pr44576 Avoid un-necessary prefetch analysis by distributing the cost models
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "output.h"
28 #include "tree-pretty-print.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "timevar.h"
32 #include "cfgloop.h"
33 #include "tree-pass.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "hashtab.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "diagnostic-core.h"
40 #include "toplev.h"
41 #include "params.h"
42 #include "langhooks.h"
43 #include "tree-inline.h"
44 #include "tree-data-ref.h"
45
46
47 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
48 between the GIMPLE and RTL worlds. */
49 #include "expr.h"
50 #include "optabs.h"
51
52 /* This pass inserts prefetch instructions to optimize cache usage during
53 accesses to arrays in loops. It processes loops sequentially and:
54
55 1) Gathers all memory references in the single loop.
56 2) For each of the references it decides when it is profitable to prefetch
57 it. To do it, we evaluate the reuse among the accesses, and determines
58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61 iterations of the loop that are zero modulo PREFETCH_MOD). For example
62 (assuming cache line size is 64 bytes, char has size 1 byte and there
63 is no hardware sequential prefetch):
64
65 char *a;
66 for (i = 0; i < max; i++)
67 {
68 a[255] = ...; (0)
69 a[i] = ...; (1)
70 a[i + 64] = ...; (2)
71 a[16*i] = ...; (3)
72 a[187*i] = ...; (4)
73 a[187*i + 50] = ...; (5)
74 }
75
76 (0) obviously has PREFETCH_BEFORE 1
77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78 location 64 iterations before it, and PREFETCH_MOD 64 (since
79 it hits the same cache line otherwise).
80 (2) has PREFETCH_MOD 64
81 (3) has PREFETCH_MOD 4
82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
83 the cache line accessed by (4) is the same with probability only
84 7/32.
85 (5) has PREFETCH_MOD 1 as well.
86
87 Additionally, we use data dependence analysis to determine for each
88 reference the distance till the first reuse; this information is used
89 to determine the temporality of the issued prefetch instruction.
90
91 3) We determine how much ahead we need to prefetch. The number of
92 iterations needed is time to fetch / time spent in one iteration of
93 the loop. The problem is that we do not know either of these values,
94 so we just make a heuristic guess based on a magic (possibly)
95 target-specific constant and size of the loop.
96
97 4) Determine which of the references we prefetch. We take into account
98 that there is a maximum number of simultaneous prefetches (provided
99 by machine description). We prefetch as many prefetches as possible
100 while still within this bound (starting with those with lowest
101 prefetch_mod, since they are responsible for most of the cache
102 misses).
103
104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106 prefetching nonaccessed memory.
107 TODO -- actually implement peeling.
108
109 6) We actually emit the prefetch instructions. ??? Perhaps emit the
110 prefetch instructions with guards in cases where 5) was not sufficient
111 to satisfy the constraints?
112
113 A cost model is implemented to determine whether or not prefetching is
114 profitable for a given loop. The cost model has three heuristics:
115
116 1. Function trip_count_to_ahead_ratio_too_small_p implements a
117 heuristic that determines whether or not the loop has too few
118 iterations (compared to ahead). Prefetching is not likely to be
119 beneficial if the trip count to ahead ratio is below a certain
120 minimum.
121
122 2. Function mem_ref_count_reasonable_p implements a heuristic that
123 determines whether the given loop has enough CPU ops that can be
124 overlapped with cache missing memory ops. If not, the loop
125 won't benefit from prefetching. In the implementation,
126 prefetching is not considered beneficial if the ratio between
127 the instruction count and the mem ref count is below a certain
128 minimum.
129
130 3. Function insn_to_prefetch_ratio_too_small_p implements a
131 heuristic that disables prefetching in a loop if the prefetching
132 cost is above a certain limit. The relative prefetching cost is
133 estimated by taking the ratio between the prefetch count and the
134 total intruction count (this models the I-cache cost).
135
136 The limits used in these heuristics are defined as parameters with
137 reasonable default values. Machine-specific default values will be
138 added later.
139
140 Some other TODO:
141 -- write and use more general reuse analysis (that could be also used
142 in other cache aimed loop optimizations)
143 -- make it behave sanely together with the prefetches given by user
144 (now we just ignore them; at the very least we should avoid
145 optimizing loops in that user put his own prefetches)
146 -- we assume cache line size alignment of arrays; this could be
147 improved. */
148
149 /* Magic constants follow. These should be replaced by machine specific
150 numbers. */
151
152 /* True if write can be prefetched by a read prefetch. */
153
154 #ifndef WRITE_CAN_USE_READ_PREFETCH
155 #define WRITE_CAN_USE_READ_PREFETCH 1
156 #endif
157
158 /* True if read can be prefetched by a write prefetch. */
159
160 #ifndef READ_CAN_USE_WRITE_PREFETCH
161 #define READ_CAN_USE_WRITE_PREFETCH 0
162 #endif
163
164 /* The size of the block loaded by a single prefetch. Usually, this is
165 the same as cache line size (at the moment, we only consider one level
166 of cache hierarchy). */
167
168 #ifndef PREFETCH_BLOCK
169 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
170 #endif
171
172 /* Do we have a forward hardware sequential prefetching? */
173
174 #ifndef HAVE_FORWARD_PREFETCH
175 #define HAVE_FORWARD_PREFETCH 0
176 #endif
177
178 /* Do we have a backward hardware sequential prefetching? */
179
180 #ifndef HAVE_BACKWARD_PREFETCH
181 #define HAVE_BACKWARD_PREFETCH 0
182 #endif
183
184 /* In some cases we are only able to determine that there is a certain
185 probability that the two accesses hit the same cache line. In this
186 case, we issue the prefetches for both of them if this probability
187 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
188
189 #ifndef ACCEPTABLE_MISS_RATE
190 #define ACCEPTABLE_MISS_RATE 50
191 #endif
192
193 #ifndef HAVE_prefetch
194 #define HAVE_prefetch 0
195 #endif
196
197 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
198 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
199
200 /* We consider a memory access nontemporal if it is not reused sooner than
201 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
202 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
203 so that we use nontemporal prefetches e.g. if single memory location
204 is accessed several times in a single iteration of the loop. */
205 #define NONTEMPORAL_FRACTION 16
206
207 /* In case we have to emit a memory fence instruction after the loop that
208 uses nontemporal stores, this defines the builtin to use. */
209
210 #ifndef FENCE_FOLLOWING_MOVNT
211 #define FENCE_FOLLOWING_MOVNT NULL_TREE
212 #endif
213
214 /* It is not profitable to prefetch when the trip count is not at
215 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
216 For example, in a loop with a prefetch ahead distance of 10,
217 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
218 profitable to prefetch when the trip count is greater or equal to
219 40. In that case, 30 out of the 40 iterations will benefit from
220 prefetching. */
221
222 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
223 #define TRIP_COUNT_TO_AHEAD_RATIO 4
224 #endif
225
226 /* The group of references between that reuse may occur. */
227
228 struct mem_ref_group
229 {
230 tree base; /* Base of the reference. */
231 tree step; /* Step of the reference. */
232 struct mem_ref *refs; /* References in the group. */
233 struct mem_ref_group *next; /* Next group of references. */
234 };
235
236 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
237
238 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
239
240 /* Do not generate a prefetch if the unroll factor is significantly less
241 than what is required by the prefetch. This is to avoid redundant
242 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
243 2, prefetching requires unrolling the loop 16 times, but
244 the loop is actually unrolled twice. In this case (ratio = 8),
245 prefetching is not likely to be beneficial. */
246
247 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
248 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
249 #endif
250
251 /* Some of the prefetch computations have quadratic complexity. We want to
252 avoid huge compile times and, therefore, want to limit the amount of
253 memory references per loop where we consider prefetching. */
254
255 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
256 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
257 #endif
258
259 /* The memory reference. */
260
261 struct mem_ref
262 {
263 gimple stmt; /* Statement in that the reference appears. */
264 tree mem; /* The reference. */
265 HOST_WIDE_INT delta; /* Constant offset of the reference. */
266 struct mem_ref_group *group; /* The group of references it belongs to. */
267 unsigned HOST_WIDE_INT prefetch_mod;
268 /* Prefetch only each PREFETCH_MOD-th
269 iteration. */
270 unsigned HOST_WIDE_INT prefetch_before;
271 /* Prefetch only first PREFETCH_BEFORE
272 iterations. */
273 unsigned reuse_distance; /* The amount of data accessed before the first
274 reuse of this value. */
275 struct mem_ref *next; /* The next reference in the group. */
276 unsigned write_p : 1; /* Is it a write? */
277 unsigned independent_p : 1; /* True if the reference is independent on
278 all other references inside the loop. */
279 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
280 unsigned storent_p : 1; /* True if we changed the store to a
281 nontemporal one. */
282 };
283
284 /* Dumps information about reference REF to FILE. */
285
286 static void
287 dump_mem_ref (FILE *file, struct mem_ref *ref)
288 {
289 fprintf (file, "Reference %p:\n", (void *) ref);
290
291 fprintf (file, " group %p (base ", (void *) ref->group);
292 print_generic_expr (file, ref->group->base, TDF_SLIM);
293 fprintf (file, ", step ");
294 if (cst_and_fits_in_hwi (ref->group->step))
295 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
296 else
297 print_generic_expr (file, ref->group->step, TDF_TREE);
298 fprintf (file, ")\n");
299
300 fprintf (file, " delta ");
301 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
302 fprintf (file, "\n");
303
304 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
305
306 fprintf (file, "\n");
307 }
308
309 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
310 exist. */
311
312 static struct mem_ref_group *
313 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
314 {
315 struct mem_ref_group *group;
316
317 for (; *groups; groups = &(*groups)->next)
318 {
319 if (operand_equal_p ((*groups)->step, step, 0)
320 && operand_equal_p ((*groups)->base, base, 0))
321 return *groups;
322
323 /* If step is an integer constant, keep the list of groups sorted
324 by decreasing step. */
325 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
326 && int_cst_value ((*groups)->step) < int_cst_value (step))
327 break;
328 }
329
330 group = XNEW (struct mem_ref_group);
331 group->base = base;
332 group->step = step;
333 group->refs = NULL;
334 group->next = *groups;
335 *groups = group;
336
337 return group;
338 }
339
340 /* Records a memory reference MEM in GROUP with offset DELTA and write status
341 WRITE_P. The reference occurs in statement STMT. */
342
343 static void
344 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
345 HOST_WIDE_INT delta, bool write_p)
346 {
347 struct mem_ref **aref;
348
349 /* Do not record the same address twice. */
350 for (aref = &group->refs; *aref; aref = &(*aref)->next)
351 {
352 /* It does not have to be possible for write reference to reuse the read
353 prefetch, or vice versa. */
354 if (!WRITE_CAN_USE_READ_PREFETCH
355 && write_p
356 && !(*aref)->write_p)
357 continue;
358 if (!READ_CAN_USE_WRITE_PREFETCH
359 && !write_p
360 && (*aref)->write_p)
361 continue;
362
363 if ((*aref)->delta == delta)
364 return;
365 }
366
367 (*aref) = XNEW (struct mem_ref);
368 (*aref)->stmt = stmt;
369 (*aref)->mem = mem;
370 (*aref)->delta = delta;
371 (*aref)->write_p = write_p;
372 (*aref)->prefetch_before = PREFETCH_ALL;
373 (*aref)->prefetch_mod = 1;
374 (*aref)->reuse_distance = 0;
375 (*aref)->issue_prefetch_p = false;
376 (*aref)->group = group;
377 (*aref)->next = NULL;
378 (*aref)->independent_p = false;
379 (*aref)->storent_p = false;
380
381 if (dump_file && (dump_flags & TDF_DETAILS))
382 dump_mem_ref (dump_file, *aref);
383 }
384
385 /* Release memory references in GROUPS. */
386
387 static void
388 release_mem_refs (struct mem_ref_group *groups)
389 {
390 struct mem_ref_group *next_g;
391 struct mem_ref *ref, *next_r;
392
393 for (; groups; groups = next_g)
394 {
395 next_g = groups->next;
396 for (ref = groups->refs; ref; ref = next_r)
397 {
398 next_r = ref->next;
399 free (ref);
400 }
401 free (groups);
402 }
403 }
404
405 /* A structure used to pass arguments to idx_analyze_ref. */
406
407 struct ar_data
408 {
409 struct loop *loop; /* Loop of the reference. */
410 gimple stmt; /* Statement of the reference. */
411 tree *step; /* Step of the memory reference. */
412 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
413 };
414
415 /* Analyzes a single INDEX of a memory reference to obtain information
416 described at analyze_ref. Callback for for_each_index. */
417
418 static bool
419 idx_analyze_ref (tree base, tree *index, void *data)
420 {
421 struct ar_data *ar_data = (struct ar_data *) data;
422 tree ibase, step, stepsize;
423 HOST_WIDE_INT idelta = 0, imult = 1;
424 affine_iv iv;
425
426 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF)
427 return false;
428
429 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
430 *index, &iv, true))
431 return false;
432 ibase = iv.base;
433 step = iv.step;
434
435 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
436 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
437 {
438 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
439 ibase = TREE_OPERAND (ibase, 0);
440 }
441 if (cst_and_fits_in_hwi (ibase))
442 {
443 idelta += int_cst_value (ibase);
444 ibase = build_int_cst (TREE_TYPE (ibase), 0);
445 }
446
447 if (TREE_CODE (base) == ARRAY_REF)
448 {
449 stepsize = array_ref_element_size (base);
450 if (!cst_and_fits_in_hwi (stepsize))
451 return false;
452 imult = int_cst_value (stepsize);
453 step = fold_build2 (MULT_EXPR, sizetype,
454 fold_convert (sizetype, step),
455 fold_convert (sizetype, stepsize));
456 idelta *= imult;
457 }
458
459 if (*ar_data->step == NULL_TREE)
460 *ar_data->step = step;
461 else
462 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
463 fold_convert (sizetype, *ar_data->step),
464 fold_convert (sizetype, step));
465 *ar_data->delta += idelta;
466 *index = ibase;
467
468 return true;
469 }
470
471 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
472 STEP are integer constants and iter is number of iterations of LOOP. The
473 reference occurs in statement STMT. Strips nonaddressable component
474 references from REF_P. */
475
476 static bool
477 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
478 tree *step, HOST_WIDE_INT *delta,
479 gimple stmt)
480 {
481 struct ar_data ar_data;
482 tree off;
483 HOST_WIDE_INT bit_offset;
484 tree ref = *ref_p;
485
486 *step = NULL_TREE;
487 *delta = 0;
488
489 /* First strip off the component references. Ignore bitfields. */
490 if (TREE_CODE (ref) == COMPONENT_REF
491 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
492 ref = TREE_OPERAND (ref, 0);
493
494 *ref_p = ref;
495
496 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
497 {
498 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
499 bit_offset = TREE_INT_CST_LOW (off);
500 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
501
502 *delta += bit_offset / BITS_PER_UNIT;
503 }
504
505 *base = unshare_expr (ref);
506 ar_data.loop = loop;
507 ar_data.stmt = stmt;
508 ar_data.step = step;
509 ar_data.delta = delta;
510 return for_each_index (base, idx_analyze_ref, &ar_data);
511 }
512
513 /* Record a memory reference REF to the list REFS. The reference occurs in
514 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
515 reference was recorded, false otherwise. */
516
517 static bool
518 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
519 tree ref, bool write_p, gimple stmt)
520 {
521 tree base, step;
522 HOST_WIDE_INT delta;
523 struct mem_ref_group *agrp;
524
525 if (get_base_address (ref) == NULL)
526 return false;
527
528 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
529 return false;
530 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
531 if (step == NULL_TREE)
532 return false;
533
534 /* Limit non-constant step prefetching only to the innermost loops. */
535 if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
536 return false;
537
538 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
539 are integer constants. */
540 agrp = find_or_create_group (refs, base, step);
541 record_ref (agrp, stmt, ref, delta, write_p);
542
543 return true;
544 }
545
546 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
547 true if there are no other memory references inside the loop. */
548
549 static struct mem_ref_group *
550 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
551 {
552 basic_block *body = get_loop_body_in_dom_order (loop);
553 basic_block bb;
554 unsigned i;
555 gimple_stmt_iterator bsi;
556 gimple stmt;
557 tree lhs, rhs;
558 struct mem_ref_group *refs = NULL;
559
560 *no_other_refs = true;
561 *ref_count = 0;
562
563 /* Scan the loop body in order, so that the former references precede the
564 later ones. */
565 for (i = 0; i < loop->num_nodes; i++)
566 {
567 bb = body[i];
568 if (bb->loop_father != loop)
569 continue;
570
571 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
572 {
573 stmt = gsi_stmt (bsi);
574
575 if (gimple_code (stmt) != GIMPLE_ASSIGN)
576 {
577 if (gimple_vuse (stmt)
578 || (is_gimple_call (stmt)
579 && !(gimple_call_flags (stmt) & ECF_CONST)))
580 *no_other_refs = false;
581 continue;
582 }
583
584 lhs = gimple_assign_lhs (stmt);
585 rhs = gimple_assign_rhs1 (stmt);
586
587 if (REFERENCE_CLASS_P (rhs))
588 {
589 *no_other_refs &= gather_memory_references_ref (loop, &refs,
590 rhs, false, stmt);
591 *ref_count += 1;
592 }
593 if (REFERENCE_CLASS_P (lhs))
594 {
595 *no_other_refs &= gather_memory_references_ref (loop, &refs,
596 lhs, true, stmt);
597 *ref_count += 1;
598 }
599 }
600 }
601 free (body);
602
603 return refs;
604 }
605
606 /* Prune the prefetch candidate REF using the self-reuse. */
607
608 static void
609 prune_ref_by_self_reuse (struct mem_ref *ref)
610 {
611 HOST_WIDE_INT step;
612 bool backward;
613
614 /* If the step size is non constant, we cannot calculate prefetch_mod. */
615 if (!cst_and_fits_in_hwi (ref->group->step))
616 return;
617
618 step = int_cst_value (ref->group->step);
619
620 backward = step < 0;
621
622 if (step == 0)
623 {
624 /* Prefetch references to invariant address just once. */
625 ref->prefetch_before = 1;
626 return;
627 }
628
629 if (backward)
630 step = -step;
631
632 if (step > PREFETCH_BLOCK)
633 return;
634
635 if ((backward && HAVE_BACKWARD_PREFETCH)
636 || (!backward && HAVE_FORWARD_PREFETCH))
637 {
638 ref->prefetch_before = 1;
639 return;
640 }
641
642 ref->prefetch_mod = PREFETCH_BLOCK / step;
643 }
644
645 /* Divides X by BY, rounding down. */
646
647 static HOST_WIDE_INT
648 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
649 {
650 gcc_assert (by > 0);
651
652 if (x >= 0)
653 return x / by;
654 else
655 return (x + by - 1) / by;
656 }
657
658 /* Given a CACHE_LINE_SIZE and two inductive memory references
659 with a common STEP greater than CACHE_LINE_SIZE and an address
660 difference DELTA, compute the probability that they will fall
661 in different cache lines. Return true if the computed miss rate
662 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
663 number of distinct iterations after which the pattern repeats itself.
664 ALIGN_UNIT is the unit of alignment in bytes. */
665
666 static bool
667 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
668 HOST_WIDE_INT step, HOST_WIDE_INT delta,
669 unsigned HOST_WIDE_INT distinct_iters,
670 int align_unit)
671 {
672 unsigned align, iter;
673 int total_positions, miss_positions, max_allowed_miss_positions;
674 int address1, address2, cache_line1, cache_line2;
675
676 /* It always misses if delta is greater than or equal to the cache
677 line size. */
678 if (delta >= (HOST_WIDE_INT) cache_line_size)
679 return false;
680
681 miss_positions = 0;
682 total_positions = (cache_line_size / align_unit) * distinct_iters;
683 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
684
685 /* Iterate through all possible alignments of the first
686 memory reference within its cache line. */
687 for (align = 0; align < cache_line_size; align += align_unit)
688
689 /* Iterate through all distinct iterations. */
690 for (iter = 0; iter < distinct_iters; iter++)
691 {
692 address1 = align + step * iter;
693 address2 = address1 + delta;
694 cache_line1 = address1 / cache_line_size;
695 cache_line2 = address2 / cache_line_size;
696 if (cache_line1 != cache_line2)
697 {
698 miss_positions += 1;
699 if (miss_positions > max_allowed_miss_positions)
700 return false;
701 }
702 }
703 return true;
704 }
705
706 /* Prune the prefetch candidate REF using the reuse with BY.
707 If BY_IS_BEFORE is true, BY is before REF in the loop. */
708
709 static void
710 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
711 bool by_is_before)
712 {
713 HOST_WIDE_INT step;
714 bool backward;
715 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
716 HOST_WIDE_INT delta = delta_b - delta_r;
717 HOST_WIDE_INT hit_from;
718 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
719 HOST_WIDE_INT reduced_step;
720 unsigned HOST_WIDE_INT reduced_prefetch_block;
721 tree ref_type;
722 int align_unit;
723
724 /* If the step is non constant we cannot calculate prefetch_before. */
725 if (!cst_and_fits_in_hwi (ref->group->step)) {
726 return;
727 }
728
729 step = int_cst_value (ref->group->step);
730
731 backward = step < 0;
732
733
734 if (delta == 0)
735 {
736 /* If the references has the same address, only prefetch the
737 former. */
738 if (by_is_before)
739 ref->prefetch_before = 0;
740
741 return;
742 }
743
744 if (!step)
745 {
746 /* If the reference addresses are invariant and fall into the
747 same cache line, prefetch just the first one. */
748 if (!by_is_before)
749 return;
750
751 if (ddown (ref->delta, PREFETCH_BLOCK)
752 != ddown (by->delta, PREFETCH_BLOCK))
753 return;
754
755 ref->prefetch_before = 0;
756 return;
757 }
758
759 /* Only prune the reference that is behind in the array. */
760 if (backward)
761 {
762 if (delta > 0)
763 return;
764
765 /* Transform the data so that we may assume that the accesses
766 are forward. */
767 delta = - delta;
768 step = -step;
769 delta_r = PREFETCH_BLOCK - 1 - delta_r;
770 delta_b = PREFETCH_BLOCK - 1 - delta_b;
771 }
772 else
773 {
774 if (delta < 0)
775 return;
776 }
777
778 /* Check whether the two references are likely to hit the same cache
779 line, and how distant the iterations in that it occurs are from
780 each other. */
781
782 if (step <= PREFETCH_BLOCK)
783 {
784 /* The accesses are sure to meet. Let us check when. */
785 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
786 prefetch_before = (hit_from - delta_r + step - 1) / step;
787
788 /* Do not reduce prefetch_before if we meet beyond cache size. */
789 if (prefetch_before > (unsigned) abs (L2_CACHE_SIZE_BYTES / step))
790 prefetch_before = PREFETCH_ALL;
791 if (prefetch_before < ref->prefetch_before)
792 ref->prefetch_before = prefetch_before;
793
794 return;
795 }
796
797 /* A more complicated case with step > prefetch_block. First reduce
798 the ratio between the step and the cache line size to its simplest
799 terms. The resulting denominator will then represent the number of
800 distinct iterations after which each address will go back to its
801 initial location within the cache line. This computation assumes
802 that PREFETCH_BLOCK is a power of two. */
803 prefetch_block = PREFETCH_BLOCK;
804 reduced_prefetch_block = prefetch_block;
805 reduced_step = step;
806 while ((reduced_step & 1) == 0
807 && reduced_prefetch_block > 1)
808 {
809 reduced_step >>= 1;
810 reduced_prefetch_block >>= 1;
811 }
812
813 prefetch_before = delta / step;
814 delta %= step;
815 ref_type = TREE_TYPE (ref->mem);
816 align_unit = TYPE_ALIGN (ref_type) / 8;
817 if (is_miss_rate_acceptable (prefetch_block, step, delta,
818 reduced_prefetch_block, align_unit))
819 {
820 /* Do not reduce prefetch_before if we meet beyond cache size. */
821 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
822 prefetch_before = PREFETCH_ALL;
823 if (prefetch_before < ref->prefetch_before)
824 ref->prefetch_before = prefetch_before;
825
826 return;
827 }
828
829 /* Try also the following iteration. */
830 prefetch_before++;
831 delta = step - delta;
832 if (is_miss_rate_acceptable (prefetch_block, step, delta,
833 reduced_prefetch_block, align_unit))
834 {
835 if (prefetch_before < ref->prefetch_before)
836 ref->prefetch_before = prefetch_before;
837
838 return;
839 }
840
841 /* The ref probably does not reuse by. */
842 return;
843 }
844
845 /* Prune the prefetch candidate REF using the reuses with other references
846 in REFS. */
847
848 static void
849 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
850 {
851 struct mem_ref *prune_by;
852 bool before = true;
853
854 prune_ref_by_self_reuse (ref);
855
856 for (prune_by = refs; prune_by; prune_by = prune_by->next)
857 {
858 if (prune_by == ref)
859 {
860 before = false;
861 continue;
862 }
863
864 if (!WRITE_CAN_USE_READ_PREFETCH
865 && ref->write_p
866 && !prune_by->write_p)
867 continue;
868 if (!READ_CAN_USE_WRITE_PREFETCH
869 && !ref->write_p
870 && prune_by->write_p)
871 continue;
872
873 prune_ref_by_group_reuse (ref, prune_by, before);
874 }
875 }
876
877 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
878
879 static void
880 prune_group_by_reuse (struct mem_ref_group *group)
881 {
882 struct mem_ref *ref_pruned;
883
884 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
885 {
886 prune_ref_by_reuse (ref_pruned, group->refs);
887
888 if (dump_file && (dump_flags & TDF_DETAILS))
889 {
890 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
891
892 if (ref_pruned->prefetch_before == PREFETCH_ALL
893 && ref_pruned->prefetch_mod == 1)
894 fprintf (dump_file, " no restrictions");
895 else if (ref_pruned->prefetch_before == 0)
896 fprintf (dump_file, " do not prefetch");
897 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
898 fprintf (dump_file, " prefetch once");
899 else
900 {
901 if (ref_pruned->prefetch_before != PREFETCH_ALL)
902 {
903 fprintf (dump_file, " prefetch before ");
904 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
905 ref_pruned->prefetch_before);
906 }
907 if (ref_pruned->prefetch_mod != 1)
908 {
909 fprintf (dump_file, " prefetch mod ");
910 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
911 ref_pruned->prefetch_mod);
912 }
913 }
914 fprintf (dump_file, "\n");
915 }
916 }
917 }
918
919 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
920
921 static void
922 prune_by_reuse (struct mem_ref_group *groups)
923 {
924 for (; groups; groups = groups->next)
925 prune_group_by_reuse (groups);
926 }
927
928 /* Returns true if we should issue prefetch for REF. */
929
930 static bool
931 should_issue_prefetch_p (struct mem_ref *ref)
932 {
933 /* For now do not issue prefetches for only first few of the
934 iterations. */
935 if (ref->prefetch_before != PREFETCH_ALL)
936 {
937 if (dump_file && (dump_flags & TDF_DETAILS))
938 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
939 (void *) ref);
940 return false;
941 }
942
943 /* Do not prefetch nontemporal stores. */
944 if (ref->storent_p)
945 {
946 if (dump_file && (dump_flags & TDF_DETAILS))
947 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
948 return false;
949 }
950
951 return true;
952 }
953
954 /* Decide which of the prefetch candidates in GROUPS to prefetch.
955 AHEAD is the number of iterations to prefetch ahead (which corresponds
956 to the number of simultaneous instances of one prefetch running at a
957 time). UNROLL_FACTOR is the factor by that the loop is going to be
958 unrolled. Returns true if there is anything to prefetch. */
959
960 static bool
961 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
962 unsigned ahead)
963 {
964 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
965 unsigned slots_per_prefetch;
966 struct mem_ref *ref;
967 bool any = false;
968
969 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
970 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
971
972 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
973 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
974 it will need a prefetch slot. */
975 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
976 if (dump_file && (dump_flags & TDF_DETAILS))
977 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
978 slots_per_prefetch);
979
980 /* For now we just take memory references one by one and issue
981 prefetches for as many as possible. The groups are sorted
982 starting with the largest step, since the references with
983 large step are more likely to cause many cache misses. */
984
985 for (; groups; groups = groups->next)
986 for (ref = groups->refs; ref; ref = ref->next)
987 {
988 if (!should_issue_prefetch_p (ref))
989 continue;
990
991 /* The loop is far from being sufficiently unrolled for this
992 prefetch. Do not generate prefetch to avoid many redudant
993 prefetches. */
994 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
995 continue;
996
997 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
998 and we unroll the loop UNROLL_FACTOR times, we need to insert
999 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1000 iteration. */
1001 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1002 / ref->prefetch_mod);
1003 prefetch_slots = n_prefetches * slots_per_prefetch;
1004
1005 /* If more than half of the prefetches would be lost anyway, do not
1006 issue the prefetch. */
1007 if (2 * remaining_prefetch_slots < prefetch_slots)
1008 continue;
1009
1010 ref->issue_prefetch_p = true;
1011
1012 if (remaining_prefetch_slots <= prefetch_slots)
1013 return true;
1014 remaining_prefetch_slots -= prefetch_slots;
1015 any = true;
1016 }
1017
1018 return any;
1019 }
1020
1021 /* Return TRUE if no prefetch is going to be generated in the given
1022 GROUPS. */
1023
1024 static bool
1025 nothing_to_prefetch_p (struct mem_ref_group *groups)
1026 {
1027 struct mem_ref *ref;
1028
1029 for (; groups; groups = groups->next)
1030 for (ref = groups->refs; ref; ref = ref->next)
1031 if (should_issue_prefetch_p (ref))
1032 return false;
1033
1034 return true;
1035 }
1036
1037 /* Estimate the number of prefetches in the given GROUPS.
1038 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1039
1040 static int
1041 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1042 {
1043 struct mem_ref *ref;
1044 unsigned n_prefetches;
1045 int prefetch_count = 0;
1046
1047 for (; groups; groups = groups->next)
1048 for (ref = groups->refs; ref; ref = ref->next)
1049 if (should_issue_prefetch_p (ref))
1050 {
1051 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1052 / ref->prefetch_mod);
1053 prefetch_count += n_prefetches;
1054 }
1055
1056 return prefetch_count;
1057 }
1058
1059 /* Issue prefetches for the reference REF into loop as decided before.
1060 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1061 is the factor by which LOOP was unrolled. */
1062
1063 static void
1064 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1065 {
1066 HOST_WIDE_INT delta;
1067 tree addr, addr_base, write_p, local, forward;
1068 gimple prefetch;
1069 gimple_stmt_iterator bsi;
1070 unsigned n_prefetches, ap;
1071 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1072
1073 if (dump_file && (dump_flags & TDF_DETAILS))
1074 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1075 nontemporal ? " nontemporal" : "",
1076 (void *) ref);
1077
1078 bsi = gsi_for_stmt (ref->stmt);
1079
1080 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1081 / ref->prefetch_mod);
1082 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1083 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1084 true, NULL, true, GSI_SAME_STMT);
1085 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1086 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
1087
1088 for (ap = 0; ap < n_prefetches; ap++)
1089 {
1090 if (cst_and_fits_in_hwi (ref->group->step))
1091 {
1092 /* Determine the address to prefetch. */
1093 delta = (ahead + ap * ref->prefetch_mod) *
1094 int_cst_value (ref->group->step);
1095 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
1096 addr_base, size_int (delta));
1097 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1098 true, GSI_SAME_STMT);
1099 }
1100 else
1101 {
1102 /* The step size is non-constant but loop-invariant. We use the
1103 heuristic to simply prefetch ahead iterations ahead. */
1104 forward = fold_build2 (MULT_EXPR, sizetype,
1105 fold_convert (sizetype, ref->group->step),
1106 fold_convert (sizetype, size_int (ahead)));
1107 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, addr_base,
1108 forward);
1109 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1110 NULL, true, GSI_SAME_STMT);
1111 }
1112 /* Create the prefetch instruction. */
1113 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
1114 3, addr, write_p, local);
1115 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1116 }
1117 }
1118
1119 /* Issue prefetches for the references in GROUPS into loop as decided before.
1120 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1121 factor by that LOOP was unrolled. */
1122
1123 static void
1124 issue_prefetches (struct mem_ref_group *groups,
1125 unsigned unroll_factor, unsigned ahead)
1126 {
1127 struct mem_ref *ref;
1128
1129 for (; groups; groups = groups->next)
1130 for (ref = groups->refs; ref; ref = ref->next)
1131 if (ref->issue_prefetch_p)
1132 issue_prefetch_ref (ref, unroll_factor, ahead);
1133 }
1134
1135 /* Returns true if REF is a memory write for that a nontemporal store insn
1136 can be used. */
1137
1138 static bool
1139 nontemporal_store_p (struct mem_ref *ref)
1140 {
1141 enum machine_mode mode;
1142 enum insn_code code;
1143
1144 /* REF must be a write that is not reused. We require it to be independent
1145 on all other memory references in the loop, as the nontemporal stores may
1146 be reordered with respect to other memory references. */
1147 if (!ref->write_p
1148 || !ref->independent_p
1149 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1150 return false;
1151
1152 /* Check that we have the storent instruction for the mode. */
1153 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1154 if (mode == BLKmode)
1155 return false;
1156
1157 code = optab_handler (storent_optab, mode);
1158 return code != CODE_FOR_nothing;
1159 }
1160
1161 /* If REF is a nontemporal store, we mark the corresponding modify statement
1162 and return true. Otherwise, we return false. */
1163
1164 static bool
1165 mark_nontemporal_store (struct mem_ref *ref)
1166 {
1167 if (!nontemporal_store_p (ref))
1168 return false;
1169
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1171 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1172 (void *) ref);
1173
1174 gimple_assign_set_nontemporal_move (ref->stmt, true);
1175 ref->storent_p = true;
1176
1177 return true;
1178 }
1179
1180 /* Issue a memory fence instruction after LOOP. */
1181
1182 static void
1183 emit_mfence_after_loop (struct loop *loop)
1184 {
1185 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1186 edge exit;
1187 gimple call;
1188 gimple_stmt_iterator bsi;
1189 unsigned i;
1190
1191 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1192 {
1193 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1194
1195 if (!single_pred_p (exit->dest)
1196 /* If possible, we prefer not to insert the fence on other paths
1197 in cfg. */
1198 && !(exit->flags & EDGE_ABNORMAL))
1199 split_loop_exit_edge (exit);
1200 bsi = gsi_after_labels (exit->dest);
1201
1202 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1203 mark_virtual_ops_for_renaming (call);
1204 }
1205
1206 VEC_free (edge, heap, exits);
1207 update_ssa (TODO_update_ssa_only_virtuals);
1208 }
1209
1210 /* Returns true if we can use storent in loop, false otherwise. */
1211
1212 static bool
1213 may_use_storent_in_loop_p (struct loop *loop)
1214 {
1215 bool ret = true;
1216
1217 if (loop->inner != NULL)
1218 return false;
1219
1220 /* If we must issue a mfence insn after using storent, check that there
1221 is a suitable place for it at each of the loop exits. */
1222 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1223 {
1224 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1225 unsigned i;
1226 edge exit;
1227
1228 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1229 if ((exit->flags & EDGE_ABNORMAL)
1230 && exit->dest == EXIT_BLOCK_PTR)
1231 ret = false;
1232
1233 VEC_free (edge, heap, exits);
1234 }
1235
1236 return ret;
1237 }
1238
1239 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1240 references in the loop. */
1241
1242 static void
1243 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1244 {
1245 struct mem_ref *ref;
1246 bool any = false;
1247
1248 if (!may_use_storent_in_loop_p (loop))
1249 return;
1250
1251 for (; groups; groups = groups->next)
1252 for (ref = groups->refs; ref; ref = ref->next)
1253 any |= mark_nontemporal_store (ref);
1254
1255 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1256 emit_mfence_after_loop (loop);
1257 }
1258
1259 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1260 this is the case, fill in DESC by the description of number of
1261 iterations. */
1262
1263 static bool
1264 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1265 unsigned factor)
1266 {
1267 if (!can_unroll_loop_p (loop, factor, desc))
1268 return false;
1269
1270 /* We only consider loops without control flow for unrolling. This is not
1271 a hard restriction -- tree_unroll_loop works with arbitrary loops
1272 as well; but the unrolling/prefetching is usually more profitable for
1273 loops consisting of a single basic block, and we want to limit the
1274 code growth. */
1275 if (loop->num_nodes > 2)
1276 return false;
1277
1278 return true;
1279 }
1280
1281 /* Determine the coefficient by that unroll LOOP, from the information
1282 contained in the list of memory references REFS. Description of
1283 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1284 insns of the LOOP. EST_NITER is the estimated number of iterations of
1285 the loop, or -1 if no estimate is available. */
1286
1287 static unsigned
1288 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1289 unsigned ninsns, struct tree_niter_desc *desc,
1290 HOST_WIDE_INT est_niter)
1291 {
1292 unsigned upper_bound;
1293 unsigned nfactor, factor, mod_constraint;
1294 struct mem_ref_group *agp;
1295 struct mem_ref *ref;
1296
1297 /* First check whether the loop is not too large to unroll. We ignore
1298 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1299 from unrolling them enough to make exactly one cache line covered by each
1300 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1301 us from unrolling the loops too many times in cases where we only expect
1302 gains from better scheduling and decreasing loop overhead, which is not
1303 the case here. */
1304 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1305
1306 /* If we unrolled the loop more times than it iterates, the unrolled version
1307 of the loop would be never entered. */
1308 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1309 upper_bound = est_niter;
1310
1311 if (upper_bound <= 1)
1312 return 1;
1313
1314 /* Choose the factor so that we may prefetch each cache just once,
1315 but bound the unrolling by UPPER_BOUND. */
1316 factor = 1;
1317 for (agp = refs; agp; agp = agp->next)
1318 for (ref = agp->refs; ref; ref = ref->next)
1319 if (should_issue_prefetch_p (ref))
1320 {
1321 mod_constraint = ref->prefetch_mod;
1322 nfactor = least_common_multiple (mod_constraint, factor);
1323 if (nfactor <= upper_bound)
1324 factor = nfactor;
1325 }
1326
1327 if (!should_unroll_loop_p (loop, desc, factor))
1328 return 1;
1329
1330 return factor;
1331 }
1332
1333 /* Returns the total volume of the memory references REFS, taking into account
1334 reuses in the innermost loop and cache line size. TODO -- we should also
1335 take into account reuses across the iterations of the loops in the loop
1336 nest. */
1337
1338 static unsigned
1339 volume_of_references (struct mem_ref_group *refs)
1340 {
1341 unsigned volume = 0;
1342 struct mem_ref_group *gr;
1343 struct mem_ref *ref;
1344
1345 for (gr = refs; gr; gr = gr->next)
1346 for (ref = gr->refs; ref; ref = ref->next)
1347 {
1348 /* Almost always reuses another value? */
1349 if (ref->prefetch_before != PREFETCH_ALL)
1350 continue;
1351
1352 /* If several iterations access the same cache line, use the size of
1353 the line divided by this number. Otherwise, a cache line is
1354 accessed in each iteration. TODO -- in the latter case, we should
1355 take the size of the reference into account, rounding it up on cache
1356 line size multiple. */
1357 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1358 }
1359 return volume;
1360 }
1361
1362 /* Returns the volume of memory references accessed across VEC iterations of
1363 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1364 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1365
1366 static unsigned
1367 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1368 {
1369 unsigned i;
1370
1371 for (i = 0; i < n; i++)
1372 if (vec[i] != 0)
1373 break;
1374
1375 if (i == n)
1376 return 0;
1377
1378 gcc_assert (vec[i] > 0);
1379
1380 /* We ignore the parts of the distance vector in subloops, since usually
1381 the numbers of iterations are much smaller. */
1382 return loop_sizes[i] * vec[i];
1383 }
1384
1385 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1386 at the position corresponding to the loop of the step. N is the depth
1387 of the considered loop nest, and, LOOP is its innermost loop. */
1388
1389 static void
1390 add_subscript_strides (tree access_fn, unsigned stride,
1391 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1392 {
1393 struct loop *aloop;
1394 tree step;
1395 HOST_WIDE_INT astep;
1396 unsigned min_depth = loop_depth (loop) - n;
1397
1398 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1399 {
1400 aloop = get_chrec_loop (access_fn);
1401 step = CHREC_RIGHT (access_fn);
1402 access_fn = CHREC_LEFT (access_fn);
1403
1404 if ((unsigned) loop_depth (aloop) <= min_depth)
1405 continue;
1406
1407 if (host_integerp (step, 0))
1408 astep = tree_low_cst (step, 0);
1409 else
1410 astep = L1_CACHE_LINE_SIZE;
1411
1412 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1413
1414 }
1415 }
1416
1417 /* Returns the volume of memory references accessed between two consecutive
1418 self-reuses of the reference DR. We consider the subscripts of DR in N
1419 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1420 loops. LOOP is the innermost loop of the current loop nest. */
1421
1422 static unsigned
1423 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1424 struct loop *loop)
1425 {
1426 tree stride, access_fn;
1427 HOST_WIDE_INT *strides, astride;
1428 VEC (tree, heap) *access_fns;
1429 tree ref = DR_REF (dr);
1430 unsigned i, ret = ~0u;
1431
1432 /* In the following example:
1433
1434 for (i = 0; i < N; i++)
1435 for (j = 0; j < N; j++)
1436 use (a[j][i]);
1437 the same cache line is accessed each N steps (except if the change from
1438 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1439 we cannot rely purely on the results of the data dependence analysis.
1440
1441 Instead, we compute the stride of the reference in each loop, and consider
1442 the innermost loop in that the stride is less than cache size. */
1443
1444 strides = XCNEWVEC (HOST_WIDE_INT, n);
1445 access_fns = DR_ACCESS_FNS (dr);
1446
1447 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1448 {
1449 /* Keep track of the reference corresponding to the subscript, so that we
1450 know its stride. */
1451 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1452 ref = TREE_OPERAND (ref, 0);
1453
1454 if (TREE_CODE (ref) == ARRAY_REF)
1455 {
1456 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1457 if (host_integerp (stride, 1))
1458 astride = tree_low_cst (stride, 1);
1459 else
1460 astride = L1_CACHE_LINE_SIZE;
1461
1462 ref = TREE_OPERAND (ref, 0);
1463 }
1464 else
1465 astride = 1;
1466
1467 add_subscript_strides (access_fn, astride, strides, n, loop);
1468 }
1469
1470 for (i = n; i-- > 0; )
1471 {
1472 unsigned HOST_WIDE_INT s;
1473
1474 s = strides[i] < 0 ? -strides[i] : strides[i];
1475
1476 if (s < (unsigned) L1_CACHE_LINE_SIZE
1477 && (loop_sizes[i]
1478 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1479 {
1480 ret = loop_sizes[i];
1481 break;
1482 }
1483 }
1484
1485 free (strides);
1486 return ret;
1487 }
1488
1489 /* Determines the distance till the first reuse of each reference in REFS
1490 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1491 memory references in the loop. */
1492
1493 static void
1494 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1495 bool no_other_refs)
1496 {
1497 struct loop *nest, *aloop;
1498 VEC (data_reference_p, heap) *datarefs = NULL;
1499 VEC (ddr_p, heap) *dependences = NULL;
1500 struct mem_ref_group *gr;
1501 struct mem_ref *ref, *refb;
1502 VEC (loop_p, heap) *vloops = NULL;
1503 unsigned *loop_data_size;
1504 unsigned i, j, n;
1505 unsigned volume, dist, adist;
1506 HOST_WIDE_INT vol;
1507 data_reference_p dr;
1508 ddr_p dep;
1509
1510 if (loop->inner)
1511 return;
1512
1513 /* Find the outermost loop of the loop nest of loop (we require that
1514 there are no sibling loops inside the nest). */
1515 nest = loop;
1516 while (1)
1517 {
1518 aloop = loop_outer (nest);
1519
1520 if (aloop == current_loops->tree_root
1521 || aloop->inner->next)
1522 break;
1523
1524 nest = aloop;
1525 }
1526
1527 /* For each loop, determine the amount of data accessed in each iteration.
1528 We use this to estimate whether the reference is evicted from the
1529 cache before its reuse. */
1530 find_loop_nest (nest, &vloops);
1531 n = VEC_length (loop_p, vloops);
1532 loop_data_size = XNEWVEC (unsigned, n);
1533 volume = volume_of_references (refs);
1534 i = n;
1535 while (i-- != 0)
1536 {
1537 loop_data_size[i] = volume;
1538 /* Bound the volume by the L2 cache size, since above this bound,
1539 all dependence distances are equivalent. */
1540 if (volume > L2_CACHE_SIZE_BYTES)
1541 continue;
1542
1543 aloop = VEC_index (loop_p, vloops, i);
1544 vol = estimated_loop_iterations_int (aloop, false);
1545 if (vol < 0)
1546 vol = expected_loop_iterations (aloop);
1547 volume *= vol;
1548 }
1549
1550 /* Prepare the references in the form suitable for data dependence
1551 analysis. We ignore unanalyzable data references (the results
1552 are used just as a heuristics to estimate temporality of the
1553 references, hence we do not need to worry about correctness). */
1554 for (gr = refs; gr; gr = gr->next)
1555 for (ref = gr->refs; ref; ref = ref->next)
1556 {
1557 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1558
1559 if (dr)
1560 {
1561 ref->reuse_distance = volume;
1562 dr->aux = ref;
1563 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1564 }
1565 else
1566 no_other_refs = false;
1567 }
1568
1569 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1570 {
1571 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1572 ref = (struct mem_ref *) dr->aux;
1573 if (ref->reuse_distance > dist)
1574 ref->reuse_distance = dist;
1575
1576 if (no_other_refs)
1577 ref->independent_p = true;
1578 }
1579
1580 compute_all_dependences (datarefs, &dependences, vloops, true);
1581
1582 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1583 {
1584 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1585 continue;
1586
1587 ref = (struct mem_ref *) DDR_A (dep)->aux;
1588 refb = (struct mem_ref *) DDR_B (dep)->aux;
1589
1590 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1591 || DDR_NUM_DIST_VECTS (dep) == 0)
1592 {
1593 /* If the dependence cannot be analyzed, assume that there might be
1594 a reuse. */
1595 dist = 0;
1596
1597 ref->independent_p = false;
1598 refb->independent_p = false;
1599 }
1600 else
1601 {
1602 /* The distance vectors are normalized to be always lexicographically
1603 positive, hence we cannot tell just from them whether DDR_A comes
1604 before DDR_B or vice versa. However, it is not important,
1605 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1606 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1607 in cache (and marking it as nontemporal would not affect
1608 anything). */
1609
1610 dist = volume;
1611 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1612 {
1613 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1614 loop_data_size, n);
1615
1616 /* If this is a dependence in the innermost loop (i.e., the
1617 distances in all superloops are zero) and it is not
1618 the trivial self-dependence with distance zero, record that
1619 the references are not completely independent. */
1620 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1621 && (ref != refb
1622 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1623 {
1624 ref->independent_p = false;
1625 refb->independent_p = false;
1626 }
1627
1628 /* Ignore accesses closer than
1629 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1630 so that we use nontemporal prefetches e.g. if single memory
1631 location is accessed several times in a single iteration of
1632 the loop. */
1633 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1634 continue;
1635
1636 if (adist < dist)
1637 dist = adist;
1638 }
1639 }
1640
1641 if (ref->reuse_distance > dist)
1642 ref->reuse_distance = dist;
1643 if (refb->reuse_distance > dist)
1644 refb->reuse_distance = dist;
1645 }
1646
1647 free_dependence_relations (dependences);
1648 free_data_refs (datarefs);
1649 free (loop_data_size);
1650
1651 if (dump_file && (dump_flags & TDF_DETAILS))
1652 {
1653 fprintf (dump_file, "Reuse distances:\n");
1654 for (gr = refs; gr; gr = gr->next)
1655 for (ref = gr->refs; ref; ref = ref->next)
1656 fprintf (dump_file, " ref %p distance %u\n",
1657 (void *) ref, ref->reuse_distance);
1658 }
1659 }
1660
1661 /* Determine whether or not the trip count to ahead ratio is too small based
1662 on prefitablility consideration.
1663 AHEAD: the iteration ahead distance,
1664 EST_NITER: the estimated trip count. */
1665
1666 static bool
1667 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1668 {
1669 /* Assume trip count to ahead ratio is big enough if the trip count could not
1670 be estimated at compile time. */
1671 if (est_niter < 0)
1672 return false;
1673
1674 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1675 {
1676 if (dump_file && (dump_flags & TDF_DETAILS))
1677 fprintf (dump_file,
1678 "Not prefetching -- loop estimated to roll only %d times\n",
1679 (int) est_niter);
1680 return true;
1681 }
1682
1683 return false;
1684 }
1685
1686 /* Determine whether or not the number of memory references in the loop is
1687 reasonable based on the profitablity and compilation time considerations.
1688 NINSNS: estimated number of instructions in the loop,
1689 MEM_REF_COUNT: total number of memory references in the loop. */
1690
1691 static bool
1692 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1693 {
1694 int insn_to_mem_ratio;
1695
1696 if (mem_ref_count == 0)
1697 return false;
1698
1699 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1700 (compute_all_dependences) have high costs based on quadratic complexity.
1701 To avoid huge compilation time, we give up prefetching if mem_ref_count
1702 is too large. */
1703 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1704 return false;
1705
1706 /* Prefetching improves performance by overlapping cache missing
1707 memory accesses with CPU operations. If the loop does not have
1708 enough CPU operations to overlap with memory operations, prefetching
1709 won't give a significant benefit. One approximate way of checking
1710 this is to require the ratio of instructions to memory references to
1711 be above a certain limit. This approximation works well in practice.
1712 TODO: Implement a more precise computation by estimating the time
1713 for each CPU or memory op in the loop. Time estimates for memory ops
1714 should account for cache misses. */
1715 insn_to_mem_ratio = ninsns / mem_ref_count;
1716
1717 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1718 {
1719 if (dump_file && (dump_flags & TDF_DETAILS))
1720 fprintf (dump_file,
1721 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1722 insn_to_mem_ratio);
1723 return false;
1724 }
1725
1726 return true;
1727 }
1728
1729 /* Determine whether or not the instruction to prefetch ratio in the loop is
1730 too small based on the profitablity consideration.
1731 NINSNS: estimated number of instructions in the loop,
1732 PREFETCH_COUNT: an estimate of the number of prefetches,
1733 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1734
1735 static bool
1736 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1737 unsigned unroll_factor)
1738 {
1739 int insn_to_prefetch_ratio;
1740
1741 /* Prefetching most likely causes performance degradation when the instruction
1742 to prefetch ratio is too small. Too many prefetch instructions in a loop
1743 may reduce the I-cache performance.
1744 (unroll_factor * ninsns) is used to estimate the number of instructions in
1745 the unrolled loop. This implementation is a bit simplistic -- the number
1746 of issued prefetch instructions is also affected by unrolling. So,
1747 prefetch_mod and the unroll factor should be taken into account when
1748 determining prefetch_count. Also, the number of insns of the unrolled
1749 loop will usually be significantly smaller than the number of insns of the
1750 original loop * unroll_factor (at least the induction variable increases
1751 and the exit branches will get eliminated), so it might be better to use
1752 tree_estimate_loop_size + estimated_unrolled_size. */
1753 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1754 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1755 {
1756 if (dump_file && (dump_flags & TDF_DETAILS))
1757 fprintf (dump_file,
1758 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1759 insn_to_prefetch_ratio);
1760 return true;
1761 }
1762
1763 return false;
1764 }
1765
1766
1767 /* Issue prefetch instructions for array references in LOOP. Returns
1768 true if the LOOP was unrolled. */
1769
1770 static bool
1771 loop_prefetch_arrays (struct loop *loop)
1772 {
1773 struct mem_ref_group *refs;
1774 unsigned ahead, ninsns, time, unroll_factor;
1775 HOST_WIDE_INT est_niter;
1776 struct tree_niter_desc desc;
1777 bool unrolled = false, no_other_refs;
1778 unsigned prefetch_count;
1779 unsigned mem_ref_count;
1780
1781 if (optimize_loop_nest_for_size_p (loop))
1782 {
1783 if (dump_file && (dump_flags & TDF_DETAILS))
1784 fprintf (dump_file, " ignored (cold area)\n");
1785 return false;
1786 }
1787
1788 /* FIXME: the time should be weighted by the probabilities of the blocks in
1789 the loop body. */
1790 time = tree_num_loop_insns (loop, &eni_time_weights);
1791 if (time == 0)
1792 return false;
1793
1794 ahead = (PREFETCH_LATENCY + time - 1) / time;
1795 est_niter = estimated_loop_iterations_int (loop, false);
1796
1797 /* Prefetching is not likely to be profitable if the trip count to ahead
1798 ratio is too small. */
1799 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1800 return false;
1801
1802 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1803
1804 /* Step 1: gather the memory references. */
1805 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1806
1807 /* Give up prefetching if the number of memory references in the
1808 loop is not reasonable based on profitablity and compilation time
1809 considerations. */
1810 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1811 goto fail;
1812
1813 /* Step 2: estimate the reuse effects. */
1814 prune_by_reuse (refs);
1815
1816 if (nothing_to_prefetch_p (refs))
1817 goto fail;
1818
1819 determine_loop_nest_reuse (loop, refs, no_other_refs);
1820
1821 /* Step 3: determine unroll factor. */
1822 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1823 est_niter);
1824
1825 /* Estimate prefetch count for the unrolled loop. */
1826 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1827 if (prefetch_count == 0)
1828 goto fail;
1829
1830 if (dump_file && (dump_flags & TDF_DETAILS))
1831 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1832 HOST_WIDE_INT_PRINT_DEC "\n"
1833 "insn count %d, mem ref count %d, prefetch count %d\n",
1834 ahead, unroll_factor, est_niter,
1835 ninsns, mem_ref_count, prefetch_count);
1836
1837 /* Prefetching is not likely to be profitable if the instruction to prefetch
1838 ratio is too small. */
1839 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1840 unroll_factor))
1841 goto fail;
1842
1843 mark_nontemporal_stores (loop, refs);
1844
1845 /* Step 4: what to prefetch? */
1846 if (!schedule_prefetches (refs, unroll_factor, ahead))
1847 goto fail;
1848
1849 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1850 iterations so that we do not issue superfluous prefetches. */
1851 if (unroll_factor != 1)
1852 {
1853 tree_unroll_loop (loop, unroll_factor,
1854 single_dom_exit (loop), &desc);
1855 unrolled = true;
1856 }
1857
1858 /* Step 6: issue the prefetches. */
1859 issue_prefetches (refs, unroll_factor, ahead);
1860
1861 fail:
1862 release_mem_refs (refs);
1863 return unrolled;
1864 }
1865
1866 /* Issue prefetch instructions for array references in loops. */
1867
1868 unsigned int
1869 tree_ssa_prefetch_arrays (void)
1870 {
1871 loop_iterator li;
1872 struct loop *loop;
1873 bool unrolled = false;
1874 int todo_flags = 0;
1875
1876 if (!HAVE_prefetch
1877 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1878 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1879 of processor costs and i486 does not have prefetch, but
1880 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1881 || PREFETCH_BLOCK == 0)
1882 return 0;
1883
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1885 {
1886 fprintf (dump_file, "Prefetching parameters:\n");
1887 fprintf (dump_file, " simultaneous prefetches: %d\n",
1888 SIMULTANEOUS_PREFETCHES);
1889 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1890 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1891 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1892 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1893 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1894 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1895 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1896 MIN_INSN_TO_PREFETCH_RATIO);
1897 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1898 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1899 fprintf (dump_file, "\n");
1900 }
1901
1902 initialize_original_copy_tables ();
1903
1904 if (!built_in_decls[BUILT_IN_PREFETCH])
1905 {
1906 tree type = build_function_type (void_type_node,
1907 tree_cons (NULL_TREE,
1908 const_ptr_type_node,
1909 NULL_TREE));
1910 tree decl = add_builtin_function ("__builtin_prefetch", type,
1911 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1912 NULL, NULL_TREE);
1913 DECL_IS_NOVOPS (decl) = true;
1914 built_in_decls[BUILT_IN_PREFETCH] = decl;
1915 }
1916
1917 /* We assume that size of cache line is a power of two, so verify this
1918 here. */
1919 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1920
1921 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1922 {
1923 if (dump_file && (dump_flags & TDF_DETAILS))
1924 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1925
1926 unrolled |= loop_prefetch_arrays (loop);
1927
1928 if (dump_file && (dump_flags & TDF_DETAILS))
1929 fprintf (dump_file, "\n\n");
1930 }
1931
1932 if (unrolled)
1933 {
1934 scev_reset ();
1935 todo_flags |= TODO_cleanup_cfg;
1936 }
1937
1938 free_original_copy_tables ();
1939 return todo_flags;
1940 }