473 return expr;
1474
1475 stmt = SSA_NAME_DEF_STMT (expr);
1476 if (gimple_code (stmt) == GIMPLE_PHI)
1477 {
1478 basic_block src, dest;
1479
1480 if (gimple_phi_num_args (stmt) != 1)
1481 return expr;
1482 e = PHI_ARG_DEF (stmt, 0);
1483
1484 /* Avoid propagating through loop exit phi nodes, which
1485 could break loop-closed SSA form restrictions. */
1486 dest = gimple_bb (stmt);
1487 src = single_pred (dest);
1488 if (TREE_CODE (e) == SSA_NAME
1489 && src->loop_father != dest->loop_father)
1490 return expr;
1491
1492 return expand_simple_operations (e);
1493 }
1494 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1495 return expr;
1496
1497 e = gimple_assign_rhs1 (stmt);
1498 code = gimple_assign_rhs_code (stmt);
1499 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1500 {
1501 if (is_gimple_min_invariant (e))
1502 return e;
1503
1504 if (code == SSA_NAME)
1505 return expand_simple_operations (e);
1506
1507 return expr;
1508 }
1509
1510 switch (code)
1511 {
1512 CASE_CONVERT:
1513 /* Casts are simple. */
1514 ee = expand_simple_operations (e);
1515 return fold_build1 (code, TREE_TYPE (expr), ee);
1516
1517 case PLUS_EXPR:
1518 case MINUS_EXPR:
1519 case POINTER_PLUS_EXPR:
1520 /* And increments and decrements by a constant are simple. */
1521 e1 = gimple_assign_rhs2 (stmt);
1522 if (!is_gimple_min_invariant (e1))
1523 return expr;
1524
1525 ee = expand_simple_operations (e);
1526 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1527
1528 default:
1529 return expr;
1530 }
1531 }
1532
1533 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1534 expression (or EXPR unchanged, if no simplification was possible). */
1535
1536 static tree
1537 tree_simplify_using_condition_1 (tree cond, tree expr)
1538 {
1539 bool changed;
1540 tree e, te, e0, e1, e2, notcond;
1541 enum tree_code code = TREE_CODE (expr);
1542
1543 if (code == INTEGER_CST)
1544 return expr;
1545
1546 if (code == TRUTH_OR_EXPR
1547 || code == TRUTH_AND_EXPR
1548 || code == COND_EXPR)
1549 {
1550 changed = false;
1551
1552 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1553 if (TREE_OPERAND (expr, 0) != e0)
1554 changed = true;
1555
1556 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1557 if (TREE_OPERAND (expr, 1) != e1)
1558 changed = true;
1559
1560 if (code == COND_EXPR)
1561 {
1562 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1563 if (TREE_OPERAND (expr, 2) != e2)
1564 changed = true;
1565 }
1566 else
1567 e2 = NULL_TREE;
1568
1569 if (changed)
1570 {
1571 if (code == COND_EXPR)
1572 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1573 else
1574 expr = fold_build2 (code, boolean_type_node, e0, e1);
1575 }
1576
1577 return expr;
1578 }
1579
1580 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1581 propagation, and vice versa. Fold does not handle this, since it is
1582 considered too expensive. */
1583 if (TREE_CODE (cond) == EQ_EXPR)
1584 {
1585 e0 = TREE_OPERAND (cond, 0);
1586 e1 = TREE_OPERAND (cond, 1);
1587
1588 /* We know that e0 == e1. Check whether we cannot simplify expr
1589 using this fact. */
1590 e = simplify_replace_tree (expr, e0, e1);
1591 if (integer_zerop (e) || integer_nonzerop (e))
1592 return e;
1593
1594 e = simplify_replace_tree (expr, e1, e0);
1595 if (integer_zerop (e) || integer_nonzerop (e))
1596 return e;
1597 }
1598 if (TREE_CODE (expr) == EQ_EXPR)
1599 {
1600 e0 = TREE_OPERAND (expr, 0);
1601 e1 = TREE_OPERAND (expr, 1);
1602
1603 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1604 e = simplify_replace_tree (cond, e0, e1);
1605 if (integer_zerop (e))
1606 return e;
1607 e = simplify_replace_tree (cond, e1, e0);
1608 if (integer_zerop (e))
1609 return e;
1610 }
1611 if (TREE_CODE (expr) == NE_EXPR)
1612 {
1613 e0 = TREE_OPERAND (expr, 0);
1614 e1 = TREE_OPERAND (expr, 1);
1615
1616 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1617 e = simplify_replace_tree (cond, e0, e1);
1618 if (integer_zerop (e))
1619 return boolean_true_node;
1620 e = simplify_replace_tree (cond, e1, e0);
1621 if (integer_zerop (e))
1622 return boolean_true_node;
1623 }
1624
1625 te = expand_simple_operations (expr);
1626
1627 /* Check whether COND ==> EXPR. */
1628 notcond = invert_truthvalue (cond);
1629 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1630 if (e && integer_nonzerop (e))
1631 return e;
1632
1633 /* Check whether COND ==> not EXPR. */
1634 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1635 if (e && integer_zerop (e))
1636 return e;
1637
1638 return expr;
1639 }
1640
1641 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1642 expression (or EXPR unchanged, if no simplification was possible).
1643 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1644 of simple operations in definitions of ssa names in COND are expanded,
1645 so that things like casts or incrementing the value of the bound before
1646 the loop do not cause us to fail. */
1647
1648 static tree
1649 tree_simplify_using_condition (tree cond, tree expr)
1650 {
1651 cond = expand_simple_operations (cond);
1652
1653 return tree_simplify_using_condition_1 (cond, expr);
1654 }
1655
1656 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1657 Returns the simplified expression (or EXPR unchanged, if no
1658 simplification was possible).*/
1659
1660 static tree
1661 simplify_using_initial_conditions (struct loop *loop, tree expr)
1662 {
1663 edge e;
1664 basic_block bb;
1665 gimple stmt;
1666 tree cond;
1667 int cnt = 0;
1668
1669 if (TREE_CODE (expr) == INTEGER_CST)
1670 return expr;
1671
1672 /* Limit walking the dominators to avoid quadraticness in
1673 the number of BBs times the number of loops in degenerate
1674 cases. */
1675 for (bb = loop->header;
1676 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1677 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1678 {
1679 if (!single_pred_p (bb))
1680 continue;
1681 e = single_pred_edge (bb);
1682
1683 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1684 continue;
1685
1686 stmt = last_stmt (e->src);
1687 cond = fold_build2 (gimple_cond_code (stmt),
1688 boolean_type_node,
1689 gimple_cond_lhs (stmt),
1690 gimple_cond_rhs (stmt));
1691 if (e->flags & EDGE_FALSE_VALUE)
1692 cond = invert_truthvalue (cond);
1693 expr = tree_simplify_using_condition (cond, expr);
1694 ++cnt;
1695 }
1696
1697 return expr;
1698 }
1699
1700 /* Tries to simplify EXPR using the evolutions of the loop invariants
1701 in the superloops of LOOP. Returns the simplified expression
1702 (or EXPR unchanged, if no simplification was possible). */
1703
1704 static tree
1705 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1706 {
1707 enum tree_code code = TREE_CODE (expr);
1708 bool changed;
1709 tree e, e0, e1, e2;
1710
1711 if (is_gimple_min_invariant (expr))
1712 return expr;
1713
1714 if (code == TRUTH_OR_EXPR
1715 || code == TRUTH_AND_EXPR
1716 || code == COND_EXPR)
1717 {
1718 changed = false;
1719
1720 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1721 if (TREE_OPERAND (expr, 0) != e0)
1722 changed = true;
1723
1724 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1725 if (TREE_OPERAND (expr, 1) != e1)
1726 changed = true;
1727
1728 if (code == COND_EXPR)
1729 {
1730 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1731 if (TREE_OPERAND (expr, 2) != e2)
1732 changed = true;
1733 }
1734 else
1735 e2 = NULL_TREE;
1736
1737 if (changed)
1738 {
1739 if (code == COND_EXPR)
1740 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1741 else
1742 expr = fold_build2 (code, boolean_type_node, e0, e1);
1743 }
1744
1745 return expr;
1746 }
1747
1748 e = instantiate_parameters (loop, expr);
1749 if (is_gimple_min_invariant (e))
1750 return e;
1751
1752 return expr;
1753 }
1754
1755 /* Returns true if EXIT is the only possible exit from LOOP. */
1756
1757 bool
1758 loop_only_exit_p (const struct loop *loop, const_edge exit)
1759 {
1760 basic_block *body;
1761 gimple_stmt_iterator bsi;
1762 unsigned i;
1763 gimple call;
1764
1765 if (exit != single_exit (loop))
1766 return false;
1767
1768 body = get_loop_body (loop);
1769 for (i = 0; i < loop->num_nodes; i++)
1770 {
1771 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1772 {
1773 call = gsi_stmt (bsi);
1774 if (gimple_code (call) != GIMPLE_CALL)
1775 continue;
1776
1777 if (gimple_has_side_effects (call))
1778 {
1779 free (body);
1780 return false;
1781 }
1782 }
1783 }
1784
1785 free (body);
1786 return true;
1787 }
1788
1789 /* Stores description of number of iterations of LOOP derived from
1790 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1791 useful information could be derived (and fields of NITER has
1792 meaning described in comments at struct tree_niter_desc
1793 declaration), false otherwise. If WARN is true and
1794 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1795 potentially unsafe assumptions.
1796 When EVERY_ITERATION is true, only tests that are known to be executed
1797 every iteration are considered (i.e. only test that alone bounds the loop).
1798 */
1799
1800 bool
1801 number_of_iterations_exit (struct loop *loop, edge exit,
1802 struct tree_niter_desc *niter,
1803 bool warn, bool every_iteration)
1804 {
1805 gimple stmt;
1806 tree type;
1807 tree op0, op1;
1808 enum tree_code code;
1809 affine_iv iv0, iv1;
1810
1811 if (every_iteration
1812 && !dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1813 return false;
1814
1815 niter->assumptions = boolean_false_node;
1816 stmt = last_stmt (exit->src);
1817 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1818 return false;
1819
1820 /* We want the condition for staying inside loop. */
1821 code = gimple_cond_code (stmt);
1822 if (exit->flags & EDGE_TRUE_VALUE)
1823 code = invert_tree_comparison (code, false);
1824
1825 switch (code)
1826 {
1827 case GT_EXPR:
1828 case GE_EXPR:
1829 case NE_EXPR:
1830 case LT_EXPR:
1831 case LE_EXPR:
1832 break;
1833
1834 default:
1835 return false;
1836 }
1837
1838 op0 = gimple_cond_lhs (stmt);
1839 op1 = gimple_cond_rhs (stmt);
1840 type = TREE_TYPE (op0);
1841
1842 if (TREE_CODE (type) != INTEGER_TYPE
1843 && !POINTER_TYPE_P (type))
1844 return false;
1845
1846 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1847 return false;
1848 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1849 return false;
1850
1851 /* We don't want to see undefined signed overflow warnings while
1852 computing the number of iterations. */
1853 fold_defer_overflow_warnings ();
1854
1855 iv0.base = expand_simple_operations (iv0.base);
1856 iv1.base = expand_simple_operations (iv1.base);
1857 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1858 loop_only_exit_p (loop, exit)))
1859 {
1860 fold_undefer_and_ignore_overflow_warnings ();
1861 return false;
1862 }
1863
1864 if (optimize >= 3)
1865 {
1866 niter->assumptions = simplify_using_outer_evolutions (loop,
1867 niter->assumptions);
1868 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1869 niter->may_be_zero);
1870 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1871 }
1872
1873 niter->assumptions
1874 = simplify_using_initial_conditions (loop,
1875 niter->assumptions);
1876 niter->may_be_zero
1877 = simplify_using_initial_conditions (loop,
1878 niter->may_be_zero);
1879
1880 fold_undefer_and_ignore_overflow_warnings ();
1881
1882 /* If NITER has simplified into a constant, update MAX. */
1883 if (TREE_CODE (niter->niter) == INTEGER_CST)
1884 niter->max = tree_to_double_int (niter->niter);
1885
1886 if (integer_onep (niter->assumptions))
1887 return true;
1888
1889 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1890 But if we can prove that there is overflow or some other source of weird
1891 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1892 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1893 return false;
1894
1895 if (flag_unsafe_loop_optimizations)
1896 niter->assumptions = boolean_true_node;
1897
1898 if (warn)
1899 {
1900 const char *wording;
1901 location_t loc = gimple_location (stmt);
1902
1903 /* We can provide a more specific warning if one of the operator is
1904 constant and the other advances by +1 or -1. */
1905 if (!integer_zerop (iv1.step)
1906 ? (integer_zerop (iv0.step)
1907 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1908 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1909 wording =
1910 flag_unsafe_loop_optimizations
1911 ? N_("assuming that the loop is not infinite")
1912 : N_("cannot optimize possibly infinite loops");
1913 else
1914 wording =
1915 flag_unsafe_loop_optimizations
1916 ? N_("assuming that the loop counter does not overflow")
1917 : N_("cannot optimize loop, the loop counter may overflow");
1918
1919 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1920 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1921 }
1922
1923 return flag_unsafe_loop_optimizations;
1924 }
1925
1926 /* Try to determine the number of iterations of LOOP. If we succeed,
1927 expression giving number of iterations is returned and *EXIT is
1928 set to the edge from that the information is obtained. Otherwise
1929 chrec_dont_know is returned. */
1930
1931 tree
1932 find_loop_niter (struct loop *loop, edge *exit)
1933 {
1934 unsigned i;
1935 vec<edge> exits = get_loop_exit_edges (loop);
1936 edge ex;
1937 tree niter = NULL_TREE, aniter;
1938 struct tree_niter_desc desc;
1939
1940 *exit = NULL;
1941 FOR_EACH_VEC_ELT (exits, i, ex)
1942 {
1943 if (!number_of_iterations_exit (loop, ex, &desc, false))
1944 continue;
1945
1946 if (integer_nonzerop (desc.may_be_zero))
1947 {
1948 /* We exit in the first iteration through this exit.
1949 We won't find anything better. */
1950 niter = build_int_cst (unsigned_type_node, 0);
1951 *exit = ex;
1952 break;
1953 }
1954
1955 if (!integer_zerop (desc.may_be_zero))
1956 continue;
1957
1958 aniter = desc.niter;
1959
1960 if (!niter)
1961 {
1962 /* Nothing recorded yet. */
1963 niter = aniter;
1964 *exit = ex;
1965 continue;
1966 }
1967
1968 /* Prefer constants, the lower the better. */
1969 if (TREE_CODE (aniter) != INTEGER_CST)
1970 continue;
1971
1972 if (TREE_CODE (niter) != INTEGER_CST)
1973 {
1974 niter = aniter;
1975 *exit = ex;
1976 continue;
1977 }
1978
1979 if (tree_int_cst_lt (aniter, niter))
1980 {
1981 niter = aniter;
1982 *exit = ex;
1983 continue;
1984 }
1985 }
1986 exits.release ();
1987
1988 return niter ? niter : chrec_dont_know;
1989 }
1990
1991 /* Return true if loop is known to have bounded number of iterations. */
1992
1993 bool
1994 finite_loop_p (struct loop *loop)
1995 {
1996 double_int nit;
1997 int flags;
1998
1999 if (flag_unsafe_loop_optimizations)
2000 return true;
2001 flags = flags_from_decl_or_type (current_function_decl);
2002 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2003 {
2004 if (dump_file && (dump_flags & TDF_DETAILS))
2005 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2006 loop->num);
2007 return true;
2008 }
2009
2010 if (loop->any_upper_bound
2011 || max_loop_iterations (loop, &nit))
2012 {
2013 if (dump_file && (dump_flags & TDF_DETAILS))
2014 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2015 loop->num);
2016 return true;
2017 }
2018 return false;
2019 }
2020
2021 /*
2022
2023 Analysis of a number of iterations of a loop by a brute-force evaluation.
2024
2025 */
2026
2027 /* Bound on the number of iterations we try to evaluate. */
2028
2029 #define MAX_ITERATIONS_TO_TRACK \
2030 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2031
2032 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2033 result by a chain of operations such that all but exactly one of their
2034 operands are constants. */
2035
2036 static gimple
2037 chain_of_csts_start (struct loop *loop, tree x)
2038 {
2039 gimple stmt = SSA_NAME_DEF_STMT (x);
2040 tree use;
2041 basic_block bb = gimple_bb (stmt);
2042 enum tree_code code;
2043
2044 if (!bb
2045 || !flow_bb_inside_loop_p (loop, bb))
2046 return NULL;
2047
2048 if (gimple_code (stmt) == GIMPLE_PHI)
2049 {
2050 if (bb == loop->header)
2051 return stmt;
2052
2053 return NULL;
2054 }
2055
2056 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2057 return NULL;
2058
2059 code = gimple_assign_rhs_code (stmt);
2060 if (gimple_references_memory_p (stmt)
2061 || TREE_CODE_CLASS (code) == tcc_reference
2062 || (code == ADDR_EXPR
2063 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2064 return NULL;
2065
2066 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2067 if (use == NULL_TREE)
2068 return NULL;
2069
2070 return chain_of_csts_start (loop, use);
2071 }
2072
2073 /* Determines whether the expression X is derived from a result of a phi node
2074 in header of LOOP such that
2075
2076 * the derivation of X consists only from operations with constants
2077 * the initial value of the phi node is constant
2078 * the value of the phi node in the next iteration can be derived from the
2079 value in the current iteration by a chain of operations with constants.
2080
2081 If such phi node exists, it is returned, otherwise NULL is returned. */
2082
2083 static gimple
2084 get_base_for (struct loop *loop, tree x)
2085 {
2086 gimple phi;
2087 tree init, next;
2088
2089 if (is_gimple_min_invariant (x))
2090 return NULL;
2091
2092 phi = chain_of_csts_start (loop, x);
2093 if (!phi)
2094 return NULL;
2095
2096 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2097 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2098
2099 if (TREE_CODE (next) != SSA_NAME)
2100 return NULL;
2101
2102 if (!is_gimple_min_invariant (init))
2103 return NULL;
2104
2105 if (chain_of_csts_start (loop, next) != phi)
2106 return NULL;
2107
2108 return phi;
2109 }
2110
2111 /* Given an expression X, then
2112
2113 * if X is NULL_TREE, we return the constant BASE.
2114 * otherwise X is a SSA name, whose value in the considered loop is derived
2115 by a chain of operations with constant from a result of a phi node in
2116 the header of the loop. Then we return value of X when the value of the
2117 result of this phi node is given by the constant BASE. */
2118
2119 static tree
2120 get_val_for (tree x, tree base)
2121 {
2122 gimple stmt;
2123
2124 gcc_assert (is_gimple_min_invariant (base));
2125
2126 if (!x)
2127 return base;
2128
2129 stmt = SSA_NAME_DEF_STMT (x);
2130 if (gimple_code (stmt) == GIMPLE_PHI)
2131 return base;
2132
2133 gcc_assert (is_gimple_assign (stmt));
2134
2135 /* STMT must be either an assignment of a single SSA name or an
2136 expression involving an SSA name and a constant. Try to fold that
2137 expression using the value for the SSA name. */
2138 if (gimple_assign_ssa_name_copy_p (stmt))
2139 return get_val_for (gimple_assign_rhs1 (stmt), base);
2140 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2141 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2142 {
2143 return fold_build1 (gimple_assign_rhs_code (stmt),
2144 gimple_expr_type (stmt),
2145 get_val_for (gimple_assign_rhs1 (stmt), base));
2146 }
2147 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2148 {
2149 tree rhs1 = gimple_assign_rhs1 (stmt);
2150 tree rhs2 = gimple_assign_rhs2 (stmt);
2151 if (TREE_CODE (rhs1) == SSA_NAME)
2152 rhs1 = get_val_for (rhs1, base);
2153 else if (TREE_CODE (rhs2) == SSA_NAME)
2154 rhs2 = get_val_for (rhs2, base);
2155 else
2156 gcc_unreachable ();
2157 return fold_build2 (gimple_assign_rhs_code (stmt),
2158 gimple_expr_type (stmt), rhs1, rhs2);
2159 }
2160 else
2161 gcc_unreachable ();
2162 }
2163
2164
2165 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2166 by brute force -- i.e. by determining the value of the operands of the
2167 condition at EXIT in first few iterations of the loop (assuming that
2168 these values are constant) and determining the first one in that the
2169 condition is not satisfied. Returns the constant giving the number
2170 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2171
2172 tree
2173 loop_niter_by_eval (struct loop *loop, edge exit)
2174 {
2175 tree acnd;
2176 tree op[2], val[2], next[2], aval[2];
2177 gimple phi, cond;
2178 unsigned i, j;
2179 enum tree_code cmp;
2180
2181 cond = last_stmt (exit->src);
2182 if (!cond || gimple_code (cond) != GIMPLE_COND)
2183 return chrec_dont_know;
2184
2185 cmp = gimple_cond_code (cond);
2186 if (exit->flags & EDGE_TRUE_VALUE)
2187 cmp = invert_tree_comparison (cmp, false);
2188
2189 switch (cmp)
2190 {
2191 case EQ_EXPR:
2192 case NE_EXPR:
2193 case GT_EXPR:
2194 case GE_EXPR:
2195 case LT_EXPR:
2196 case LE_EXPR:
2197 op[0] = gimple_cond_lhs (cond);
2198 op[1] = gimple_cond_rhs (cond);
2199 break;
2200
2201 default:
2202 return chrec_dont_know;
2203 }
2204
2205 for (j = 0; j < 2; j++)
2206 {
2207 if (is_gimple_min_invariant (op[j]))
2208 {
2209 val[j] = op[j];
2210 next[j] = NULL_TREE;
2211 op[j] = NULL_TREE;
2212 }
2213 else
2214 {
2215 phi = get_base_for (loop, op[j]);
2216 if (!phi)
2217 return chrec_dont_know;
2218 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2219 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2220 }
2221 }
2222
2223 /* Don't issue signed overflow warnings. */
2224 fold_defer_overflow_warnings ();
2225
2226 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2227 {
2228 for (j = 0; j < 2; j++)
2229 aval[j] = get_val_for (op[j], val[j]);
2230
2231 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2232 if (acnd && integer_zerop (acnd))
2233 {
2234 fold_undefer_and_ignore_overflow_warnings ();
2235 if (dump_file && (dump_flags & TDF_DETAILS))
2236 fprintf (dump_file,
2237 "Proved that loop %d iterates %d times using brute force.\n",
2238 loop->num, i);
2239 return build_int_cst (unsigned_type_node, i);
2240 }
2241
2242 for (j = 0; j < 2; j++)
2243 {
2244 val[j] = get_val_for (next[j], val[j]);
2245 if (!is_gimple_min_invariant (val[j]))
2246 {
2247 fold_undefer_and_ignore_overflow_warnings ();
2248 return chrec_dont_know;
2249 }
2250 }
2251 }
2252
2253 fold_undefer_and_ignore_overflow_warnings ();
2254
2255 return chrec_dont_know;
2256 }
2257
2258 /* Finds the exit of the LOOP by that the loop exits after a constant
2259 number of iterations and stores the exit edge to *EXIT. The constant
2260 giving the number of iterations of LOOP is returned. The number of
2261 iterations is determined using loop_niter_by_eval (i.e. by brute force
2262 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2263 determines the number of iterations, chrec_dont_know is returned. */
2264
2265 tree
2266 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2267 {
2268 unsigned i;
2269 vec<edge> exits = get_loop_exit_edges (loop);
2270 edge ex;
2271 tree niter = NULL_TREE, aniter;
2272
2273 *exit = NULL;
2274
2275 /* Loops with multiple exits are expensive to handle and less important. */
2276 if (!flag_expensive_optimizations
2277 && exits.length () > 1)
2278 {
2279 exits.release ();
2280 return chrec_dont_know;
2281 }
2282
2283 FOR_EACH_VEC_ELT (exits, i, ex)
2284 {
2285 if (!just_once_each_iteration_p (loop, ex->src))
2286 continue;
2287
2288 aniter = loop_niter_by_eval (loop, ex);
2289 if (chrec_contains_undetermined (aniter))
2290 continue;
2291
2292 if (niter
2293 && !tree_int_cst_lt (aniter, niter))
2294 continue;
2295
2296 niter = aniter;
2297 *exit = ex;
2298 }
2299 exits.release ();
2300
2301 return niter ? niter : chrec_dont_know;
2302 }
2303
2304 /*
2305
2306 Analysis of upper bounds on number of iterations of a loop.
2307
2308 */
2309
2310 static double_int derive_constant_upper_bound_ops (tree, tree,
2311 enum tree_code, tree);
2312
2313 /* Returns a constant upper bound on the value of the right-hand side of
2314 an assignment statement STMT. */
2315
2316 static double_int
2317 derive_constant_upper_bound_assign (gimple stmt)
2318 {
2319 enum tree_code code = gimple_assign_rhs_code (stmt);
2320 tree op0 = gimple_assign_rhs1 (stmt);
2321 tree op1 = gimple_assign_rhs2 (stmt);
2322
2323 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2324 op0, code, op1);
2325 }
2326
2327 /* Returns a constant upper bound on the value of expression VAL. VAL
2328 is considered to be unsigned. If its type is signed, its value must
2329 be nonnegative. */
2330
2331 static double_int
2332 derive_constant_upper_bound (tree val)
2333 {
2334 enum tree_code code;
2335 tree op0, op1;
2336
2337 extract_ops_from_tree (val, &code, &op0, &op1);
2338 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2339 }
2340
2341 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2342 whose type is TYPE. The expression is considered to be unsigned. If
2343 its type is signed, its value must be nonnegative. */
2344
2345 static double_int
2346 derive_constant_upper_bound_ops (tree type, tree op0,
2347 enum tree_code code, tree op1)
2348 {
2349 tree subtype, maxt;
2350 double_int bnd, max, mmax, cst;
2351 gimple stmt;
2352
2353 if (INTEGRAL_TYPE_P (type))
2354 maxt = TYPE_MAX_VALUE (type);
2355 else
2356 maxt = upper_bound_in_type (type, type);
2357
2358 max = tree_to_double_int (maxt);
2359
2360 switch (code)
2361 {
2362 case INTEGER_CST:
2363 return tree_to_double_int (op0);
2364
2365 CASE_CONVERT:
2366 subtype = TREE_TYPE (op0);
2367 if (!TYPE_UNSIGNED (subtype)
2368 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2369 that OP0 is nonnegative. */
2370 && TYPE_UNSIGNED (type)
2371 && !tree_expr_nonnegative_p (op0))
2372 {
2373 /* If we cannot prove that the casted expression is nonnegative,
2374 we cannot establish more useful upper bound than the precision
2375 of the type gives us. */
2376 return max;
2377 }
2378
2379 /* We now know that op0 is an nonnegative value. Try deriving an upper
2380 bound for it. */
2381 bnd = derive_constant_upper_bound (op0);
2382
2383 /* If the bound does not fit in TYPE, max. value of TYPE could be
2384 attained. */
2385 if (max.ult (bnd))
2386 return max;
2387
2388 return bnd;
2389
2390 case PLUS_EXPR:
2391 case POINTER_PLUS_EXPR:
2392 case MINUS_EXPR:
2393 if (TREE_CODE (op1) != INTEGER_CST
2394 || !tree_expr_nonnegative_p (op0))
2395 return max;
2396
2397 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2398 choose the most logical way how to treat this constant regardless
2399 of the signedness of the type. */
2400 cst = tree_to_double_int (op1);
2401 cst = cst.sext (TYPE_PRECISION (type));
2402 if (code != MINUS_EXPR)
2403 cst = -cst;
2404
2405 bnd = derive_constant_upper_bound (op0);
2406
2407 if (cst.is_negative ())
2408 {
2409 cst = -cst;
2410 /* Avoid CST == 0x80000... */
2411 if (cst.is_negative ())
2412 return max;;
2413
2414 /* OP0 + CST. We need to check that
2415 BND <= MAX (type) - CST. */
2416
2417 mmax -= cst;
2418 if (bnd.ugt (mmax))
2419 return max;
2420
2421 return bnd + cst;
2422 }
2423 else
2424 {
2425 /* OP0 - CST, where CST >= 0.
2426
2427 If TYPE is signed, we have already verified that OP0 >= 0, and we
2428 know that the result is nonnegative. This implies that
2429 VAL <= BND - CST.
2430
2431 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2432 otherwise the operation underflows.
2433 */
2434
2435 /* This should only happen if the type is unsigned; however, for
2436 buggy programs that use overflowing signed arithmetics even with
2437 -fno-wrapv, this condition may also be true for signed values. */
2438 if (bnd.ult (cst))
2439 return max;
2440
2441 if (TYPE_UNSIGNED (type))
2442 {
2443 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2444 double_int_to_tree (type, cst));
2445 if (!tem || integer_nonzerop (tem))
2446 return max;
2447 }
2448
2449 bnd -= cst;
2450 }
2451
2452 return bnd;
2453
2454 case FLOOR_DIV_EXPR:
2455 case EXACT_DIV_EXPR:
2456 if (TREE_CODE (op1) != INTEGER_CST
2457 || tree_int_cst_sign_bit (op1))
2458 return max;
2459
2460 bnd = derive_constant_upper_bound (op0);
2461 return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
2462
2463 case BIT_AND_EXPR:
2464 if (TREE_CODE (op1) != INTEGER_CST
2465 || tree_int_cst_sign_bit (op1))
2466 return max;
2467 return tree_to_double_int (op1);
2468
2469 case SSA_NAME:
2470 stmt = SSA_NAME_DEF_STMT (op0);
2471 if (gimple_code (stmt) != GIMPLE_ASSIGN
2472 || gimple_assign_lhs (stmt) != op0)
2473 return max;
2474 return derive_constant_upper_bound_assign (stmt);
2475
2476 default:
2477 return max;
2478 }
2479 }
2480
2481 /* Records that every statement in LOOP is executed I_BOUND times.
2482 REALISTIC is true if I_BOUND is expected to be close to the real number
2483 of iterations. UPPER is true if we are sure the loop iterates at most
2484 I_BOUND times. */
2485
2486 void
2487 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2488 bool upper)
2489 {
2490 /* Update the bounds only when there is no previous estimation, or when the
2491 current estimation is smaller. */
2492 if (upper
2493 && (!loop->any_upper_bound
2494 || i_bound.ult (loop->nb_iterations_upper_bound)))
2495 {
2496 loop->any_upper_bound = true;
2497 loop->nb_iterations_upper_bound = i_bound;
2498 }
2499 if (realistic
2500 && (!loop->any_estimate
2501 || i_bound.ult (loop->nb_iterations_estimate)))
2502 {
2503 loop->any_estimate = true;
2504 loop->nb_iterations_estimate = i_bound;
2505 }
2506
2507 /* If an upper bound is smaller than the realistic estimate of the
2508 number of iterations, use the upper bound instead. */
2509 if (loop->any_upper_bound
2510 && loop->any_estimate
2511 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
2512 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2513 }
2514
2515 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2516 is true if the loop is exited immediately after STMT, and this exit
2517 is taken at last when the STMT is executed BOUND + 1 times.
2518 REALISTIC is true if BOUND is expected to be close to the real number
2519 of iterations. UPPER is true if we are sure the loop iterates at most
2520 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2521
2522 static void
2523 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2524 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2525 {
2526 double_int delta;
2527
2528 if (dump_file && (dump_flags & TDF_DETAILS))
2529 {
2530 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2531 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2532 fprintf (dump_file, " is %sexecuted at most ",
2533 upper ? "" : "probably ");
2534 print_generic_expr (dump_file, bound, TDF_SLIM);
2535 fprintf (dump_file, " (bounded by ");
2536 dump_double_int (dump_file, i_bound, true);
2537 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2538 }
2539
2540 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2541 real number of iterations. */
2542 if (TREE_CODE (bound) != INTEGER_CST)
2543 realistic = false;
2544 else
2545 gcc_checking_assert (i_bound == tree_to_double_int (bound));
2546 if (!upper && !realistic)
2547 return;
2548
2549 /* If we have a guaranteed upper bound, record it in the appropriate
2550 list. */
2551 if (upper)
2552 {
2553 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2554
2555 elt->bound = i_bound;
2556 elt->stmt = at_stmt;
2557 elt->is_exit = is_exit;
2558 elt->next = loop->bounds;
2559 loop->bounds = elt;
2560 }
2561
2562 /* If statement is executed on every path to the loop latch, we can directly
2563 infer the upper bound on the # of iterations of the loop. */
2564 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2565 return;
2566
2567 /* Update the number of iteration estimates according to the bound.
2568 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2569 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2570 later if such statement must be executed on last iteration */
2571 if (is_exit)
2572 delta = double_int_zero;
2573 else
2574 delta = double_int_one;
2575 i_bound += delta;
2576
2577 /* If an overflow occurred, ignore the result. */
2578 if (i_bound.ult (delta))
2579 return;
2580
2581 record_niter_bound (loop, i_bound, realistic, upper);
2582 }
2583
2584 /* Record the estimate on number of iterations of LOOP based on the fact that
2585 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2586 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2587 estimated number of iterations is expected to be close to the real one.
2588 UPPER is true if we are sure the induction variable does not wrap. */
2589
2590 static void
2591 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2592 tree low, tree high, bool realistic, bool upper)
2593 {
2594 tree niter_bound, extreme, delta;
2595 tree type = TREE_TYPE (base), unsigned_type;
2596 double_int max;
2597
2598 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2599 return;
2600
2601 if (dump_file && (dump_flags & TDF_DETAILS))
2602 {
2603 fprintf (dump_file, "Induction variable (");
2604 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2605 fprintf (dump_file, ") ");
2606 print_generic_expr (dump_file, base, TDF_SLIM);
2607 fprintf (dump_file, " + ");
2608 print_generic_expr (dump_file, step, TDF_SLIM);
2609 fprintf (dump_file, " * iteration does not wrap in statement ");
2610 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2611 fprintf (dump_file, " in loop %d.\n", loop->num);
2612 }
2613
2614 unsigned_type = unsigned_type_for (type);
2615 base = fold_convert (unsigned_type, base);
2616 step = fold_convert (unsigned_type, step);
2617
2618 if (tree_int_cst_sign_bit (step))
2619 {
2620 extreme = fold_convert (unsigned_type, low);
2621 if (TREE_CODE (base) != INTEGER_CST)
2622 base = fold_convert (unsigned_type, high);
2623 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2624 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2625 }
2626 else
2627 {
2628 extreme = fold_convert (unsigned_type, high);
2629 if (TREE_CODE (base) != INTEGER_CST)
2630 base = fold_convert (unsigned_type, low);
2631 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2632 }
2633
2634 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2635 would get out of the range. */
2636 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2637 max = derive_constant_upper_bound (niter_bound);
2638 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2639 }
2640
2641 /* Determine information about number of iterations a LOOP from the index
2642 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2643 guaranteed to be executed in every iteration of LOOP. Callback for
2644 for_each_index. */
2645
2646 struct ilb_data
2647 {
2648 struct loop *loop;
2649 gimple stmt;
2650 };
2651
2652 static bool
2653 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2654 {
2655 struct ilb_data *data = (struct ilb_data *) dta;
2656 tree ev, init, step;
2657 tree low, high, type, next;
2658 bool sign, upper = true, at_end = false;
2659 struct loop *loop = data->loop;
2660
2661 if (TREE_CODE (base) != ARRAY_REF)
2662 return true;
2663
2664 /* For arrays at the end of the structure, we are not guaranteed that they
2665 do not really extend over their declared size. However, for arrays of
2666 size greater than one, this is unlikely to be intended. */
2667 if (array_at_struct_end_p (base))
2668 {
2669 at_end = true;
2670 upper = false;
2671 }
2672
2673 struct loop *dloop = loop_containing_stmt (data->stmt);
2674 if (!dloop)
2675 return true;
2676
2677 ev = analyze_scalar_evolution (dloop, *idx);
2678 ev = instantiate_parameters (loop, ev);
2679 init = initial_condition (ev);
2680 step = evolution_part_in_loop_num (ev, loop->num);
2681
2682 if (!init
2683 || !step
2684 || TREE_CODE (step) != INTEGER_CST
2685 || integer_zerop (step)
2686 || tree_contains_chrecs (init, NULL)
2687 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2688 return true;
2689
2690 low = array_ref_low_bound (base);
2691 high = array_ref_up_bound (base);
2692
2693 /* The case of nonconstant bounds could be handled, but it would be
2694 complicated. */
2695 if (TREE_CODE (low) != INTEGER_CST
2696 || !high
2697 || TREE_CODE (high) != INTEGER_CST)
2698 return true;
2699 sign = tree_int_cst_sign_bit (step);
2700 type = TREE_TYPE (step);
2701
2702 /* The array of length 1 at the end of a structure most likely extends
2703 beyond its bounds. */
2704 if (at_end
2705 && operand_equal_p (low, high, 0))
2706 return true;
2707
2708 /* In case the relevant bound of the array does not fit in type, or
2709 it does, but bound + step (in type) still belongs into the range of the
2710 array, the index may wrap and still stay within the range of the array
2711 (consider e.g. if the array is indexed by the full range of
2712 unsigned char).
2713
2714 To make things simpler, we require both bounds to fit into type, although
2715 there are cases where this would not be strictly necessary. */
2716 if (!int_fits_type_p (high, type)
2717 || !int_fits_type_p (low, type))
2718 return true;
2719 low = fold_convert (type, low);
2720 high = fold_convert (type, high);
2721
2722 if (sign)
2723 next = fold_binary (PLUS_EXPR, type, low, step);
2724 else
2725 next = fold_binary (PLUS_EXPR, type, high, step);
2726
2727 if (tree_int_cst_compare (low, next) <= 0
2728 && tree_int_cst_compare (next, high) <= 0)
2729 return true;
2730
2731 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2732 return true;
2733 }
2734
2735 /* Determine information about number of iterations a LOOP from the bounds
2736 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2737 STMT is guaranteed to be executed in every iteration of LOOP.*/
2738
2739 static void
2740 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2741 {
2742 struct ilb_data data;
2743
2744 data.loop = loop;
2745 data.stmt = stmt;
2746 for_each_index (&ref, idx_infer_loop_bounds, &data);
2747 }
2748
2749 /* Determine information about number of iterations of a LOOP from the way
2750 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2751 executed in every iteration of LOOP. */
2752
2753 static void
2754 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2755 {
2756 if (is_gimple_assign (stmt))
2757 {
2758 tree op0 = gimple_assign_lhs (stmt);
2759 tree op1 = gimple_assign_rhs1 (stmt);
2760
2761 /* For each memory access, analyze its access function
2762 and record a bound on the loop iteration domain. */
2763 if (REFERENCE_CLASS_P (op0))
2764 infer_loop_bounds_from_ref (loop, stmt, op0);
2765
2766 if (REFERENCE_CLASS_P (op1))
2767 infer_loop_bounds_from_ref (loop, stmt, op1);
2768 }
2769 else if (is_gimple_call (stmt))
2770 {
2771 tree arg, lhs;
2772 unsigned i, n = gimple_call_num_args (stmt);
2773
2774 lhs = gimple_call_lhs (stmt);
2775 if (lhs && REFERENCE_CLASS_P (lhs))
2776 infer_loop_bounds_from_ref (loop, stmt, lhs);
2777
2778 for (i = 0; i < n; i++)
2779 {
2780 arg = gimple_call_arg (stmt, i);
2781 if (REFERENCE_CLASS_P (arg))
2782 infer_loop_bounds_from_ref (loop, stmt, arg);
2783 }
2784 }
2785 }
2786
2787 /* Determine information about number of iterations of a LOOP from the fact
2788 that pointer arithmetics in STMT does not overflow. */
2789
2790 static void
2791 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2792 {
2793 tree def, base, step, scev, type, low, high;
2794 tree var, ptr;
2795
2796 if (!is_gimple_assign (stmt)
2797 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2798 return;
2799
2800 def = gimple_assign_lhs (stmt);
2801 if (TREE_CODE (def) != SSA_NAME)
2802 return;
2803
2804 type = TREE_TYPE (def);
2805 if (!nowrap_type_p (type))
2806 return;
2807
2808 ptr = gimple_assign_rhs1 (stmt);
2809 if (!expr_invariant_in_loop_p (loop, ptr))
2810 return;
2811
2812 var = gimple_assign_rhs2 (stmt);
2813 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2814 return;
2815
2816 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2817 if (chrec_contains_undetermined (scev))
2818 return;
2819
2820 base = initial_condition_in_loop_num (scev, loop->num);
2821 step = evolution_part_in_loop_num (scev, loop->num);
2822
2823 if (!base || !step
2824 || TREE_CODE (step) != INTEGER_CST
2825 || tree_contains_chrecs (base, NULL)
2826 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2827 return;
2828
2829 low = lower_bound_in_type (type, type);
2830 high = upper_bound_in_type (type, type);
2831
2832 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2833 produce a NULL pointer. The contrary would mean NULL points to an object,
2834 while NULL is supposed to compare unequal with the address of all objects.
2835 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2836 NULL pointer since that would mean wrapping, which we assume here not to
2837 happen. So, we can exclude NULL from the valid range of pointer
2838 arithmetic. */
2839 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2840 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2841
2842 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2843 }
2844
2845 /* Determine information about number of iterations of a LOOP from the fact
2846 that signed arithmetics in STMT does not overflow. */
2847
2848 static void
2849 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2850 {
2851 tree def, base, step, scev, type, low, high;
2852
2853 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2854 return;
2855
2856 def = gimple_assign_lhs (stmt);
2857
2858 if (TREE_CODE (def) != SSA_NAME)
2859 return;
2860
2861 type = TREE_TYPE (def);
2862 if (!INTEGRAL_TYPE_P (type)
2863 || !TYPE_OVERFLOW_UNDEFINED (type))
2864 return;
2865
2866 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2867 if (chrec_contains_undetermined (scev))
2868 return;
2869
2870 base = initial_condition_in_loop_num (scev, loop->num);
2871 step = evolution_part_in_loop_num (scev, loop->num);
2872
2873 if (!base || !step
2874 || TREE_CODE (step) != INTEGER_CST
2875 || tree_contains_chrecs (base, NULL)
2876 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2877 return;
2878
2879 low = lower_bound_in_type (type, type);
2880 high = upper_bound_in_type (type, type);
2881
2882 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2883 }
2884
2885 /* The following analyzers are extracting informations on the bounds
2886 of LOOP from the following undefined behaviors:
2887
2888 - data references should not access elements over the statically
2889 allocated size,
2890
2891 - signed variables should not overflow when flag_wrapv is not set.
2892 */
2893
2894 static void
2895 infer_loop_bounds_from_undefined (struct loop *loop)
2896 {
2897 unsigned i;
2898 basic_block *bbs;
2899 gimple_stmt_iterator bsi;
2900 basic_block bb;
2901 bool reliable;
2902
2903 bbs = get_loop_body (loop);
2904
2905 for (i = 0; i < loop->num_nodes; i++)
2906 {
2907 bb = bbs[i];
2908
2909 /* If BB is not executed in each iteration of the loop, we cannot
2910 use the operations in it to infer reliable upper bound on the
2911 # of iterations of the loop. However, we can use it as a guess.
2912 Reliable guesses come only from array bounds. */
2913 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2914
2915 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2916 {
2917 gimple stmt = gsi_stmt (bsi);
2918
2919 infer_loop_bounds_from_array (loop, stmt);
2920
2921 if (reliable)
2922 {
2923 infer_loop_bounds_from_signedness (loop, stmt);
2924 infer_loop_bounds_from_pointer_arith (loop, stmt);
2925 }
2926 }
2927
2928 }
2929
2930 free (bbs);
2931 }
2932
2933 /* Converts VAL to double_int. */
2934
2935 static double_int
2936 gcov_type_to_double_int (gcov_type val)
2937 {
2938 double_int ret;
2939
2940 ret.low = (unsigned HOST_WIDE_INT) val;
2941 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2942 the size of type. */
2943 val >>= HOST_BITS_PER_WIDE_INT - 1;
2944 val >>= 1;
2945 ret.high = (unsigned HOST_WIDE_INT) val;
2946
2947 return ret;
2948 }
2949
2950 /* Compare double ints, callback for qsort. */
2951
2952 int
2953 double_int_cmp (const void *p1, const void *p2)
2954 {
2955 const double_int *d1 = (const double_int *)p1;
2956 const double_int *d2 = (const double_int *)p2;
2957 if (*d1 == *d2)
2958 return 0;
2959 if (d1->ult (*d2))
2960 return -1;
2961 return 1;
2962 }
2963
2964 /* Return index of BOUND in BOUNDS array sorted in increasing order.
2965 Lookup by binary search. */
2966
2967 int
2968 bound_index (vec<double_int> bounds, double_int bound)
2969 {
2970 unsigned int end = bounds.length ();
2971 unsigned int begin = 0;
2972
2973 /* Find a matching index by means of a binary search. */
2974 while (begin != end)
2975 {
2976 unsigned int middle = (begin + end) / 2;
2977 double_int index = bounds[middle];
2978
2979 if (index == bound)
2980 return middle;
2981 else if (index.ult (bound))
2982 begin = middle + 1;
2983 else
2984 end = middle;
2985 }
2986 gcc_unreachable ();
2987 }
2988
2989 /* Used to hold vector of queues of basic blocks bellow. */
2990 typedef vec<basic_block> bb_queue;
2991
2992 /* We recorded loop bounds only for statements dominating loop latch (and thus
2993 executed each loop iteration). If there are any bounds on statements not
2994 dominating the loop latch we can improve the estimate by walking the loop
2995 body and seeing if every path from loop header to loop latch contains
2996 some bounded statement. */
2997
2998 static void
2999 discover_iteration_bound_by_body_walk (struct loop *loop)
3000 {
3001 pointer_map_t *bb_bounds;
3002 struct nb_iter_bound *elt;
3003 vec<double_int> bounds = vNULL;
3004 vec<bb_queue> queues = vNULL;
3005 bb_queue queue = bb_queue();
3006 ptrdiff_t queue_index;
3007 ptrdiff_t latch_index = 0;
3008 pointer_map_t *block_priority;
3009
3010 /* Discover what bounds may interest us. */
3011 for (elt = loop->bounds; elt; elt = elt->next)
3012 {
3013 double_int bound = elt->bound;
3014
3015 /* Exit terminates loop at given iteration, while non-exits produce undefined
3016 effect on the next iteration. */
3017 if (!elt->is_exit)
3018 {
3019 bound += double_int_one;
3020 /* If an overflow occurred, ignore the result. */
3021 if (bound.is_zero ())
3022 continue;
3023 }
3024
3025 if (!loop->any_upper_bound
3026 || bound.ult (loop->nb_iterations_upper_bound))
3027 bounds.safe_push (bound);
3028 }
3029
3030 /* Exit early if there is nothing to do. */
3031 if (!bounds.exists ())
3032 return;
3033
3034 if (dump_file && (dump_flags & TDF_DETAILS))
3035 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3036
3037 /* Sort the bounds in decreasing order. */
3038 qsort (bounds.address (), bounds.length (),
3039 sizeof (double_int), double_int_cmp);
3040
3041 /* For every basic block record the lowest bound that is guaranteed to
3042 terminate the loop. */
3043
3044 bb_bounds = pointer_map_create ();
3045 for (elt = loop->bounds; elt; elt = elt->next)
3046 {
3047 double_int bound = elt->bound;
3048 if (!elt->is_exit)
3049 {
3050 bound += double_int_one;
3051 /* If an overflow occurred, ignore the result. */
3052 if (bound.is_zero ())
3053 continue;
3054 }
3055
3056 if (!loop->any_upper_bound
3057 || bound.ult (loop->nb_iterations_upper_bound))
3058 {
3059 ptrdiff_t index = bound_index (bounds, bound);
3060 void **entry = pointer_map_contains (bb_bounds,
3061 gimple_bb (elt->stmt));
3062 if (!entry)
3063 *pointer_map_insert (bb_bounds,
3064 gimple_bb (elt->stmt)) = (void *)index;
3065 else if ((ptrdiff_t)*entry > index)
3066 *entry = (void *)index;
3067 }
3068 }
3069
3070 block_priority = pointer_map_create ();
3071
3072 /* Perform shortest path discovery loop->header ... loop->latch.
3073
3074 The "distance" is given by the smallest loop bound of basic block
3075 present in the path and we look for path with largest smallest bound
3076 on it.
3077
3078 To avoid the need for fibonaci heap on double ints we simply compress
3079 double ints into indexes to BOUNDS array and then represent the queue
3080 as arrays of queues for every index.
3081 Index of BOUNDS.length() means that the execution of given BB has
3082 no bounds determined.
3083
3084 VISITED is a pointer map translating basic block into smallest index
3085 it was inserted into the priority queue with. */
3086 latch_index = -1;
3087
3088 /* Start walk in loop header with index set to infinite bound. */
3089 queue_index = bounds.length ();
3090 queues.safe_grow_cleared (queue_index + 1);
3091 queue.safe_push (loop->header);
3092 queues[queue_index] = queue;
3093 *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3094
3095 for (; queue_index >= 0; queue_index--)
3096 {
3097 if (latch_index < queue_index)
3098 {
3099 while (queues[queue_index].length ())
3100 {
3101 basic_block bb;
3102 ptrdiff_t bound_index = queue_index;
3103 void **entry;
3104 edge e;
3105 edge_iterator ei;
3106
3107 queue = queues[queue_index];
3108 bb = queue.pop ();
3109
3110 /* OK, we later inserted the BB with lower priority, skip it. */
3111 if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3112 continue;
3113
3114 /* See if we can improve the bound. */
3115 entry = pointer_map_contains (bb_bounds, bb);
3116 if (entry && (ptrdiff_t)*entry < bound_index)
3117 bound_index = (ptrdiff_t)*entry;
3118
3119 /* Insert succesors into the queue, watch for latch edge
3120 and record greatest index we saw. */
3121 FOR_EACH_EDGE (e, ei, bb->succs)
3122 {
3123 bool insert = false;
3124 void **entry;
3125
3126 if (loop_exit_edge_p (loop, e))
3127 continue;
3128
3129 if (e == loop_latch_edge (loop)
3130 && latch_index < bound_index)
3131 latch_index = bound_index;
3132 else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3133 {
3134 insert = true;
3135 *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3136 }
3137 else if ((ptrdiff_t)*entry < bound_index)
3138 {
3139 insert = true;
3140 *entry = (void *)bound_index;
3141 }
3142
3143 if (insert)
3144 {
3145 bb_queue queue2 = queues[bound_index];
3146 queue2.safe_push (e->dest);
3147 queues[bound_index] = queue2;
3148 }
3149 }
3150 }
3151 }
3152 else
3153 queues[queue_index].release ();
3154 }
3155
3156 gcc_assert (latch_index >= 0);
3157 if ((unsigned)latch_index < bounds.length ())
3158 {
3159 if (dump_file && (dump_flags & TDF_DETAILS))
3160 {
3161 fprintf (dump_file, "Found better loop bound ");
3162 dump_double_int (dump_file, bounds[latch_index], true);
3163 fprintf (dump_file, "\n");
3164 }
3165 record_niter_bound (loop, bounds[latch_index], false, true);
3166 }
3167
3168 queues.release ();
3169 pointer_map_destroy (bb_bounds);
3170 pointer_map_destroy (block_priority);
3171 }
3172
3173 /* See if every path cross the loop goes through a statement that is known
3174 to not execute at the last iteration. In that case we can decrese iteration
3175 count by 1. */
3176
3177 static void
3178 maybe_lower_iteration_bound (struct loop *loop)
3179 {
3180 pointer_set_t *not_executed_last_iteration = NULL;
3181 struct nb_iter_bound *elt;
3182 bool found_exit = false;
3183 vec<basic_block> queue = vNULL;
3184 bitmap visited;
3185
3186 /* Collect all statements with interesting (i.e. lower than
3187 nb_iterations_upper_bound) bound on them.
3188
3189 TODO: Due to the way record_estimate choose estimates to store, the bounds
3190 will be always nb_iterations_upper_bound-1. We can change this to record
3191 also statements not dominating the loop latch and update the walk bellow
3192 to the shortest path algorthm. */
3193 for (elt = loop->bounds; elt; elt = elt->next)
3194 {
3195 if (!elt->is_exit
3196 && elt->bound.ult (loop->nb_iterations_upper_bound))
3197 {
3198 if (!not_executed_last_iteration)
3199 not_executed_last_iteration = pointer_set_create ();
3200 pointer_set_insert (not_executed_last_iteration, elt->stmt);
3201 }
3202 }
3203 if (!not_executed_last_iteration)
3204 return;
3205
3206 /* Start DFS walk in the loop header and see if we can reach the
3207 loop latch or any of the exits (including statements with side
3208 effects that may terminate the loop otherwise) without visiting
3209 any of the statements known to have undefined effect on the last
3210 iteration. */
3211 queue.safe_push (loop->header);
3212 visited = BITMAP_ALLOC (NULL);
3213 bitmap_set_bit (visited, loop->header->index);
3214 found_exit = false;
3215
3216 do
3217 {
3218 basic_block bb = queue.pop ();
3219 gimple_stmt_iterator gsi;
3220 bool stmt_found = false;
3221
3222 /* Loop for possible exits and statements bounding the execution. */
3223 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3224 {
3225 gimple stmt = gsi_stmt (gsi);
3226 if (pointer_set_contains (not_executed_last_iteration, stmt))
3227 {
3228 stmt_found = true;
3229 break;
3230 }
3231 if (gimple_has_side_effects (stmt))
3232 {
3233 found_exit = true;
3234 break;
3235 }
3236 }
3237 if (found_exit)
3238 break;
3239
3240 /* If no bounding statement is found, continue the walk. */
3241 if (!stmt_found)
3242 {
3243 edge e;
3244 edge_iterator ei;
3245
3246 FOR_EACH_EDGE (e, ei, bb->succs)
3247 {
3248 if (loop_exit_edge_p (loop, e)
3249 || e == loop_latch_edge (loop))
3250 {
3251 found_exit = true;
3252 break;
3253 }
3254 if (bitmap_set_bit (visited, e->dest->index))
3255 queue.safe_push (e->dest);
3256 }
3257 }
3258 }
3259 while (queue.length () && !found_exit);
3260
3261 /* If every path through the loop reach bounding statement before exit,
3262 then we know the last iteration of the loop will have undefined effect
3263 and we can decrease number of iterations. */
3264
3265 if (!found_exit)
3266 {
3267 if (dump_file && (dump_flags & TDF_DETAILS))
3268 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3269 "undefined statement must be executed at the last iteration.\n");
3270 record_niter_bound (loop, loop->nb_iterations_upper_bound - double_int_one,
3271 false, true);
3272 }
3273 BITMAP_FREE (visited);
3274 queue.release ();
3275 }
3276
3277 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3278 is true also use estimates derived from undefined behavior. */
3279
3280 void
3281 estimate_numbers_of_iterations_loop (struct loop *loop)
3282 {
3283 vec<edge> exits;
3284 tree niter, type;
3285 unsigned i;
3286 struct tree_niter_desc niter_desc;
3287 edge ex;
3288 double_int bound;
3289 edge likely_exit;
3290
3291 /* Give up if we already have tried to compute an estimation. */
3292 if (loop->estimate_state != EST_NOT_COMPUTED)
3293 return;
3294
3295 loop->estimate_state = EST_AVAILABLE;
3296 /* Force estimate compuation but leave any existing upper bound in place. */
3297 loop->any_estimate = false;
3298
3299 exits = get_loop_exit_edges (loop);
3300 likely_exit = single_likely_exit (loop);
3301 FOR_EACH_VEC_ELT (exits, i, ex)
3302 {
3303 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3304 continue;
3305
3306 niter = niter_desc.niter;
3307 type = TREE_TYPE (niter);
3308 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3309 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3310 build_int_cst (type, 0),
3311 niter);
3312 record_estimate (loop, niter, niter_desc.max,
3313 last_stmt (ex->src),
3314 true, ex == likely_exit, true);
3315 }
3316 exits.release ();
3317
3318 infer_loop_bounds_from_undefined (loop);
3319
3320 discover_iteration_bound_by_body_walk (loop);
3321
3322 maybe_lower_iteration_bound (loop);
3323
3324 /* If we have a measured profile, use it to estimate the number of
3325 iterations. */
3326 if (loop->header->count != 0)
3327 {
3328 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3329 bound = gcov_type_to_double_int (nit);
3330 record_niter_bound (loop, bound, true, false);
3331 }
3332 }
3333
3334 /* Sets NIT to the estimated number of executions of the latch of the
3335 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3336 large as the number of iterations. If we have no reliable estimate,
3337 the function returns false, otherwise returns true. */
3338
3339 bool
3340 estimated_loop_iterations (struct loop *loop, double_int *nit)
3341 {
3342 /* When SCEV information is available, try to update loop iterations
3343 estimate. Otherwise just return whatever we recorded earlier. */
3344 if (scev_initialized_p ())
3345 estimate_numbers_of_iterations_loop (loop);
3346
3347 /* Even if the bound is not recorded, possibly we can derrive one from
3348 profile. */
3349 if (!loop->any_estimate)
3350 {
3351 if (loop->header->count)
3352 {
3353 *nit = gcov_type_to_double_int
3354 (expected_loop_iterations_unbounded (loop) + 1);
3355 return true;
3356 }
3357 return false;
3358 }
3359
3360 *nit = loop->nb_iterations_estimate;
3361 return true;
3362 }
3363
3364 /* Sets NIT to an upper bound for the maximum number of executions of the
3365 latch of the LOOP. If we have no reliable estimate, the function returns
3366 false, otherwise returns true. */
3367
3368 bool
3369 max_loop_iterations (struct loop *loop, double_int *nit)
3370 {
3371 /* When SCEV information is available, try to update loop iterations
3372 estimate. Otherwise just return whatever we recorded earlier. */
3373 if (scev_initialized_p ())
3374 estimate_numbers_of_iterations_loop (loop);
3375 if (!loop->any_upper_bound)
3376 return false;
3377
3378 *nit = loop->nb_iterations_upper_bound;
3379 return true;
3380 }
3381
3382 /* Similar to estimated_loop_iterations, but returns the estimate only
3383 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3384 on the number of iterations of LOOP could not be derived, returns -1. */
3385
3386 HOST_WIDE_INT
3387 estimated_loop_iterations_int (struct loop *loop)
3388 {
3389 double_int nit;
3390 HOST_WIDE_INT hwi_nit;
3391
3392 if (!estimated_loop_iterations (loop, &nit))
3393 return -1;
3394
3395 if (!nit.fits_shwi ())
3396 return -1;
3397 hwi_nit = nit.to_shwi ();
3398
3399 return hwi_nit < 0 ? -1 : hwi_nit;
3400 }
3401
3402 /* Similar to max_loop_iterations, but returns the estimate only
3403 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3404 on the number of iterations of LOOP could not be derived, returns -1. */
3405
3406 HOST_WIDE_INT
3407 max_loop_iterations_int (struct loop *loop)
3408 {
3409 double_int nit;
3410 HOST_WIDE_INT hwi_nit;
3411
3412 if (!max_loop_iterations (loop, &nit))
3413 return -1;
3414
3415 if (!nit.fits_shwi ())
3416 return -1;
3417 hwi_nit = nit.to_shwi ();
3418
3419 return hwi_nit < 0 ? -1 : hwi_nit;
3420 }
3421
3422 /* Returns an upper bound on the number of executions of statements
3423 in the LOOP. For statements before the loop exit, this exceeds
3424 the number of execution of the latch by one. */
3425
3426 HOST_WIDE_INT
3427 max_stmt_executions_int (struct loop *loop)
3428 {
3429 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3430 HOST_WIDE_INT snit;
3431
3432 if (nit == -1)
3433 return -1;
3434
3435 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3436
3437 /* If the computation overflows, return -1. */
3438 return snit < 0 ? -1 : snit;
3439 }
3440
3441 /* Returns an estimate for the number of executions of statements
3442 in the LOOP. For statements before the loop exit, this exceeds
3443 the number of execution of the latch by one. */
3444
3445 HOST_WIDE_INT
3446 estimated_stmt_executions_int (struct loop *loop)
3447 {
3448 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3449 HOST_WIDE_INT snit;
3450
3451 if (nit == -1)
3452 return -1;
3453
3454 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3455
3456 /* If the computation overflows, return -1. */
3457 return snit < 0 ? -1 : snit;
3458 }
3459
3460 /* Sets NIT to the estimated maximum number of executions of the latch of the
3461 LOOP, plus one. If we have no reliable estimate, the function returns
3462 false, otherwise returns true. */
3463
3464 bool
3465 max_stmt_executions (struct loop *loop, double_int *nit)
3466 {
3467 double_int nit_minus_one;
3468
3469 if (!max_loop_iterations (loop, nit))
3470 return false;
3471
3472 nit_minus_one = *nit;
3473
3474 *nit += double_int_one;
3475
3476 return (*nit).ugt (nit_minus_one);
3477 }
3478
3479 /* Sets NIT to the estimated number of executions of the latch of the
3480 LOOP, plus one. If we have no reliable estimate, the function returns
3481 false, otherwise returns true. */
3482
3483 bool
3484 estimated_stmt_executions (struct loop *loop, double_int *nit)
3485 {
3486 double_int nit_minus_one;
3487
3488 if (!estimated_loop_iterations (loop, nit))
3489 return false;
3490
3491 nit_minus_one = *nit;
3492
3493 *nit += double_int_one;
3494
3495 return (*nit).ugt (nit_minus_one);
3496 }
3497
3498 /* Records estimates on numbers of iterations of loops. */
3499
3500 void
3501 estimate_numbers_of_iterations (void)
3502 {
3503 loop_iterator li;
3504 struct loop *loop;
3505
3506 /* We don't want to issue signed overflow warnings while getting
3507 loop iteration estimates. */
3508 fold_defer_overflow_warnings ();
3509
3510 FOR_EACH_LOOP (li, loop, 0)
3511 {
3512 estimate_numbers_of_iterations_loop (loop);
3513 }
3514
3515 fold_undefer_and_ignore_overflow_warnings ();
3516 }
3517
3518 /* Returns true if statement S1 dominates statement S2. */
3519
3520 bool
3521 stmt_dominates_stmt_p (gimple s1, gimple s2)
3522 {
3523 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3524
3525 if (!bb1
3526 || s1 == s2)
3527 return true;
3528
3529 if (bb1 == bb2)
3530 {
3531 gimple_stmt_iterator bsi;
3532
3533 if (gimple_code (s2) == GIMPLE_PHI)
3534 return false;
3535
3536 if (gimple_code (s1) == GIMPLE_PHI)
3537 return true;
3538
3539 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3540 if (gsi_stmt (bsi) == s1)
3541 return true;
3542
3543 return false;
3544 }
3545
3546 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3547 }
3548
3549 /* Returns true when we can prove that the number of executions of
3550 STMT in the loop is at most NITER, according to the bound on
3551 the number of executions of the statement NITER_BOUND->stmt recorded in
3552 NITER_BOUND. If STMT is NULL, we must prove this bound for all
3553 statements in the loop. */
3554
3555 static bool
3556 n_of_executions_at_most (gimple stmt,
3557 struct nb_iter_bound *niter_bound,
3558 tree niter)
3559 {
3560 double_int bound = niter_bound->bound;
3561 tree nit_type = TREE_TYPE (niter), e;
3562 enum tree_code cmp;
3563
3564 gcc_assert (TYPE_UNSIGNED (nit_type));
3565
3566 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3567 the number of iterations is small. */
3568 if (!double_int_fits_to_tree_p (nit_type, bound))
3569 return false;
3570
3571 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3572 times. This means that:
3573
3574 -- if NITER_BOUND->is_exit is true, then everything before
3575 NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3576 times, and everything after it at most NITER_BOUND->bound times.
3577
3578 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3579 is executed, then NITER_BOUND->stmt is executed as well in the same
3580 iteration (we conclude that if both statements belong to the same
3581 basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3582 is executed at most NITER_BOUND->bound + 1 times. Otherwise STMT is
3583 executed at most NITER_BOUND->bound + 2 times. */
3584
3585 if (niter_bound->is_exit)
3586 {
3587 if (stmt
3588 && stmt != niter_bound->stmt
3589 && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3590 cmp = GE_EXPR;
3591 else
3592 cmp = GT_EXPR;
3593 }
3594 else
3595 {
3596 if (!stmt
3597 || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3598 && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3599 {
3600 bound += double_int_one;
3601 if (bound.is_zero ()
3602 || !double_int_fits_to_tree_p (nit_type, bound))
3603 return false;
3604 }
3605 cmp = GT_EXPR;
3606 }
3607
3608 e = fold_binary (cmp, boolean_type_node,
3609 niter, double_int_to_tree (nit_type, bound));
3610 return e && integer_nonzerop (e);
3611 }
3612
3613 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3614
3615 bool
3616 nowrap_type_p (tree type)
3617 {
3618 if (INTEGRAL_TYPE_P (type)
3619 && TYPE_OVERFLOW_UNDEFINED (type))
3620 return true;
3621
3622 if (POINTER_TYPE_P (type))
3623 return true;
3624
3625 return false;
3626 }
3627
3628 /* Return false only when the induction variable BASE + STEP * I is
3629 known to not overflow: i.e. when the number of iterations is small
3630 enough with respect to the step and initial condition in order to
3631 keep the evolution confined in TYPEs bounds. Return true when the
3632 iv is known to overflow or when the property is not computable.
3633
3634 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3635 the rules for overflow of the given language apply (e.g., that signed
3636 arithmetics in C does not overflow). */
3637
3638 bool
3639 scev_probably_wraps_p (tree base, tree step,
3640 gimple at_stmt, struct loop *loop,
3641 bool use_overflow_semantics)
3642 {
3643 struct nb_iter_bound *bound;
3644 tree delta, step_abs;
3645 tree unsigned_type, valid_niter;
3646 tree type = TREE_TYPE (step);
3647
3648 /* FIXME: We really need something like
3649 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3650
3651 We used to test for the following situation that frequently appears
3652 during address arithmetics:
3653
3654 D.1621_13 = (long unsigned intD.4) D.1620_12;
3655 D.1622_14 = D.1621_13 * 8;
3656 D.1623_15 = (doubleD.29 *) D.1622_14;
3657
3658 And derived that the sequence corresponding to D_14
3659 can be proved to not wrap because it is used for computing a
3660 memory access; however, this is not really the case -- for example,
3661 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3662 2032, 2040, 0, 8, ..., but the code is still legal. */
3663
3664 if (chrec_contains_undetermined (base)
3665 || chrec_contains_undetermined (step))
3666 return true;
3667
3668 if (integer_zerop (step))
3669 return false;
3670
3671 /* If we can use the fact that signed and pointer arithmetics does not
3672 wrap, we are done. */
3673 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3674 return false;
3675
3676 /* To be able to use estimates on number of iterations of the loop,
3677 we must have an upper bound on the absolute value of the step. */
3678 if (TREE_CODE (step) != INTEGER_CST)
3679 return true;
3680
3681 /* Don't issue signed overflow warnings. */
3682 fold_defer_overflow_warnings ();
3683
3684 /* Otherwise, compute the number of iterations before we reach the
3685 bound of the type, and verify that the loop is exited before this
3686 occurs. */
3687 unsigned_type = unsigned_type_for (type);
3688 base = fold_convert (unsigned_type, base);
3689
3690 if (tree_int_cst_sign_bit (step))
3691 {
3692 tree extreme = fold_convert (unsigned_type,
3693 lower_bound_in_type (type, type));
3694 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3695 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3696 fold_convert (unsigned_type, step));
3697 }
3698 else
3699 {
3700 tree extreme = fold_convert (unsigned_type,
3701 upper_bound_in_type (type, type));
3702 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3703 step_abs = fold_convert (unsigned_type, step);
3704 }
3705
3706 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3707
3708 estimate_numbers_of_iterations_loop (loop);
3709 for (bound = loop->bounds; bound; bound = bound->next)
3710 {
3711 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3712 {
3713 fold_undefer_and_ignore_overflow_warnings ();
3714 return false;
3715 }
3716 }
3717
3718 fold_undefer_and_ignore_overflow_warnings ();
3719
3720 /* At this point we still don't have a proof that the iv does not
3721 overflow: give up. */
3722 return true;
3723 }
3724
3725 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3726
3727 void
3728 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3729 {
3730 struct nb_iter_bound *bound, *next;
3731
3732 loop->nb_iterations = NULL;
3733 loop->estimate_state = EST_NOT_COMPUTED;
3734 for (bound = loop->bounds; bound; bound = next)
3735 {
3736 next = bound->next;
3737 ggc_free (bound);
3738 }
3739
3740 loop->bounds = NULL;
3741 }
3742
3743 /* Frees the information on upper bounds on numbers of iterations of loops. */
3744
3745 void
3746 free_numbers_of_iterations_estimates (void)
3747 {
3748 loop_iterator li;
3749 struct loop *loop;
3750
3751 FOR_EACH_LOOP (li, loop, 0)
3752 {
3753 free_numbers_of_iterations_estimates_loop (loop);
3754 }
3755 }
3756
3757 /* Substitute value VAL for ssa name NAME inside expressions held
3758 at LOOP. */
3759
3760 void
3761 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3762 {
3763 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3764 }