c-common.c, [...]: Replace tree_low_cst (..., 0) with tree_to_shwi throughout.
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "tree-pretty-print.h"
28 #include "gimple.h"
29 #include "gimplify.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
33 #include "tree-ssa-loop-ivopts.h"
34 #include "tree-ssa-loop-manip.h"
35 #include "tree-ssa-loop-niter.h"
36 #include "tree-ssa-loop.h"
37 #include "tree-into-ssa.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "insn-config.h"
41 #include "hashtab.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "diagnostic-core.h"
45 #include "params.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-data-ref.h"
49
50
51 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
52 between the GIMPLE and RTL worlds. */
53 #include "expr.h"
54 #include "optabs.h"
55 #include "recog.h"
56
57 /* This pass inserts prefetch instructions to optimize cache usage during
58 accesses to arrays in loops. It processes loops sequentially and:
59
60 1) Gathers all memory references in the single loop.
61 2) For each of the references it decides when it is profitable to prefetch
62 it. To do it, we evaluate the reuse among the accesses, and determines
63 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
64 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
65 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
66 iterations of the loop that are zero modulo PREFETCH_MOD). For example
67 (assuming cache line size is 64 bytes, char has size 1 byte and there
68 is no hardware sequential prefetch):
69
70 char *a;
71 for (i = 0; i < max; i++)
72 {
73 a[255] = ...; (0)
74 a[i] = ...; (1)
75 a[i + 64] = ...; (2)
76 a[16*i] = ...; (3)
77 a[187*i] = ...; (4)
78 a[187*i + 50] = ...; (5)
79 }
80
81 (0) obviously has PREFETCH_BEFORE 1
82 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
83 location 64 iterations before it, and PREFETCH_MOD 64 (since
84 it hits the same cache line otherwise).
85 (2) has PREFETCH_MOD 64
86 (3) has PREFETCH_MOD 4
87 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
88 the cache line accessed by (5) is the same with probability only
89 7/32.
90 (5) has PREFETCH_MOD 1 as well.
91
92 Additionally, we use data dependence analysis to determine for each
93 reference the distance till the first reuse; this information is used
94 to determine the temporality of the issued prefetch instruction.
95
96 3) We determine how much ahead we need to prefetch. The number of
97 iterations needed is time to fetch / time spent in one iteration of
98 the loop. The problem is that we do not know either of these values,
99 so we just make a heuristic guess based on a magic (possibly)
100 target-specific constant and size of the loop.
101
102 4) Determine which of the references we prefetch. We take into account
103 that there is a maximum number of simultaneous prefetches (provided
104 by machine description). We prefetch as many prefetches as possible
105 while still within this bound (starting with those with lowest
106 prefetch_mod, since they are responsible for most of the cache
107 misses).
108
109 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
110 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
111 prefetching nonaccessed memory.
112 TODO -- actually implement peeling.
113
114 6) We actually emit the prefetch instructions. ??? Perhaps emit the
115 prefetch instructions with guards in cases where 5) was not sufficient
116 to satisfy the constraints?
117
118 A cost model is implemented to determine whether or not prefetching is
119 profitable for a given loop. The cost model has three heuristics:
120
121 1. Function trip_count_to_ahead_ratio_too_small_p implements a
122 heuristic that determines whether or not the loop has too few
123 iterations (compared to ahead). Prefetching is not likely to be
124 beneficial if the trip count to ahead ratio is below a certain
125 minimum.
126
127 2. Function mem_ref_count_reasonable_p implements a heuristic that
128 determines whether the given loop has enough CPU ops that can be
129 overlapped with cache missing memory ops. If not, the loop
130 won't benefit from prefetching. In the implementation,
131 prefetching is not considered beneficial if the ratio between
132 the instruction count and the mem ref count is below a certain
133 minimum.
134
135 3. Function insn_to_prefetch_ratio_too_small_p implements a
136 heuristic that disables prefetching in a loop if the prefetching
137 cost is above a certain limit. The relative prefetching cost is
138 estimated by taking the ratio between the prefetch count and the
139 total intruction count (this models the I-cache cost).
140
141 The limits used in these heuristics are defined as parameters with
142 reasonable default values. Machine-specific default values will be
143 added later.
144
145 Some other TODO:
146 -- write and use more general reuse analysis (that could be also used
147 in other cache aimed loop optimizations)
148 -- make it behave sanely together with the prefetches given by user
149 (now we just ignore them; at the very least we should avoid
150 optimizing loops in that user put his own prefetches)
151 -- we assume cache line size alignment of arrays; this could be
152 improved. */
153
154 /* Magic constants follow. These should be replaced by machine specific
155 numbers. */
156
157 /* True if write can be prefetched by a read prefetch. */
158
159 #ifndef WRITE_CAN_USE_READ_PREFETCH
160 #define WRITE_CAN_USE_READ_PREFETCH 1
161 #endif
162
163 /* True if read can be prefetched by a write prefetch. */
164
165 #ifndef READ_CAN_USE_WRITE_PREFETCH
166 #define READ_CAN_USE_WRITE_PREFETCH 0
167 #endif
168
169 /* The size of the block loaded by a single prefetch. Usually, this is
170 the same as cache line size (at the moment, we only consider one level
171 of cache hierarchy). */
172
173 #ifndef PREFETCH_BLOCK
174 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
175 #endif
176
177 /* Do we have a forward hardware sequential prefetching? */
178
179 #ifndef HAVE_FORWARD_PREFETCH
180 #define HAVE_FORWARD_PREFETCH 0
181 #endif
182
183 /* Do we have a backward hardware sequential prefetching? */
184
185 #ifndef HAVE_BACKWARD_PREFETCH
186 #define HAVE_BACKWARD_PREFETCH 0
187 #endif
188
189 /* In some cases we are only able to determine that there is a certain
190 probability that the two accesses hit the same cache line. In this
191 case, we issue the prefetches for both of them if this probability
192 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
193
194 #ifndef ACCEPTABLE_MISS_RATE
195 #define ACCEPTABLE_MISS_RATE 50
196 #endif
197
198 #ifndef HAVE_prefetch
199 #define HAVE_prefetch 0
200 #endif
201
202 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
203 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
204
205 /* We consider a memory access nontemporal if it is not reused sooner than
206 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
207 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
208 so that we use nontemporal prefetches e.g. if single memory location
209 is accessed several times in a single iteration of the loop. */
210 #define NONTEMPORAL_FRACTION 16
211
212 /* In case we have to emit a memory fence instruction after the loop that
213 uses nontemporal stores, this defines the builtin to use. */
214
215 #ifndef FENCE_FOLLOWING_MOVNT
216 #define FENCE_FOLLOWING_MOVNT NULL_TREE
217 #endif
218
219 /* It is not profitable to prefetch when the trip count is not at
220 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
221 For example, in a loop with a prefetch ahead distance of 10,
222 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
223 profitable to prefetch when the trip count is greater or equal to
224 40. In that case, 30 out of the 40 iterations will benefit from
225 prefetching. */
226
227 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
228 #define TRIP_COUNT_TO_AHEAD_RATIO 4
229 #endif
230
231 /* The group of references between that reuse may occur. */
232
233 struct mem_ref_group
234 {
235 tree base; /* Base of the reference. */
236 tree step; /* Step of the reference. */
237 struct mem_ref *refs; /* References in the group. */
238 struct mem_ref_group *next; /* Next group of references. */
239 };
240
241 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
242
243 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
244
245 /* Do not generate a prefetch if the unroll factor is significantly less
246 than what is required by the prefetch. This is to avoid redundant
247 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
248 2, prefetching requires unrolling the loop 16 times, but
249 the loop is actually unrolled twice. In this case (ratio = 8),
250 prefetching is not likely to be beneficial. */
251
252 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
253 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
254 #endif
255
256 /* Some of the prefetch computations have quadratic complexity. We want to
257 avoid huge compile times and, therefore, want to limit the amount of
258 memory references per loop where we consider prefetching. */
259
260 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
261 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
262 #endif
263
264 /* The memory reference. */
265
266 struct mem_ref
267 {
268 gimple stmt; /* Statement in that the reference appears. */
269 tree mem; /* The reference. */
270 HOST_WIDE_INT delta; /* Constant offset of the reference. */
271 struct mem_ref_group *group; /* The group of references it belongs to. */
272 unsigned HOST_WIDE_INT prefetch_mod;
273 /* Prefetch only each PREFETCH_MOD-th
274 iteration. */
275 unsigned HOST_WIDE_INT prefetch_before;
276 /* Prefetch only first PREFETCH_BEFORE
277 iterations. */
278 unsigned reuse_distance; /* The amount of data accessed before the first
279 reuse of this value. */
280 struct mem_ref *next; /* The next reference in the group. */
281 unsigned write_p : 1; /* Is it a write? */
282 unsigned independent_p : 1; /* True if the reference is independent on
283 all other references inside the loop. */
284 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
285 unsigned storent_p : 1; /* True if we changed the store to a
286 nontemporal one. */
287 };
288
289 /* Dumps information about memory reference */
290 static void
291 dump_mem_details (FILE *file, tree base, tree step,
292 HOST_WIDE_INT delta, bool write_p)
293 {
294 fprintf (file, "(base ");
295 print_generic_expr (file, base, TDF_SLIM);
296 fprintf (file, ", step ");
297 if (cst_and_fits_in_hwi (step))
298 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
299 else
300 print_generic_expr (file, step, TDF_TREE);
301 fprintf (file, ")\n");
302 fprintf (file, " delta ");
303 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
304 fprintf (file, "\n");
305 fprintf (file, " %s\n", write_p ? "write" : "read");
306 fprintf (file, "\n");
307 }
308
309 /* Dumps information about reference REF to FILE. */
310
311 static void
312 dump_mem_ref (FILE *file, struct mem_ref *ref)
313 {
314 fprintf (file, "Reference %p:\n", (void *) ref);
315
316 fprintf (file, " group %p ", (void *) ref->group);
317
318 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
319 ref->write_p);
320 }
321
322 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
323 exist. */
324
325 static struct mem_ref_group *
326 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
327 {
328 struct mem_ref_group *group;
329
330 for (; *groups; groups = &(*groups)->next)
331 {
332 if (operand_equal_p ((*groups)->step, step, 0)
333 && operand_equal_p ((*groups)->base, base, 0))
334 return *groups;
335
336 /* If step is an integer constant, keep the list of groups sorted
337 by decreasing step. */
338 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
339 && int_cst_value ((*groups)->step) < int_cst_value (step))
340 break;
341 }
342
343 group = XNEW (struct mem_ref_group);
344 group->base = base;
345 group->step = step;
346 group->refs = NULL;
347 group->next = *groups;
348 *groups = group;
349
350 return group;
351 }
352
353 /* Records a memory reference MEM in GROUP with offset DELTA and write status
354 WRITE_P. The reference occurs in statement STMT. */
355
356 static void
357 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
358 HOST_WIDE_INT delta, bool write_p)
359 {
360 struct mem_ref **aref;
361
362 /* Do not record the same address twice. */
363 for (aref = &group->refs; *aref; aref = &(*aref)->next)
364 {
365 /* It does not have to be possible for write reference to reuse the read
366 prefetch, or vice versa. */
367 if (!WRITE_CAN_USE_READ_PREFETCH
368 && write_p
369 && !(*aref)->write_p)
370 continue;
371 if (!READ_CAN_USE_WRITE_PREFETCH
372 && !write_p
373 && (*aref)->write_p)
374 continue;
375
376 if ((*aref)->delta == delta)
377 return;
378 }
379
380 (*aref) = XNEW (struct mem_ref);
381 (*aref)->stmt = stmt;
382 (*aref)->mem = mem;
383 (*aref)->delta = delta;
384 (*aref)->write_p = write_p;
385 (*aref)->prefetch_before = PREFETCH_ALL;
386 (*aref)->prefetch_mod = 1;
387 (*aref)->reuse_distance = 0;
388 (*aref)->issue_prefetch_p = false;
389 (*aref)->group = group;
390 (*aref)->next = NULL;
391 (*aref)->independent_p = false;
392 (*aref)->storent_p = false;
393
394 if (dump_file && (dump_flags & TDF_DETAILS))
395 dump_mem_ref (dump_file, *aref);
396 }
397
398 /* Release memory references in GROUPS. */
399
400 static void
401 release_mem_refs (struct mem_ref_group *groups)
402 {
403 struct mem_ref_group *next_g;
404 struct mem_ref *ref, *next_r;
405
406 for (; groups; groups = next_g)
407 {
408 next_g = groups->next;
409 for (ref = groups->refs; ref; ref = next_r)
410 {
411 next_r = ref->next;
412 free (ref);
413 }
414 free (groups);
415 }
416 }
417
418 /* A structure used to pass arguments to idx_analyze_ref. */
419
420 struct ar_data
421 {
422 struct loop *loop; /* Loop of the reference. */
423 gimple stmt; /* Statement of the reference. */
424 tree *step; /* Step of the memory reference. */
425 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
426 };
427
428 /* Analyzes a single INDEX of a memory reference to obtain information
429 described at analyze_ref. Callback for for_each_index. */
430
431 static bool
432 idx_analyze_ref (tree base, tree *index, void *data)
433 {
434 struct ar_data *ar_data = (struct ar_data *) data;
435 tree ibase, step, stepsize;
436 HOST_WIDE_INT idelta = 0, imult = 1;
437 affine_iv iv;
438
439 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
440 *index, &iv, true))
441 return false;
442 ibase = iv.base;
443 step = iv.step;
444
445 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
446 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
447 {
448 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
449 ibase = TREE_OPERAND (ibase, 0);
450 }
451 if (cst_and_fits_in_hwi (ibase))
452 {
453 idelta += int_cst_value (ibase);
454 ibase = build_int_cst (TREE_TYPE (ibase), 0);
455 }
456
457 if (TREE_CODE (base) == ARRAY_REF)
458 {
459 stepsize = array_ref_element_size (base);
460 if (!cst_and_fits_in_hwi (stepsize))
461 return false;
462 imult = int_cst_value (stepsize);
463 step = fold_build2 (MULT_EXPR, sizetype,
464 fold_convert (sizetype, step),
465 fold_convert (sizetype, stepsize));
466 idelta *= imult;
467 }
468
469 if (*ar_data->step == NULL_TREE)
470 *ar_data->step = step;
471 else
472 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
473 fold_convert (sizetype, *ar_data->step),
474 fold_convert (sizetype, step));
475 *ar_data->delta += idelta;
476 *index = ibase;
477
478 return true;
479 }
480
481 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
482 STEP are integer constants and iter is number of iterations of LOOP. The
483 reference occurs in statement STMT. Strips nonaddressable component
484 references from REF_P. */
485
486 static bool
487 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
488 tree *step, HOST_WIDE_INT *delta,
489 gimple stmt)
490 {
491 struct ar_data ar_data;
492 tree off;
493 HOST_WIDE_INT bit_offset;
494 tree ref = *ref_p;
495
496 *step = NULL_TREE;
497 *delta = 0;
498
499 /* First strip off the component references. Ignore bitfields.
500 Also strip off the real and imagine parts of a complex, so that
501 they can have the same base. */
502 if (TREE_CODE (ref) == REALPART_EXPR
503 || TREE_CODE (ref) == IMAGPART_EXPR
504 || (TREE_CODE (ref) == COMPONENT_REF
505 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
506 {
507 if (TREE_CODE (ref) == IMAGPART_EXPR)
508 *delta += int_size_in_bytes (TREE_TYPE (ref));
509 ref = TREE_OPERAND (ref, 0);
510 }
511
512 *ref_p = ref;
513
514 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
515 {
516 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
517 bit_offset = TREE_INT_CST_LOW (off);
518 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
519
520 *delta += bit_offset / BITS_PER_UNIT;
521 }
522
523 *base = unshare_expr (ref);
524 ar_data.loop = loop;
525 ar_data.stmt = stmt;
526 ar_data.step = step;
527 ar_data.delta = delta;
528 return for_each_index (base, idx_analyze_ref, &ar_data);
529 }
530
531 /* Record a memory reference REF to the list REFS. The reference occurs in
532 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
533 reference was recorded, false otherwise. */
534
535 static bool
536 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
537 tree ref, bool write_p, gimple stmt)
538 {
539 tree base, step;
540 HOST_WIDE_INT delta;
541 struct mem_ref_group *agrp;
542
543 if (get_base_address (ref) == NULL)
544 return false;
545
546 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
547 return false;
548 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
549 if (step == NULL_TREE)
550 return false;
551
552 /* Stop if the address of BASE could not be taken. */
553 if (may_be_nonaddressable_p (base))
554 return false;
555
556 /* Limit non-constant step prefetching only to the innermost loops and
557 only when the step is loop invariant in the entire loop nest. */
558 if (!cst_and_fits_in_hwi (step))
559 {
560 if (loop->inner != NULL)
561 {
562 if (dump_file && (dump_flags & TDF_DETAILS))
563 {
564 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
565 print_generic_expr (dump_file, ref, TDF_TREE);
566 fprintf (dump_file,":");
567 dump_mem_details (dump_file, base, step, delta, write_p);
568 fprintf (dump_file,
569 "Ignoring %p, non-constant step prefetching is "
570 "limited to inner most loops \n",
571 (void *) ref);
572 }
573 return false;
574 }
575 else
576 {
577 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
578 {
579 if (dump_file && (dump_flags & TDF_DETAILS))
580 {
581 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
582 print_generic_expr (dump_file, ref, TDF_TREE);
583 fprintf (dump_file,":");
584 dump_mem_details (dump_file, base, step, delta, write_p);
585 fprintf (dump_file,
586 "Not prefetching, ignoring %p due to "
587 "loop variant step\n",
588 (void *) ref);
589 }
590 return false;
591 }
592 }
593 }
594
595 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
596 are integer constants. */
597 agrp = find_or_create_group (refs, base, step);
598 record_ref (agrp, stmt, ref, delta, write_p);
599
600 return true;
601 }
602
603 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
604 true if there are no other memory references inside the loop. */
605
606 static struct mem_ref_group *
607 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
608 {
609 basic_block *body = get_loop_body_in_dom_order (loop);
610 basic_block bb;
611 unsigned i;
612 gimple_stmt_iterator bsi;
613 gimple stmt;
614 tree lhs, rhs;
615 struct mem_ref_group *refs = NULL;
616
617 *no_other_refs = true;
618 *ref_count = 0;
619
620 /* Scan the loop body in order, so that the former references precede the
621 later ones. */
622 for (i = 0; i < loop->num_nodes; i++)
623 {
624 bb = body[i];
625 if (bb->loop_father != loop)
626 continue;
627
628 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
629 {
630 stmt = gsi_stmt (bsi);
631
632 if (gimple_code (stmt) != GIMPLE_ASSIGN)
633 {
634 if (gimple_vuse (stmt)
635 || (is_gimple_call (stmt)
636 && !(gimple_call_flags (stmt) & ECF_CONST)))
637 *no_other_refs = false;
638 continue;
639 }
640
641 lhs = gimple_assign_lhs (stmt);
642 rhs = gimple_assign_rhs1 (stmt);
643
644 if (REFERENCE_CLASS_P (rhs))
645 {
646 *no_other_refs &= gather_memory_references_ref (loop, &refs,
647 rhs, false, stmt);
648 *ref_count += 1;
649 }
650 if (REFERENCE_CLASS_P (lhs))
651 {
652 *no_other_refs &= gather_memory_references_ref (loop, &refs,
653 lhs, true, stmt);
654 *ref_count += 1;
655 }
656 }
657 }
658 free (body);
659
660 return refs;
661 }
662
663 /* Prune the prefetch candidate REF using the self-reuse. */
664
665 static void
666 prune_ref_by_self_reuse (struct mem_ref *ref)
667 {
668 HOST_WIDE_INT step;
669 bool backward;
670
671 /* If the step size is non constant, we cannot calculate prefetch_mod. */
672 if (!cst_and_fits_in_hwi (ref->group->step))
673 return;
674
675 step = int_cst_value (ref->group->step);
676
677 backward = step < 0;
678
679 if (step == 0)
680 {
681 /* Prefetch references to invariant address just once. */
682 ref->prefetch_before = 1;
683 return;
684 }
685
686 if (backward)
687 step = -step;
688
689 if (step > PREFETCH_BLOCK)
690 return;
691
692 if ((backward && HAVE_BACKWARD_PREFETCH)
693 || (!backward && HAVE_FORWARD_PREFETCH))
694 {
695 ref->prefetch_before = 1;
696 return;
697 }
698
699 ref->prefetch_mod = PREFETCH_BLOCK / step;
700 }
701
702 /* Divides X by BY, rounding down. */
703
704 static HOST_WIDE_INT
705 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
706 {
707 gcc_assert (by > 0);
708
709 if (x >= 0)
710 return x / by;
711 else
712 return (x + by - 1) / by;
713 }
714
715 /* Given a CACHE_LINE_SIZE and two inductive memory references
716 with a common STEP greater than CACHE_LINE_SIZE and an address
717 difference DELTA, compute the probability that they will fall
718 in different cache lines. Return true if the computed miss rate
719 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
720 number of distinct iterations after which the pattern repeats itself.
721 ALIGN_UNIT is the unit of alignment in bytes. */
722
723 static bool
724 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
725 HOST_WIDE_INT step, HOST_WIDE_INT delta,
726 unsigned HOST_WIDE_INT distinct_iters,
727 int align_unit)
728 {
729 unsigned align, iter;
730 int total_positions, miss_positions, max_allowed_miss_positions;
731 int address1, address2, cache_line1, cache_line2;
732
733 /* It always misses if delta is greater than or equal to the cache
734 line size. */
735 if (delta >= (HOST_WIDE_INT) cache_line_size)
736 return false;
737
738 miss_positions = 0;
739 total_positions = (cache_line_size / align_unit) * distinct_iters;
740 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
741
742 /* Iterate through all possible alignments of the first
743 memory reference within its cache line. */
744 for (align = 0; align < cache_line_size; align += align_unit)
745
746 /* Iterate through all distinct iterations. */
747 for (iter = 0; iter < distinct_iters; iter++)
748 {
749 address1 = align + step * iter;
750 address2 = address1 + delta;
751 cache_line1 = address1 / cache_line_size;
752 cache_line2 = address2 / cache_line_size;
753 if (cache_line1 != cache_line2)
754 {
755 miss_positions += 1;
756 if (miss_positions > max_allowed_miss_positions)
757 return false;
758 }
759 }
760 return true;
761 }
762
763 /* Prune the prefetch candidate REF using the reuse with BY.
764 If BY_IS_BEFORE is true, BY is before REF in the loop. */
765
766 static void
767 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
768 bool by_is_before)
769 {
770 HOST_WIDE_INT step;
771 bool backward;
772 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
773 HOST_WIDE_INT delta = delta_b - delta_r;
774 HOST_WIDE_INT hit_from;
775 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
776 HOST_WIDE_INT reduced_step;
777 unsigned HOST_WIDE_INT reduced_prefetch_block;
778 tree ref_type;
779 int align_unit;
780
781 /* If the step is non constant we cannot calculate prefetch_before. */
782 if (!cst_and_fits_in_hwi (ref->group->step)) {
783 return;
784 }
785
786 step = int_cst_value (ref->group->step);
787
788 backward = step < 0;
789
790
791 if (delta == 0)
792 {
793 /* If the references has the same address, only prefetch the
794 former. */
795 if (by_is_before)
796 ref->prefetch_before = 0;
797
798 return;
799 }
800
801 if (!step)
802 {
803 /* If the reference addresses are invariant and fall into the
804 same cache line, prefetch just the first one. */
805 if (!by_is_before)
806 return;
807
808 if (ddown (ref->delta, PREFETCH_BLOCK)
809 != ddown (by->delta, PREFETCH_BLOCK))
810 return;
811
812 ref->prefetch_before = 0;
813 return;
814 }
815
816 /* Only prune the reference that is behind in the array. */
817 if (backward)
818 {
819 if (delta > 0)
820 return;
821
822 /* Transform the data so that we may assume that the accesses
823 are forward. */
824 delta = - delta;
825 step = -step;
826 delta_r = PREFETCH_BLOCK - 1 - delta_r;
827 delta_b = PREFETCH_BLOCK - 1 - delta_b;
828 }
829 else
830 {
831 if (delta < 0)
832 return;
833 }
834
835 /* Check whether the two references are likely to hit the same cache
836 line, and how distant the iterations in that it occurs are from
837 each other. */
838
839 if (step <= PREFETCH_BLOCK)
840 {
841 /* The accesses are sure to meet. Let us check when. */
842 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
843 prefetch_before = (hit_from - delta_r + step - 1) / step;
844
845 /* Do not reduce prefetch_before if we meet beyond cache size. */
846 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
847 prefetch_before = PREFETCH_ALL;
848 if (prefetch_before < ref->prefetch_before)
849 ref->prefetch_before = prefetch_before;
850
851 return;
852 }
853
854 /* A more complicated case with step > prefetch_block. First reduce
855 the ratio between the step and the cache line size to its simplest
856 terms. The resulting denominator will then represent the number of
857 distinct iterations after which each address will go back to its
858 initial location within the cache line. This computation assumes
859 that PREFETCH_BLOCK is a power of two. */
860 prefetch_block = PREFETCH_BLOCK;
861 reduced_prefetch_block = prefetch_block;
862 reduced_step = step;
863 while ((reduced_step & 1) == 0
864 && reduced_prefetch_block > 1)
865 {
866 reduced_step >>= 1;
867 reduced_prefetch_block >>= 1;
868 }
869
870 prefetch_before = delta / step;
871 delta %= step;
872 ref_type = TREE_TYPE (ref->mem);
873 align_unit = TYPE_ALIGN (ref_type) / 8;
874 if (is_miss_rate_acceptable (prefetch_block, step, delta,
875 reduced_prefetch_block, align_unit))
876 {
877 /* Do not reduce prefetch_before if we meet beyond cache size. */
878 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
879 prefetch_before = PREFETCH_ALL;
880 if (prefetch_before < ref->prefetch_before)
881 ref->prefetch_before = prefetch_before;
882
883 return;
884 }
885
886 /* Try also the following iteration. */
887 prefetch_before++;
888 delta = step - delta;
889 if (is_miss_rate_acceptable (prefetch_block, step, delta,
890 reduced_prefetch_block, align_unit))
891 {
892 if (prefetch_before < ref->prefetch_before)
893 ref->prefetch_before = prefetch_before;
894
895 return;
896 }
897
898 /* The ref probably does not reuse by. */
899 return;
900 }
901
902 /* Prune the prefetch candidate REF using the reuses with other references
903 in REFS. */
904
905 static void
906 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
907 {
908 struct mem_ref *prune_by;
909 bool before = true;
910
911 prune_ref_by_self_reuse (ref);
912
913 for (prune_by = refs; prune_by; prune_by = prune_by->next)
914 {
915 if (prune_by == ref)
916 {
917 before = false;
918 continue;
919 }
920
921 if (!WRITE_CAN_USE_READ_PREFETCH
922 && ref->write_p
923 && !prune_by->write_p)
924 continue;
925 if (!READ_CAN_USE_WRITE_PREFETCH
926 && !ref->write_p
927 && prune_by->write_p)
928 continue;
929
930 prune_ref_by_group_reuse (ref, prune_by, before);
931 }
932 }
933
934 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
935
936 static void
937 prune_group_by_reuse (struct mem_ref_group *group)
938 {
939 struct mem_ref *ref_pruned;
940
941 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
942 {
943 prune_ref_by_reuse (ref_pruned, group->refs);
944
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 {
947 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
948
949 if (ref_pruned->prefetch_before == PREFETCH_ALL
950 && ref_pruned->prefetch_mod == 1)
951 fprintf (dump_file, " no restrictions");
952 else if (ref_pruned->prefetch_before == 0)
953 fprintf (dump_file, " do not prefetch");
954 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
955 fprintf (dump_file, " prefetch once");
956 else
957 {
958 if (ref_pruned->prefetch_before != PREFETCH_ALL)
959 {
960 fprintf (dump_file, " prefetch before ");
961 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
962 ref_pruned->prefetch_before);
963 }
964 if (ref_pruned->prefetch_mod != 1)
965 {
966 fprintf (dump_file, " prefetch mod ");
967 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
968 ref_pruned->prefetch_mod);
969 }
970 }
971 fprintf (dump_file, "\n");
972 }
973 }
974 }
975
976 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
977
978 static void
979 prune_by_reuse (struct mem_ref_group *groups)
980 {
981 for (; groups; groups = groups->next)
982 prune_group_by_reuse (groups);
983 }
984
985 /* Returns true if we should issue prefetch for REF. */
986
987 static bool
988 should_issue_prefetch_p (struct mem_ref *ref)
989 {
990 /* For now do not issue prefetches for only first few of the
991 iterations. */
992 if (ref->prefetch_before != PREFETCH_ALL)
993 {
994 if (dump_file && (dump_flags & TDF_DETAILS))
995 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
996 (void *) ref);
997 return false;
998 }
999
1000 /* Do not prefetch nontemporal stores. */
1001 if (ref->storent_p)
1002 {
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1004 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1005 return false;
1006 }
1007
1008 return true;
1009 }
1010
1011 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1012 AHEAD is the number of iterations to prefetch ahead (which corresponds
1013 to the number of simultaneous instances of one prefetch running at a
1014 time). UNROLL_FACTOR is the factor by that the loop is going to be
1015 unrolled. Returns true if there is anything to prefetch. */
1016
1017 static bool
1018 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1019 unsigned ahead)
1020 {
1021 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1022 unsigned slots_per_prefetch;
1023 struct mem_ref *ref;
1024 bool any = false;
1025
1026 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1027 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1028
1029 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1030 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1031 it will need a prefetch slot. */
1032 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1033 if (dump_file && (dump_flags & TDF_DETAILS))
1034 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1035 slots_per_prefetch);
1036
1037 /* For now we just take memory references one by one and issue
1038 prefetches for as many as possible. The groups are sorted
1039 starting with the largest step, since the references with
1040 large step are more likely to cause many cache misses. */
1041
1042 for (; groups; groups = groups->next)
1043 for (ref = groups->refs; ref; ref = ref->next)
1044 {
1045 if (!should_issue_prefetch_p (ref))
1046 continue;
1047
1048 /* The loop is far from being sufficiently unrolled for this
1049 prefetch. Do not generate prefetch to avoid many redudant
1050 prefetches. */
1051 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1052 continue;
1053
1054 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1055 and we unroll the loop UNROLL_FACTOR times, we need to insert
1056 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1057 iteration. */
1058 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1059 / ref->prefetch_mod);
1060 prefetch_slots = n_prefetches * slots_per_prefetch;
1061
1062 /* If more than half of the prefetches would be lost anyway, do not
1063 issue the prefetch. */
1064 if (2 * remaining_prefetch_slots < prefetch_slots)
1065 continue;
1066
1067 ref->issue_prefetch_p = true;
1068
1069 if (remaining_prefetch_slots <= prefetch_slots)
1070 return true;
1071 remaining_prefetch_slots -= prefetch_slots;
1072 any = true;
1073 }
1074
1075 return any;
1076 }
1077
1078 /* Return TRUE if no prefetch is going to be generated in the given
1079 GROUPS. */
1080
1081 static bool
1082 nothing_to_prefetch_p (struct mem_ref_group *groups)
1083 {
1084 struct mem_ref *ref;
1085
1086 for (; groups; groups = groups->next)
1087 for (ref = groups->refs; ref; ref = ref->next)
1088 if (should_issue_prefetch_p (ref))
1089 return false;
1090
1091 return true;
1092 }
1093
1094 /* Estimate the number of prefetches in the given GROUPS.
1095 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1096
1097 static int
1098 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1099 {
1100 struct mem_ref *ref;
1101 unsigned n_prefetches;
1102 int prefetch_count = 0;
1103
1104 for (; groups; groups = groups->next)
1105 for (ref = groups->refs; ref; ref = ref->next)
1106 if (should_issue_prefetch_p (ref))
1107 {
1108 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1109 / ref->prefetch_mod);
1110 prefetch_count += n_prefetches;
1111 }
1112
1113 return prefetch_count;
1114 }
1115
1116 /* Issue prefetches for the reference REF into loop as decided before.
1117 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1118 is the factor by which LOOP was unrolled. */
1119
1120 static void
1121 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1122 {
1123 HOST_WIDE_INT delta;
1124 tree addr, addr_base, write_p, local, forward;
1125 gimple prefetch;
1126 gimple_stmt_iterator bsi;
1127 unsigned n_prefetches, ap;
1128 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1129
1130 if (dump_file && (dump_flags & TDF_DETAILS))
1131 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1132 nontemporal ? " nontemporal" : "",
1133 (void *) ref);
1134
1135 bsi = gsi_for_stmt (ref->stmt);
1136
1137 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1138 / ref->prefetch_mod);
1139 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1140 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1141 true, NULL, true, GSI_SAME_STMT);
1142 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1143 local = nontemporal ? integer_zero_node : integer_three_node;
1144
1145 for (ap = 0; ap < n_prefetches; ap++)
1146 {
1147 if (cst_and_fits_in_hwi (ref->group->step))
1148 {
1149 /* Determine the address to prefetch. */
1150 delta = (ahead + ap * ref->prefetch_mod) *
1151 int_cst_value (ref->group->step);
1152 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1153 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1154 true, GSI_SAME_STMT);
1155 }
1156 else
1157 {
1158 /* The step size is non-constant but loop-invariant. We use the
1159 heuristic to simply prefetch ahead iterations ahead. */
1160 forward = fold_build2 (MULT_EXPR, sizetype,
1161 fold_convert (sizetype, ref->group->step),
1162 fold_convert (sizetype, size_int (ahead)));
1163 addr = fold_build_pointer_plus (addr_base, forward);
1164 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1165 NULL, true, GSI_SAME_STMT);
1166 }
1167 /* Create the prefetch instruction. */
1168 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1169 3, addr, write_p, local);
1170 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1171 }
1172 }
1173
1174 /* Issue prefetches for the references in GROUPS into loop as decided before.
1175 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1176 factor by that LOOP was unrolled. */
1177
1178 static void
1179 issue_prefetches (struct mem_ref_group *groups,
1180 unsigned unroll_factor, unsigned ahead)
1181 {
1182 struct mem_ref *ref;
1183
1184 for (; groups; groups = groups->next)
1185 for (ref = groups->refs; ref; ref = ref->next)
1186 if (ref->issue_prefetch_p)
1187 issue_prefetch_ref (ref, unroll_factor, ahead);
1188 }
1189
1190 /* Returns true if REF is a memory write for that a nontemporal store insn
1191 can be used. */
1192
1193 static bool
1194 nontemporal_store_p (struct mem_ref *ref)
1195 {
1196 enum machine_mode mode;
1197 enum insn_code code;
1198
1199 /* REF must be a write that is not reused. We require it to be independent
1200 on all other memory references in the loop, as the nontemporal stores may
1201 be reordered with respect to other memory references. */
1202 if (!ref->write_p
1203 || !ref->independent_p
1204 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1205 return false;
1206
1207 /* Check that we have the storent instruction for the mode. */
1208 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1209 if (mode == BLKmode)
1210 return false;
1211
1212 code = optab_handler (storent_optab, mode);
1213 return code != CODE_FOR_nothing;
1214 }
1215
1216 /* If REF is a nontemporal store, we mark the corresponding modify statement
1217 and return true. Otherwise, we return false. */
1218
1219 static bool
1220 mark_nontemporal_store (struct mem_ref *ref)
1221 {
1222 if (!nontemporal_store_p (ref))
1223 return false;
1224
1225 if (dump_file && (dump_flags & TDF_DETAILS))
1226 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1227 (void *) ref);
1228
1229 gimple_assign_set_nontemporal_move (ref->stmt, true);
1230 ref->storent_p = true;
1231
1232 return true;
1233 }
1234
1235 /* Issue a memory fence instruction after LOOP. */
1236
1237 static void
1238 emit_mfence_after_loop (struct loop *loop)
1239 {
1240 vec<edge> exits = get_loop_exit_edges (loop);
1241 edge exit;
1242 gimple call;
1243 gimple_stmt_iterator bsi;
1244 unsigned i;
1245
1246 FOR_EACH_VEC_ELT (exits, i, exit)
1247 {
1248 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1249
1250 if (!single_pred_p (exit->dest)
1251 /* If possible, we prefer not to insert the fence on other paths
1252 in cfg. */
1253 && !(exit->flags & EDGE_ABNORMAL))
1254 split_loop_exit_edge (exit);
1255 bsi = gsi_after_labels (exit->dest);
1256
1257 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1258 }
1259
1260 exits.release ();
1261 update_ssa (TODO_update_ssa_only_virtuals);
1262 }
1263
1264 /* Returns true if we can use storent in loop, false otherwise. */
1265
1266 static bool
1267 may_use_storent_in_loop_p (struct loop *loop)
1268 {
1269 bool ret = true;
1270
1271 if (loop->inner != NULL)
1272 return false;
1273
1274 /* If we must issue a mfence insn after using storent, check that there
1275 is a suitable place for it at each of the loop exits. */
1276 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1277 {
1278 vec<edge> exits = get_loop_exit_edges (loop);
1279 unsigned i;
1280 edge exit;
1281
1282 FOR_EACH_VEC_ELT (exits, i, exit)
1283 if ((exit->flags & EDGE_ABNORMAL)
1284 && exit->dest == EXIT_BLOCK_PTR)
1285 ret = false;
1286
1287 exits.release ();
1288 }
1289
1290 return ret;
1291 }
1292
1293 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1294 references in the loop. */
1295
1296 static void
1297 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1298 {
1299 struct mem_ref *ref;
1300 bool any = false;
1301
1302 if (!may_use_storent_in_loop_p (loop))
1303 return;
1304
1305 for (; groups; groups = groups->next)
1306 for (ref = groups->refs; ref; ref = ref->next)
1307 any |= mark_nontemporal_store (ref);
1308
1309 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1310 emit_mfence_after_loop (loop);
1311 }
1312
1313 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1314 this is the case, fill in DESC by the description of number of
1315 iterations. */
1316
1317 static bool
1318 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1319 unsigned factor)
1320 {
1321 if (!can_unroll_loop_p (loop, factor, desc))
1322 return false;
1323
1324 /* We only consider loops without control flow for unrolling. This is not
1325 a hard restriction -- tree_unroll_loop works with arbitrary loops
1326 as well; but the unrolling/prefetching is usually more profitable for
1327 loops consisting of a single basic block, and we want to limit the
1328 code growth. */
1329 if (loop->num_nodes > 2)
1330 return false;
1331
1332 return true;
1333 }
1334
1335 /* Determine the coefficient by that unroll LOOP, from the information
1336 contained in the list of memory references REFS. Description of
1337 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1338 insns of the LOOP. EST_NITER is the estimated number of iterations of
1339 the loop, or -1 if no estimate is available. */
1340
1341 static unsigned
1342 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1343 unsigned ninsns, struct tree_niter_desc *desc,
1344 HOST_WIDE_INT est_niter)
1345 {
1346 unsigned upper_bound;
1347 unsigned nfactor, factor, mod_constraint;
1348 struct mem_ref_group *agp;
1349 struct mem_ref *ref;
1350
1351 /* First check whether the loop is not too large to unroll. We ignore
1352 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1353 from unrolling them enough to make exactly one cache line covered by each
1354 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1355 us from unrolling the loops too many times in cases where we only expect
1356 gains from better scheduling and decreasing loop overhead, which is not
1357 the case here. */
1358 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1359
1360 /* If we unrolled the loop more times than it iterates, the unrolled version
1361 of the loop would be never entered. */
1362 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1363 upper_bound = est_niter;
1364
1365 if (upper_bound <= 1)
1366 return 1;
1367
1368 /* Choose the factor so that we may prefetch each cache just once,
1369 but bound the unrolling by UPPER_BOUND. */
1370 factor = 1;
1371 for (agp = refs; agp; agp = agp->next)
1372 for (ref = agp->refs; ref; ref = ref->next)
1373 if (should_issue_prefetch_p (ref))
1374 {
1375 mod_constraint = ref->prefetch_mod;
1376 nfactor = least_common_multiple (mod_constraint, factor);
1377 if (nfactor <= upper_bound)
1378 factor = nfactor;
1379 }
1380
1381 if (!should_unroll_loop_p (loop, desc, factor))
1382 return 1;
1383
1384 return factor;
1385 }
1386
1387 /* Returns the total volume of the memory references REFS, taking into account
1388 reuses in the innermost loop and cache line size. TODO -- we should also
1389 take into account reuses across the iterations of the loops in the loop
1390 nest. */
1391
1392 static unsigned
1393 volume_of_references (struct mem_ref_group *refs)
1394 {
1395 unsigned volume = 0;
1396 struct mem_ref_group *gr;
1397 struct mem_ref *ref;
1398
1399 for (gr = refs; gr; gr = gr->next)
1400 for (ref = gr->refs; ref; ref = ref->next)
1401 {
1402 /* Almost always reuses another value? */
1403 if (ref->prefetch_before != PREFETCH_ALL)
1404 continue;
1405
1406 /* If several iterations access the same cache line, use the size of
1407 the line divided by this number. Otherwise, a cache line is
1408 accessed in each iteration. TODO -- in the latter case, we should
1409 take the size of the reference into account, rounding it up on cache
1410 line size multiple. */
1411 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1412 }
1413 return volume;
1414 }
1415
1416 /* Returns the volume of memory references accessed across VEC iterations of
1417 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1418 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1419
1420 static unsigned
1421 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1422 {
1423 unsigned i;
1424
1425 for (i = 0; i < n; i++)
1426 if (vec[i] != 0)
1427 break;
1428
1429 if (i == n)
1430 return 0;
1431
1432 gcc_assert (vec[i] > 0);
1433
1434 /* We ignore the parts of the distance vector in subloops, since usually
1435 the numbers of iterations are much smaller. */
1436 return loop_sizes[i] * vec[i];
1437 }
1438
1439 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1440 at the position corresponding to the loop of the step. N is the depth
1441 of the considered loop nest, and, LOOP is its innermost loop. */
1442
1443 static void
1444 add_subscript_strides (tree access_fn, unsigned stride,
1445 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1446 {
1447 struct loop *aloop;
1448 tree step;
1449 HOST_WIDE_INT astep;
1450 unsigned min_depth = loop_depth (loop) - n;
1451
1452 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1453 {
1454 aloop = get_chrec_loop (access_fn);
1455 step = CHREC_RIGHT (access_fn);
1456 access_fn = CHREC_LEFT (access_fn);
1457
1458 if ((unsigned) loop_depth (aloop) <= min_depth)
1459 continue;
1460
1461 if (tree_fits_shwi_p (step))
1462 astep = tree_to_shwi (step);
1463 else
1464 astep = L1_CACHE_LINE_SIZE;
1465
1466 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1467
1468 }
1469 }
1470
1471 /* Returns the volume of memory references accessed between two consecutive
1472 self-reuses of the reference DR. We consider the subscripts of DR in N
1473 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1474 loops. LOOP is the innermost loop of the current loop nest. */
1475
1476 static unsigned
1477 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1478 struct loop *loop)
1479 {
1480 tree stride, access_fn;
1481 HOST_WIDE_INT *strides, astride;
1482 vec<tree> access_fns;
1483 tree ref = DR_REF (dr);
1484 unsigned i, ret = ~0u;
1485
1486 /* In the following example:
1487
1488 for (i = 0; i < N; i++)
1489 for (j = 0; j < N; j++)
1490 use (a[j][i]);
1491 the same cache line is accessed each N steps (except if the change from
1492 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1493 we cannot rely purely on the results of the data dependence analysis.
1494
1495 Instead, we compute the stride of the reference in each loop, and consider
1496 the innermost loop in that the stride is less than cache size. */
1497
1498 strides = XCNEWVEC (HOST_WIDE_INT, n);
1499 access_fns = DR_ACCESS_FNS (dr);
1500
1501 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1502 {
1503 /* Keep track of the reference corresponding to the subscript, so that we
1504 know its stride. */
1505 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1506 ref = TREE_OPERAND (ref, 0);
1507
1508 if (TREE_CODE (ref) == ARRAY_REF)
1509 {
1510 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1511 if (tree_fits_uhwi_p (stride))
1512 astride = tree_low_cst (stride, 1);
1513 else
1514 astride = L1_CACHE_LINE_SIZE;
1515
1516 ref = TREE_OPERAND (ref, 0);
1517 }
1518 else
1519 astride = 1;
1520
1521 add_subscript_strides (access_fn, astride, strides, n, loop);
1522 }
1523
1524 for (i = n; i-- > 0; )
1525 {
1526 unsigned HOST_WIDE_INT s;
1527
1528 s = strides[i] < 0 ? -strides[i] : strides[i];
1529
1530 if (s < (unsigned) L1_CACHE_LINE_SIZE
1531 && (loop_sizes[i]
1532 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1533 {
1534 ret = loop_sizes[i];
1535 break;
1536 }
1537 }
1538
1539 free (strides);
1540 return ret;
1541 }
1542
1543 /* Determines the distance till the first reuse of each reference in REFS
1544 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1545 memory references in the loop. Return false if the analysis fails. */
1546
1547 static bool
1548 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1549 bool no_other_refs)
1550 {
1551 struct loop *nest, *aloop;
1552 vec<data_reference_p> datarefs = vNULL;
1553 vec<ddr_p> dependences = vNULL;
1554 struct mem_ref_group *gr;
1555 struct mem_ref *ref, *refb;
1556 vec<loop_p> vloops = vNULL;
1557 unsigned *loop_data_size;
1558 unsigned i, j, n;
1559 unsigned volume, dist, adist;
1560 HOST_WIDE_INT vol;
1561 data_reference_p dr;
1562 ddr_p dep;
1563
1564 if (loop->inner)
1565 return true;
1566
1567 /* Find the outermost loop of the loop nest of loop (we require that
1568 there are no sibling loops inside the nest). */
1569 nest = loop;
1570 while (1)
1571 {
1572 aloop = loop_outer (nest);
1573
1574 if (aloop == current_loops->tree_root
1575 || aloop->inner->next)
1576 break;
1577
1578 nest = aloop;
1579 }
1580
1581 /* For each loop, determine the amount of data accessed in each iteration.
1582 We use this to estimate whether the reference is evicted from the
1583 cache before its reuse. */
1584 find_loop_nest (nest, &vloops);
1585 n = vloops.length ();
1586 loop_data_size = XNEWVEC (unsigned, n);
1587 volume = volume_of_references (refs);
1588 i = n;
1589 while (i-- != 0)
1590 {
1591 loop_data_size[i] = volume;
1592 /* Bound the volume by the L2 cache size, since above this bound,
1593 all dependence distances are equivalent. */
1594 if (volume > L2_CACHE_SIZE_BYTES)
1595 continue;
1596
1597 aloop = vloops[i];
1598 vol = estimated_stmt_executions_int (aloop);
1599 if (vol == -1)
1600 vol = expected_loop_iterations (aloop);
1601 volume *= vol;
1602 }
1603
1604 /* Prepare the references in the form suitable for data dependence
1605 analysis. We ignore unanalyzable data references (the results
1606 are used just as a heuristics to estimate temporality of the
1607 references, hence we do not need to worry about correctness). */
1608 for (gr = refs; gr; gr = gr->next)
1609 for (ref = gr->refs; ref; ref = ref->next)
1610 {
1611 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1612 ref->mem, ref->stmt, !ref->write_p);
1613
1614 if (dr)
1615 {
1616 ref->reuse_distance = volume;
1617 dr->aux = ref;
1618 datarefs.safe_push (dr);
1619 }
1620 else
1621 no_other_refs = false;
1622 }
1623
1624 FOR_EACH_VEC_ELT (datarefs, i, dr)
1625 {
1626 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1627 ref = (struct mem_ref *) dr->aux;
1628 if (ref->reuse_distance > dist)
1629 ref->reuse_distance = dist;
1630
1631 if (no_other_refs)
1632 ref->independent_p = true;
1633 }
1634
1635 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1636 return false;
1637
1638 FOR_EACH_VEC_ELT (dependences, i, dep)
1639 {
1640 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1641 continue;
1642
1643 ref = (struct mem_ref *) DDR_A (dep)->aux;
1644 refb = (struct mem_ref *) DDR_B (dep)->aux;
1645
1646 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1647 || DDR_NUM_DIST_VECTS (dep) == 0)
1648 {
1649 /* If the dependence cannot be analyzed, assume that there might be
1650 a reuse. */
1651 dist = 0;
1652
1653 ref->independent_p = false;
1654 refb->independent_p = false;
1655 }
1656 else
1657 {
1658 /* The distance vectors are normalized to be always lexicographically
1659 positive, hence we cannot tell just from them whether DDR_A comes
1660 before DDR_B or vice versa. However, it is not important,
1661 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1662 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1663 in cache (and marking it as nontemporal would not affect
1664 anything). */
1665
1666 dist = volume;
1667 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1668 {
1669 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1670 loop_data_size, n);
1671
1672 /* If this is a dependence in the innermost loop (i.e., the
1673 distances in all superloops are zero) and it is not
1674 the trivial self-dependence with distance zero, record that
1675 the references are not completely independent. */
1676 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1677 && (ref != refb
1678 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1679 {
1680 ref->independent_p = false;
1681 refb->independent_p = false;
1682 }
1683
1684 /* Ignore accesses closer than
1685 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1686 so that we use nontemporal prefetches e.g. if single memory
1687 location is accessed several times in a single iteration of
1688 the loop. */
1689 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1690 continue;
1691
1692 if (adist < dist)
1693 dist = adist;
1694 }
1695 }
1696
1697 if (ref->reuse_distance > dist)
1698 ref->reuse_distance = dist;
1699 if (refb->reuse_distance > dist)
1700 refb->reuse_distance = dist;
1701 }
1702
1703 free_dependence_relations (dependences);
1704 free_data_refs (datarefs);
1705 free (loop_data_size);
1706
1707 if (dump_file && (dump_flags & TDF_DETAILS))
1708 {
1709 fprintf (dump_file, "Reuse distances:\n");
1710 for (gr = refs; gr; gr = gr->next)
1711 for (ref = gr->refs; ref; ref = ref->next)
1712 fprintf (dump_file, " ref %p distance %u\n",
1713 (void *) ref, ref->reuse_distance);
1714 }
1715
1716 return true;
1717 }
1718
1719 /* Determine whether or not the trip count to ahead ratio is too small based
1720 on prefitablility consideration.
1721 AHEAD: the iteration ahead distance,
1722 EST_NITER: the estimated trip count. */
1723
1724 static bool
1725 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1726 {
1727 /* Assume trip count to ahead ratio is big enough if the trip count could not
1728 be estimated at compile time. */
1729 if (est_niter < 0)
1730 return false;
1731
1732 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1733 {
1734 if (dump_file && (dump_flags & TDF_DETAILS))
1735 fprintf (dump_file,
1736 "Not prefetching -- loop estimated to roll only %d times\n",
1737 (int) est_niter);
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744 /* Determine whether or not the number of memory references in the loop is
1745 reasonable based on the profitablity and compilation time considerations.
1746 NINSNS: estimated number of instructions in the loop,
1747 MEM_REF_COUNT: total number of memory references in the loop. */
1748
1749 static bool
1750 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1751 {
1752 int insn_to_mem_ratio;
1753
1754 if (mem_ref_count == 0)
1755 return false;
1756
1757 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1758 (compute_all_dependences) have high costs based on quadratic complexity.
1759 To avoid huge compilation time, we give up prefetching if mem_ref_count
1760 is too large. */
1761 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1762 return false;
1763
1764 /* Prefetching improves performance by overlapping cache missing
1765 memory accesses with CPU operations. If the loop does not have
1766 enough CPU operations to overlap with memory operations, prefetching
1767 won't give a significant benefit. One approximate way of checking
1768 this is to require the ratio of instructions to memory references to
1769 be above a certain limit. This approximation works well in practice.
1770 TODO: Implement a more precise computation by estimating the time
1771 for each CPU or memory op in the loop. Time estimates for memory ops
1772 should account for cache misses. */
1773 insn_to_mem_ratio = ninsns / mem_ref_count;
1774
1775 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1776 {
1777 if (dump_file && (dump_flags & TDF_DETAILS))
1778 fprintf (dump_file,
1779 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1780 insn_to_mem_ratio);
1781 return false;
1782 }
1783
1784 return true;
1785 }
1786
1787 /* Determine whether or not the instruction to prefetch ratio in the loop is
1788 too small based on the profitablity consideration.
1789 NINSNS: estimated number of instructions in the loop,
1790 PREFETCH_COUNT: an estimate of the number of prefetches,
1791 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1792
1793 static bool
1794 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1795 unsigned unroll_factor)
1796 {
1797 int insn_to_prefetch_ratio;
1798
1799 /* Prefetching most likely causes performance degradation when the instruction
1800 to prefetch ratio is too small. Too many prefetch instructions in a loop
1801 may reduce the I-cache performance.
1802 (unroll_factor * ninsns) is used to estimate the number of instructions in
1803 the unrolled loop. This implementation is a bit simplistic -- the number
1804 of issued prefetch instructions is also affected by unrolling. So,
1805 prefetch_mod and the unroll factor should be taken into account when
1806 determining prefetch_count. Also, the number of insns of the unrolled
1807 loop will usually be significantly smaller than the number of insns of the
1808 original loop * unroll_factor (at least the induction variable increases
1809 and the exit branches will get eliminated), so it might be better to use
1810 tree_estimate_loop_size + estimated_unrolled_size. */
1811 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1812 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1813 {
1814 if (dump_file && (dump_flags & TDF_DETAILS))
1815 fprintf (dump_file,
1816 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1817 insn_to_prefetch_ratio);
1818 return true;
1819 }
1820
1821 return false;
1822 }
1823
1824
1825 /* Issue prefetch instructions for array references in LOOP. Returns
1826 true if the LOOP was unrolled. */
1827
1828 static bool
1829 loop_prefetch_arrays (struct loop *loop)
1830 {
1831 struct mem_ref_group *refs;
1832 unsigned ahead, ninsns, time, unroll_factor;
1833 HOST_WIDE_INT est_niter;
1834 struct tree_niter_desc desc;
1835 bool unrolled = false, no_other_refs;
1836 unsigned prefetch_count;
1837 unsigned mem_ref_count;
1838
1839 if (optimize_loop_nest_for_size_p (loop))
1840 {
1841 if (dump_file && (dump_flags & TDF_DETAILS))
1842 fprintf (dump_file, " ignored (cold area)\n");
1843 return false;
1844 }
1845
1846 /* FIXME: the time should be weighted by the probabilities of the blocks in
1847 the loop body. */
1848 time = tree_num_loop_insns (loop, &eni_time_weights);
1849 if (time == 0)
1850 return false;
1851
1852 ahead = (PREFETCH_LATENCY + time - 1) / time;
1853 est_niter = estimated_stmt_executions_int (loop);
1854 if (est_niter == -1)
1855 est_niter = max_stmt_executions_int (loop);
1856
1857 /* Prefetching is not likely to be profitable if the trip count to ahead
1858 ratio is too small. */
1859 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1860 return false;
1861
1862 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1863
1864 /* Step 1: gather the memory references. */
1865 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1866
1867 /* Give up prefetching if the number of memory references in the
1868 loop is not reasonable based on profitablity and compilation time
1869 considerations. */
1870 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1871 goto fail;
1872
1873 /* Step 2: estimate the reuse effects. */
1874 prune_by_reuse (refs);
1875
1876 if (nothing_to_prefetch_p (refs))
1877 goto fail;
1878
1879 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1880 goto fail;
1881
1882 /* Step 3: determine unroll factor. */
1883 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1884 est_niter);
1885
1886 /* Estimate prefetch count for the unrolled loop. */
1887 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1888 if (prefetch_count == 0)
1889 goto fail;
1890
1891 if (dump_file && (dump_flags & TDF_DETAILS))
1892 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1893 HOST_WIDE_INT_PRINT_DEC "\n"
1894 "insn count %d, mem ref count %d, prefetch count %d\n",
1895 ahead, unroll_factor, est_niter,
1896 ninsns, mem_ref_count, prefetch_count);
1897
1898 /* Prefetching is not likely to be profitable if the instruction to prefetch
1899 ratio is too small. */
1900 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1901 unroll_factor))
1902 goto fail;
1903
1904 mark_nontemporal_stores (loop, refs);
1905
1906 /* Step 4: what to prefetch? */
1907 if (!schedule_prefetches (refs, unroll_factor, ahead))
1908 goto fail;
1909
1910 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1911 iterations so that we do not issue superfluous prefetches. */
1912 if (unroll_factor != 1)
1913 {
1914 tree_unroll_loop (loop, unroll_factor,
1915 single_dom_exit (loop), &desc);
1916 unrolled = true;
1917 }
1918
1919 /* Step 6: issue the prefetches. */
1920 issue_prefetches (refs, unroll_factor, ahead);
1921
1922 fail:
1923 release_mem_refs (refs);
1924 return unrolled;
1925 }
1926
1927 /* Issue prefetch instructions for array references in loops. */
1928
1929 unsigned int
1930 tree_ssa_prefetch_arrays (void)
1931 {
1932 loop_iterator li;
1933 struct loop *loop;
1934 bool unrolled = false;
1935 int todo_flags = 0;
1936
1937 if (!HAVE_prefetch
1938 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1939 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1940 of processor costs and i486 does not have prefetch, but
1941 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1942 || PREFETCH_BLOCK == 0)
1943 return 0;
1944
1945 if (dump_file && (dump_flags & TDF_DETAILS))
1946 {
1947 fprintf (dump_file, "Prefetching parameters:\n");
1948 fprintf (dump_file, " simultaneous prefetches: %d\n",
1949 SIMULTANEOUS_PREFETCHES);
1950 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1951 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1952 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1953 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1954 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1955 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1956 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1957 MIN_INSN_TO_PREFETCH_RATIO);
1958 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1959 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1960 fprintf (dump_file, "\n");
1961 }
1962
1963 initialize_original_copy_tables ();
1964
1965 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1966 {
1967 tree type = build_function_type_list (void_type_node,
1968 const_ptr_type_node, NULL_TREE);
1969 tree decl = add_builtin_function ("__builtin_prefetch", type,
1970 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1971 NULL, NULL_TREE);
1972 DECL_IS_NOVOPS (decl) = true;
1973 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1974 }
1975
1976 /* We assume that size of cache line is a power of two, so verify this
1977 here. */
1978 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1979
1980 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1981 {
1982 if (dump_file && (dump_flags & TDF_DETAILS))
1983 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1984
1985 unrolled |= loop_prefetch_arrays (loop);
1986
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1988 fprintf (dump_file, "\n\n");
1989 }
1990
1991 if (unrolled)
1992 {
1993 scev_reset ();
1994 todo_flags |= TODO_cleanup_cfg;
1995 }
1996
1997 free_original_copy_tables ();
1998 return todo_flags;
1999 }
2000
2001 /* Prefetching. */
2002
2003 static unsigned int
2004 tree_ssa_loop_prefetch (void)
2005 {
2006 if (number_of_loops (cfun) <= 1)
2007 return 0;
2008
2009 return tree_ssa_prefetch_arrays ();
2010 }
2011
2012 static bool
2013 gate_tree_ssa_loop_prefetch (void)
2014 {
2015 return flag_prefetch_loop_arrays > 0;
2016 }
2017
2018 namespace {
2019
2020 const pass_data pass_data_loop_prefetch =
2021 {
2022 GIMPLE_PASS, /* type */
2023 "aprefetch", /* name */
2024 OPTGROUP_LOOP, /* optinfo_flags */
2025 true, /* has_gate */
2026 true, /* has_execute */
2027 TV_TREE_PREFETCH, /* tv_id */
2028 ( PROP_cfg | PROP_ssa ), /* properties_required */
2029 0, /* properties_provided */
2030 0, /* properties_destroyed */
2031 0, /* todo_flags_start */
2032 0, /* todo_flags_finish */
2033 };
2034
2035 class pass_loop_prefetch : public gimple_opt_pass
2036 {
2037 public:
2038 pass_loop_prefetch (gcc::context *ctxt)
2039 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2040 {}
2041
2042 /* opt_pass methods: */
2043 bool gate () { return gate_tree_ssa_loop_prefetch (); }
2044 unsigned int execute () { return tree_ssa_loop_prefetch (); }
2045
2046 }; // class pass_loop_prefetch
2047
2048 } // anon namespace
2049
2050 gimple_opt_pass *
2051 make_pass_loop_prefetch (gcc::context *ctxt)
2052 {
2053 return new pass_loop_prefetch (ctxt);
2054 }
2055
2056