tree-ssa.h: Remove all #include's
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "tree-pretty-print.h"
28 #include "gimple.h"
29 #include "gimple-ssa.h"
30 #include "tree-ssa-loop.h"
31 #include "tree-into-ssa.h"
32 #include "cfgloop.h"
33 #include "tree-pass.h"
34 #include "insn-config.h"
35 #include "hashtab.h"
36 #include "tree-chrec.h"
37 #include "tree-scalar-evolution.h"
38 #include "diagnostic-core.h"
39 #include "params.h"
40 #include "langhooks.h"
41 #include "tree-inline.h"
42 #include "tree-data-ref.h"
43
44
45 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
46 between the GIMPLE and RTL worlds. */
47 #include "expr.h"
48 #include "optabs.h"
49 #include "recog.h"
50
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
53
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
63
64 char *a;
65 for (i = 0; i < max; i++)
66 {
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
73 }
74
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (5) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
85
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
89
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
95
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
102
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
107
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
111
112 A cost model is implemented to determine whether or not prefetching is
113 profitable for a given loop. The cost model has three heuristics:
114
115 1. Function trip_count_to_ahead_ratio_too_small_p implements a
116 heuristic that determines whether or not the loop has too few
117 iterations (compared to ahead). Prefetching is not likely to be
118 beneficial if the trip count to ahead ratio is below a certain
119 minimum.
120
121 2. Function mem_ref_count_reasonable_p implements a heuristic that
122 determines whether the given loop has enough CPU ops that can be
123 overlapped with cache missing memory ops. If not, the loop
124 won't benefit from prefetching. In the implementation,
125 prefetching is not considered beneficial if the ratio between
126 the instruction count and the mem ref count is below a certain
127 minimum.
128
129 3. Function insn_to_prefetch_ratio_too_small_p implements a
130 heuristic that disables prefetching in a loop if the prefetching
131 cost is above a certain limit. The relative prefetching cost is
132 estimated by taking the ratio between the prefetch count and the
133 total intruction count (this models the I-cache cost).
134
135 The limits used in these heuristics are defined as parameters with
136 reasonable default values. Machine-specific default values will be
137 added later.
138
139 Some other TODO:
140 -- write and use more general reuse analysis (that could be also used
141 in other cache aimed loop optimizations)
142 -- make it behave sanely together with the prefetches given by user
143 (now we just ignore them; at the very least we should avoid
144 optimizing loops in that user put his own prefetches)
145 -- we assume cache line size alignment of arrays; this could be
146 improved. */
147
148 /* Magic constants follow. These should be replaced by machine specific
149 numbers. */
150
151 /* True if write can be prefetched by a read prefetch. */
152
153 #ifndef WRITE_CAN_USE_READ_PREFETCH
154 #define WRITE_CAN_USE_READ_PREFETCH 1
155 #endif
156
157 /* True if read can be prefetched by a write prefetch. */
158
159 #ifndef READ_CAN_USE_WRITE_PREFETCH
160 #define READ_CAN_USE_WRITE_PREFETCH 0
161 #endif
162
163 /* The size of the block loaded by a single prefetch. Usually, this is
164 the same as cache line size (at the moment, we only consider one level
165 of cache hierarchy). */
166
167 #ifndef PREFETCH_BLOCK
168 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
169 #endif
170
171 /* Do we have a forward hardware sequential prefetching? */
172
173 #ifndef HAVE_FORWARD_PREFETCH
174 #define HAVE_FORWARD_PREFETCH 0
175 #endif
176
177 /* Do we have a backward hardware sequential prefetching? */
178
179 #ifndef HAVE_BACKWARD_PREFETCH
180 #define HAVE_BACKWARD_PREFETCH 0
181 #endif
182
183 /* In some cases we are only able to determine that there is a certain
184 probability that the two accesses hit the same cache line. In this
185 case, we issue the prefetches for both of them if this probability
186 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
187
188 #ifndef ACCEPTABLE_MISS_RATE
189 #define ACCEPTABLE_MISS_RATE 50
190 #endif
191
192 #ifndef HAVE_prefetch
193 #define HAVE_prefetch 0
194 #endif
195
196 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
197 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
198
199 /* We consider a memory access nontemporal if it is not reused sooner than
200 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
201 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
202 so that we use nontemporal prefetches e.g. if single memory location
203 is accessed several times in a single iteration of the loop. */
204 #define NONTEMPORAL_FRACTION 16
205
206 /* In case we have to emit a memory fence instruction after the loop that
207 uses nontemporal stores, this defines the builtin to use. */
208
209 #ifndef FENCE_FOLLOWING_MOVNT
210 #define FENCE_FOLLOWING_MOVNT NULL_TREE
211 #endif
212
213 /* It is not profitable to prefetch when the trip count is not at
214 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
215 For example, in a loop with a prefetch ahead distance of 10,
216 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
217 profitable to prefetch when the trip count is greater or equal to
218 40. In that case, 30 out of the 40 iterations will benefit from
219 prefetching. */
220
221 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
222 #define TRIP_COUNT_TO_AHEAD_RATIO 4
223 #endif
224
225 /* The group of references between that reuse may occur. */
226
227 struct mem_ref_group
228 {
229 tree base; /* Base of the reference. */
230 tree step; /* Step of the reference. */
231 struct mem_ref *refs; /* References in the group. */
232 struct mem_ref_group *next; /* Next group of references. */
233 };
234
235 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
236
237 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
238
239 /* Do not generate a prefetch if the unroll factor is significantly less
240 than what is required by the prefetch. This is to avoid redundant
241 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
242 2, prefetching requires unrolling the loop 16 times, but
243 the loop is actually unrolled twice. In this case (ratio = 8),
244 prefetching is not likely to be beneficial. */
245
246 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
247 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
248 #endif
249
250 /* Some of the prefetch computations have quadratic complexity. We want to
251 avoid huge compile times and, therefore, want to limit the amount of
252 memory references per loop where we consider prefetching. */
253
254 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
255 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
256 #endif
257
258 /* The memory reference. */
259
260 struct mem_ref
261 {
262 gimple stmt; /* Statement in that the reference appears. */
263 tree mem; /* The reference. */
264 HOST_WIDE_INT delta; /* Constant offset of the reference. */
265 struct mem_ref_group *group; /* The group of references it belongs to. */
266 unsigned HOST_WIDE_INT prefetch_mod;
267 /* Prefetch only each PREFETCH_MOD-th
268 iteration. */
269 unsigned HOST_WIDE_INT prefetch_before;
270 /* Prefetch only first PREFETCH_BEFORE
271 iterations. */
272 unsigned reuse_distance; /* The amount of data accessed before the first
273 reuse of this value. */
274 struct mem_ref *next; /* The next reference in the group. */
275 unsigned write_p : 1; /* Is it a write? */
276 unsigned independent_p : 1; /* True if the reference is independent on
277 all other references inside the loop. */
278 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
279 unsigned storent_p : 1; /* True if we changed the store to a
280 nontemporal one. */
281 };
282
283 /* Dumps information about memory reference */
284 static void
285 dump_mem_details (FILE *file, tree base, tree step,
286 HOST_WIDE_INT delta, bool write_p)
287 {
288 fprintf (file, "(base ");
289 print_generic_expr (file, base, TDF_SLIM);
290 fprintf (file, ", step ");
291 if (cst_and_fits_in_hwi (step))
292 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
293 else
294 print_generic_expr (file, step, TDF_TREE);
295 fprintf (file, ")\n");
296 fprintf (file, " delta ");
297 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
298 fprintf (file, "\n");
299 fprintf (file, " %s\n", write_p ? "write" : "read");
300 fprintf (file, "\n");
301 }
302
303 /* Dumps information about reference REF to FILE. */
304
305 static void
306 dump_mem_ref (FILE *file, struct mem_ref *ref)
307 {
308 fprintf (file, "Reference %p:\n", (void *) ref);
309
310 fprintf (file, " group %p ", (void *) ref->group);
311
312 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
313 ref->write_p);
314 }
315
316 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
317 exist. */
318
319 static struct mem_ref_group *
320 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
321 {
322 struct mem_ref_group *group;
323
324 for (; *groups; groups = &(*groups)->next)
325 {
326 if (operand_equal_p ((*groups)->step, step, 0)
327 && operand_equal_p ((*groups)->base, base, 0))
328 return *groups;
329
330 /* If step is an integer constant, keep the list of groups sorted
331 by decreasing step. */
332 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
333 && int_cst_value ((*groups)->step) < int_cst_value (step))
334 break;
335 }
336
337 group = XNEW (struct mem_ref_group);
338 group->base = base;
339 group->step = step;
340 group->refs = NULL;
341 group->next = *groups;
342 *groups = group;
343
344 return group;
345 }
346
347 /* Records a memory reference MEM in GROUP with offset DELTA and write status
348 WRITE_P. The reference occurs in statement STMT. */
349
350 static void
351 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
352 HOST_WIDE_INT delta, bool write_p)
353 {
354 struct mem_ref **aref;
355
356 /* Do not record the same address twice. */
357 for (aref = &group->refs; *aref; aref = &(*aref)->next)
358 {
359 /* It does not have to be possible for write reference to reuse the read
360 prefetch, or vice versa. */
361 if (!WRITE_CAN_USE_READ_PREFETCH
362 && write_p
363 && !(*aref)->write_p)
364 continue;
365 if (!READ_CAN_USE_WRITE_PREFETCH
366 && !write_p
367 && (*aref)->write_p)
368 continue;
369
370 if ((*aref)->delta == delta)
371 return;
372 }
373
374 (*aref) = XNEW (struct mem_ref);
375 (*aref)->stmt = stmt;
376 (*aref)->mem = mem;
377 (*aref)->delta = delta;
378 (*aref)->write_p = write_p;
379 (*aref)->prefetch_before = PREFETCH_ALL;
380 (*aref)->prefetch_mod = 1;
381 (*aref)->reuse_distance = 0;
382 (*aref)->issue_prefetch_p = false;
383 (*aref)->group = group;
384 (*aref)->next = NULL;
385 (*aref)->independent_p = false;
386 (*aref)->storent_p = false;
387
388 if (dump_file && (dump_flags & TDF_DETAILS))
389 dump_mem_ref (dump_file, *aref);
390 }
391
392 /* Release memory references in GROUPS. */
393
394 static void
395 release_mem_refs (struct mem_ref_group *groups)
396 {
397 struct mem_ref_group *next_g;
398 struct mem_ref *ref, *next_r;
399
400 for (; groups; groups = next_g)
401 {
402 next_g = groups->next;
403 for (ref = groups->refs; ref; ref = next_r)
404 {
405 next_r = ref->next;
406 free (ref);
407 }
408 free (groups);
409 }
410 }
411
412 /* A structure used to pass arguments to idx_analyze_ref. */
413
414 struct ar_data
415 {
416 struct loop *loop; /* Loop of the reference. */
417 gimple stmt; /* Statement of the reference. */
418 tree *step; /* Step of the memory reference. */
419 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
420 };
421
422 /* Analyzes a single INDEX of a memory reference to obtain information
423 described at analyze_ref. Callback for for_each_index. */
424
425 static bool
426 idx_analyze_ref (tree base, tree *index, void *data)
427 {
428 struct ar_data *ar_data = (struct ar_data *) data;
429 tree ibase, step, stepsize;
430 HOST_WIDE_INT idelta = 0, imult = 1;
431 affine_iv iv;
432
433 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
434 *index, &iv, true))
435 return false;
436 ibase = iv.base;
437 step = iv.step;
438
439 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
440 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
441 {
442 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
443 ibase = TREE_OPERAND (ibase, 0);
444 }
445 if (cst_and_fits_in_hwi (ibase))
446 {
447 idelta += int_cst_value (ibase);
448 ibase = build_int_cst (TREE_TYPE (ibase), 0);
449 }
450
451 if (TREE_CODE (base) == ARRAY_REF)
452 {
453 stepsize = array_ref_element_size (base);
454 if (!cst_and_fits_in_hwi (stepsize))
455 return false;
456 imult = int_cst_value (stepsize);
457 step = fold_build2 (MULT_EXPR, sizetype,
458 fold_convert (sizetype, step),
459 fold_convert (sizetype, stepsize));
460 idelta *= imult;
461 }
462
463 if (*ar_data->step == NULL_TREE)
464 *ar_data->step = step;
465 else
466 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
467 fold_convert (sizetype, *ar_data->step),
468 fold_convert (sizetype, step));
469 *ar_data->delta += idelta;
470 *index = ibase;
471
472 return true;
473 }
474
475 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
476 STEP are integer constants and iter is number of iterations of LOOP. The
477 reference occurs in statement STMT. Strips nonaddressable component
478 references from REF_P. */
479
480 static bool
481 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
482 tree *step, HOST_WIDE_INT *delta,
483 gimple stmt)
484 {
485 struct ar_data ar_data;
486 tree off;
487 HOST_WIDE_INT bit_offset;
488 tree ref = *ref_p;
489
490 *step = NULL_TREE;
491 *delta = 0;
492
493 /* First strip off the component references. Ignore bitfields.
494 Also strip off the real and imagine parts of a complex, so that
495 they can have the same base. */
496 if (TREE_CODE (ref) == REALPART_EXPR
497 || TREE_CODE (ref) == IMAGPART_EXPR
498 || (TREE_CODE (ref) == COMPONENT_REF
499 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
500 {
501 if (TREE_CODE (ref) == IMAGPART_EXPR)
502 *delta += int_size_in_bytes (TREE_TYPE (ref));
503 ref = TREE_OPERAND (ref, 0);
504 }
505
506 *ref_p = ref;
507
508 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
509 {
510 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
511 bit_offset = TREE_INT_CST_LOW (off);
512 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
513
514 *delta += bit_offset / BITS_PER_UNIT;
515 }
516
517 *base = unshare_expr (ref);
518 ar_data.loop = loop;
519 ar_data.stmt = stmt;
520 ar_data.step = step;
521 ar_data.delta = delta;
522 return for_each_index (base, idx_analyze_ref, &ar_data);
523 }
524
525 /* Record a memory reference REF to the list REFS. The reference occurs in
526 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
527 reference was recorded, false otherwise. */
528
529 static bool
530 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
531 tree ref, bool write_p, gimple stmt)
532 {
533 tree base, step;
534 HOST_WIDE_INT delta;
535 struct mem_ref_group *agrp;
536
537 if (get_base_address (ref) == NULL)
538 return false;
539
540 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
541 return false;
542 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
543 if (step == NULL_TREE)
544 return false;
545
546 /* Stop if the address of BASE could not be taken. */
547 if (may_be_nonaddressable_p (base))
548 return false;
549
550 /* Limit non-constant step prefetching only to the innermost loops and
551 only when the step is loop invariant in the entire loop nest. */
552 if (!cst_and_fits_in_hwi (step))
553 {
554 if (loop->inner != NULL)
555 {
556 if (dump_file && (dump_flags & TDF_DETAILS))
557 {
558 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
559 print_generic_expr (dump_file, ref, TDF_TREE);
560 fprintf (dump_file,":");
561 dump_mem_details (dump_file, base, step, delta, write_p);
562 fprintf (dump_file,
563 "Ignoring %p, non-constant step prefetching is "
564 "limited to inner most loops \n",
565 (void *) ref);
566 }
567 return false;
568 }
569 else
570 {
571 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
572 {
573 if (dump_file && (dump_flags & TDF_DETAILS))
574 {
575 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
576 print_generic_expr (dump_file, ref, TDF_TREE);
577 fprintf (dump_file,":");
578 dump_mem_details (dump_file, base, step, delta, write_p);
579 fprintf (dump_file,
580 "Not prefetching, ignoring %p due to "
581 "loop variant step\n",
582 (void *) ref);
583 }
584 return false;
585 }
586 }
587 }
588
589 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
590 are integer constants. */
591 agrp = find_or_create_group (refs, base, step);
592 record_ref (agrp, stmt, ref, delta, write_p);
593
594 return true;
595 }
596
597 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
598 true if there are no other memory references inside the loop. */
599
600 static struct mem_ref_group *
601 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
602 {
603 basic_block *body = get_loop_body_in_dom_order (loop);
604 basic_block bb;
605 unsigned i;
606 gimple_stmt_iterator bsi;
607 gimple stmt;
608 tree lhs, rhs;
609 struct mem_ref_group *refs = NULL;
610
611 *no_other_refs = true;
612 *ref_count = 0;
613
614 /* Scan the loop body in order, so that the former references precede the
615 later ones. */
616 for (i = 0; i < loop->num_nodes; i++)
617 {
618 bb = body[i];
619 if (bb->loop_father != loop)
620 continue;
621
622 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
623 {
624 stmt = gsi_stmt (bsi);
625
626 if (gimple_code (stmt) != GIMPLE_ASSIGN)
627 {
628 if (gimple_vuse (stmt)
629 || (is_gimple_call (stmt)
630 && !(gimple_call_flags (stmt) & ECF_CONST)))
631 *no_other_refs = false;
632 continue;
633 }
634
635 lhs = gimple_assign_lhs (stmt);
636 rhs = gimple_assign_rhs1 (stmt);
637
638 if (REFERENCE_CLASS_P (rhs))
639 {
640 *no_other_refs &= gather_memory_references_ref (loop, &refs,
641 rhs, false, stmt);
642 *ref_count += 1;
643 }
644 if (REFERENCE_CLASS_P (lhs))
645 {
646 *no_other_refs &= gather_memory_references_ref (loop, &refs,
647 lhs, true, stmt);
648 *ref_count += 1;
649 }
650 }
651 }
652 free (body);
653
654 return refs;
655 }
656
657 /* Prune the prefetch candidate REF using the self-reuse. */
658
659 static void
660 prune_ref_by_self_reuse (struct mem_ref *ref)
661 {
662 HOST_WIDE_INT step;
663 bool backward;
664
665 /* If the step size is non constant, we cannot calculate prefetch_mod. */
666 if (!cst_and_fits_in_hwi (ref->group->step))
667 return;
668
669 step = int_cst_value (ref->group->step);
670
671 backward = step < 0;
672
673 if (step == 0)
674 {
675 /* Prefetch references to invariant address just once. */
676 ref->prefetch_before = 1;
677 return;
678 }
679
680 if (backward)
681 step = -step;
682
683 if (step > PREFETCH_BLOCK)
684 return;
685
686 if ((backward && HAVE_BACKWARD_PREFETCH)
687 || (!backward && HAVE_FORWARD_PREFETCH))
688 {
689 ref->prefetch_before = 1;
690 return;
691 }
692
693 ref->prefetch_mod = PREFETCH_BLOCK / step;
694 }
695
696 /* Divides X by BY, rounding down. */
697
698 static HOST_WIDE_INT
699 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
700 {
701 gcc_assert (by > 0);
702
703 if (x >= 0)
704 return x / by;
705 else
706 return (x + by - 1) / by;
707 }
708
709 /* Given a CACHE_LINE_SIZE and two inductive memory references
710 with a common STEP greater than CACHE_LINE_SIZE and an address
711 difference DELTA, compute the probability that they will fall
712 in different cache lines. Return true if the computed miss rate
713 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
714 number of distinct iterations after which the pattern repeats itself.
715 ALIGN_UNIT is the unit of alignment in bytes. */
716
717 static bool
718 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
719 HOST_WIDE_INT step, HOST_WIDE_INT delta,
720 unsigned HOST_WIDE_INT distinct_iters,
721 int align_unit)
722 {
723 unsigned align, iter;
724 int total_positions, miss_positions, max_allowed_miss_positions;
725 int address1, address2, cache_line1, cache_line2;
726
727 /* It always misses if delta is greater than or equal to the cache
728 line size. */
729 if (delta >= (HOST_WIDE_INT) cache_line_size)
730 return false;
731
732 miss_positions = 0;
733 total_positions = (cache_line_size / align_unit) * distinct_iters;
734 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
735
736 /* Iterate through all possible alignments of the first
737 memory reference within its cache line. */
738 for (align = 0; align < cache_line_size; align += align_unit)
739
740 /* Iterate through all distinct iterations. */
741 for (iter = 0; iter < distinct_iters; iter++)
742 {
743 address1 = align + step * iter;
744 address2 = address1 + delta;
745 cache_line1 = address1 / cache_line_size;
746 cache_line2 = address2 / cache_line_size;
747 if (cache_line1 != cache_line2)
748 {
749 miss_positions += 1;
750 if (miss_positions > max_allowed_miss_positions)
751 return false;
752 }
753 }
754 return true;
755 }
756
757 /* Prune the prefetch candidate REF using the reuse with BY.
758 If BY_IS_BEFORE is true, BY is before REF in the loop. */
759
760 static void
761 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
762 bool by_is_before)
763 {
764 HOST_WIDE_INT step;
765 bool backward;
766 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
767 HOST_WIDE_INT delta = delta_b - delta_r;
768 HOST_WIDE_INT hit_from;
769 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
770 HOST_WIDE_INT reduced_step;
771 unsigned HOST_WIDE_INT reduced_prefetch_block;
772 tree ref_type;
773 int align_unit;
774
775 /* If the step is non constant we cannot calculate prefetch_before. */
776 if (!cst_and_fits_in_hwi (ref->group->step)) {
777 return;
778 }
779
780 step = int_cst_value (ref->group->step);
781
782 backward = step < 0;
783
784
785 if (delta == 0)
786 {
787 /* If the references has the same address, only prefetch the
788 former. */
789 if (by_is_before)
790 ref->prefetch_before = 0;
791
792 return;
793 }
794
795 if (!step)
796 {
797 /* If the reference addresses are invariant and fall into the
798 same cache line, prefetch just the first one. */
799 if (!by_is_before)
800 return;
801
802 if (ddown (ref->delta, PREFETCH_BLOCK)
803 != ddown (by->delta, PREFETCH_BLOCK))
804 return;
805
806 ref->prefetch_before = 0;
807 return;
808 }
809
810 /* Only prune the reference that is behind in the array. */
811 if (backward)
812 {
813 if (delta > 0)
814 return;
815
816 /* Transform the data so that we may assume that the accesses
817 are forward. */
818 delta = - delta;
819 step = -step;
820 delta_r = PREFETCH_BLOCK - 1 - delta_r;
821 delta_b = PREFETCH_BLOCK - 1 - delta_b;
822 }
823 else
824 {
825 if (delta < 0)
826 return;
827 }
828
829 /* Check whether the two references are likely to hit the same cache
830 line, and how distant the iterations in that it occurs are from
831 each other. */
832
833 if (step <= PREFETCH_BLOCK)
834 {
835 /* The accesses are sure to meet. Let us check when. */
836 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
837 prefetch_before = (hit_from - delta_r + step - 1) / step;
838
839 /* Do not reduce prefetch_before if we meet beyond cache size. */
840 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
841 prefetch_before = PREFETCH_ALL;
842 if (prefetch_before < ref->prefetch_before)
843 ref->prefetch_before = prefetch_before;
844
845 return;
846 }
847
848 /* A more complicated case with step > prefetch_block. First reduce
849 the ratio between the step and the cache line size to its simplest
850 terms. The resulting denominator will then represent the number of
851 distinct iterations after which each address will go back to its
852 initial location within the cache line. This computation assumes
853 that PREFETCH_BLOCK is a power of two. */
854 prefetch_block = PREFETCH_BLOCK;
855 reduced_prefetch_block = prefetch_block;
856 reduced_step = step;
857 while ((reduced_step & 1) == 0
858 && reduced_prefetch_block > 1)
859 {
860 reduced_step >>= 1;
861 reduced_prefetch_block >>= 1;
862 }
863
864 prefetch_before = delta / step;
865 delta %= step;
866 ref_type = TREE_TYPE (ref->mem);
867 align_unit = TYPE_ALIGN (ref_type) / 8;
868 if (is_miss_rate_acceptable (prefetch_block, step, delta,
869 reduced_prefetch_block, align_unit))
870 {
871 /* Do not reduce prefetch_before if we meet beyond cache size. */
872 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
873 prefetch_before = PREFETCH_ALL;
874 if (prefetch_before < ref->prefetch_before)
875 ref->prefetch_before = prefetch_before;
876
877 return;
878 }
879
880 /* Try also the following iteration. */
881 prefetch_before++;
882 delta = step - delta;
883 if (is_miss_rate_acceptable (prefetch_block, step, delta,
884 reduced_prefetch_block, align_unit))
885 {
886 if (prefetch_before < ref->prefetch_before)
887 ref->prefetch_before = prefetch_before;
888
889 return;
890 }
891
892 /* The ref probably does not reuse by. */
893 return;
894 }
895
896 /* Prune the prefetch candidate REF using the reuses with other references
897 in REFS. */
898
899 static void
900 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
901 {
902 struct mem_ref *prune_by;
903 bool before = true;
904
905 prune_ref_by_self_reuse (ref);
906
907 for (prune_by = refs; prune_by; prune_by = prune_by->next)
908 {
909 if (prune_by == ref)
910 {
911 before = false;
912 continue;
913 }
914
915 if (!WRITE_CAN_USE_READ_PREFETCH
916 && ref->write_p
917 && !prune_by->write_p)
918 continue;
919 if (!READ_CAN_USE_WRITE_PREFETCH
920 && !ref->write_p
921 && prune_by->write_p)
922 continue;
923
924 prune_ref_by_group_reuse (ref, prune_by, before);
925 }
926 }
927
928 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
929
930 static void
931 prune_group_by_reuse (struct mem_ref_group *group)
932 {
933 struct mem_ref *ref_pruned;
934
935 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
936 {
937 prune_ref_by_reuse (ref_pruned, group->refs);
938
939 if (dump_file && (dump_flags & TDF_DETAILS))
940 {
941 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
942
943 if (ref_pruned->prefetch_before == PREFETCH_ALL
944 && ref_pruned->prefetch_mod == 1)
945 fprintf (dump_file, " no restrictions");
946 else if (ref_pruned->prefetch_before == 0)
947 fprintf (dump_file, " do not prefetch");
948 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
949 fprintf (dump_file, " prefetch once");
950 else
951 {
952 if (ref_pruned->prefetch_before != PREFETCH_ALL)
953 {
954 fprintf (dump_file, " prefetch before ");
955 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
956 ref_pruned->prefetch_before);
957 }
958 if (ref_pruned->prefetch_mod != 1)
959 {
960 fprintf (dump_file, " prefetch mod ");
961 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
962 ref_pruned->prefetch_mod);
963 }
964 }
965 fprintf (dump_file, "\n");
966 }
967 }
968 }
969
970 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
971
972 static void
973 prune_by_reuse (struct mem_ref_group *groups)
974 {
975 for (; groups; groups = groups->next)
976 prune_group_by_reuse (groups);
977 }
978
979 /* Returns true if we should issue prefetch for REF. */
980
981 static bool
982 should_issue_prefetch_p (struct mem_ref *ref)
983 {
984 /* For now do not issue prefetches for only first few of the
985 iterations. */
986 if (ref->prefetch_before != PREFETCH_ALL)
987 {
988 if (dump_file && (dump_flags & TDF_DETAILS))
989 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
990 (void *) ref);
991 return false;
992 }
993
994 /* Do not prefetch nontemporal stores. */
995 if (ref->storent_p)
996 {
997 if (dump_file && (dump_flags & TDF_DETAILS))
998 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
999 return false;
1000 }
1001
1002 return true;
1003 }
1004
1005 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1006 AHEAD is the number of iterations to prefetch ahead (which corresponds
1007 to the number of simultaneous instances of one prefetch running at a
1008 time). UNROLL_FACTOR is the factor by that the loop is going to be
1009 unrolled. Returns true if there is anything to prefetch. */
1010
1011 static bool
1012 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1013 unsigned ahead)
1014 {
1015 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1016 unsigned slots_per_prefetch;
1017 struct mem_ref *ref;
1018 bool any = false;
1019
1020 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1021 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1022
1023 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1024 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1025 it will need a prefetch slot. */
1026 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1028 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1029 slots_per_prefetch);
1030
1031 /* For now we just take memory references one by one and issue
1032 prefetches for as many as possible. The groups are sorted
1033 starting with the largest step, since the references with
1034 large step are more likely to cause many cache misses. */
1035
1036 for (; groups; groups = groups->next)
1037 for (ref = groups->refs; ref; ref = ref->next)
1038 {
1039 if (!should_issue_prefetch_p (ref))
1040 continue;
1041
1042 /* The loop is far from being sufficiently unrolled for this
1043 prefetch. Do not generate prefetch to avoid many redudant
1044 prefetches. */
1045 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1046 continue;
1047
1048 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1049 and we unroll the loop UNROLL_FACTOR times, we need to insert
1050 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1051 iteration. */
1052 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1053 / ref->prefetch_mod);
1054 prefetch_slots = n_prefetches * slots_per_prefetch;
1055
1056 /* If more than half of the prefetches would be lost anyway, do not
1057 issue the prefetch. */
1058 if (2 * remaining_prefetch_slots < prefetch_slots)
1059 continue;
1060
1061 ref->issue_prefetch_p = true;
1062
1063 if (remaining_prefetch_slots <= prefetch_slots)
1064 return true;
1065 remaining_prefetch_slots -= prefetch_slots;
1066 any = true;
1067 }
1068
1069 return any;
1070 }
1071
1072 /* Return TRUE if no prefetch is going to be generated in the given
1073 GROUPS. */
1074
1075 static bool
1076 nothing_to_prefetch_p (struct mem_ref_group *groups)
1077 {
1078 struct mem_ref *ref;
1079
1080 for (; groups; groups = groups->next)
1081 for (ref = groups->refs; ref; ref = ref->next)
1082 if (should_issue_prefetch_p (ref))
1083 return false;
1084
1085 return true;
1086 }
1087
1088 /* Estimate the number of prefetches in the given GROUPS.
1089 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1090
1091 static int
1092 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1093 {
1094 struct mem_ref *ref;
1095 unsigned n_prefetches;
1096 int prefetch_count = 0;
1097
1098 for (; groups; groups = groups->next)
1099 for (ref = groups->refs; ref; ref = ref->next)
1100 if (should_issue_prefetch_p (ref))
1101 {
1102 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1103 / ref->prefetch_mod);
1104 prefetch_count += n_prefetches;
1105 }
1106
1107 return prefetch_count;
1108 }
1109
1110 /* Issue prefetches for the reference REF into loop as decided before.
1111 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1112 is the factor by which LOOP was unrolled. */
1113
1114 static void
1115 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1116 {
1117 HOST_WIDE_INT delta;
1118 tree addr, addr_base, write_p, local, forward;
1119 gimple prefetch;
1120 gimple_stmt_iterator bsi;
1121 unsigned n_prefetches, ap;
1122 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1123
1124 if (dump_file && (dump_flags & TDF_DETAILS))
1125 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1126 nontemporal ? " nontemporal" : "",
1127 (void *) ref);
1128
1129 bsi = gsi_for_stmt (ref->stmt);
1130
1131 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1132 / ref->prefetch_mod);
1133 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1134 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1135 true, NULL, true, GSI_SAME_STMT);
1136 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1137 local = nontemporal ? integer_zero_node : integer_three_node;
1138
1139 for (ap = 0; ap < n_prefetches; ap++)
1140 {
1141 if (cst_and_fits_in_hwi (ref->group->step))
1142 {
1143 /* Determine the address to prefetch. */
1144 delta = (ahead + ap * ref->prefetch_mod) *
1145 int_cst_value (ref->group->step);
1146 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1147 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1148 true, GSI_SAME_STMT);
1149 }
1150 else
1151 {
1152 /* The step size is non-constant but loop-invariant. We use the
1153 heuristic to simply prefetch ahead iterations ahead. */
1154 forward = fold_build2 (MULT_EXPR, sizetype,
1155 fold_convert (sizetype, ref->group->step),
1156 fold_convert (sizetype, size_int (ahead)));
1157 addr = fold_build_pointer_plus (addr_base, forward);
1158 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1159 NULL, true, GSI_SAME_STMT);
1160 }
1161 /* Create the prefetch instruction. */
1162 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1163 3, addr, write_p, local);
1164 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1165 }
1166 }
1167
1168 /* Issue prefetches for the references in GROUPS into loop as decided before.
1169 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1170 factor by that LOOP was unrolled. */
1171
1172 static void
1173 issue_prefetches (struct mem_ref_group *groups,
1174 unsigned unroll_factor, unsigned ahead)
1175 {
1176 struct mem_ref *ref;
1177
1178 for (; groups; groups = groups->next)
1179 for (ref = groups->refs; ref; ref = ref->next)
1180 if (ref->issue_prefetch_p)
1181 issue_prefetch_ref (ref, unroll_factor, ahead);
1182 }
1183
1184 /* Returns true if REF is a memory write for that a nontemporal store insn
1185 can be used. */
1186
1187 static bool
1188 nontemporal_store_p (struct mem_ref *ref)
1189 {
1190 enum machine_mode mode;
1191 enum insn_code code;
1192
1193 /* REF must be a write that is not reused. We require it to be independent
1194 on all other memory references in the loop, as the nontemporal stores may
1195 be reordered with respect to other memory references. */
1196 if (!ref->write_p
1197 || !ref->independent_p
1198 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1199 return false;
1200
1201 /* Check that we have the storent instruction for the mode. */
1202 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1203 if (mode == BLKmode)
1204 return false;
1205
1206 code = optab_handler (storent_optab, mode);
1207 return code != CODE_FOR_nothing;
1208 }
1209
1210 /* If REF is a nontemporal store, we mark the corresponding modify statement
1211 and return true. Otherwise, we return false. */
1212
1213 static bool
1214 mark_nontemporal_store (struct mem_ref *ref)
1215 {
1216 if (!nontemporal_store_p (ref))
1217 return false;
1218
1219 if (dump_file && (dump_flags & TDF_DETAILS))
1220 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1221 (void *) ref);
1222
1223 gimple_assign_set_nontemporal_move (ref->stmt, true);
1224 ref->storent_p = true;
1225
1226 return true;
1227 }
1228
1229 /* Issue a memory fence instruction after LOOP. */
1230
1231 static void
1232 emit_mfence_after_loop (struct loop *loop)
1233 {
1234 vec<edge> exits = get_loop_exit_edges (loop);
1235 edge exit;
1236 gimple call;
1237 gimple_stmt_iterator bsi;
1238 unsigned i;
1239
1240 FOR_EACH_VEC_ELT (exits, i, exit)
1241 {
1242 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1243
1244 if (!single_pred_p (exit->dest)
1245 /* If possible, we prefer not to insert the fence on other paths
1246 in cfg. */
1247 && !(exit->flags & EDGE_ABNORMAL))
1248 split_loop_exit_edge (exit);
1249 bsi = gsi_after_labels (exit->dest);
1250
1251 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1252 }
1253
1254 exits.release ();
1255 update_ssa (TODO_update_ssa_only_virtuals);
1256 }
1257
1258 /* Returns true if we can use storent in loop, false otherwise. */
1259
1260 static bool
1261 may_use_storent_in_loop_p (struct loop *loop)
1262 {
1263 bool ret = true;
1264
1265 if (loop->inner != NULL)
1266 return false;
1267
1268 /* If we must issue a mfence insn after using storent, check that there
1269 is a suitable place for it at each of the loop exits. */
1270 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1271 {
1272 vec<edge> exits = get_loop_exit_edges (loop);
1273 unsigned i;
1274 edge exit;
1275
1276 FOR_EACH_VEC_ELT (exits, i, exit)
1277 if ((exit->flags & EDGE_ABNORMAL)
1278 && exit->dest == EXIT_BLOCK_PTR)
1279 ret = false;
1280
1281 exits.release ();
1282 }
1283
1284 return ret;
1285 }
1286
1287 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1288 references in the loop. */
1289
1290 static void
1291 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1292 {
1293 struct mem_ref *ref;
1294 bool any = false;
1295
1296 if (!may_use_storent_in_loop_p (loop))
1297 return;
1298
1299 for (; groups; groups = groups->next)
1300 for (ref = groups->refs; ref; ref = ref->next)
1301 any |= mark_nontemporal_store (ref);
1302
1303 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1304 emit_mfence_after_loop (loop);
1305 }
1306
1307 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1308 this is the case, fill in DESC by the description of number of
1309 iterations. */
1310
1311 static bool
1312 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1313 unsigned factor)
1314 {
1315 if (!can_unroll_loop_p (loop, factor, desc))
1316 return false;
1317
1318 /* We only consider loops without control flow for unrolling. This is not
1319 a hard restriction -- tree_unroll_loop works with arbitrary loops
1320 as well; but the unrolling/prefetching is usually more profitable for
1321 loops consisting of a single basic block, and we want to limit the
1322 code growth. */
1323 if (loop->num_nodes > 2)
1324 return false;
1325
1326 return true;
1327 }
1328
1329 /* Determine the coefficient by that unroll LOOP, from the information
1330 contained in the list of memory references REFS. Description of
1331 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1332 insns of the LOOP. EST_NITER is the estimated number of iterations of
1333 the loop, or -1 if no estimate is available. */
1334
1335 static unsigned
1336 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1337 unsigned ninsns, struct tree_niter_desc *desc,
1338 HOST_WIDE_INT est_niter)
1339 {
1340 unsigned upper_bound;
1341 unsigned nfactor, factor, mod_constraint;
1342 struct mem_ref_group *agp;
1343 struct mem_ref *ref;
1344
1345 /* First check whether the loop is not too large to unroll. We ignore
1346 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1347 from unrolling them enough to make exactly one cache line covered by each
1348 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1349 us from unrolling the loops too many times in cases where we only expect
1350 gains from better scheduling and decreasing loop overhead, which is not
1351 the case here. */
1352 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1353
1354 /* If we unrolled the loop more times than it iterates, the unrolled version
1355 of the loop would be never entered. */
1356 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1357 upper_bound = est_niter;
1358
1359 if (upper_bound <= 1)
1360 return 1;
1361
1362 /* Choose the factor so that we may prefetch each cache just once,
1363 but bound the unrolling by UPPER_BOUND. */
1364 factor = 1;
1365 for (agp = refs; agp; agp = agp->next)
1366 for (ref = agp->refs; ref; ref = ref->next)
1367 if (should_issue_prefetch_p (ref))
1368 {
1369 mod_constraint = ref->prefetch_mod;
1370 nfactor = least_common_multiple (mod_constraint, factor);
1371 if (nfactor <= upper_bound)
1372 factor = nfactor;
1373 }
1374
1375 if (!should_unroll_loop_p (loop, desc, factor))
1376 return 1;
1377
1378 return factor;
1379 }
1380
1381 /* Returns the total volume of the memory references REFS, taking into account
1382 reuses in the innermost loop and cache line size. TODO -- we should also
1383 take into account reuses across the iterations of the loops in the loop
1384 nest. */
1385
1386 static unsigned
1387 volume_of_references (struct mem_ref_group *refs)
1388 {
1389 unsigned volume = 0;
1390 struct mem_ref_group *gr;
1391 struct mem_ref *ref;
1392
1393 for (gr = refs; gr; gr = gr->next)
1394 for (ref = gr->refs; ref; ref = ref->next)
1395 {
1396 /* Almost always reuses another value? */
1397 if (ref->prefetch_before != PREFETCH_ALL)
1398 continue;
1399
1400 /* If several iterations access the same cache line, use the size of
1401 the line divided by this number. Otherwise, a cache line is
1402 accessed in each iteration. TODO -- in the latter case, we should
1403 take the size of the reference into account, rounding it up on cache
1404 line size multiple. */
1405 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1406 }
1407 return volume;
1408 }
1409
1410 /* Returns the volume of memory references accessed across VEC iterations of
1411 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1412 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1413
1414 static unsigned
1415 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1416 {
1417 unsigned i;
1418
1419 for (i = 0; i < n; i++)
1420 if (vec[i] != 0)
1421 break;
1422
1423 if (i == n)
1424 return 0;
1425
1426 gcc_assert (vec[i] > 0);
1427
1428 /* We ignore the parts of the distance vector in subloops, since usually
1429 the numbers of iterations are much smaller. */
1430 return loop_sizes[i] * vec[i];
1431 }
1432
1433 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1434 at the position corresponding to the loop of the step. N is the depth
1435 of the considered loop nest, and, LOOP is its innermost loop. */
1436
1437 static void
1438 add_subscript_strides (tree access_fn, unsigned stride,
1439 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1440 {
1441 struct loop *aloop;
1442 tree step;
1443 HOST_WIDE_INT astep;
1444 unsigned min_depth = loop_depth (loop) - n;
1445
1446 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1447 {
1448 aloop = get_chrec_loop (access_fn);
1449 step = CHREC_RIGHT (access_fn);
1450 access_fn = CHREC_LEFT (access_fn);
1451
1452 if ((unsigned) loop_depth (aloop) <= min_depth)
1453 continue;
1454
1455 if (host_integerp (step, 0))
1456 astep = tree_low_cst (step, 0);
1457 else
1458 astep = L1_CACHE_LINE_SIZE;
1459
1460 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1461
1462 }
1463 }
1464
1465 /* Returns the volume of memory references accessed between two consecutive
1466 self-reuses of the reference DR. We consider the subscripts of DR in N
1467 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1468 loops. LOOP is the innermost loop of the current loop nest. */
1469
1470 static unsigned
1471 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1472 struct loop *loop)
1473 {
1474 tree stride, access_fn;
1475 HOST_WIDE_INT *strides, astride;
1476 vec<tree> access_fns;
1477 tree ref = DR_REF (dr);
1478 unsigned i, ret = ~0u;
1479
1480 /* In the following example:
1481
1482 for (i = 0; i < N; i++)
1483 for (j = 0; j < N; j++)
1484 use (a[j][i]);
1485 the same cache line is accessed each N steps (except if the change from
1486 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1487 we cannot rely purely on the results of the data dependence analysis.
1488
1489 Instead, we compute the stride of the reference in each loop, and consider
1490 the innermost loop in that the stride is less than cache size. */
1491
1492 strides = XCNEWVEC (HOST_WIDE_INT, n);
1493 access_fns = DR_ACCESS_FNS (dr);
1494
1495 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1496 {
1497 /* Keep track of the reference corresponding to the subscript, so that we
1498 know its stride. */
1499 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1500 ref = TREE_OPERAND (ref, 0);
1501
1502 if (TREE_CODE (ref) == ARRAY_REF)
1503 {
1504 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1505 if (host_integerp (stride, 1))
1506 astride = tree_low_cst (stride, 1);
1507 else
1508 astride = L1_CACHE_LINE_SIZE;
1509
1510 ref = TREE_OPERAND (ref, 0);
1511 }
1512 else
1513 astride = 1;
1514
1515 add_subscript_strides (access_fn, astride, strides, n, loop);
1516 }
1517
1518 for (i = n; i-- > 0; )
1519 {
1520 unsigned HOST_WIDE_INT s;
1521
1522 s = strides[i] < 0 ? -strides[i] : strides[i];
1523
1524 if (s < (unsigned) L1_CACHE_LINE_SIZE
1525 && (loop_sizes[i]
1526 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1527 {
1528 ret = loop_sizes[i];
1529 break;
1530 }
1531 }
1532
1533 free (strides);
1534 return ret;
1535 }
1536
1537 /* Determines the distance till the first reuse of each reference in REFS
1538 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1539 memory references in the loop. Return false if the analysis fails. */
1540
1541 static bool
1542 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1543 bool no_other_refs)
1544 {
1545 struct loop *nest, *aloop;
1546 vec<data_reference_p> datarefs = vNULL;
1547 vec<ddr_p> dependences = vNULL;
1548 struct mem_ref_group *gr;
1549 struct mem_ref *ref, *refb;
1550 vec<loop_p> vloops = vNULL;
1551 unsigned *loop_data_size;
1552 unsigned i, j, n;
1553 unsigned volume, dist, adist;
1554 HOST_WIDE_INT vol;
1555 data_reference_p dr;
1556 ddr_p dep;
1557
1558 if (loop->inner)
1559 return true;
1560
1561 /* Find the outermost loop of the loop nest of loop (we require that
1562 there are no sibling loops inside the nest). */
1563 nest = loop;
1564 while (1)
1565 {
1566 aloop = loop_outer (nest);
1567
1568 if (aloop == current_loops->tree_root
1569 || aloop->inner->next)
1570 break;
1571
1572 nest = aloop;
1573 }
1574
1575 /* For each loop, determine the amount of data accessed in each iteration.
1576 We use this to estimate whether the reference is evicted from the
1577 cache before its reuse. */
1578 find_loop_nest (nest, &vloops);
1579 n = vloops.length ();
1580 loop_data_size = XNEWVEC (unsigned, n);
1581 volume = volume_of_references (refs);
1582 i = n;
1583 while (i-- != 0)
1584 {
1585 loop_data_size[i] = volume;
1586 /* Bound the volume by the L2 cache size, since above this bound,
1587 all dependence distances are equivalent. */
1588 if (volume > L2_CACHE_SIZE_BYTES)
1589 continue;
1590
1591 aloop = vloops[i];
1592 vol = estimated_stmt_executions_int (aloop);
1593 if (vol == -1)
1594 vol = expected_loop_iterations (aloop);
1595 volume *= vol;
1596 }
1597
1598 /* Prepare the references in the form suitable for data dependence
1599 analysis. We ignore unanalyzable data references (the results
1600 are used just as a heuristics to estimate temporality of the
1601 references, hence we do not need to worry about correctness). */
1602 for (gr = refs; gr; gr = gr->next)
1603 for (ref = gr->refs; ref; ref = ref->next)
1604 {
1605 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1606 ref->mem, ref->stmt, !ref->write_p);
1607
1608 if (dr)
1609 {
1610 ref->reuse_distance = volume;
1611 dr->aux = ref;
1612 datarefs.safe_push (dr);
1613 }
1614 else
1615 no_other_refs = false;
1616 }
1617
1618 FOR_EACH_VEC_ELT (datarefs, i, dr)
1619 {
1620 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1621 ref = (struct mem_ref *) dr->aux;
1622 if (ref->reuse_distance > dist)
1623 ref->reuse_distance = dist;
1624
1625 if (no_other_refs)
1626 ref->independent_p = true;
1627 }
1628
1629 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1630 return false;
1631
1632 FOR_EACH_VEC_ELT (dependences, i, dep)
1633 {
1634 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1635 continue;
1636
1637 ref = (struct mem_ref *) DDR_A (dep)->aux;
1638 refb = (struct mem_ref *) DDR_B (dep)->aux;
1639
1640 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1641 || DDR_NUM_DIST_VECTS (dep) == 0)
1642 {
1643 /* If the dependence cannot be analyzed, assume that there might be
1644 a reuse. */
1645 dist = 0;
1646
1647 ref->independent_p = false;
1648 refb->independent_p = false;
1649 }
1650 else
1651 {
1652 /* The distance vectors are normalized to be always lexicographically
1653 positive, hence we cannot tell just from them whether DDR_A comes
1654 before DDR_B or vice versa. However, it is not important,
1655 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1656 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1657 in cache (and marking it as nontemporal would not affect
1658 anything). */
1659
1660 dist = volume;
1661 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1662 {
1663 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1664 loop_data_size, n);
1665
1666 /* If this is a dependence in the innermost loop (i.e., the
1667 distances in all superloops are zero) and it is not
1668 the trivial self-dependence with distance zero, record that
1669 the references are not completely independent. */
1670 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1671 && (ref != refb
1672 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1673 {
1674 ref->independent_p = false;
1675 refb->independent_p = false;
1676 }
1677
1678 /* Ignore accesses closer than
1679 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1680 so that we use nontemporal prefetches e.g. if single memory
1681 location is accessed several times in a single iteration of
1682 the loop. */
1683 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1684 continue;
1685
1686 if (adist < dist)
1687 dist = adist;
1688 }
1689 }
1690
1691 if (ref->reuse_distance > dist)
1692 ref->reuse_distance = dist;
1693 if (refb->reuse_distance > dist)
1694 refb->reuse_distance = dist;
1695 }
1696
1697 free_dependence_relations (dependences);
1698 free_data_refs (datarefs);
1699 free (loop_data_size);
1700
1701 if (dump_file && (dump_flags & TDF_DETAILS))
1702 {
1703 fprintf (dump_file, "Reuse distances:\n");
1704 for (gr = refs; gr; gr = gr->next)
1705 for (ref = gr->refs; ref; ref = ref->next)
1706 fprintf (dump_file, " ref %p distance %u\n",
1707 (void *) ref, ref->reuse_distance);
1708 }
1709
1710 return true;
1711 }
1712
1713 /* Determine whether or not the trip count to ahead ratio is too small based
1714 on prefitablility consideration.
1715 AHEAD: the iteration ahead distance,
1716 EST_NITER: the estimated trip count. */
1717
1718 static bool
1719 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1720 {
1721 /* Assume trip count to ahead ratio is big enough if the trip count could not
1722 be estimated at compile time. */
1723 if (est_niter < 0)
1724 return false;
1725
1726 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1727 {
1728 if (dump_file && (dump_flags & TDF_DETAILS))
1729 fprintf (dump_file,
1730 "Not prefetching -- loop estimated to roll only %d times\n",
1731 (int) est_niter);
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 /* Determine whether or not the number of memory references in the loop is
1739 reasonable based on the profitablity and compilation time considerations.
1740 NINSNS: estimated number of instructions in the loop,
1741 MEM_REF_COUNT: total number of memory references in the loop. */
1742
1743 static bool
1744 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1745 {
1746 int insn_to_mem_ratio;
1747
1748 if (mem_ref_count == 0)
1749 return false;
1750
1751 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1752 (compute_all_dependences) have high costs based on quadratic complexity.
1753 To avoid huge compilation time, we give up prefetching if mem_ref_count
1754 is too large. */
1755 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1756 return false;
1757
1758 /* Prefetching improves performance by overlapping cache missing
1759 memory accesses with CPU operations. If the loop does not have
1760 enough CPU operations to overlap with memory operations, prefetching
1761 won't give a significant benefit. One approximate way of checking
1762 this is to require the ratio of instructions to memory references to
1763 be above a certain limit. This approximation works well in practice.
1764 TODO: Implement a more precise computation by estimating the time
1765 for each CPU or memory op in the loop. Time estimates for memory ops
1766 should account for cache misses. */
1767 insn_to_mem_ratio = ninsns / mem_ref_count;
1768
1769 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1770 {
1771 if (dump_file && (dump_flags & TDF_DETAILS))
1772 fprintf (dump_file,
1773 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1774 insn_to_mem_ratio);
1775 return false;
1776 }
1777
1778 return true;
1779 }
1780
1781 /* Determine whether or not the instruction to prefetch ratio in the loop is
1782 too small based on the profitablity consideration.
1783 NINSNS: estimated number of instructions in the loop,
1784 PREFETCH_COUNT: an estimate of the number of prefetches,
1785 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1786
1787 static bool
1788 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1789 unsigned unroll_factor)
1790 {
1791 int insn_to_prefetch_ratio;
1792
1793 /* Prefetching most likely causes performance degradation when the instruction
1794 to prefetch ratio is too small. Too many prefetch instructions in a loop
1795 may reduce the I-cache performance.
1796 (unroll_factor * ninsns) is used to estimate the number of instructions in
1797 the unrolled loop. This implementation is a bit simplistic -- the number
1798 of issued prefetch instructions is also affected by unrolling. So,
1799 prefetch_mod and the unroll factor should be taken into account when
1800 determining prefetch_count. Also, the number of insns of the unrolled
1801 loop will usually be significantly smaller than the number of insns of the
1802 original loop * unroll_factor (at least the induction variable increases
1803 and the exit branches will get eliminated), so it might be better to use
1804 tree_estimate_loop_size + estimated_unrolled_size. */
1805 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1806 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1807 {
1808 if (dump_file && (dump_flags & TDF_DETAILS))
1809 fprintf (dump_file,
1810 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1811 insn_to_prefetch_ratio);
1812 return true;
1813 }
1814
1815 return false;
1816 }
1817
1818
1819 /* Issue prefetch instructions for array references in LOOP. Returns
1820 true if the LOOP was unrolled. */
1821
1822 static bool
1823 loop_prefetch_arrays (struct loop *loop)
1824 {
1825 struct mem_ref_group *refs;
1826 unsigned ahead, ninsns, time, unroll_factor;
1827 HOST_WIDE_INT est_niter;
1828 struct tree_niter_desc desc;
1829 bool unrolled = false, no_other_refs;
1830 unsigned prefetch_count;
1831 unsigned mem_ref_count;
1832
1833 if (optimize_loop_nest_for_size_p (loop))
1834 {
1835 if (dump_file && (dump_flags & TDF_DETAILS))
1836 fprintf (dump_file, " ignored (cold area)\n");
1837 return false;
1838 }
1839
1840 /* FIXME: the time should be weighted by the probabilities of the blocks in
1841 the loop body. */
1842 time = tree_num_loop_insns (loop, &eni_time_weights);
1843 if (time == 0)
1844 return false;
1845
1846 ahead = (PREFETCH_LATENCY + time - 1) / time;
1847 est_niter = estimated_stmt_executions_int (loop);
1848 if (est_niter == -1)
1849 est_niter = max_stmt_executions_int (loop);
1850
1851 /* Prefetching is not likely to be profitable if the trip count to ahead
1852 ratio is too small. */
1853 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1854 return false;
1855
1856 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1857
1858 /* Step 1: gather the memory references. */
1859 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1860
1861 /* Give up prefetching if the number of memory references in the
1862 loop is not reasonable based on profitablity and compilation time
1863 considerations. */
1864 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1865 goto fail;
1866
1867 /* Step 2: estimate the reuse effects. */
1868 prune_by_reuse (refs);
1869
1870 if (nothing_to_prefetch_p (refs))
1871 goto fail;
1872
1873 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1874 goto fail;
1875
1876 /* Step 3: determine unroll factor. */
1877 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1878 est_niter);
1879
1880 /* Estimate prefetch count for the unrolled loop. */
1881 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1882 if (prefetch_count == 0)
1883 goto fail;
1884
1885 if (dump_file && (dump_flags & TDF_DETAILS))
1886 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1887 HOST_WIDE_INT_PRINT_DEC "\n"
1888 "insn count %d, mem ref count %d, prefetch count %d\n",
1889 ahead, unroll_factor, est_niter,
1890 ninsns, mem_ref_count, prefetch_count);
1891
1892 /* Prefetching is not likely to be profitable if the instruction to prefetch
1893 ratio is too small. */
1894 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1895 unroll_factor))
1896 goto fail;
1897
1898 mark_nontemporal_stores (loop, refs);
1899
1900 /* Step 4: what to prefetch? */
1901 if (!schedule_prefetches (refs, unroll_factor, ahead))
1902 goto fail;
1903
1904 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1905 iterations so that we do not issue superfluous prefetches. */
1906 if (unroll_factor != 1)
1907 {
1908 tree_unroll_loop (loop, unroll_factor,
1909 single_dom_exit (loop), &desc);
1910 unrolled = true;
1911 }
1912
1913 /* Step 6: issue the prefetches. */
1914 issue_prefetches (refs, unroll_factor, ahead);
1915
1916 fail:
1917 release_mem_refs (refs);
1918 return unrolled;
1919 }
1920
1921 /* Issue prefetch instructions for array references in loops. */
1922
1923 unsigned int
1924 tree_ssa_prefetch_arrays (void)
1925 {
1926 loop_iterator li;
1927 struct loop *loop;
1928 bool unrolled = false;
1929 int todo_flags = 0;
1930
1931 if (!HAVE_prefetch
1932 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1933 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1934 of processor costs and i486 does not have prefetch, but
1935 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1936 || PREFETCH_BLOCK == 0)
1937 return 0;
1938
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1940 {
1941 fprintf (dump_file, "Prefetching parameters:\n");
1942 fprintf (dump_file, " simultaneous prefetches: %d\n",
1943 SIMULTANEOUS_PREFETCHES);
1944 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1945 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1946 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1947 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1948 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1949 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1950 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1951 MIN_INSN_TO_PREFETCH_RATIO);
1952 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1953 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1954 fprintf (dump_file, "\n");
1955 }
1956
1957 initialize_original_copy_tables ();
1958
1959 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1960 {
1961 tree type = build_function_type_list (void_type_node,
1962 const_ptr_type_node, NULL_TREE);
1963 tree decl = add_builtin_function ("__builtin_prefetch", type,
1964 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1965 NULL, NULL_TREE);
1966 DECL_IS_NOVOPS (decl) = true;
1967 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1968 }
1969
1970 /* We assume that size of cache line is a power of two, so verify this
1971 here. */
1972 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1973
1974 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1975 {
1976 if (dump_file && (dump_flags & TDF_DETAILS))
1977 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1978
1979 unrolled |= loop_prefetch_arrays (loop);
1980
1981 if (dump_file && (dump_flags & TDF_DETAILS))
1982 fprintf (dump_file, "\n\n");
1983 }
1984
1985 if (unrolled)
1986 {
1987 scev_reset ();
1988 todo_flags |= TODO_cleanup_cfg;
1989 }
1990
1991 free_original_copy_tables ();
1992 return todo_flags;
1993 }
1994
1995 /* Prefetching. */
1996
1997 static unsigned int
1998 tree_ssa_loop_prefetch (void)
1999 {
2000 if (number_of_loops (cfun) <= 1)
2001 return 0;
2002
2003 return tree_ssa_prefetch_arrays ();
2004 }
2005
2006 static bool
2007 gate_tree_ssa_loop_prefetch (void)
2008 {
2009 return flag_prefetch_loop_arrays > 0;
2010 }
2011
2012 namespace {
2013
2014 const pass_data pass_data_loop_prefetch =
2015 {
2016 GIMPLE_PASS, /* type */
2017 "aprefetch", /* name */
2018 OPTGROUP_LOOP, /* optinfo_flags */
2019 true, /* has_gate */
2020 true, /* has_execute */
2021 TV_TREE_PREFETCH, /* tv_id */
2022 ( PROP_cfg | PROP_ssa ), /* properties_required */
2023 0, /* properties_provided */
2024 0, /* properties_destroyed */
2025 0, /* todo_flags_start */
2026 0, /* todo_flags_finish */
2027 };
2028
2029 class pass_loop_prefetch : public gimple_opt_pass
2030 {
2031 public:
2032 pass_loop_prefetch (gcc::context *ctxt)
2033 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2034 {}
2035
2036 /* opt_pass methods: */
2037 bool gate () { return gate_tree_ssa_loop_prefetch (); }
2038 unsigned int execute () { return tree_ssa_loop_prefetch (); }
2039
2040 }; // class pass_loop_prefetch
2041
2042 } // anon namespace
2043
2044 gimple_opt_pass *
2045 make_pass_loop_prefetch (gcc::context *ctxt)
2046 {
2047 return new pass_loop_prefetch (ctxt);
2048 }
2049
2050