tree-ssa-loop-prefetch.c: Add debug for dropped prefetches.
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "expr.h"
36 #include "tree-pass.h"
37 #include "ggc.h"
38 #include "insn-config.h"
39 #include "recog.h"
40 #include "hashtab.h"
41 #include "tree-chrec.h"
42 #include "tree-scalar-evolution.h"
43 #include "toplev.h"
44 #include "params.h"
45 #include "langhooks.h"
46 #include "tree-inline.h"
47 #include "tree-data-ref.h"
48 #include "optabs.h"
49
50 /* This pass inserts prefetch instructions to optimize cache usage during
51 accesses to arrays in loops. It processes loops sequentially and:
52
53 1) Gathers all memory references in the single loop.
54 2) For each of the references it decides when it is profitable to prefetch
55 it. To do it, we evaluate the reuse among the accesses, and determines
56 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
57 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
58 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
59 iterations of the loop that are zero modulo PREFETCH_MOD). For example
60 (assuming cache line size is 64 bytes, char has size 1 byte and there
61 is no hardware sequential prefetch):
62
63 char *a;
64 for (i = 0; i < max; i++)
65 {
66 a[255] = ...; (0)
67 a[i] = ...; (1)
68 a[i + 64] = ...; (2)
69 a[16*i] = ...; (3)
70 a[187*i] = ...; (4)
71 a[187*i + 50] = ...; (5)
72 }
73
74 (0) obviously has PREFETCH_BEFORE 1
75 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
76 location 64 iterations before it, and PREFETCH_MOD 64 (since
77 it hits the same cache line otherwise).
78 (2) has PREFETCH_MOD 64
79 (3) has PREFETCH_MOD 4
80 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
81 the cache line accessed by (4) is the same with probability only
82 7/32.
83 (5) has PREFETCH_MOD 1 as well.
84
85 Additionally, we use data dependence analysis to determine for each
86 reference the distance till the first reuse; this information is used
87 to determine the temporality of the issued prefetch instruction.
88
89 3) We determine how much ahead we need to prefetch. The number of
90 iterations needed is time to fetch / time spent in one iteration of
91 the loop. The problem is that we do not know either of these values,
92 so we just make a heuristic guess based on a magic (possibly)
93 target-specific constant and size of the loop.
94
95 4) Determine which of the references we prefetch. We take into account
96 that there is a maximum number of simultaneous prefetches (provided
97 by machine description). We prefetch as many prefetches as possible
98 while still within this bound (starting with those with lowest
99 prefetch_mod, since they are responsible for most of the cache
100 misses).
101
102 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
103 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
104 prefetching nonaccessed memory.
105 TODO -- actually implement peeling.
106
107 6) We actually emit the prefetch instructions. ??? Perhaps emit the
108 prefetch instructions with guards in cases where 5) was not sufficient
109 to satisfy the constraints?
110
111 The function is_loop_prefetching_profitable() implements a cost model
112 to determine if prefetching is profitable for a given loop. The cost
113 model has two heuristcs:
114 1. A heuristic that determines whether the given loop has enough CPU
115 ops that can be overlapped with cache missing memory ops.
116 If not, the loop won't benefit from prefetching. This is implemented
117 by requirung the ratio between the instruction count and the mem ref
118 count to be above a certain minimum.
119 2. A heuristic that disables prefetching in a loop with an unknown trip
120 count if the prefetching cost is above a certain limit. The relative
121 prefetching cost is estimated by taking the ratio between the
122 prefetch count and the total intruction count (this models the I-cache
123 cost).
124 The limits used in these heuristics are defined as parameters with
125 reasonable default values. Machine-specific default values will be
126 added later.
127
128 Some other TODO:
129 -- write and use more general reuse analysis (that could be also used
130 in other cache aimed loop optimizations)
131 -- make it behave sanely together with the prefetches given by user
132 (now we just ignore them; at the very least we should avoid
133 optimizing loops in that user put his own prefetches)
134 -- we assume cache line size alignment of arrays; this could be
135 improved. */
136
137 /* Magic constants follow. These should be replaced by machine specific
138 numbers. */
139
140 /* True if write can be prefetched by a read prefetch. */
141
142 #ifndef WRITE_CAN_USE_READ_PREFETCH
143 #define WRITE_CAN_USE_READ_PREFETCH 1
144 #endif
145
146 /* True if read can be prefetched by a write prefetch. */
147
148 #ifndef READ_CAN_USE_WRITE_PREFETCH
149 #define READ_CAN_USE_WRITE_PREFETCH 0
150 #endif
151
152 /* The size of the block loaded by a single prefetch. Usually, this is
153 the same as cache line size (at the moment, we only consider one level
154 of cache hierarchy). */
155
156 #ifndef PREFETCH_BLOCK
157 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
158 #endif
159
160 /* Do we have a forward hardware sequential prefetching? */
161
162 #ifndef HAVE_FORWARD_PREFETCH
163 #define HAVE_FORWARD_PREFETCH 0
164 #endif
165
166 /* Do we have a backward hardware sequential prefetching? */
167
168 #ifndef HAVE_BACKWARD_PREFETCH
169 #define HAVE_BACKWARD_PREFETCH 0
170 #endif
171
172 /* In some cases we are only able to determine that there is a certain
173 probability that the two accesses hit the same cache line. In this
174 case, we issue the prefetches for both of them if this probability
175 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
176
177 #ifndef ACCEPTABLE_MISS_RATE
178 #define ACCEPTABLE_MISS_RATE 50
179 #endif
180
181 #ifndef HAVE_prefetch
182 #define HAVE_prefetch 0
183 #endif
184
185 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
186 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
187
188 /* We consider a memory access nontemporal if it is not reused sooner than
189 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
190 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
191 so that we use nontemporal prefetches e.g. if single memory location
192 is accessed several times in a single iteration of the loop. */
193 #define NONTEMPORAL_FRACTION 16
194
195 /* In case we have to emit a memory fence instruction after the loop that
196 uses nontemporal stores, this defines the builtin to use. */
197
198 #ifndef FENCE_FOLLOWING_MOVNT
199 #define FENCE_FOLLOWING_MOVNT NULL_TREE
200 #endif
201
202 /* It is not profitable to prefetch when the trip count is not at
203 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
204 For example, in a loop with a prefetch ahead distance of 10,
205 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
206 profitable to prefetch when the trip count is greater or equal to
207 40. In that case, 30 out of the 40 iterations will benefit from
208 prefetching. */
209
210 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
211 #define TRIP_COUNT_TO_AHEAD_RATIO 4
212 #endif
213
214 /* The group of references between that reuse may occur. */
215
216 struct mem_ref_group
217 {
218 tree base; /* Base of the reference. */
219 HOST_WIDE_INT step; /* Step of the reference. */
220 struct mem_ref *refs; /* References in the group. */
221 struct mem_ref_group *next; /* Next group of references. */
222 };
223
224 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
225
226 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
227
228 /* The memory reference. */
229
230 struct mem_ref
231 {
232 gimple stmt; /* Statement in that the reference appears. */
233 tree mem; /* The reference. */
234 HOST_WIDE_INT delta; /* Constant offset of the reference. */
235 struct mem_ref_group *group; /* The group of references it belongs to. */
236 unsigned HOST_WIDE_INT prefetch_mod;
237 /* Prefetch only each PREFETCH_MOD-th
238 iteration. */
239 unsigned HOST_WIDE_INT prefetch_before;
240 /* Prefetch only first PREFETCH_BEFORE
241 iterations. */
242 unsigned reuse_distance; /* The amount of data accessed before the first
243 reuse of this value. */
244 struct mem_ref *next; /* The next reference in the group. */
245 unsigned write_p : 1; /* Is it a write? */
246 unsigned independent_p : 1; /* True if the reference is independent on
247 all other references inside the loop. */
248 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
249 unsigned storent_p : 1; /* True if we changed the store to a
250 nontemporal one. */
251 };
252
253 /* Dumps information about reference REF to FILE. */
254
255 static void
256 dump_mem_ref (FILE *file, struct mem_ref *ref)
257 {
258 fprintf (file, "Reference %p:\n", (void *) ref);
259
260 fprintf (file, " group %p (base ", (void *) ref->group);
261 print_generic_expr (file, ref->group->base, TDF_SLIM);
262 fprintf (file, ", step ");
263 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
264 fprintf (file, ")\n");
265
266 fprintf (file, " delta ");
267 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
268 fprintf (file, "\n");
269
270 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
271
272 fprintf (file, "\n");
273 }
274
275 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
276 exist. */
277
278 static struct mem_ref_group *
279 find_or_create_group (struct mem_ref_group **groups, tree base,
280 HOST_WIDE_INT step)
281 {
282 struct mem_ref_group *group;
283
284 for (; *groups; groups = &(*groups)->next)
285 {
286 if ((*groups)->step == step
287 && operand_equal_p ((*groups)->base, base, 0))
288 return *groups;
289
290 /* Keep the list of groups sorted by decreasing step. */
291 if ((*groups)->step < step)
292 break;
293 }
294
295 group = XNEW (struct mem_ref_group);
296 group->base = base;
297 group->step = step;
298 group->refs = NULL;
299 group->next = *groups;
300 *groups = group;
301
302 return group;
303 }
304
305 /* Records a memory reference MEM in GROUP with offset DELTA and write status
306 WRITE_P. The reference occurs in statement STMT. */
307
308 static void
309 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
310 HOST_WIDE_INT delta, bool write_p)
311 {
312 struct mem_ref **aref;
313
314 /* Do not record the same address twice. */
315 for (aref = &group->refs; *aref; aref = &(*aref)->next)
316 {
317 /* It does not have to be possible for write reference to reuse the read
318 prefetch, or vice versa. */
319 if (!WRITE_CAN_USE_READ_PREFETCH
320 && write_p
321 && !(*aref)->write_p)
322 continue;
323 if (!READ_CAN_USE_WRITE_PREFETCH
324 && !write_p
325 && (*aref)->write_p)
326 continue;
327
328 if ((*aref)->delta == delta)
329 return;
330 }
331
332 (*aref) = XNEW (struct mem_ref);
333 (*aref)->stmt = stmt;
334 (*aref)->mem = mem;
335 (*aref)->delta = delta;
336 (*aref)->write_p = write_p;
337 (*aref)->prefetch_before = PREFETCH_ALL;
338 (*aref)->prefetch_mod = 1;
339 (*aref)->reuse_distance = 0;
340 (*aref)->issue_prefetch_p = false;
341 (*aref)->group = group;
342 (*aref)->next = NULL;
343 (*aref)->independent_p = false;
344 (*aref)->storent_p = false;
345
346 if (dump_file && (dump_flags & TDF_DETAILS))
347 dump_mem_ref (dump_file, *aref);
348 }
349
350 /* Release memory references in GROUPS. */
351
352 static void
353 release_mem_refs (struct mem_ref_group *groups)
354 {
355 struct mem_ref_group *next_g;
356 struct mem_ref *ref, *next_r;
357
358 for (; groups; groups = next_g)
359 {
360 next_g = groups->next;
361 for (ref = groups->refs; ref; ref = next_r)
362 {
363 next_r = ref->next;
364 free (ref);
365 }
366 free (groups);
367 }
368 }
369
370 /* A structure used to pass arguments to idx_analyze_ref. */
371
372 struct ar_data
373 {
374 struct loop *loop; /* Loop of the reference. */
375 gimple stmt; /* Statement of the reference. */
376 HOST_WIDE_INT *step; /* Step of the memory reference. */
377 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
378 };
379
380 /* Analyzes a single INDEX of a memory reference to obtain information
381 described at analyze_ref. Callback for for_each_index. */
382
383 static bool
384 idx_analyze_ref (tree base, tree *index, void *data)
385 {
386 struct ar_data *ar_data = (struct ar_data *) data;
387 tree ibase, step, stepsize;
388 HOST_WIDE_INT istep, idelta = 0, imult = 1;
389 affine_iv iv;
390
391 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
392 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
393 return false;
394
395 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
396 *index, &iv, false))
397 return false;
398 ibase = iv.base;
399 step = iv.step;
400
401 if (!cst_and_fits_in_hwi (step))
402 return false;
403 istep = int_cst_value (step);
404
405 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
406 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
407 {
408 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
409 ibase = TREE_OPERAND (ibase, 0);
410 }
411 if (cst_and_fits_in_hwi (ibase))
412 {
413 idelta += int_cst_value (ibase);
414 ibase = build_int_cst (TREE_TYPE (ibase), 0);
415 }
416
417 if (TREE_CODE (base) == ARRAY_REF)
418 {
419 stepsize = array_ref_element_size (base);
420 if (!cst_and_fits_in_hwi (stepsize))
421 return false;
422 imult = int_cst_value (stepsize);
423
424 istep *= imult;
425 idelta *= imult;
426 }
427
428 *ar_data->step += istep;
429 *ar_data->delta += idelta;
430 *index = ibase;
431
432 return true;
433 }
434
435 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
436 STEP are integer constants and iter is number of iterations of LOOP. The
437 reference occurs in statement STMT. Strips nonaddressable component
438 references from REF_P. */
439
440 static bool
441 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
442 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
443 gimple stmt)
444 {
445 struct ar_data ar_data;
446 tree off;
447 HOST_WIDE_INT bit_offset;
448 tree ref = *ref_p;
449
450 *step = 0;
451 *delta = 0;
452
453 /* First strip off the component references. Ignore bitfields. */
454 if (TREE_CODE (ref) == COMPONENT_REF
455 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
456 ref = TREE_OPERAND (ref, 0);
457
458 *ref_p = ref;
459
460 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
461 {
462 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
463 bit_offset = TREE_INT_CST_LOW (off);
464 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
465
466 *delta += bit_offset / BITS_PER_UNIT;
467 }
468
469 *base = unshare_expr (ref);
470 ar_data.loop = loop;
471 ar_data.stmt = stmt;
472 ar_data.step = step;
473 ar_data.delta = delta;
474 return for_each_index (base, idx_analyze_ref, &ar_data);
475 }
476
477 /* Record a memory reference REF to the list REFS. The reference occurs in
478 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
479 reference was recorded, false otherwise. */
480
481 static bool
482 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
483 tree ref, bool write_p, gimple stmt)
484 {
485 tree base;
486 HOST_WIDE_INT step, delta;
487 struct mem_ref_group *agrp;
488
489 if (get_base_address (ref) == NULL)
490 return false;
491
492 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
493 return false;
494
495 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
496 are integer constants. */
497 agrp = find_or_create_group (refs, base, step);
498 record_ref (agrp, stmt, ref, delta, write_p);
499
500 return true;
501 }
502
503 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
504 true if there are no other memory references inside the loop. */
505
506 static struct mem_ref_group *
507 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
508 {
509 basic_block *body = get_loop_body_in_dom_order (loop);
510 basic_block bb;
511 unsigned i;
512 gimple_stmt_iterator bsi;
513 gimple stmt;
514 tree lhs, rhs;
515 struct mem_ref_group *refs = NULL;
516
517 *no_other_refs = true;
518 *ref_count = 0;
519
520 /* Scan the loop body in order, so that the former references precede the
521 later ones. */
522 for (i = 0; i < loop->num_nodes; i++)
523 {
524 bb = body[i];
525 if (bb->loop_father != loop)
526 continue;
527
528 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
529 {
530 stmt = gsi_stmt (bsi);
531
532 if (gimple_code (stmt) != GIMPLE_ASSIGN)
533 {
534 if (gimple_vuse (stmt)
535 || (is_gimple_call (stmt)
536 && !(gimple_call_flags (stmt) & ECF_CONST)))
537 *no_other_refs = false;
538 continue;
539 }
540
541 lhs = gimple_assign_lhs (stmt);
542 rhs = gimple_assign_rhs1 (stmt);
543
544 if (REFERENCE_CLASS_P (rhs))
545 {
546 *no_other_refs &= gather_memory_references_ref (loop, &refs,
547 rhs, false, stmt);
548 *ref_count += 1;
549 }
550 if (REFERENCE_CLASS_P (lhs))
551 {
552 *no_other_refs &= gather_memory_references_ref (loop, &refs,
553 lhs, true, stmt);
554 *ref_count += 1;
555 }
556 }
557 }
558 free (body);
559
560 return refs;
561 }
562
563 /* Prune the prefetch candidate REF using the self-reuse. */
564
565 static void
566 prune_ref_by_self_reuse (struct mem_ref *ref)
567 {
568 HOST_WIDE_INT step = ref->group->step;
569 bool backward = step < 0;
570
571 if (step == 0)
572 {
573 /* Prefetch references to invariant address just once. */
574 ref->prefetch_before = 1;
575 return;
576 }
577
578 if (backward)
579 step = -step;
580
581 if (step > PREFETCH_BLOCK)
582 return;
583
584 if ((backward && HAVE_BACKWARD_PREFETCH)
585 || (!backward && HAVE_FORWARD_PREFETCH))
586 {
587 ref->prefetch_before = 1;
588 return;
589 }
590
591 ref->prefetch_mod = PREFETCH_BLOCK / step;
592 }
593
594 /* Divides X by BY, rounding down. */
595
596 static HOST_WIDE_INT
597 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
598 {
599 gcc_assert (by > 0);
600
601 if (x >= 0)
602 return x / by;
603 else
604 return (x + by - 1) / by;
605 }
606
607 /* Given a CACHE_LINE_SIZE and two inductive memory references
608 with a common STEP greater than CACHE_LINE_SIZE and an address
609 difference DELTA, compute the probability that they will fall
610 in different cache lines. DISTINCT_ITERS is the number of
611 distinct iterations after which the pattern repeats itself.
612 ALIGN_UNIT is the unit of alignment in bytes. */
613
614 static int
615 compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
616 HOST_WIDE_INT step, HOST_WIDE_INT delta,
617 unsigned HOST_WIDE_INT distinct_iters,
618 int align_unit)
619 {
620 unsigned align, iter;
621 int total_positions, miss_positions, miss_rate;
622 int address1, address2, cache_line1, cache_line2;
623
624 total_positions = 0;
625 miss_positions = 0;
626
627 /* Iterate through all possible alignments of the first
628 memory reference within its cache line. */
629 for (align = 0; align < cache_line_size; align += align_unit)
630
631 /* Iterate through all distinct iterations. */
632 for (iter = 0; iter < distinct_iters; iter++)
633 {
634 address1 = align + step * iter;
635 address2 = address1 + delta;
636 cache_line1 = address1 / cache_line_size;
637 cache_line2 = address2 / cache_line_size;
638 total_positions += 1;
639 if (cache_line1 != cache_line2)
640 miss_positions += 1;
641 }
642 miss_rate = 1000 * miss_positions / total_positions;
643 return miss_rate;
644 }
645
646 /* Prune the prefetch candidate REF using the reuse with BY.
647 If BY_IS_BEFORE is true, BY is before REF in the loop. */
648
649 static void
650 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
651 bool by_is_before)
652 {
653 HOST_WIDE_INT step = ref->group->step;
654 bool backward = step < 0;
655 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
656 HOST_WIDE_INT delta = delta_b - delta_r;
657 HOST_WIDE_INT hit_from;
658 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
659 int miss_rate;
660 HOST_WIDE_INT reduced_step;
661 unsigned HOST_WIDE_INT reduced_prefetch_block;
662 tree ref_type;
663 int align_unit;
664
665 if (delta == 0)
666 {
667 /* If the references has the same address, only prefetch the
668 former. */
669 if (by_is_before)
670 ref->prefetch_before = 0;
671
672 return;
673 }
674
675 if (!step)
676 {
677 /* If the reference addresses are invariant and fall into the
678 same cache line, prefetch just the first one. */
679 if (!by_is_before)
680 return;
681
682 if (ddown (ref->delta, PREFETCH_BLOCK)
683 != ddown (by->delta, PREFETCH_BLOCK))
684 return;
685
686 ref->prefetch_before = 0;
687 return;
688 }
689
690 /* Only prune the reference that is behind in the array. */
691 if (backward)
692 {
693 if (delta > 0)
694 return;
695
696 /* Transform the data so that we may assume that the accesses
697 are forward. */
698 delta = - delta;
699 step = -step;
700 delta_r = PREFETCH_BLOCK - 1 - delta_r;
701 delta_b = PREFETCH_BLOCK - 1 - delta_b;
702 }
703 else
704 {
705 if (delta < 0)
706 return;
707 }
708
709 /* Check whether the two references are likely to hit the same cache
710 line, and how distant the iterations in that it occurs are from
711 each other. */
712
713 if (step <= PREFETCH_BLOCK)
714 {
715 /* The accesses are sure to meet. Let us check when. */
716 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
717 prefetch_before = (hit_from - delta_r + step - 1) / step;
718
719 if (prefetch_before < ref->prefetch_before)
720 ref->prefetch_before = prefetch_before;
721
722 return;
723 }
724
725 /* A more complicated case with step > prefetch_block. First reduce
726 the ratio between the step and the cache line size to its simplest
727 terms. The resulting denominator will then represent the number of
728 distinct iterations after which each address will go back to its
729 initial location within the cache line. This computation assumes
730 that PREFETCH_BLOCK is a power of two. */
731 prefetch_block = PREFETCH_BLOCK;
732 reduced_prefetch_block = prefetch_block;
733 reduced_step = step;
734 while ((reduced_step & 1) == 0
735 && reduced_prefetch_block > 1)
736 {
737 reduced_step >>= 1;
738 reduced_prefetch_block >>= 1;
739 }
740
741 prefetch_before = delta / step;
742 delta %= step;
743 ref_type = TREE_TYPE (ref->mem);
744 align_unit = TYPE_ALIGN (ref_type) / 8;
745 miss_rate = compute_miss_rate(prefetch_block, step, delta,
746 reduced_prefetch_block, align_unit);
747 if (miss_rate <= ACCEPTABLE_MISS_RATE)
748 {
749 if (prefetch_before < ref->prefetch_before)
750 ref->prefetch_before = prefetch_before;
751
752 return;
753 }
754
755 /* Try also the following iteration. */
756 prefetch_before++;
757 delta = step - delta;
758 miss_rate = compute_miss_rate(prefetch_block, step, delta,
759 reduced_prefetch_block, align_unit);
760 if (miss_rate <= ACCEPTABLE_MISS_RATE)
761 {
762 if (prefetch_before < ref->prefetch_before)
763 ref->prefetch_before = prefetch_before;
764
765 return;
766 }
767
768 /* The ref probably does not reuse by. */
769 return;
770 }
771
772 /* Prune the prefetch candidate REF using the reuses with other references
773 in REFS. */
774
775 static void
776 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
777 {
778 struct mem_ref *prune_by;
779 bool before = true;
780
781 prune_ref_by_self_reuse (ref);
782
783 for (prune_by = refs; prune_by; prune_by = prune_by->next)
784 {
785 if (prune_by == ref)
786 {
787 before = false;
788 continue;
789 }
790
791 if (!WRITE_CAN_USE_READ_PREFETCH
792 && ref->write_p
793 && !prune_by->write_p)
794 continue;
795 if (!READ_CAN_USE_WRITE_PREFETCH
796 && !ref->write_p
797 && prune_by->write_p)
798 continue;
799
800 prune_ref_by_group_reuse (ref, prune_by, before);
801 }
802 }
803
804 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
805
806 static void
807 prune_group_by_reuse (struct mem_ref_group *group)
808 {
809 struct mem_ref *ref_pruned;
810
811 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
812 {
813 prune_ref_by_reuse (ref_pruned, group->refs);
814
815 if (dump_file && (dump_flags & TDF_DETAILS))
816 {
817 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
818
819 if (ref_pruned->prefetch_before == PREFETCH_ALL
820 && ref_pruned->prefetch_mod == 1)
821 fprintf (dump_file, " no restrictions");
822 else if (ref_pruned->prefetch_before == 0)
823 fprintf (dump_file, " do not prefetch");
824 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
825 fprintf (dump_file, " prefetch once");
826 else
827 {
828 if (ref_pruned->prefetch_before != PREFETCH_ALL)
829 {
830 fprintf (dump_file, " prefetch before ");
831 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
832 ref_pruned->prefetch_before);
833 }
834 if (ref_pruned->prefetch_mod != 1)
835 {
836 fprintf (dump_file, " prefetch mod ");
837 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
838 ref_pruned->prefetch_mod);
839 }
840 }
841 fprintf (dump_file, "\n");
842 }
843 }
844 }
845
846 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
847
848 static void
849 prune_by_reuse (struct mem_ref_group *groups)
850 {
851 for (; groups; groups = groups->next)
852 prune_group_by_reuse (groups);
853 }
854
855 /* Returns true if we should issue prefetch for REF. */
856
857 static bool
858 should_issue_prefetch_p (struct mem_ref *ref)
859 {
860 /* For now do not issue prefetches for only first few of the
861 iterations. */
862 if (ref->prefetch_before != PREFETCH_ALL)
863 {
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
866 (void *) ref);
867 return false;
868 }
869
870 /* Do not prefetch nontemporal stores. */
871 if (ref->storent_p)
872 {
873 if (dump_file && (dump_flags & TDF_DETAILS))
874 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
875 return false;
876 }
877
878 return true;
879 }
880
881 /* Decide which of the prefetch candidates in GROUPS to prefetch.
882 AHEAD is the number of iterations to prefetch ahead (which corresponds
883 to the number of simultaneous instances of one prefetch running at a
884 time). UNROLL_FACTOR is the factor by that the loop is going to be
885 unrolled. Returns true if there is anything to prefetch. */
886
887 static bool
888 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
889 unsigned ahead)
890 {
891 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
892 unsigned slots_per_prefetch;
893 struct mem_ref *ref;
894 bool any = false;
895
896 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
897 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
898
899 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
900 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
901 it will need a prefetch slot. */
902 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
905 slots_per_prefetch);
906
907 /* For now we just take memory references one by one and issue
908 prefetches for as many as possible. The groups are sorted
909 starting with the largest step, since the references with
910 large step are more likely to cause many cache misses. */
911
912 for (; groups; groups = groups->next)
913 for (ref = groups->refs; ref; ref = ref->next)
914 {
915 if (!should_issue_prefetch_p (ref))
916 continue;
917
918 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
919 and we unroll the loop UNROLL_FACTOR times, we need to insert
920 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
921 iteration. */
922 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
923 / ref->prefetch_mod);
924 prefetch_slots = n_prefetches * slots_per_prefetch;
925
926 /* If more than half of the prefetches would be lost anyway, do not
927 issue the prefetch. */
928 if (2 * remaining_prefetch_slots < prefetch_slots)
929 continue;
930
931 ref->issue_prefetch_p = true;
932
933 if (remaining_prefetch_slots <= prefetch_slots)
934 return true;
935 remaining_prefetch_slots -= prefetch_slots;
936 any = true;
937 }
938
939 return any;
940 }
941
942 /* Estimate the number of prefetches in the given GROUPS. */
943
944 static int
945 estimate_prefetch_count (struct mem_ref_group *groups)
946 {
947 struct mem_ref *ref;
948 int prefetch_count = 0;
949
950 for (; groups; groups = groups->next)
951 for (ref = groups->refs; ref; ref = ref->next)
952 if (should_issue_prefetch_p (ref))
953 prefetch_count++;
954
955 return prefetch_count;
956 }
957
958 /* Issue prefetches for the reference REF into loop as decided before.
959 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
960 is the factor by which LOOP was unrolled. */
961
962 static void
963 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
964 {
965 HOST_WIDE_INT delta;
966 tree addr, addr_base, write_p, local;
967 gimple prefetch;
968 gimple_stmt_iterator bsi;
969 unsigned n_prefetches, ap;
970 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
971
972 if (dump_file && (dump_flags & TDF_DETAILS))
973 fprintf (dump_file, "Issued%s prefetch for %p.\n",
974 nontemporal ? " nontemporal" : "",
975 (void *) ref);
976
977 bsi = gsi_for_stmt (ref->stmt);
978
979 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
980 / ref->prefetch_mod);
981 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
982 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
983 true, NULL, true, GSI_SAME_STMT);
984 write_p = ref->write_p ? integer_one_node : integer_zero_node;
985 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
986
987 for (ap = 0; ap < n_prefetches; ap++)
988 {
989 /* Determine the address to prefetch. */
990 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
991 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
992 addr_base, size_int (delta));
993 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
994 true, GSI_SAME_STMT);
995
996 /* Create the prefetch instruction. */
997 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
998 3, addr, write_p, local);
999 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1000 }
1001 }
1002
1003 /* Issue prefetches for the references in GROUPS into loop as decided before.
1004 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1005 factor by that LOOP was unrolled. */
1006
1007 static void
1008 issue_prefetches (struct mem_ref_group *groups,
1009 unsigned unroll_factor, unsigned ahead)
1010 {
1011 struct mem_ref *ref;
1012
1013 for (; groups; groups = groups->next)
1014 for (ref = groups->refs; ref; ref = ref->next)
1015 if (ref->issue_prefetch_p)
1016 issue_prefetch_ref (ref, unroll_factor, ahead);
1017 }
1018
1019 /* Returns true if REF is a memory write for that a nontemporal store insn
1020 can be used. */
1021
1022 static bool
1023 nontemporal_store_p (struct mem_ref *ref)
1024 {
1025 enum machine_mode mode;
1026 enum insn_code code;
1027
1028 /* REF must be a write that is not reused. We require it to be independent
1029 on all other memory references in the loop, as the nontemporal stores may
1030 be reordered with respect to other memory references. */
1031 if (!ref->write_p
1032 || !ref->independent_p
1033 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1034 return false;
1035
1036 /* Check that we have the storent instruction for the mode. */
1037 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1038 if (mode == BLKmode)
1039 return false;
1040
1041 code = optab_handler (storent_optab, mode)->insn_code;
1042 return code != CODE_FOR_nothing;
1043 }
1044
1045 /* If REF is a nontemporal store, we mark the corresponding modify statement
1046 and return true. Otherwise, we return false. */
1047
1048 static bool
1049 mark_nontemporal_store (struct mem_ref *ref)
1050 {
1051 if (!nontemporal_store_p (ref))
1052 return false;
1053
1054 if (dump_file && (dump_flags & TDF_DETAILS))
1055 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1056 (void *) ref);
1057
1058 gimple_assign_set_nontemporal_move (ref->stmt, true);
1059 ref->storent_p = true;
1060
1061 return true;
1062 }
1063
1064 /* Issue a memory fence instruction after LOOP. */
1065
1066 static void
1067 emit_mfence_after_loop (struct loop *loop)
1068 {
1069 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1070 edge exit;
1071 gimple call;
1072 gimple_stmt_iterator bsi;
1073 unsigned i;
1074
1075 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1076 {
1077 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1078
1079 if (!single_pred_p (exit->dest)
1080 /* If possible, we prefer not to insert the fence on other paths
1081 in cfg. */
1082 && !(exit->flags & EDGE_ABNORMAL))
1083 split_loop_exit_edge (exit);
1084 bsi = gsi_after_labels (exit->dest);
1085
1086 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1087 mark_virtual_ops_for_renaming (call);
1088 }
1089
1090 VEC_free (edge, heap, exits);
1091 update_ssa (TODO_update_ssa_only_virtuals);
1092 }
1093
1094 /* Returns true if we can use storent in loop, false otherwise. */
1095
1096 static bool
1097 may_use_storent_in_loop_p (struct loop *loop)
1098 {
1099 bool ret = true;
1100
1101 if (loop->inner != NULL)
1102 return false;
1103
1104 /* If we must issue a mfence insn after using storent, check that there
1105 is a suitable place for it at each of the loop exits. */
1106 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1107 {
1108 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1109 unsigned i;
1110 edge exit;
1111
1112 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1113 if ((exit->flags & EDGE_ABNORMAL)
1114 && exit->dest == EXIT_BLOCK_PTR)
1115 ret = false;
1116
1117 VEC_free (edge, heap, exits);
1118 }
1119
1120 return ret;
1121 }
1122
1123 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1124 references in the loop. */
1125
1126 static void
1127 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1128 {
1129 struct mem_ref *ref;
1130 bool any = false;
1131
1132 if (!may_use_storent_in_loop_p (loop))
1133 return;
1134
1135 for (; groups; groups = groups->next)
1136 for (ref = groups->refs; ref; ref = ref->next)
1137 any |= mark_nontemporal_store (ref);
1138
1139 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1140 emit_mfence_after_loop (loop);
1141 }
1142
1143 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1144 this is the case, fill in DESC by the description of number of
1145 iterations. */
1146
1147 static bool
1148 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1149 unsigned factor)
1150 {
1151 if (!can_unroll_loop_p (loop, factor, desc))
1152 return false;
1153
1154 /* We only consider loops without control flow for unrolling. This is not
1155 a hard restriction -- tree_unroll_loop works with arbitrary loops
1156 as well; but the unrolling/prefetching is usually more profitable for
1157 loops consisting of a single basic block, and we want to limit the
1158 code growth. */
1159 if (loop->num_nodes > 2)
1160 return false;
1161
1162 return true;
1163 }
1164
1165 /* Determine the coefficient by that unroll LOOP, from the information
1166 contained in the list of memory references REFS. Description of
1167 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1168 insns of the LOOP. EST_NITER is the estimated number of iterations of
1169 the loop, or -1 if no estimate is available. */
1170
1171 static unsigned
1172 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1173 unsigned ninsns, struct tree_niter_desc *desc,
1174 HOST_WIDE_INT est_niter)
1175 {
1176 unsigned upper_bound;
1177 unsigned nfactor, factor, mod_constraint;
1178 struct mem_ref_group *agp;
1179 struct mem_ref *ref;
1180
1181 /* First check whether the loop is not too large to unroll. We ignore
1182 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1183 from unrolling them enough to make exactly one cache line covered by each
1184 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1185 us from unrolling the loops too many times in cases where we only expect
1186 gains from better scheduling and decreasing loop overhead, which is not
1187 the case here. */
1188 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1189
1190 /* If we unrolled the loop more times than it iterates, the unrolled version
1191 of the loop would be never entered. */
1192 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1193 upper_bound = est_niter;
1194
1195 if (upper_bound <= 1)
1196 return 1;
1197
1198 /* Choose the factor so that we may prefetch each cache just once,
1199 but bound the unrolling by UPPER_BOUND. */
1200 factor = 1;
1201 for (agp = refs; agp; agp = agp->next)
1202 for (ref = agp->refs; ref; ref = ref->next)
1203 if (should_issue_prefetch_p (ref))
1204 {
1205 mod_constraint = ref->prefetch_mod;
1206 nfactor = least_common_multiple (mod_constraint, factor);
1207 if (nfactor <= upper_bound)
1208 factor = nfactor;
1209 }
1210
1211 if (!should_unroll_loop_p (loop, desc, factor))
1212 return 1;
1213
1214 return factor;
1215 }
1216
1217 /* Returns the total volume of the memory references REFS, taking into account
1218 reuses in the innermost loop and cache line size. TODO -- we should also
1219 take into account reuses across the iterations of the loops in the loop
1220 nest. */
1221
1222 static unsigned
1223 volume_of_references (struct mem_ref_group *refs)
1224 {
1225 unsigned volume = 0;
1226 struct mem_ref_group *gr;
1227 struct mem_ref *ref;
1228
1229 for (gr = refs; gr; gr = gr->next)
1230 for (ref = gr->refs; ref; ref = ref->next)
1231 {
1232 /* Almost always reuses another value? */
1233 if (ref->prefetch_before != PREFETCH_ALL)
1234 continue;
1235
1236 /* If several iterations access the same cache line, use the size of
1237 the line divided by this number. Otherwise, a cache line is
1238 accessed in each iteration. TODO -- in the latter case, we should
1239 take the size of the reference into account, rounding it up on cache
1240 line size multiple. */
1241 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1242 }
1243 return volume;
1244 }
1245
1246 /* Returns the volume of memory references accessed across VEC iterations of
1247 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1248 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1249
1250 static unsigned
1251 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1252 {
1253 unsigned i;
1254
1255 for (i = 0; i < n; i++)
1256 if (vec[i] != 0)
1257 break;
1258
1259 if (i == n)
1260 return 0;
1261
1262 gcc_assert (vec[i] > 0);
1263
1264 /* We ignore the parts of the distance vector in subloops, since usually
1265 the numbers of iterations are much smaller. */
1266 return loop_sizes[i] * vec[i];
1267 }
1268
1269 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1270 at the position corresponding to the loop of the step. N is the depth
1271 of the considered loop nest, and, LOOP is its innermost loop. */
1272
1273 static void
1274 add_subscript_strides (tree access_fn, unsigned stride,
1275 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1276 {
1277 struct loop *aloop;
1278 tree step;
1279 HOST_WIDE_INT astep;
1280 unsigned min_depth = loop_depth (loop) - n;
1281
1282 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1283 {
1284 aloop = get_chrec_loop (access_fn);
1285 step = CHREC_RIGHT (access_fn);
1286 access_fn = CHREC_LEFT (access_fn);
1287
1288 if ((unsigned) loop_depth (aloop) <= min_depth)
1289 continue;
1290
1291 if (host_integerp (step, 0))
1292 astep = tree_low_cst (step, 0);
1293 else
1294 astep = L1_CACHE_LINE_SIZE;
1295
1296 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1297
1298 }
1299 }
1300
1301 /* Returns the volume of memory references accessed between two consecutive
1302 self-reuses of the reference DR. We consider the subscripts of DR in N
1303 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1304 loops. LOOP is the innermost loop of the current loop nest. */
1305
1306 static unsigned
1307 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1308 struct loop *loop)
1309 {
1310 tree stride, access_fn;
1311 HOST_WIDE_INT *strides, astride;
1312 VEC (tree, heap) *access_fns;
1313 tree ref = DR_REF (dr);
1314 unsigned i, ret = ~0u;
1315
1316 /* In the following example:
1317
1318 for (i = 0; i < N; i++)
1319 for (j = 0; j < N; j++)
1320 use (a[j][i]);
1321 the same cache line is accessed each N steps (except if the change from
1322 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1323 we cannot rely purely on the results of the data dependence analysis.
1324
1325 Instead, we compute the stride of the reference in each loop, and consider
1326 the innermost loop in that the stride is less than cache size. */
1327
1328 strides = XCNEWVEC (HOST_WIDE_INT, n);
1329 access_fns = DR_ACCESS_FNS (dr);
1330
1331 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1332 {
1333 /* Keep track of the reference corresponding to the subscript, so that we
1334 know its stride. */
1335 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1336 ref = TREE_OPERAND (ref, 0);
1337
1338 if (TREE_CODE (ref) == ARRAY_REF)
1339 {
1340 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1341 if (host_integerp (stride, 1))
1342 astride = tree_low_cst (stride, 1);
1343 else
1344 astride = L1_CACHE_LINE_SIZE;
1345
1346 ref = TREE_OPERAND (ref, 0);
1347 }
1348 else
1349 astride = 1;
1350
1351 add_subscript_strides (access_fn, astride, strides, n, loop);
1352 }
1353
1354 for (i = n; i-- > 0; )
1355 {
1356 unsigned HOST_WIDE_INT s;
1357
1358 s = strides[i] < 0 ? -strides[i] : strides[i];
1359
1360 if (s < (unsigned) L1_CACHE_LINE_SIZE
1361 && (loop_sizes[i]
1362 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1363 {
1364 ret = loop_sizes[i];
1365 break;
1366 }
1367 }
1368
1369 free (strides);
1370 return ret;
1371 }
1372
1373 /* Determines the distance till the first reuse of each reference in REFS
1374 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1375 memory references in the loop. */
1376
1377 static void
1378 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1379 bool no_other_refs)
1380 {
1381 struct loop *nest, *aloop;
1382 VEC (data_reference_p, heap) *datarefs = NULL;
1383 VEC (ddr_p, heap) *dependences = NULL;
1384 struct mem_ref_group *gr;
1385 struct mem_ref *ref, *refb;
1386 VEC (loop_p, heap) *vloops = NULL;
1387 unsigned *loop_data_size;
1388 unsigned i, j, n;
1389 unsigned volume, dist, adist;
1390 HOST_WIDE_INT vol;
1391 data_reference_p dr;
1392 ddr_p dep;
1393
1394 if (loop->inner)
1395 return;
1396
1397 /* Find the outermost loop of the loop nest of loop (we require that
1398 there are no sibling loops inside the nest). */
1399 nest = loop;
1400 while (1)
1401 {
1402 aloop = loop_outer (nest);
1403
1404 if (aloop == current_loops->tree_root
1405 || aloop->inner->next)
1406 break;
1407
1408 nest = aloop;
1409 }
1410
1411 /* For each loop, determine the amount of data accessed in each iteration.
1412 We use this to estimate whether the reference is evicted from the
1413 cache before its reuse. */
1414 find_loop_nest (nest, &vloops);
1415 n = VEC_length (loop_p, vloops);
1416 loop_data_size = XNEWVEC (unsigned, n);
1417 volume = volume_of_references (refs);
1418 i = n;
1419 while (i-- != 0)
1420 {
1421 loop_data_size[i] = volume;
1422 /* Bound the volume by the L2 cache size, since above this bound,
1423 all dependence distances are equivalent. */
1424 if (volume > L2_CACHE_SIZE_BYTES)
1425 continue;
1426
1427 aloop = VEC_index (loop_p, vloops, i);
1428 vol = estimated_loop_iterations_int (aloop, false);
1429 if (vol < 0)
1430 vol = expected_loop_iterations (aloop);
1431 volume *= vol;
1432 }
1433
1434 /* Prepare the references in the form suitable for data dependence
1435 analysis. We ignore unanalyzable data references (the results
1436 are used just as a heuristics to estimate temporality of the
1437 references, hence we do not need to worry about correctness). */
1438 for (gr = refs; gr; gr = gr->next)
1439 for (ref = gr->refs; ref; ref = ref->next)
1440 {
1441 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1442
1443 if (dr)
1444 {
1445 ref->reuse_distance = volume;
1446 dr->aux = ref;
1447 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1448 }
1449 else
1450 no_other_refs = false;
1451 }
1452
1453 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1454 {
1455 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1456 ref = (struct mem_ref *) dr->aux;
1457 if (ref->reuse_distance > dist)
1458 ref->reuse_distance = dist;
1459
1460 if (no_other_refs)
1461 ref->independent_p = true;
1462 }
1463
1464 compute_all_dependences (datarefs, &dependences, vloops, true);
1465
1466 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1467 {
1468 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1469 continue;
1470
1471 ref = (struct mem_ref *) DDR_A (dep)->aux;
1472 refb = (struct mem_ref *) DDR_B (dep)->aux;
1473
1474 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1475 || DDR_NUM_DIST_VECTS (dep) == 0)
1476 {
1477 /* If the dependence cannot be analyzed, assume that there might be
1478 a reuse. */
1479 dist = 0;
1480
1481 ref->independent_p = false;
1482 refb->independent_p = false;
1483 }
1484 else
1485 {
1486 /* The distance vectors are normalized to be always lexicographically
1487 positive, hence we cannot tell just from them whether DDR_A comes
1488 before DDR_B or vice versa. However, it is not important,
1489 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1490 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1491 in cache (and marking it as nontemporal would not affect
1492 anything). */
1493
1494 dist = volume;
1495 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1496 {
1497 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1498 loop_data_size, n);
1499
1500 /* If this is a dependence in the innermost loop (i.e., the
1501 distances in all superloops are zero) and it is not
1502 the trivial self-dependence with distance zero, record that
1503 the references are not completely independent. */
1504 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1505 && (ref != refb
1506 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1507 {
1508 ref->independent_p = false;
1509 refb->independent_p = false;
1510 }
1511
1512 /* Ignore accesses closer than
1513 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1514 so that we use nontemporal prefetches e.g. if single memory
1515 location is accessed several times in a single iteration of
1516 the loop. */
1517 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1518 continue;
1519
1520 if (adist < dist)
1521 dist = adist;
1522 }
1523 }
1524
1525 if (ref->reuse_distance > dist)
1526 ref->reuse_distance = dist;
1527 if (refb->reuse_distance > dist)
1528 refb->reuse_distance = dist;
1529 }
1530
1531 free_dependence_relations (dependences);
1532 free_data_refs (datarefs);
1533 free (loop_data_size);
1534
1535 if (dump_file && (dump_flags & TDF_DETAILS))
1536 {
1537 fprintf (dump_file, "Reuse distances:\n");
1538 for (gr = refs; gr; gr = gr->next)
1539 for (ref = gr->refs; ref; ref = ref->next)
1540 fprintf (dump_file, " ref %p distance %u\n",
1541 (void *) ref, ref->reuse_distance);
1542 }
1543 }
1544
1545 /* Do a cost-benefit analysis to determine if prefetching is profitable
1546 for the current loop given the following parameters:
1547 AHEAD: the iteration ahead distance,
1548 EST_NITER: the estimated trip count,
1549 NINSNS: estimated number of instructions in the loop,
1550 PREFETCH_COUNT: an estimate of the number of prefetches
1551 MEM_REF_COUNT: total number of memory references in the loop. */
1552
1553 static bool
1554 is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1555 unsigned ninsns, unsigned prefetch_count,
1556 unsigned mem_ref_count, unsigned unroll_factor)
1557 {
1558 int insn_to_mem_ratio, insn_to_prefetch_ratio;
1559
1560 if (mem_ref_count == 0)
1561 return false;
1562
1563 /* Prefetching improves performance by overlapping cache missing
1564 memory accesses with CPU operations. If the loop does not have
1565 enough CPU operations to overlap with memory operations, prefetching
1566 won't give a significant benefit. One approximate way of checking
1567 this is to require the ratio of instructions to memory references to
1568 be above a certain limit. This approximation works well in practice.
1569 TODO: Implement a more precise computation by estimating the time
1570 for each CPU or memory op in the loop. Time estimates for memory ops
1571 should account for cache misses. */
1572 insn_to_mem_ratio = ninsns / mem_ref_count;
1573
1574 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1575 {
1576 if (dump_file && (dump_flags & TDF_DETAILS))
1577 fprintf (dump_file,
1578 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1579 insn_to_mem_ratio);
1580 return false;
1581 }
1582
1583 /* Profitability of prefetching is highly dependent on the trip count.
1584 For a given AHEAD distance, the first AHEAD iterations do not benefit
1585 from prefetching, and the last AHEAD iterations execute useless
1586 prefetches. So, if the trip count is not large enough relative to AHEAD,
1587 prefetching may cause serious performance degradation. To avoid this
1588 problem when the trip count is not known at compile time, we
1589 conservatively skip loops with high prefetching costs. For now, only
1590 the I-cache cost is considered. The relative I-cache cost is estimated
1591 by taking the ratio between the number of prefetches and the total
1592 number of instructions. Since we are using integer arithmetic, we
1593 compute the reciprocal of this ratio.
1594 (unroll_factor * ninsns) is used to estimate the number of instructions in
1595 the unrolled loop. This implementation is a bit simplistic -- the number
1596 of issued prefetch instructions is also affected by unrolling. So,
1597 prefetch_mod and the unroll factor should be taken into account when
1598 determining prefetch_count. Also, the number of insns of the unrolled
1599 loop will usually be significantly smaller than the number of insns of the
1600 original loop * unroll_factor (at least the induction variable increases
1601 and the exit branches will get eliminated), so it might be better to use
1602 tree_estimate_loop_size + estimated_unrolled_size. */
1603 if (est_niter < 0)
1604 {
1605 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1606 return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
1607 }
1608
1609 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1610 {
1611 if (dump_file && (dump_flags & TDF_DETAILS))
1612 fprintf (dump_file,
1613 "Not prefetching -- loop estimated to roll only %d times\n",
1614 (int) est_niter);
1615 return false;
1616 }
1617 return true;
1618 }
1619
1620
1621 /* Issue prefetch instructions for array references in LOOP. Returns
1622 true if the LOOP was unrolled. */
1623
1624 static bool
1625 loop_prefetch_arrays (struct loop *loop)
1626 {
1627 struct mem_ref_group *refs;
1628 unsigned ahead, ninsns, time, unroll_factor;
1629 HOST_WIDE_INT est_niter;
1630 struct tree_niter_desc desc;
1631 bool unrolled = false, no_other_refs;
1632 unsigned prefetch_count;
1633 unsigned mem_ref_count;
1634
1635 if (optimize_loop_nest_for_size_p (loop))
1636 {
1637 if (dump_file && (dump_flags & TDF_DETAILS))
1638 fprintf (dump_file, " ignored (cold area)\n");
1639 return false;
1640 }
1641
1642 /* Step 1: gather the memory references. */
1643 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1644
1645 /* Step 2: estimate the reuse effects. */
1646 prune_by_reuse (refs);
1647
1648 prefetch_count = estimate_prefetch_count (refs);
1649 if (prefetch_count == 0)
1650 goto fail;
1651
1652 determine_loop_nest_reuse (loop, refs, no_other_refs);
1653
1654 /* Step 3: determine the ahead and unroll factor. */
1655
1656 /* FIXME: the time should be weighted by the probabilities of the blocks in
1657 the loop body. */
1658 time = tree_num_loop_insns (loop, &eni_time_weights);
1659 ahead = (PREFETCH_LATENCY + time - 1) / time;
1660 est_niter = estimated_loop_iterations_int (loop, false);
1661
1662 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1663 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1664 est_niter);
1665 if (dump_file && (dump_flags & TDF_DETAILS))
1666 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1667 HOST_WIDE_INT_PRINT_DEC "\n"
1668 "insn count %d, mem ref count %d, prefetch count %d\n",
1669 ahead, unroll_factor, est_niter,
1670 ninsns, mem_ref_count, prefetch_count);
1671
1672 if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns, prefetch_count,
1673 mem_ref_count, unroll_factor))
1674 goto fail;
1675
1676 mark_nontemporal_stores (loop, refs);
1677
1678 /* Step 4: what to prefetch? */
1679 if (!schedule_prefetches (refs, unroll_factor, ahead))
1680 goto fail;
1681
1682 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1683 iterations so that we do not issue superfluous prefetches. */
1684 if (unroll_factor != 1)
1685 {
1686 tree_unroll_loop (loop, unroll_factor,
1687 single_dom_exit (loop), &desc);
1688 unrolled = true;
1689 }
1690
1691 /* Step 6: issue the prefetches. */
1692 issue_prefetches (refs, unroll_factor, ahead);
1693
1694 fail:
1695 release_mem_refs (refs);
1696 return unrolled;
1697 }
1698
1699 /* Issue prefetch instructions for array references in loops. */
1700
1701 unsigned int
1702 tree_ssa_prefetch_arrays (void)
1703 {
1704 loop_iterator li;
1705 struct loop *loop;
1706 bool unrolled = false;
1707 int todo_flags = 0;
1708
1709 if (!HAVE_prefetch
1710 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1711 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1712 of processor costs and i486 does not have prefetch, but
1713 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1714 || PREFETCH_BLOCK == 0)
1715 return 0;
1716
1717 if (dump_file && (dump_flags & TDF_DETAILS))
1718 {
1719 fprintf (dump_file, "Prefetching parameters:\n");
1720 fprintf (dump_file, " simultaneous prefetches: %d\n",
1721 SIMULTANEOUS_PREFETCHES);
1722 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1723 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1724 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1725 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1726 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1727 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1728 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1729 MIN_INSN_TO_PREFETCH_RATIO);
1730 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1731 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1732 fprintf (dump_file, "\n");
1733 }
1734
1735 initialize_original_copy_tables ();
1736
1737 if (!built_in_decls[BUILT_IN_PREFETCH])
1738 {
1739 tree type = build_function_type (void_type_node,
1740 tree_cons (NULL_TREE,
1741 const_ptr_type_node,
1742 NULL_TREE));
1743 tree decl = add_builtin_function ("__builtin_prefetch", type,
1744 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1745 NULL, NULL_TREE);
1746 DECL_IS_NOVOPS (decl) = true;
1747 built_in_decls[BUILT_IN_PREFETCH] = decl;
1748 }
1749
1750 /* We assume that size of cache line is a power of two, so verify this
1751 here. */
1752 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1753
1754 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1755 {
1756 if (dump_file && (dump_flags & TDF_DETAILS))
1757 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1758
1759 unrolled |= loop_prefetch_arrays (loop);
1760
1761 if (dump_file && (dump_flags & TDF_DETAILS))
1762 fprintf (dump_file, "\n\n");
1763 }
1764
1765 if (unrolled)
1766 {
1767 scev_reset ();
1768 todo_flags |= TODO_cleanup_cfg;
1769 }
1770
1771 free_original_copy_tables ();
1772 return todo_flags;
1773 }