Reduce the cost in miss rate computation.
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "output.h"
28 #include "tree-pretty-print.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "timevar.h"
32 #include "cfgloop.h"
33 #include "tree-pass.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "hashtab.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "langhooks.h"
42 #include "tree-inline.h"
43 #include "tree-data-ref.h"
44
45
46 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
47 between the GIMPLE and RTL worlds. */
48 #include "expr.h"
49 #include "optabs.h"
50
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
53
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
63
64 char *a;
65 for (i = 0; i < max; i++)
66 {
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
73 }
74
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (4) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
85
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
89
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
95
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
102
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
107
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
111
112 The function is_loop_prefetching_profitable() implements a cost model
113 to determine if prefetching is profitable for a given loop. The cost
114 model has two heuristcs:
115 1. A heuristic that determines whether the given loop has enough CPU
116 ops that can be overlapped with cache missing memory ops.
117 If not, the loop won't benefit from prefetching. This is implemented
118 by requirung the ratio between the instruction count and the mem ref
119 count to be above a certain minimum.
120 2. A heuristic that disables prefetching in a loop with an unknown trip
121 count if the prefetching cost is above a certain limit. The relative
122 prefetching cost is estimated by taking the ratio between the
123 prefetch count and the total intruction count (this models the I-cache
124 cost).
125 The limits used in these heuristics are defined as parameters with
126 reasonable default values. Machine-specific default values will be
127 added later.
128
129 Some other TODO:
130 -- write and use more general reuse analysis (that could be also used
131 in other cache aimed loop optimizations)
132 -- make it behave sanely together with the prefetches given by user
133 (now we just ignore them; at the very least we should avoid
134 optimizing loops in that user put his own prefetches)
135 -- we assume cache line size alignment of arrays; this could be
136 improved. */
137
138 /* Magic constants follow. These should be replaced by machine specific
139 numbers. */
140
141 /* True if write can be prefetched by a read prefetch. */
142
143 #ifndef WRITE_CAN_USE_READ_PREFETCH
144 #define WRITE_CAN_USE_READ_PREFETCH 1
145 #endif
146
147 /* True if read can be prefetched by a write prefetch. */
148
149 #ifndef READ_CAN_USE_WRITE_PREFETCH
150 #define READ_CAN_USE_WRITE_PREFETCH 0
151 #endif
152
153 /* The size of the block loaded by a single prefetch. Usually, this is
154 the same as cache line size (at the moment, we only consider one level
155 of cache hierarchy). */
156
157 #ifndef PREFETCH_BLOCK
158 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
159 #endif
160
161 /* Do we have a forward hardware sequential prefetching? */
162
163 #ifndef HAVE_FORWARD_PREFETCH
164 #define HAVE_FORWARD_PREFETCH 0
165 #endif
166
167 /* Do we have a backward hardware sequential prefetching? */
168
169 #ifndef HAVE_BACKWARD_PREFETCH
170 #define HAVE_BACKWARD_PREFETCH 0
171 #endif
172
173 /* In some cases we are only able to determine that there is a certain
174 probability that the two accesses hit the same cache line. In this
175 case, we issue the prefetches for both of them if this probability
176 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
177
178 #ifndef ACCEPTABLE_MISS_RATE
179 #define ACCEPTABLE_MISS_RATE 50
180 #endif
181
182 #ifndef HAVE_prefetch
183 #define HAVE_prefetch 0
184 #endif
185
186 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
187 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
188
189 /* We consider a memory access nontemporal if it is not reused sooner than
190 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
191 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
192 so that we use nontemporal prefetches e.g. if single memory location
193 is accessed several times in a single iteration of the loop. */
194 #define NONTEMPORAL_FRACTION 16
195
196 /* In case we have to emit a memory fence instruction after the loop that
197 uses nontemporal stores, this defines the builtin to use. */
198
199 #ifndef FENCE_FOLLOWING_MOVNT
200 #define FENCE_FOLLOWING_MOVNT NULL_TREE
201 #endif
202
203 /* It is not profitable to prefetch when the trip count is not at
204 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
205 For example, in a loop with a prefetch ahead distance of 10,
206 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
207 profitable to prefetch when the trip count is greater or equal to
208 40. In that case, 30 out of the 40 iterations will benefit from
209 prefetching. */
210
211 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
212 #define TRIP_COUNT_TO_AHEAD_RATIO 4
213 #endif
214
215 /* The group of references between that reuse may occur. */
216
217 struct mem_ref_group
218 {
219 tree base; /* Base of the reference. */
220 tree step; /* Step of the reference. */
221 struct mem_ref *refs; /* References in the group. */
222 struct mem_ref_group *next; /* Next group of references. */
223 };
224
225 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
226
227 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
228
229 /* Do not generate a prefetch if the unroll factor is significantly less
230 than what is required by the prefetch. This is to avoid redundant
231 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
232 2, prefetching requires unrolling the loop 16 times, but
233 the loop is actually unrolled twice. In this case (ratio = 8),
234 prefetching is not likely to be beneficial. */
235
236 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
237 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
238 #endif
239
240 /* The memory reference. */
241
242 struct mem_ref
243 {
244 gimple stmt; /* Statement in that the reference appears. */
245 tree mem; /* The reference. */
246 HOST_WIDE_INT delta; /* Constant offset of the reference. */
247 struct mem_ref_group *group; /* The group of references it belongs to. */
248 unsigned HOST_WIDE_INT prefetch_mod;
249 /* Prefetch only each PREFETCH_MOD-th
250 iteration. */
251 unsigned HOST_WIDE_INT prefetch_before;
252 /* Prefetch only first PREFETCH_BEFORE
253 iterations. */
254 unsigned reuse_distance; /* The amount of data accessed before the first
255 reuse of this value. */
256 struct mem_ref *next; /* The next reference in the group. */
257 unsigned write_p : 1; /* Is it a write? */
258 unsigned independent_p : 1; /* True if the reference is independent on
259 all other references inside the loop. */
260 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
261 unsigned storent_p : 1; /* True if we changed the store to a
262 nontemporal one. */
263 };
264
265 /* Dumps information about reference REF to FILE. */
266
267 static void
268 dump_mem_ref (FILE *file, struct mem_ref *ref)
269 {
270 fprintf (file, "Reference %p:\n", (void *) ref);
271
272 fprintf (file, " group %p (base ", (void *) ref->group);
273 print_generic_expr (file, ref->group->base, TDF_SLIM);
274 fprintf (file, ", step ");
275 if (cst_and_fits_in_hwi (ref->group->step))
276 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
277 else
278 print_generic_expr (file, ref->group->step, TDF_TREE);
279 fprintf (file, ")\n");
280
281 fprintf (file, " delta ");
282 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
283 fprintf (file, "\n");
284
285 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
286
287 fprintf (file, "\n");
288 }
289
290 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
291 exist. */
292
293 static struct mem_ref_group *
294 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
295 {
296 struct mem_ref_group *group;
297
298 for (; *groups; groups = &(*groups)->next)
299 {
300 if (operand_equal_p ((*groups)->step, step, 0)
301 && operand_equal_p ((*groups)->base, base, 0))
302 return *groups;
303
304 /* If step is an integer constant, keep the list of groups sorted
305 by decreasing step. */
306 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
307 && int_cst_value ((*groups)->step) < int_cst_value (step))
308 break;
309 }
310
311 group = XNEW (struct mem_ref_group);
312 group->base = base;
313 group->step = step;
314 group->refs = NULL;
315 group->next = *groups;
316 *groups = group;
317
318 return group;
319 }
320
321 /* Records a memory reference MEM in GROUP with offset DELTA and write status
322 WRITE_P. The reference occurs in statement STMT. */
323
324 static void
325 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
326 HOST_WIDE_INT delta, bool write_p)
327 {
328 struct mem_ref **aref;
329
330 /* Do not record the same address twice. */
331 for (aref = &group->refs; *aref; aref = &(*aref)->next)
332 {
333 /* It does not have to be possible for write reference to reuse the read
334 prefetch, or vice versa. */
335 if (!WRITE_CAN_USE_READ_PREFETCH
336 && write_p
337 && !(*aref)->write_p)
338 continue;
339 if (!READ_CAN_USE_WRITE_PREFETCH
340 && !write_p
341 && (*aref)->write_p)
342 continue;
343
344 if ((*aref)->delta == delta)
345 return;
346 }
347
348 (*aref) = XNEW (struct mem_ref);
349 (*aref)->stmt = stmt;
350 (*aref)->mem = mem;
351 (*aref)->delta = delta;
352 (*aref)->write_p = write_p;
353 (*aref)->prefetch_before = PREFETCH_ALL;
354 (*aref)->prefetch_mod = 1;
355 (*aref)->reuse_distance = 0;
356 (*aref)->issue_prefetch_p = false;
357 (*aref)->group = group;
358 (*aref)->next = NULL;
359 (*aref)->independent_p = false;
360 (*aref)->storent_p = false;
361
362 if (dump_file && (dump_flags & TDF_DETAILS))
363 dump_mem_ref (dump_file, *aref);
364 }
365
366 /* Release memory references in GROUPS. */
367
368 static void
369 release_mem_refs (struct mem_ref_group *groups)
370 {
371 struct mem_ref_group *next_g;
372 struct mem_ref *ref, *next_r;
373
374 for (; groups; groups = next_g)
375 {
376 next_g = groups->next;
377 for (ref = groups->refs; ref; ref = next_r)
378 {
379 next_r = ref->next;
380 free (ref);
381 }
382 free (groups);
383 }
384 }
385
386 /* A structure used to pass arguments to idx_analyze_ref. */
387
388 struct ar_data
389 {
390 struct loop *loop; /* Loop of the reference. */
391 gimple stmt; /* Statement of the reference. */
392 tree *step; /* Step of the memory reference. */
393 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
394 };
395
396 /* Analyzes a single INDEX of a memory reference to obtain information
397 described at analyze_ref. Callback for for_each_index. */
398
399 static bool
400 idx_analyze_ref (tree base, tree *index, void *data)
401 {
402 struct ar_data *ar_data = (struct ar_data *) data;
403 tree ibase, step, stepsize;
404 HOST_WIDE_INT idelta = 0, imult = 1;
405 affine_iv iv;
406
407 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
408 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
409 return false;
410
411 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
412 *index, &iv, true))
413 return false;
414 ibase = iv.base;
415 step = iv.step;
416
417 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
418 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
419 {
420 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
421 ibase = TREE_OPERAND (ibase, 0);
422 }
423 if (cst_and_fits_in_hwi (ibase))
424 {
425 idelta += int_cst_value (ibase);
426 ibase = build_int_cst (TREE_TYPE (ibase), 0);
427 }
428
429 if (TREE_CODE (base) == ARRAY_REF)
430 {
431 stepsize = array_ref_element_size (base);
432 if (!cst_and_fits_in_hwi (stepsize))
433 return false;
434 imult = int_cst_value (stepsize);
435 step = fold_build2 (MULT_EXPR, sizetype,
436 fold_convert (sizetype, step),
437 fold_convert (sizetype, stepsize));
438 idelta *= imult;
439 }
440
441 if (*ar_data->step == NULL_TREE)
442 *ar_data->step = step;
443 else
444 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
445 fold_convert (sizetype, *ar_data->step),
446 fold_convert (sizetype, step));
447 *ar_data->delta += idelta;
448 *index = ibase;
449
450 return true;
451 }
452
453 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
454 STEP are integer constants and iter is number of iterations of LOOP. The
455 reference occurs in statement STMT. Strips nonaddressable component
456 references from REF_P. */
457
458 static bool
459 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
460 tree *step, HOST_WIDE_INT *delta,
461 gimple stmt)
462 {
463 struct ar_data ar_data;
464 tree off;
465 HOST_WIDE_INT bit_offset;
466 tree ref = *ref_p;
467
468 *step = NULL_TREE;
469 *delta = 0;
470
471 /* First strip off the component references. Ignore bitfields. */
472 if (TREE_CODE (ref) == COMPONENT_REF
473 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
474 ref = TREE_OPERAND (ref, 0);
475
476 *ref_p = ref;
477
478 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
479 {
480 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
481 bit_offset = TREE_INT_CST_LOW (off);
482 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
483
484 *delta += bit_offset / BITS_PER_UNIT;
485 }
486
487 *base = unshare_expr (ref);
488 ar_data.loop = loop;
489 ar_data.stmt = stmt;
490 ar_data.step = step;
491 ar_data.delta = delta;
492 return for_each_index (base, idx_analyze_ref, &ar_data);
493 }
494
495 /* Record a memory reference REF to the list REFS. The reference occurs in
496 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
497 reference was recorded, false otherwise. */
498
499 static bool
500 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
501 tree ref, bool write_p, gimple stmt)
502 {
503 tree base, step;
504 HOST_WIDE_INT delta;
505 struct mem_ref_group *agrp;
506
507 if (get_base_address (ref) == NULL)
508 return false;
509
510 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
511 return false;
512 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
513 if (step == NULL_TREE)
514 return false;
515
516 /* Limit non-constant step prefetching only to the innermost loops. */
517 if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
518 return false;
519
520 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
521 are integer constants. */
522 agrp = find_or_create_group (refs, base, step);
523 record_ref (agrp, stmt, ref, delta, write_p);
524
525 return true;
526 }
527
528 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
529 true if there are no other memory references inside the loop. */
530
531 static struct mem_ref_group *
532 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
533 {
534 basic_block *body = get_loop_body_in_dom_order (loop);
535 basic_block bb;
536 unsigned i;
537 gimple_stmt_iterator bsi;
538 gimple stmt;
539 tree lhs, rhs;
540 struct mem_ref_group *refs = NULL;
541
542 *no_other_refs = true;
543 *ref_count = 0;
544
545 /* Scan the loop body in order, so that the former references precede the
546 later ones. */
547 for (i = 0; i < loop->num_nodes; i++)
548 {
549 bb = body[i];
550 if (bb->loop_father != loop)
551 continue;
552
553 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
554 {
555 stmt = gsi_stmt (bsi);
556
557 if (gimple_code (stmt) != GIMPLE_ASSIGN)
558 {
559 if (gimple_vuse (stmt)
560 || (is_gimple_call (stmt)
561 && !(gimple_call_flags (stmt) & ECF_CONST)))
562 *no_other_refs = false;
563 continue;
564 }
565
566 lhs = gimple_assign_lhs (stmt);
567 rhs = gimple_assign_rhs1 (stmt);
568
569 if (REFERENCE_CLASS_P (rhs))
570 {
571 *no_other_refs &= gather_memory_references_ref (loop, &refs,
572 rhs, false, stmt);
573 *ref_count += 1;
574 }
575 if (REFERENCE_CLASS_P (lhs))
576 {
577 *no_other_refs &= gather_memory_references_ref (loop, &refs,
578 lhs, true, stmt);
579 *ref_count += 1;
580 }
581 }
582 }
583 free (body);
584
585 return refs;
586 }
587
588 /* Prune the prefetch candidate REF using the self-reuse. */
589
590 static void
591 prune_ref_by_self_reuse (struct mem_ref *ref)
592 {
593 HOST_WIDE_INT step;
594 bool backward;
595
596 /* If the step size is non constant, we cannot calculate prefetch_mod. */
597 if (!cst_and_fits_in_hwi (ref->group->step))
598 return;
599
600 step = int_cst_value (ref->group->step);
601
602 backward = step < 0;
603
604 if (step == 0)
605 {
606 /* Prefetch references to invariant address just once. */
607 ref->prefetch_before = 1;
608 return;
609 }
610
611 if (backward)
612 step = -step;
613
614 if (step > PREFETCH_BLOCK)
615 return;
616
617 if ((backward && HAVE_BACKWARD_PREFETCH)
618 || (!backward && HAVE_FORWARD_PREFETCH))
619 {
620 ref->prefetch_before = 1;
621 return;
622 }
623
624 ref->prefetch_mod = PREFETCH_BLOCK / step;
625 }
626
627 /* Divides X by BY, rounding down. */
628
629 static HOST_WIDE_INT
630 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
631 {
632 gcc_assert (by > 0);
633
634 if (x >= 0)
635 return x / by;
636 else
637 return (x + by - 1) / by;
638 }
639
640 /* Given a CACHE_LINE_SIZE and two inductive memory references
641 with a common STEP greater than CACHE_LINE_SIZE and an address
642 difference DELTA, compute the probability that they will fall
643 in different cache lines. Return true if the computed miss rate
644 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
645 number of distinct iterations after which the pattern repeats itself.
646 ALIGN_UNIT is the unit of alignment in bytes. */
647
648 static bool
649 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
650 HOST_WIDE_INT step, HOST_WIDE_INT delta,
651 unsigned HOST_WIDE_INT distinct_iters,
652 int align_unit)
653 {
654 unsigned align, iter;
655 int total_positions, miss_positions, max_allowed_miss_positions;
656 int address1, address2, cache_line1, cache_line2;
657
658 /* It always misses if delta is greater than or equal to the cache
659 line size. */
660 if (delta >= (HOST_WIDE_INT) cache_line_size)
661 return false;
662
663 miss_positions = 0;
664 total_positions = (cache_line_size / align_unit) * distinct_iters;
665 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
666
667 /* Iterate through all possible alignments of the first
668 memory reference within its cache line. */
669 for (align = 0; align < cache_line_size; align += align_unit)
670
671 /* Iterate through all distinct iterations. */
672 for (iter = 0; iter < distinct_iters; iter++)
673 {
674 address1 = align + step * iter;
675 address2 = address1 + delta;
676 cache_line1 = address1 / cache_line_size;
677 cache_line2 = address2 / cache_line_size;
678 if (cache_line1 != cache_line2)
679 {
680 miss_positions += 1;
681 if (miss_positions > max_allowed_miss_positions)
682 return false;
683 }
684 }
685 return true;
686 }
687
688 /* Prune the prefetch candidate REF using the reuse with BY.
689 If BY_IS_BEFORE is true, BY is before REF in the loop. */
690
691 static void
692 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
693 bool by_is_before)
694 {
695 HOST_WIDE_INT step;
696 bool backward;
697 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
698 HOST_WIDE_INT delta = delta_b - delta_r;
699 HOST_WIDE_INT hit_from;
700 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
701 HOST_WIDE_INT reduced_step;
702 unsigned HOST_WIDE_INT reduced_prefetch_block;
703 tree ref_type;
704 int align_unit;
705
706 /* If the step is non constant we cannot calculate prefetch_before. */
707 if (!cst_and_fits_in_hwi (ref->group->step)) {
708 return;
709 }
710
711 step = int_cst_value (ref->group->step);
712
713 backward = step < 0;
714
715
716 if (delta == 0)
717 {
718 /* If the references has the same address, only prefetch the
719 former. */
720 if (by_is_before)
721 ref->prefetch_before = 0;
722
723 return;
724 }
725
726 if (!step)
727 {
728 /* If the reference addresses are invariant and fall into the
729 same cache line, prefetch just the first one. */
730 if (!by_is_before)
731 return;
732
733 if (ddown (ref->delta, PREFETCH_BLOCK)
734 != ddown (by->delta, PREFETCH_BLOCK))
735 return;
736
737 ref->prefetch_before = 0;
738 return;
739 }
740
741 /* Only prune the reference that is behind in the array. */
742 if (backward)
743 {
744 if (delta > 0)
745 return;
746
747 /* Transform the data so that we may assume that the accesses
748 are forward. */
749 delta = - delta;
750 step = -step;
751 delta_r = PREFETCH_BLOCK - 1 - delta_r;
752 delta_b = PREFETCH_BLOCK - 1 - delta_b;
753 }
754 else
755 {
756 if (delta < 0)
757 return;
758 }
759
760 /* Check whether the two references are likely to hit the same cache
761 line, and how distant the iterations in that it occurs are from
762 each other. */
763
764 if (step <= PREFETCH_BLOCK)
765 {
766 /* The accesses are sure to meet. Let us check when. */
767 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
768 prefetch_before = (hit_from - delta_r + step - 1) / step;
769
770 /* Do not reduce prefetch_before if we meet beyond cache size. */
771 if (prefetch_before > (unsigned) abs (L2_CACHE_SIZE_BYTES / step))
772 prefetch_before = PREFETCH_ALL;
773 if (prefetch_before < ref->prefetch_before)
774 ref->prefetch_before = prefetch_before;
775
776 return;
777 }
778
779 /* A more complicated case with step > prefetch_block. First reduce
780 the ratio between the step and the cache line size to its simplest
781 terms. The resulting denominator will then represent the number of
782 distinct iterations after which each address will go back to its
783 initial location within the cache line. This computation assumes
784 that PREFETCH_BLOCK is a power of two. */
785 prefetch_block = PREFETCH_BLOCK;
786 reduced_prefetch_block = prefetch_block;
787 reduced_step = step;
788 while ((reduced_step & 1) == 0
789 && reduced_prefetch_block > 1)
790 {
791 reduced_step >>= 1;
792 reduced_prefetch_block >>= 1;
793 }
794
795 prefetch_before = delta / step;
796 delta %= step;
797 ref_type = TREE_TYPE (ref->mem);
798 align_unit = TYPE_ALIGN (ref_type) / 8;
799 if (is_miss_rate_acceptable (prefetch_block, step, delta,
800 reduced_prefetch_block, align_unit))
801 {
802 /* Do not reduce prefetch_before if we meet beyond cache size. */
803 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
804 prefetch_before = PREFETCH_ALL;
805 if (prefetch_before < ref->prefetch_before)
806 ref->prefetch_before = prefetch_before;
807
808 return;
809 }
810
811 /* Try also the following iteration. */
812 prefetch_before++;
813 delta = step - delta;
814 if (is_miss_rate_acceptable (prefetch_block, step, delta,
815 reduced_prefetch_block, align_unit))
816 {
817 if (prefetch_before < ref->prefetch_before)
818 ref->prefetch_before = prefetch_before;
819
820 return;
821 }
822
823 /* The ref probably does not reuse by. */
824 return;
825 }
826
827 /* Prune the prefetch candidate REF using the reuses with other references
828 in REFS. */
829
830 static void
831 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
832 {
833 struct mem_ref *prune_by;
834 bool before = true;
835
836 prune_ref_by_self_reuse (ref);
837
838 for (prune_by = refs; prune_by; prune_by = prune_by->next)
839 {
840 if (prune_by == ref)
841 {
842 before = false;
843 continue;
844 }
845
846 if (!WRITE_CAN_USE_READ_PREFETCH
847 && ref->write_p
848 && !prune_by->write_p)
849 continue;
850 if (!READ_CAN_USE_WRITE_PREFETCH
851 && !ref->write_p
852 && prune_by->write_p)
853 continue;
854
855 prune_ref_by_group_reuse (ref, prune_by, before);
856 }
857 }
858
859 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
860
861 static void
862 prune_group_by_reuse (struct mem_ref_group *group)
863 {
864 struct mem_ref *ref_pruned;
865
866 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
867 {
868 prune_ref_by_reuse (ref_pruned, group->refs);
869
870 if (dump_file && (dump_flags & TDF_DETAILS))
871 {
872 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
873
874 if (ref_pruned->prefetch_before == PREFETCH_ALL
875 && ref_pruned->prefetch_mod == 1)
876 fprintf (dump_file, " no restrictions");
877 else if (ref_pruned->prefetch_before == 0)
878 fprintf (dump_file, " do not prefetch");
879 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
880 fprintf (dump_file, " prefetch once");
881 else
882 {
883 if (ref_pruned->prefetch_before != PREFETCH_ALL)
884 {
885 fprintf (dump_file, " prefetch before ");
886 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
887 ref_pruned->prefetch_before);
888 }
889 if (ref_pruned->prefetch_mod != 1)
890 {
891 fprintf (dump_file, " prefetch mod ");
892 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
893 ref_pruned->prefetch_mod);
894 }
895 }
896 fprintf (dump_file, "\n");
897 }
898 }
899 }
900
901 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
902
903 static void
904 prune_by_reuse (struct mem_ref_group *groups)
905 {
906 for (; groups; groups = groups->next)
907 prune_group_by_reuse (groups);
908 }
909
910 /* Returns true if we should issue prefetch for REF. */
911
912 static bool
913 should_issue_prefetch_p (struct mem_ref *ref)
914 {
915 /* For now do not issue prefetches for only first few of the
916 iterations. */
917 if (ref->prefetch_before != PREFETCH_ALL)
918 {
919 if (dump_file && (dump_flags & TDF_DETAILS))
920 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
921 (void *) ref);
922 return false;
923 }
924
925 /* Do not prefetch nontemporal stores. */
926 if (ref->storent_p)
927 {
928 if (dump_file && (dump_flags & TDF_DETAILS))
929 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
930 return false;
931 }
932
933 return true;
934 }
935
936 /* Decide which of the prefetch candidates in GROUPS to prefetch.
937 AHEAD is the number of iterations to prefetch ahead (which corresponds
938 to the number of simultaneous instances of one prefetch running at a
939 time). UNROLL_FACTOR is the factor by that the loop is going to be
940 unrolled. Returns true if there is anything to prefetch. */
941
942 static bool
943 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
944 unsigned ahead)
945 {
946 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
947 unsigned slots_per_prefetch;
948 struct mem_ref *ref;
949 bool any = false;
950
951 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
952 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
953
954 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
955 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
956 it will need a prefetch slot. */
957 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
960 slots_per_prefetch);
961
962 /* For now we just take memory references one by one and issue
963 prefetches for as many as possible. The groups are sorted
964 starting with the largest step, since the references with
965 large step are more likely to cause many cache misses. */
966
967 for (; groups; groups = groups->next)
968 for (ref = groups->refs; ref; ref = ref->next)
969 {
970 if (!should_issue_prefetch_p (ref))
971 continue;
972
973 /* The loop is far from being sufficiently unrolled for this
974 prefetch. Do not generate prefetch to avoid many redudant
975 prefetches. */
976 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
977 continue;
978
979 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
980 and we unroll the loop UNROLL_FACTOR times, we need to insert
981 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
982 iteration. */
983 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
984 / ref->prefetch_mod);
985 prefetch_slots = n_prefetches * slots_per_prefetch;
986
987 /* If more than half of the prefetches would be lost anyway, do not
988 issue the prefetch. */
989 if (2 * remaining_prefetch_slots < prefetch_slots)
990 continue;
991
992 ref->issue_prefetch_p = true;
993
994 if (remaining_prefetch_slots <= prefetch_slots)
995 return true;
996 remaining_prefetch_slots -= prefetch_slots;
997 any = true;
998 }
999
1000 return any;
1001 }
1002
1003 /* Return TRUE if no prefetch is going to be generated in the given
1004 GROUPS. */
1005
1006 static bool
1007 nothing_to_prefetch_p (struct mem_ref_group *groups)
1008 {
1009 struct mem_ref *ref;
1010
1011 for (; groups; groups = groups->next)
1012 for (ref = groups->refs; ref; ref = ref->next)
1013 if (should_issue_prefetch_p (ref))
1014 return false;
1015
1016 return true;
1017 }
1018
1019 /* Estimate the number of prefetches in the given GROUPS.
1020 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1021
1022 static int
1023 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1024 {
1025 struct mem_ref *ref;
1026 unsigned n_prefetches;
1027 int prefetch_count = 0;
1028
1029 for (; groups; groups = groups->next)
1030 for (ref = groups->refs; ref; ref = ref->next)
1031 if (should_issue_prefetch_p (ref))
1032 {
1033 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1034 / ref->prefetch_mod);
1035 prefetch_count += n_prefetches;
1036 }
1037
1038 return prefetch_count;
1039 }
1040
1041 /* Issue prefetches for the reference REF into loop as decided before.
1042 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1043 is the factor by which LOOP was unrolled. */
1044
1045 static void
1046 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1047 {
1048 HOST_WIDE_INT delta;
1049 tree addr, addr_base, write_p, local, forward;
1050 gimple prefetch;
1051 gimple_stmt_iterator bsi;
1052 unsigned n_prefetches, ap;
1053 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1054
1055 if (dump_file && (dump_flags & TDF_DETAILS))
1056 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1057 nontemporal ? " nontemporal" : "",
1058 (void *) ref);
1059
1060 bsi = gsi_for_stmt (ref->stmt);
1061
1062 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1063 / ref->prefetch_mod);
1064 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1065 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1066 true, NULL, true, GSI_SAME_STMT);
1067 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1068 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
1069
1070 for (ap = 0; ap < n_prefetches; ap++)
1071 {
1072 if (cst_and_fits_in_hwi (ref->group->step))
1073 {
1074 /* Determine the address to prefetch. */
1075 delta = (ahead + ap * ref->prefetch_mod) *
1076 int_cst_value (ref->group->step);
1077 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
1078 addr_base, size_int (delta));
1079 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1080 true, GSI_SAME_STMT);
1081 }
1082 else
1083 {
1084 /* The step size is non-constant but loop-invariant. We use the
1085 heuristic to simply prefetch ahead iterations ahead. */
1086 forward = fold_build2 (MULT_EXPR, sizetype,
1087 fold_convert (sizetype, ref->group->step),
1088 fold_convert (sizetype, size_int (ahead)));
1089 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, addr_base,
1090 forward);
1091 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1092 NULL, true, GSI_SAME_STMT);
1093 }
1094 /* Create the prefetch instruction. */
1095 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
1096 3, addr, write_p, local);
1097 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1098 }
1099 }
1100
1101 /* Issue prefetches for the references in GROUPS into loop as decided before.
1102 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1103 factor by that LOOP was unrolled. */
1104
1105 static void
1106 issue_prefetches (struct mem_ref_group *groups,
1107 unsigned unroll_factor, unsigned ahead)
1108 {
1109 struct mem_ref *ref;
1110
1111 for (; groups; groups = groups->next)
1112 for (ref = groups->refs; ref; ref = ref->next)
1113 if (ref->issue_prefetch_p)
1114 issue_prefetch_ref (ref, unroll_factor, ahead);
1115 }
1116
1117 /* Returns true if REF is a memory write for that a nontemporal store insn
1118 can be used. */
1119
1120 static bool
1121 nontemporal_store_p (struct mem_ref *ref)
1122 {
1123 enum machine_mode mode;
1124 enum insn_code code;
1125
1126 /* REF must be a write that is not reused. We require it to be independent
1127 on all other memory references in the loop, as the nontemporal stores may
1128 be reordered with respect to other memory references. */
1129 if (!ref->write_p
1130 || !ref->independent_p
1131 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1132 return false;
1133
1134 /* Check that we have the storent instruction for the mode. */
1135 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1136 if (mode == BLKmode)
1137 return false;
1138
1139 code = optab_handler (storent_optab, mode)->insn_code;
1140 return code != CODE_FOR_nothing;
1141 }
1142
1143 /* If REF is a nontemporal store, we mark the corresponding modify statement
1144 and return true. Otherwise, we return false. */
1145
1146 static bool
1147 mark_nontemporal_store (struct mem_ref *ref)
1148 {
1149 if (!nontemporal_store_p (ref))
1150 return false;
1151
1152 if (dump_file && (dump_flags & TDF_DETAILS))
1153 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1154 (void *) ref);
1155
1156 gimple_assign_set_nontemporal_move (ref->stmt, true);
1157 ref->storent_p = true;
1158
1159 return true;
1160 }
1161
1162 /* Issue a memory fence instruction after LOOP. */
1163
1164 static void
1165 emit_mfence_after_loop (struct loop *loop)
1166 {
1167 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1168 edge exit;
1169 gimple call;
1170 gimple_stmt_iterator bsi;
1171 unsigned i;
1172
1173 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1174 {
1175 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1176
1177 if (!single_pred_p (exit->dest)
1178 /* If possible, we prefer not to insert the fence on other paths
1179 in cfg. */
1180 && !(exit->flags & EDGE_ABNORMAL))
1181 split_loop_exit_edge (exit);
1182 bsi = gsi_after_labels (exit->dest);
1183
1184 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1185 mark_virtual_ops_for_renaming (call);
1186 }
1187
1188 VEC_free (edge, heap, exits);
1189 update_ssa (TODO_update_ssa_only_virtuals);
1190 }
1191
1192 /* Returns true if we can use storent in loop, false otherwise. */
1193
1194 static bool
1195 may_use_storent_in_loop_p (struct loop *loop)
1196 {
1197 bool ret = true;
1198
1199 if (loop->inner != NULL)
1200 return false;
1201
1202 /* If we must issue a mfence insn after using storent, check that there
1203 is a suitable place for it at each of the loop exits. */
1204 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1205 {
1206 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1207 unsigned i;
1208 edge exit;
1209
1210 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1211 if ((exit->flags & EDGE_ABNORMAL)
1212 && exit->dest == EXIT_BLOCK_PTR)
1213 ret = false;
1214
1215 VEC_free (edge, heap, exits);
1216 }
1217
1218 return ret;
1219 }
1220
1221 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1222 references in the loop. */
1223
1224 static void
1225 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1226 {
1227 struct mem_ref *ref;
1228 bool any = false;
1229
1230 if (!may_use_storent_in_loop_p (loop))
1231 return;
1232
1233 for (; groups; groups = groups->next)
1234 for (ref = groups->refs; ref; ref = ref->next)
1235 any |= mark_nontemporal_store (ref);
1236
1237 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1238 emit_mfence_after_loop (loop);
1239 }
1240
1241 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1242 this is the case, fill in DESC by the description of number of
1243 iterations. */
1244
1245 static bool
1246 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1247 unsigned factor)
1248 {
1249 if (!can_unroll_loop_p (loop, factor, desc))
1250 return false;
1251
1252 /* We only consider loops without control flow for unrolling. This is not
1253 a hard restriction -- tree_unroll_loop works with arbitrary loops
1254 as well; but the unrolling/prefetching is usually more profitable for
1255 loops consisting of a single basic block, and we want to limit the
1256 code growth. */
1257 if (loop->num_nodes > 2)
1258 return false;
1259
1260 return true;
1261 }
1262
1263 /* Determine the coefficient by that unroll LOOP, from the information
1264 contained in the list of memory references REFS. Description of
1265 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1266 insns of the LOOP. EST_NITER is the estimated number of iterations of
1267 the loop, or -1 if no estimate is available. */
1268
1269 static unsigned
1270 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1271 unsigned ninsns, struct tree_niter_desc *desc,
1272 HOST_WIDE_INT est_niter)
1273 {
1274 unsigned upper_bound;
1275 unsigned nfactor, factor, mod_constraint;
1276 struct mem_ref_group *agp;
1277 struct mem_ref *ref;
1278
1279 /* First check whether the loop is not too large to unroll. We ignore
1280 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1281 from unrolling them enough to make exactly one cache line covered by each
1282 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1283 us from unrolling the loops too many times in cases where we only expect
1284 gains from better scheduling and decreasing loop overhead, which is not
1285 the case here. */
1286 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1287
1288 /* If we unrolled the loop more times than it iterates, the unrolled version
1289 of the loop would be never entered. */
1290 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1291 upper_bound = est_niter;
1292
1293 if (upper_bound <= 1)
1294 return 1;
1295
1296 /* Choose the factor so that we may prefetch each cache just once,
1297 but bound the unrolling by UPPER_BOUND. */
1298 factor = 1;
1299 for (agp = refs; agp; agp = agp->next)
1300 for (ref = agp->refs; ref; ref = ref->next)
1301 if (should_issue_prefetch_p (ref))
1302 {
1303 mod_constraint = ref->prefetch_mod;
1304 nfactor = least_common_multiple (mod_constraint, factor);
1305 if (nfactor <= upper_bound)
1306 factor = nfactor;
1307 }
1308
1309 if (!should_unroll_loop_p (loop, desc, factor))
1310 return 1;
1311
1312 return factor;
1313 }
1314
1315 /* Returns the total volume of the memory references REFS, taking into account
1316 reuses in the innermost loop and cache line size. TODO -- we should also
1317 take into account reuses across the iterations of the loops in the loop
1318 nest. */
1319
1320 static unsigned
1321 volume_of_references (struct mem_ref_group *refs)
1322 {
1323 unsigned volume = 0;
1324 struct mem_ref_group *gr;
1325 struct mem_ref *ref;
1326
1327 for (gr = refs; gr; gr = gr->next)
1328 for (ref = gr->refs; ref; ref = ref->next)
1329 {
1330 /* Almost always reuses another value? */
1331 if (ref->prefetch_before != PREFETCH_ALL)
1332 continue;
1333
1334 /* If several iterations access the same cache line, use the size of
1335 the line divided by this number. Otherwise, a cache line is
1336 accessed in each iteration. TODO -- in the latter case, we should
1337 take the size of the reference into account, rounding it up on cache
1338 line size multiple. */
1339 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1340 }
1341 return volume;
1342 }
1343
1344 /* Returns the volume of memory references accessed across VEC iterations of
1345 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1346 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1347
1348 static unsigned
1349 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1350 {
1351 unsigned i;
1352
1353 for (i = 0; i < n; i++)
1354 if (vec[i] != 0)
1355 break;
1356
1357 if (i == n)
1358 return 0;
1359
1360 gcc_assert (vec[i] > 0);
1361
1362 /* We ignore the parts of the distance vector in subloops, since usually
1363 the numbers of iterations are much smaller. */
1364 return loop_sizes[i] * vec[i];
1365 }
1366
1367 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1368 at the position corresponding to the loop of the step. N is the depth
1369 of the considered loop nest, and, LOOP is its innermost loop. */
1370
1371 static void
1372 add_subscript_strides (tree access_fn, unsigned stride,
1373 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1374 {
1375 struct loop *aloop;
1376 tree step;
1377 HOST_WIDE_INT astep;
1378 unsigned min_depth = loop_depth (loop) - n;
1379
1380 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1381 {
1382 aloop = get_chrec_loop (access_fn);
1383 step = CHREC_RIGHT (access_fn);
1384 access_fn = CHREC_LEFT (access_fn);
1385
1386 if ((unsigned) loop_depth (aloop) <= min_depth)
1387 continue;
1388
1389 if (host_integerp (step, 0))
1390 astep = tree_low_cst (step, 0);
1391 else
1392 astep = L1_CACHE_LINE_SIZE;
1393
1394 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1395
1396 }
1397 }
1398
1399 /* Returns the volume of memory references accessed between two consecutive
1400 self-reuses of the reference DR. We consider the subscripts of DR in N
1401 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1402 loops. LOOP is the innermost loop of the current loop nest. */
1403
1404 static unsigned
1405 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1406 struct loop *loop)
1407 {
1408 tree stride, access_fn;
1409 HOST_WIDE_INT *strides, astride;
1410 VEC (tree, heap) *access_fns;
1411 tree ref = DR_REF (dr);
1412 unsigned i, ret = ~0u;
1413
1414 /* In the following example:
1415
1416 for (i = 0; i < N; i++)
1417 for (j = 0; j < N; j++)
1418 use (a[j][i]);
1419 the same cache line is accessed each N steps (except if the change from
1420 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1421 we cannot rely purely on the results of the data dependence analysis.
1422
1423 Instead, we compute the stride of the reference in each loop, and consider
1424 the innermost loop in that the stride is less than cache size. */
1425
1426 strides = XCNEWVEC (HOST_WIDE_INT, n);
1427 access_fns = DR_ACCESS_FNS (dr);
1428
1429 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1430 {
1431 /* Keep track of the reference corresponding to the subscript, so that we
1432 know its stride. */
1433 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1434 ref = TREE_OPERAND (ref, 0);
1435
1436 if (TREE_CODE (ref) == ARRAY_REF)
1437 {
1438 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1439 if (host_integerp (stride, 1))
1440 astride = tree_low_cst (stride, 1);
1441 else
1442 astride = L1_CACHE_LINE_SIZE;
1443
1444 ref = TREE_OPERAND (ref, 0);
1445 }
1446 else
1447 astride = 1;
1448
1449 add_subscript_strides (access_fn, astride, strides, n, loop);
1450 }
1451
1452 for (i = n; i-- > 0; )
1453 {
1454 unsigned HOST_WIDE_INT s;
1455
1456 s = strides[i] < 0 ? -strides[i] : strides[i];
1457
1458 if (s < (unsigned) L1_CACHE_LINE_SIZE
1459 && (loop_sizes[i]
1460 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1461 {
1462 ret = loop_sizes[i];
1463 break;
1464 }
1465 }
1466
1467 free (strides);
1468 return ret;
1469 }
1470
1471 /* Determines the distance till the first reuse of each reference in REFS
1472 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1473 memory references in the loop. */
1474
1475 static void
1476 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1477 bool no_other_refs)
1478 {
1479 struct loop *nest, *aloop;
1480 VEC (data_reference_p, heap) *datarefs = NULL;
1481 VEC (ddr_p, heap) *dependences = NULL;
1482 struct mem_ref_group *gr;
1483 struct mem_ref *ref, *refb;
1484 VEC (loop_p, heap) *vloops = NULL;
1485 unsigned *loop_data_size;
1486 unsigned i, j, n;
1487 unsigned volume, dist, adist;
1488 HOST_WIDE_INT vol;
1489 data_reference_p dr;
1490 ddr_p dep;
1491
1492 if (loop->inner)
1493 return;
1494
1495 /* Find the outermost loop of the loop nest of loop (we require that
1496 there are no sibling loops inside the nest). */
1497 nest = loop;
1498 while (1)
1499 {
1500 aloop = loop_outer (nest);
1501
1502 if (aloop == current_loops->tree_root
1503 || aloop->inner->next)
1504 break;
1505
1506 nest = aloop;
1507 }
1508
1509 /* For each loop, determine the amount of data accessed in each iteration.
1510 We use this to estimate whether the reference is evicted from the
1511 cache before its reuse. */
1512 find_loop_nest (nest, &vloops);
1513 n = VEC_length (loop_p, vloops);
1514 loop_data_size = XNEWVEC (unsigned, n);
1515 volume = volume_of_references (refs);
1516 i = n;
1517 while (i-- != 0)
1518 {
1519 loop_data_size[i] = volume;
1520 /* Bound the volume by the L2 cache size, since above this bound,
1521 all dependence distances are equivalent. */
1522 if (volume > L2_CACHE_SIZE_BYTES)
1523 continue;
1524
1525 aloop = VEC_index (loop_p, vloops, i);
1526 vol = estimated_loop_iterations_int (aloop, false);
1527 if (vol < 0)
1528 vol = expected_loop_iterations (aloop);
1529 volume *= vol;
1530 }
1531
1532 /* Prepare the references in the form suitable for data dependence
1533 analysis. We ignore unanalyzable data references (the results
1534 are used just as a heuristics to estimate temporality of the
1535 references, hence we do not need to worry about correctness). */
1536 for (gr = refs; gr; gr = gr->next)
1537 for (ref = gr->refs; ref; ref = ref->next)
1538 {
1539 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1540
1541 if (dr)
1542 {
1543 ref->reuse_distance = volume;
1544 dr->aux = ref;
1545 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1546 }
1547 else
1548 no_other_refs = false;
1549 }
1550
1551 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1552 {
1553 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1554 ref = (struct mem_ref *) dr->aux;
1555 if (ref->reuse_distance > dist)
1556 ref->reuse_distance = dist;
1557
1558 if (no_other_refs)
1559 ref->independent_p = true;
1560 }
1561
1562 compute_all_dependences (datarefs, &dependences, vloops, true);
1563
1564 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1565 {
1566 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1567 continue;
1568
1569 ref = (struct mem_ref *) DDR_A (dep)->aux;
1570 refb = (struct mem_ref *) DDR_B (dep)->aux;
1571
1572 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1573 || DDR_NUM_DIST_VECTS (dep) == 0)
1574 {
1575 /* If the dependence cannot be analyzed, assume that there might be
1576 a reuse. */
1577 dist = 0;
1578
1579 ref->independent_p = false;
1580 refb->independent_p = false;
1581 }
1582 else
1583 {
1584 /* The distance vectors are normalized to be always lexicographically
1585 positive, hence we cannot tell just from them whether DDR_A comes
1586 before DDR_B or vice versa. However, it is not important,
1587 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1588 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1589 in cache (and marking it as nontemporal would not affect
1590 anything). */
1591
1592 dist = volume;
1593 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1594 {
1595 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1596 loop_data_size, n);
1597
1598 /* If this is a dependence in the innermost loop (i.e., the
1599 distances in all superloops are zero) and it is not
1600 the trivial self-dependence with distance zero, record that
1601 the references are not completely independent. */
1602 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1603 && (ref != refb
1604 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1605 {
1606 ref->independent_p = false;
1607 refb->independent_p = false;
1608 }
1609
1610 /* Ignore accesses closer than
1611 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1612 so that we use nontemporal prefetches e.g. if single memory
1613 location is accessed several times in a single iteration of
1614 the loop. */
1615 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1616 continue;
1617
1618 if (adist < dist)
1619 dist = adist;
1620 }
1621 }
1622
1623 if (ref->reuse_distance > dist)
1624 ref->reuse_distance = dist;
1625 if (refb->reuse_distance > dist)
1626 refb->reuse_distance = dist;
1627 }
1628
1629 free_dependence_relations (dependences);
1630 free_data_refs (datarefs);
1631 free (loop_data_size);
1632
1633 if (dump_file && (dump_flags & TDF_DETAILS))
1634 {
1635 fprintf (dump_file, "Reuse distances:\n");
1636 for (gr = refs; gr; gr = gr->next)
1637 for (ref = gr->refs; ref; ref = ref->next)
1638 fprintf (dump_file, " ref %p distance %u\n",
1639 (void *) ref, ref->reuse_distance);
1640 }
1641 }
1642
1643 /* Do a cost-benefit analysis to determine if prefetching is profitable
1644 for the current loop given the following parameters:
1645 AHEAD: the iteration ahead distance,
1646 EST_NITER: the estimated trip count,
1647 NINSNS: estimated number of instructions in the loop,
1648 PREFETCH_COUNT: an estimate of the number of prefetches
1649 MEM_REF_COUNT: total number of memory references in the loop. */
1650
1651 static bool
1652 is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1653 unsigned ninsns, unsigned prefetch_count,
1654 unsigned mem_ref_count, unsigned unroll_factor)
1655 {
1656 int insn_to_mem_ratio, insn_to_prefetch_ratio;
1657
1658 if (mem_ref_count == 0)
1659 return false;
1660
1661 /* Prefetching improves performance by overlapping cache missing
1662 memory accesses with CPU operations. If the loop does not have
1663 enough CPU operations to overlap with memory operations, prefetching
1664 won't give a significant benefit. One approximate way of checking
1665 this is to require the ratio of instructions to memory references to
1666 be above a certain limit. This approximation works well in practice.
1667 TODO: Implement a more precise computation by estimating the time
1668 for each CPU or memory op in the loop. Time estimates for memory ops
1669 should account for cache misses. */
1670 insn_to_mem_ratio = ninsns / mem_ref_count;
1671
1672 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1673 {
1674 if (dump_file && (dump_flags & TDF_DETAILS))
1675 fprintf (dump_file,
1676 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1677 insn_to_mem_ratio);
1678 return false;
1679 }
1680
1681 /* Prefetching most likely causes performance degradation when the instruction
1682 to prefetch ratio is too small. Too many prefetch instructions in a loop
1683 may reduce the I-cache performance.
1684 (unroll_factor * ninsns) is used to estimate the number of instructions in
1685 the unrolled loop. This implementation is a bit simplistic -- the number
1686 of issued prefetch instructions is also affected by unrolling. So,
1687 prefetch_mod and the unroll factor should be taken into account when
1688 determining prefetch_count. Also, the number of insns of the unrolled
1689 loop will usually be significantly smaller than the number of insns of the
1690 original loop * unroll_factor (at least the induction variable increases
1691 and the exit branches will get eliminated), so it might be better to use
1692 tree_estimate_loop_size + estimated_unrolled_size. */
1693 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1694 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1695 {
1696 if (dump_file && (dump_flags & TDF_DETAILS))
1697 fprintf (dump_file,
1698 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1699 insn_to_prefetch_ratio);
1700 return false;
1701 }
1702
1703 /* Could not do further estimation if the trip count is unknown. Just assume
1704 prefetching is profitable. Too aggressive??? */
1705 if (est_niter < 0)
1706 return true;
1707
1708 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1709 {
1710 if (dump_file && (dump_flags & TDF_DETAILS))
1711 fprintf (dump_file,
1712 "Not prefetching -- loop estimated to roll only %d times\n",
1713 (int) est_niter);
1714 return false;
1715 }
1716 return true;
1717 }
1718
1719
1720 /* Issue prefetch instructions for array references in LOOP. Returns
1721 true if the LOOP was unrolled. */
1722
1723 static bool
1724 loop_prefetch_arrays (struct loop *loop)
1725 {
1726 struct mem_ref_group *refs;
1727 unsigned ahead, ninsns, time, unroll_factor;
1728 HOST_WIDE_INT est_niter;
1729 struct tree_niter_desc desc;
1730 bool unrolled = false, no_other_refs;
1731 unsigned prefetch_count;
1732 unsigned mem_ref_count;
1733
1734 if (optimize_loop_nest_for_size_p (loop))
1735 {
1736 if (dump_file && (dump_flags & TDF_DETAILS))
1737 fprintf (dump_file, " ignored (cold area)\n");
1738 return false;
1739 }
1740
1741 /* Step 1: gather the memory references. */
1742 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1743
1744 /* Step 2: estimate the reuse effects. */
1745 prune_by_reuse (refs);
1746
1747 if (nothing_to_prefetch_p (refs))
1748 goto fail;
1749
1750 determine_loop_nest_reuse (loop, refs, no_other_refs);
1751
1752 /* Step 3: determine the ahead and unroll factor. */
1753
1754 /* FIXME: the time should be weighted by the probabilities of the blocks in
1755 the loop body. */
1756 time = tree_num_loop_insns (loop, &eni_time_weights);
1757 ahead = (PREFETCH_LATENCY + time - 1) / time;
1758 est_niter = estimated_loop_iterations_int (loop, false);
1759
1760 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1761 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1762 est_niter);
1763
1764 /* Estimate prefetch count for the unrolled loop. */
1765 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1766 if (prefetch_count == 0)
1767 goto fail;
1768
1769 if (dump_file && (dump_flags & TDF_DETAILS))
1770 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1771 HOST_WIDE_INT_PRINT_DEC "\n"
1772 "insn count %d, mem ref count %d, prefetch count %d\n",
1773 ahead, unroll_factor, est_niter,
1774 ninsns, mem_ref_count, prefetch_count);
1775
1776 if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns, prefetch_count,
1777 mem_ref_count, unroll_factor))
1778 goto fail;
1779
1780 mark_nontemporal_stores (loop, refs);
1781
1782 /* Step 4: what to prefetch? */
1783 if (!schedule_prefetches (refs, unroll_factor, ahead))
1784 goto fail;
1785
1786 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1787 iterations so that we do not issue superfluous prefetches. */
1788 if (unroll_factor != 1)
1789 {
1790 tree_unroll_loop (loop, unroll_factor,
1791 single_dom_exit (loop), &desc);
1792 unrolled = true;
1793 }
1794
1795 /* Step 6: issue the prefetches. */
1796 issue_prefetches (refs, unroll_factor, ahead);
1797
1798 fail:
1799 release_mem_refs (refs);
1800 return unrolled;
1801 }
1802
1803 /* Issue prefetch instructions for array references in loops. */
1804
1805 unsigned int
1806 tree_ssa_prefetch_arrays (void)
1807 {
1808 loop_iterator li;
1809 struct loop *loop;
1810 bool unrolled = false;
1811 int todo_flags = 0;
1812
1813 if (!HAVE_prefetch
1814 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1815 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1816 of processor costs and i486 does not have prefetch, but
1817 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1818 || PREFETCH_BLOCK == 0)
1819 return 0;
1820
1821 if (dump_file && (dump_flags & TDF_DETAILS))
1822 {
1823 fprintf (dump_file, "Prefetching parameters:\n");
1824 fprintf (dump_file, " simultaneous prefetches: %d\n",
1825 SIMULTANEOUS_PREFETCHES);
1826 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1827 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1828 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1829 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1830 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1831 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1832 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1833 MIN_INSN_TO_PREFETCH_RATIO);
1834 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1835 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1836 fprintf (dump_file, "\n");
1837 }
1838
1839 initialize_original_copy_tables ();
1840
1841 if (!built_in_decls[BUILT_IN_PREFETCH])
1842 {
1843 tree type = build_function_type (void_type_node,
1844 tree_cons (NULL_TREE,
1845 const_ptr_type_node,
1846 NULL_TREE));
1847 tree decl = add_builtin_function ("__builtin_prefetch", type,
1848 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1849 NULL, NULL_TREE);
1850 DECL_IS_NOVOPS (decl) = true;
1851 built_in_decls[BUILT_IN_PREFETCH] = decl;
1852 }
1853
1854 /* We assume that size of cache line is a power of two, so verify this
1855 here. */
1856 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1857
1858 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1859 {
1860 if (dump_file && (dump_flags & TDF_DETAILS))
1861 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1862
1863 unrolled |= loop_prefetch_arrays (loop);
1864
1865 if (dump_file && (dump_flags & TDF_DETAILS))
1866 fprintf (dump_file, "\n\n");
1867 }
1868
1869 if (unrolled)
1870 {
1871 scev_reset ();
1872 todo_flags |= TODO_cleanup_cfg;
1873 }
1874
1875 free_original_copy_tables ();
1876 return todo_flags;
1877 }