coretypes.h: Include machmode.h...
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "vec.h"
26 #include "input.h"
27 #include "alias.h"
28 #include "symtab.h"
29 #include "inchash.h"
30 #include "tree.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "predict.h"
35 #include "hard-reg-set.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "basic-block.h"
40 #include "tree-pretty-print.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "gimple-expr.h"
44 #include "is-a.h"
45 #include "gimple.h"
46 #include "gimplify.h"
47 #include "gimple-iterator.h"
48 #include "gimplify-me.h"
49 #include "gimple-ssa.h"
50 #include "tree-ssa-loop-ivopts.h"
51 #include "tree-ssa-loop-manip.h"
52 #include "tree-ssa-loop-niter.h"
53 #include "tree-ssa-loop.h"
54 #include "tree-into-ssa.h"
55 #include "cfgloop.h"
56 #include "tree-pass.h"
57 #include "insn-config.h"
58 #include "tree-chrec.h"
59 #include "tree-scalar-evolution.h"
60 #include "diagnostic-core.h"
61 #include "params.h"
62 #include "langhooks.h"
63 #include "tree-inline.h"
64 #include "tree-data-ref.h"
65
66
67 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
68 between the GIMPLE and RTL worlds. */
69 #include "hashtab.h"
70 #include "rtl.h"
71 #include "flags.h"
72 #include "statistics.h"
73 #include "expmed.h"
74 #include "dojump.h"
75 #include "explow.h"
76 #include "calls.h"
77 #include "emit-rtl.h"
78 #include "varasm.h"
79 #include "stmt.h"
80 #include "expr.h"
81 #include "insn-codes.h"
82 #include "optabs.h"
83 #include "recog.h"
84
85 /* This pass inserts prefetch instructions to optimize cache usage during
86 accesses to arrays in loops. It processes loops sequentially and:
87
88 1) Gathers all memory references in the single loop.
89 2) For each of the references it decides when it is profitable to prefetch
90 it. To do it, we evaluate the reuse among the accesses, and determines
91 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
92 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
93 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
94 iterations of the loop that are zero modulo PREFETCH_MOD). For example
95 (assuming cache line size is 64 bytes, char has size 1 byte and there
96 is no hardware sequential prefetch):
97
98 char *a;
99 for (i = 0; i < max; i++)
100 {
101 a[255] = ...; (0)
102 a[i] = ...; (1)
103 a[i + 64] = ...; (2)
104 a[16*i] = ...; (3)
105 a[187*i] = ...; (4)
106 a[187*i + 50] = ...; (5)
107 }
108
109 (0) obviously has PREFETCH_BEFORE 1
110 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
111 location 64 iterations before it, and PREFETCH_MOD 64 (since
112 it hits the same cache line otherwise).
113 (2) has PREFETCH_MOD 64
114 (3) has PREFETCH_MOD 4
115 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
116 the cache line accessed by (5) is the same with probability only
117 7/32.
118 (5) has PREFETCH_MOD 1 as well.
119
120 Additionally, we use data dependence analysis to determine for each
121 reference the distance till the first reuse; this information is used
122 to determine the temporality of the issued prefetch instruction.
123
124 3) We determine how much ahead we need to prefetch. The number of
125 iterations needed is time to fetch / time spent in one iteration of
126 the loop. The problem is that we do not know either of these values,
127 so we just make a heuristic guess based on a magic (possibly)
128 target-specific constant and size of the loop.
129
130 4) Determine which of the references we prefetch. We take into account
131 that there is a maximum number of simultaneous prefetches (provided
132 by machine description). We prefetch as many prefetches as possible
133 while still within this bound (starting with those with lowest
134 prefetch_mod, since they are responsible for most of the cache
135 misses).
136
137 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
138 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
139 prefetching nonaccessed memory.
140 TODO -- actually implement peeling.
141
142 6) We actually emit the prefetch instructions. ??? Perhaps emit the
143 prefetch instructions with guards in cases where 5) was not sufficient
144 to satisfy the constraints?
145
146 A cost model is implemented to determine whether or not prefetching is
147 profitable for a given loop. The cost model has three heuristics:
148
149 1. Function trip_count_to_ahead_ratio_too_small_p implements a
150 heuristic that determines whether or not the loop has too few
151 iterations (compared to ahead). Prefetching is not likely to be
152 beneficial if the trip count to ahead ratio is below a certain
153 minimum.
154
155 2. Function mem_ref_count_reasonable_p implements a heuristic that
156 determines whether the given loop has enough CPU ops that can be
157 overlapped with cache missing memory ops. If not, the loop
158 won't benefit from prefetching. In the implementation,
159 prefetching is not considered beneficial if the ratio between
160 the instruction count and the mem ref count is below a certain
161 minimum.
162
163 3. Function insn_to_prefetch_ratio_too_small_p implements a
164 heuristic that disables prefetching in a loop if the prefetching
165 cost is above a certain limit. The relative prefetching cost is
166 estimated by taking the ratio between the prefetch count and the
167 total intruction count (this models the I-cache cost).
168
169 The limits used in these heuristics are defined as parameters with
170 reasonable default values. Machine-specific default values will be
171 added later.
172
173 Some other TODO:
174 -- write and use more general reuse analysis (that could be also used
175 in other cache aimed loop optimizations)
176 -- make it behave sanely together with the prefetches given by user
177 (now we just ignore them; at the very least we should avoid
178 optimizing loops in that user put his own prefetches)
179 -- we assume cache line size alignment of arrays; this could be
180 improved. */
181
182 /* Magic constants follow. These should be replaced by machine specific
183 numbers. */
184
185 /* True if write can be prefetched by a read prefetch. */
186
187 #ifndef WRITE_CAN_USE_READ_PREFETCH
188 #define WRITE_CAN_USE_READ_PREFETCH 1
189 #endif
190
191 /* True if read can be prefetched by a write prefetch. */
192
193 #ifndef READ_CAN_USE_WRITE_PREFETCH
194 #define READ_CAN_USE_WRITE_PREFETCH 0
195 #endif
196
197 /* The size of the block loaded by a single prefetch. Usually, this is
198 the same as cache line size (at the moment, we only consider one level
199 of cache hierarchy). */
200
201 #ifndef PREFETCH_BLOCK
202 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
203 #endif
204
205 /* Do we have a forward hardware sequential prefetching? */
206
207 #ifndef HAVE_FORWARD_PREFETCH
208 #define HAVE_FORWARD_PREFETCH 0
209 #endif
210
211 /* Do we have a backward hardware sequential prefetching? */
212
213 #ifndef HAVE_BACKWARD_PREFETCH
214 #define HAVE_BACKWARD_PREFETCH 0
215 #endif
216
217 /* In some cases we are only able to determine that there is a certain
218 probability that the two accesses hit the same cache line. In this
219 case, we issue the prefetches for both of them if this probability
220 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
221
222 #ifndef ACCEPTABLE_MISS_RATE
223 #define ACCEPTABLE_MISS_RATE 50
224 #endif
225
226 #ifndef HAVE_prefetch
227 #define HAVE_prefetch 0
228 #endif
229
230 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
231 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
232
233 /* We consider a memory access nontemporal if it is not reused sooner than
234 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
235 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
236 so that we use nontemporal prefetches e.g. if single memory location
237 is accessed several times in a single iteration of the loop. */
238 #define NONTEMPORAL_FRACTION 16
239
240 /* In case we have to emit a memory fence instruction after the loop that
241 uses nontemporal stores, this defines the builtin to use. */
242
243 #ifndef FENCE_FOLLOWING_MOVNT
244 #define FENCE_FOLLOWING_MOVNT NULL_TREE
245 #endif
246
247 /* It is not profitable to prefetch when the trip count is not at
248 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
249 For example, in a loop with a prefetch ahead distance of 10,
250 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
251 profitable to prefetch when the trip count is greater or equal to
252 40. In that case, 30 out of the 40 iterations will benefit from
253 prefetching. */
254
255 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
256 #define TRIP_COUNT_TO_AHEAD_RATIO 4
257 #endif
258
259 /* The group of references between that reuse may occur. */
260
261 struct mem_ref_group
262 {
263 tree base; /* Base of the reference. */
264 tree step; /* Step of the reference. */
265 struct mem_ref *refs; /* References in the group. */
266 struct mem_ref_group *next; /* Next group of references. */
267 };
268
269 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
270
271 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
272
273 /* Do not generate a prefetch if the unroll factor is significantly less
274 than what is required by the prefetch. This is to avoid redundant
275 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
276 2, prefetching requires unrolling the loop 16 times, but
277 the loop is actually unrolled twice. In this case (ratio = 8),
278 prefetching is not likely to be beneficial. */
279
280 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
281 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
282 #endif
283
284 /* Some of the prefetch computations have quadratic complexity. We want to
285 avoid huge compile times and, therefore, want to limit the amount of
286 memory references per loop where we consider prefetching. */
287
288 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
289 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
290 #endif
291
292 /* The memory reference. */
293
294 struct mem_ref
295 {
296 gimple stmt; /* Statement in that the reference appears. */
297 tree mem; /* The reference. */
298 HOST_WIDE_INT delta; /* Constant offset of the reference. */
299 struct mem_ref_group *group; /* The group of references it belongs to. */
300 unsigned HOST_WIDE_INT prefetch_mod;
301 /* Prefetch only each PREFETCH_MOD-th
302 iteration. */
303 unsigned HOST_WIDE_INT prefetch_before;
304 /* Prefetch only first PREFETCH_BEFORE
305 iterations. */
306 unsigned reuse_distance; /* The amount of data accessed before the first
307 reuse of this value. */
308 struct mem_ref *next; /* The next reference in the group. */
309 unsigned write_p : 1; /* Is it a write? */
310 unsigned independent_p : 1; /* True if the reference is independent on
311 all other references inside the loop. */
312 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
313 unsigned storent_p : 1; /* True if we changed the store to a
314 nontemporal one. */
315 };
316
317 /* Dumps information about memory reference */
318 static void
319 dump_mem_details (FILE *file, tree base, tree step,
320 HOST_WIDE_INT delta, bool write_p)
321 {
322 fprintf (file, "(base ");
323 print_generic_expr (file, base, TDF_SLIM);
324 fprintf (file, ", step ");
325 if (cst_and_fits_in_hwi (step))
326 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
327 else
328 print_generic_expr (file, step, TDF_TREE);
329 fprintf (file, ")\n");
330 fprintf (file, " delta ");
331 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
332 fprintf (file, "\n");
333 fprintf (file, " %s\n", write_p ? "write" : "read");
334 fprintf (file, "\n");
335 }
336
337 /* Dumps information about reference REF to FILE. */
338
339 static void
340 dump_mem_ref (FILE *file, struct mem_ref *ref)
341 {
342 fprintf (file, "Reference %p:\n", (void *) ref);
343
344 fprintf (file, " group %p ", (void *) ref->group);
345
346 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
347 ref->write_p);
348 }
349
350 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
351 exist. */
352
353 static struct mem_ref_group *
354 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
355 {
356 struct mem_ref_group *group;
357
358 for (; *groups; groups = &(*groups)->next)
359 {
360 if (operand_equal_p ((*groups)->step, step, 0)
361 && operand_equal_p ((*groups)->base, base, 0))
362 return *groups;
363
364 /* If step is an integer constant, keep the list of groups sorted
365 by decreasing step. */
366 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
367 && int_cst_value ((*groups)->step) < int_cst_value (step))
368 break;
369 }
370
371 group = XNEW (struct mem_ref_group);
372 group->base = base;
373 group->step = step;
374 group->refs = NULL;
375 group->next = *groups;
376 *groups = group;
377
378 return group;
379 }
380
381 /* Records a memory reference MEM in GROUP with offset DELTA and write status
382 WRITE_P. The reference occurs in statement STMT. */
383
384 static void
385 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
386 HOST_WIDE_INT delta, bool write_p)
387 {
388 struct mem_ref **aref;
389
390 /* Do not record the same address twice. */
391 for (aref = &group->refs; *aref; aref = &(*aref)->next)
392 {
393 /* It does not have to be possible for write reference to reuse the read
394 prefetch, or vice versa. */
395 if (!WRITE_CAN_USE_READ_PREFETCH
396 && write_p
397 && !(*aref)->write_p)
398 continue;
399 if (!READ_CAN_USE_WRITE_PREFETCH
400 && !write_p
401 && (*aref)->write_p)
402 continue;
403
404 if ((*aref)->delta == delta)
405 return;
406 }
407
408 (*aref) = XNEW (struct mem_ref);
409 (*aref)->stmt = stmt;
410 (*aref)->mem = mem;
411 (*aref)->delta = delta;
412 (*aref)->write_p = write_p;
413 (*aref)->prefetch_before = PREFETCH_ALL;
414 (*aref)->prefetch_mod = 1;
415 (*aref)->reuse_distance = 0;
416 (*aref)->issue_prefetch_p = false;
417 (*aref)->group = group;
418 (*aref)->next = NULL;
419 (*aref)->independent_p = false;
420 (*aref)->storent_p = false;
421
422 if (dump_file && (dump_flags & TDF_DETAILS))
423 dump_mem_ref (dump_file, *aref);
424 }
425
426 /* Release memory references in GROUPS. */
427
428 static void
429 release_mem_refs (struct mem_ref_group *groups)
430 {
431 struct mem_ref_group *next_g;
432 struct mem_ref *ref, *next_r;
433
434 for (; groups; groups = next_g)
435 {
436 next_g = groups->next;
437 for (ref = groups->refs; ref; ref = next_r)
438 {
439 next_r = ref->next;
440 free (ref);
441 }
442 free (groups);
443 }
444 }
445
446 /* A structure used to pass arguments to idx_analyze_ref. */
447
448 struct ar_data
449 {
450 struct loop *loop; /* Loop of the reference. */
451 gimple stmt; /* Statement of the reference. */
452 tree *step; /* Step of the memory reference. */
453 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
454 };
455
456 /* Analyzes a single INDEX of a memory reference to obtain information
457 described at analyze_ref. Callback for for_each_index. */
458
459 static bool
460 idx_analyze_ref (tree base, tree *index, void *data)
461 {
462 struct ar_data *ar_data = (struct ar_data *) data;
463 tree ibase, step, stepsize;
464 HOST_WIDE_INT idelta = 0, imult = 1;
465 affine_iv iv;
466
467 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
468 *index, &iv, true))
469 return false;
470 ibase = iv.base;
471 step = iv.step;
472
473 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
474 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
475 {
476 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
477 ibase = TREE_OPERAND (ibase, 0);
478 }
479 if (cst_and_fits_in_hwi (ibase))
480 {
481 idelta += int_cst_value (ibase);
482 ibase = build_int_cst (TREE_TYPE (ibase), 0);
483 }
484
485 if (TREE_CODE (base) == ARRAY_REF)
486 {
487 stepsize = array_ref_element_size (base);
488 if (!cst_and_fits_in_hwi (stepsize))
489 return false;
490 imult = int_cst_value (stepsize);
491 step = fold_build2 (MULT_EXPR, sizetype,
492 fold_convert (sizetype, step),
493 fold_convert (sizetype, stepsize));
494 idelta *= imult;
495 }
496
497 if (*ar_data->step == NULL_TREE)
498 *ar_data->step = step;
499 else
500 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
501 fold_convert (sizetype, *ar_data->step),
502 fold_convert (sizetype, step));
503 *ar_data->delta += idelta;
504 *index = ibase;
505
506 return true;
507 }
508
509 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
510 STEP are integer constants and iter is number of iterations of LOOP. The
511 reference occurs in statement STMT. Strips nonaddressable component
512 references from REF_P. */
513
514 static bool
515 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
516 tree *step, HOST_WIDE_INT *delta,
517 gimple stmt)
518 {
519 struct ar_data ar_data;
520 tree off;
521 HOST_WIDE_INT bit_offset;
522 tree ref = *ref_p;
523
524 *step = NULL_TREE;
525 *delta = 0;
526
527 /* First strip off the component references. Ignore bitfields.
528 Also strip off the real and imagine parts of a complex, so that
529 they can have the same base. */
530 if (TREE_CODE (ref) == REALPART_EXPR
531 || TREE_CODE (ref) == IMAGPART_EXPR
532 || (TREE_CODE (ref) == COMPONENT_REF
533 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
534 {
535 if (TREE_CODE (ref) == IMAGPART_EXPR)
536 *delta += int_size_in_bytes (TREE_TYPE (ref));
537 ref = TREE_OPERAND (ref, 0);
538 }
539
540 *ref_p = ref;
541
542 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
543 {
544 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
545 bit_offset = TREE_INT_CST_LOW (off);
546 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
547
548 *delta += bit_offset / BITS_PER_UNIT;
549 }
550
551 *base = unshare_expr (ref);
552 ar_data.loop = loop;
553 ar_data.stmt = stmt;
554 ar_data.step = step;
555 ar_data.delta = delta;
556 return for_each_index (base, idx_analyze_ref, &ar_data);
557 }
558
559 /* Record a memory reference REF to the list REFS. The reference occurs in
560 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
561 reference was recorded, false otherwise. */
562
563 static bool
564 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
565 tree ref, bool write_p, gimple stmt)
566 {
567 tree base, step;
568 HOST_WIDE_INT delta;
569 struct mem_ref_group *agrp;
570
571 if (get_base_address (ref) == NULL)
572 return false;
573
574 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
575 return false;
576 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
577 if (step == NULL_TREE)
578 return false;
579
580 /* Stop if the address of BASE could not be taken. */
581 if (may_be_nonaddressable_p (base))
582 return false;
583
584 /* Limit non-constant step prefetching only to the innermost loops and
585 only when the step is loop invariant in the entire loop nest. */
586 if (!cst_and_fits_in_hwi (step))
587 {
588 if (loop->inner != NULL)
589 {
590 if (dump_file && (dump_flags & TDF_DETAILS))
591 {
592 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
593 print_generic_expr (dump_file, ref, TDF_TREE);
594 fprintf (dump_file,":");
595 dump_mem_details (dump_file, base, step, delta, write_p);
596 fprintf (dump_file,
597 "Ignoring %p, non-constant step prefetching is "
598 "limited to inner most loops \n",
599 (void *) ref);
600 }
601 return false;
602 }
603 else
604 {
605 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
606 {
607 if (dump_file && (dump_flags & TDF_DETAILS))
608 {
609 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
610 print_generic_expr (dump_file, ref, TDF_TREE);
611 fprintf (dump_file,":");
612 dump_mem_details (dump_file, base, step, delta, write_p);
613 fprintf (dump_file,
614 "Not prefetching, ignoring %p due to "
615 "loop variant step\n",
616 (void *) ref);
617 }
618 return false;
619 }
620 }
621 }
622
623 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
624 are integer constants. */
625 agrp = find_or_create_group (refs, base, step);
626 record_ref (agrp, stmt, ref, delta, write_p);
627
628 return true;
629 }
630
631 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
632 true if there are no other memory references inside the loop. */
633
634 static struct mem_ref_group *
635 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
636 {
637 basic_block *body = get_loop_body_in_dom_order (loop);
638 basic_block bb;
639 unsigned i;
640 gimple_stmt_iterator bsi;
641 gimple stmt;
642 tree lhs, rhs;
643 struct mem_ref_group *refs = NULL;
644
645 *no_other_refs = true;
646 *ref_count = 0;
647
648 /* Scan the loop body in order, so that the former references precede the
649 later ones. */
650 for (i = 0; i < loop->num_nodes; i++)
651 {
652 bb = body[i];
653 if (bb->loop_father != loop)
654 continue;
655
656 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
657 {
658 stmt = gsi_stmt (bsi);
659
660 if (gimple_code (stmt) != GIMPLE_ASSIGN)
661 {
662 if (gimple_vuse (stmt)
663 || (is_gimple_call (stmt)
664 && !(gimple_call_flags (stmt) & ECF_CONST)))
665 *no_other_refs = false;
666 continue;
667 }
668
669 lhs = gimple_assign_lhs (stmt);
670 rhs = gimple_assign_rhs1 (stmt);
671
672 if (REFERENCE_CLASS_P (rhs))
673 {
674 *no_other_refs &= gather_memory_references_ref (loop, &refs,
675 rhs, false, stmt);
676 *ref_count += 1;
677 }
678 if (REFERENCE_CLASS_P (lhs))
679 {
680 *no_other_refs &= gather_memory_references_ref (loop, &refs,
681 lhs, true, stmt);
682 *ref_count += 1;
683 }
684 }
685 }
686 free (body);
687
688 return refs;
689 }
690
691 /* Prune the prefetch candidate REF using the self-reuse. */
692
693 static void
694 prune_ref_by_self_reuse (struct mem_ref *ref)
695 {
696 HOST_WIDE_INT step;
697 bool backward;
698
699 /* If the step size is non constant, we cannot calculate prefetch_mod. */
700 if (!cst_and_fits_in_hwi (ref->group->step))
701 return;
702
703 step = int_cst_value (ref->group->step);
704
705 backward = step < 0;
706
707 if (step == 0)
708 {
709 /* Prefetch references to invariant address just once. */
710 ref->prefetch_before = 1;
711 return;
712 }
713
714 if (backward)
715 step = -step;
716
717 if (step > PREFETCH_BLOCK)
718 return;
719
720 if ((backward && HAVE_BACKWARD_PREFETCH)
721 || (!backward && HAVE_FORWARD_PREFETCH))
722 {
723 ref->prefetch_before = 1;
724 return;
725 }
726
727 ref->prefetch_mod = PREFETCH_BLOCK / step;
728 }
729
730 /* Divides X by BY, rounding down. */
731
732 static HOST_WIDE_INT
733 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
734 {
735 gcc_assert (by > 0);
736
737 if (x >= 0)
738 return x / by;
739 else
740 return (x + by - 1) / by;
741 }
742
743 /* Given a CACHE_LINE_SIZE and two inductive memory references
744 with a common STEP greater than CACHE_LINE_SIZE and an address
745 difference DELTA, compute the probability that they will fall
746 in different cache lines. Return true if the computed miss rate
747 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
748 number of distinct iterations after which the pattern repeats itself.
749 ALIGN_UNIT is the unit of alignment in bytes. */
750
751 static bool
752 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
753 HOST_WIDE_INT step, HOST_WIDE_INT delta,
754 unsigned HOST_WIDE_INT distinct_iters,
755 int align_unit)
756 {
757 unsigned align, iter;
758 int total_positions, miss_positions, max_allowed_miss_positions;
759 int address1, address2, cache_line1, cache_line2;
760
761 /* It always misses if delta is greater than or equal to the cache
762 line size. */
763 if (delta >= (HOST_WIDE_INT) cache_line_size)
764 return false;
765
766 miss_positions = 0;
767 total_positions = (cache_line_size / align_unit) * distinct_iters;
768 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
769
770 /* Iterate through all possible alignments of the first
771 memory reference within its cache line. */
772 for (align = 0; align < cache_line_size; align += align_unit)
773
774 /* Iterate through all distinct iterations. */
775 for (iter = 0; iter < distinct_iters; iter++)
776 {
777 address1 = align + step * iter;
778 address2 = address1 + delta;
779 cache_line1 = address1 / cache_line_size;
780 cache_line2 = address2 / cache_line_size;
781 if (cache_line1 != cache_line2)
782 {
783 miss_positions += 1;
784 if (miss_positions > max_allowed_miss_positions)
785 return false;
786 }
787 }
788 return true;
789 }
790
791 /* Prune the prefetch candidate REF using the reuse with BY.
792 If BY_IS_BEFORE is true, BY is before REF in the loop. */
793
794 static void
795 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
796 bool by_is_before)
797 {
798 HOST_WIDE_INT step;
799 bool backward;
800 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
801 HOST_WIDE_INT delta = delta_b - delta_r;
802 HOST_WIDE_INT hit_from;
803 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
804 HOST_WIDE_INT reduced_step;
805 unsigned HOST_WIDE_INT reduced_prefetch_block;
806 tree ref_type;
807 int align_unit;
808
809 /* If the step is non constant we cannot calculate prefetch_before. */
810 if (!cst_and_fits_in_hwi (ref->group->step)) {
811 return;
812 }
813
814 step = int_cst_value (ref->group->step);
815
816 backward = step < 0;
817
818
819 if (delta == 0)
820 {
821 /* If the references has the same address, only prefetch the
822 former. */
823 if (by_is_before)
824 ref->prefetch_before = 0;
825
826 return;
827 }
828
829 if (!step)
830 {
831 /* If the reference addresses are invariant and fall into the
832 same cache line, prefetch just the first one. */
833 if (!by_is_before)
834 return;
835
836 if (ddown (ref->delta, PREFETCH_BLOCK)
837 != ddown (by->delta, PREFETCH_BLOCK))
838 return;
839
840 ref->prefetch_before = 0;
841 return;
842 }
843
844 /* Only prune the reference that is behind in the array. */
845 if (backward)
846 {
847 if (delta > 0)
848 return;
849
850 /* Transform the data so that we may assume that the accesses
851 are forward. */
852 delta = - delta;
853 step = -step;
854 delta_r = PREFETCH_BLOCK - 1 - delta_r;
855 delta_b = PREFETCH_BLOCK - 1 - delta_b;
856 }
857 else
858 {
859 if (delta < 0)
860 return;
861 }
862
863 /* Check whether the two references are likely to hit the same cache
864 line, and how distant the iterations in that it occurs are from
865 each other. */
866
867 if (step <= PREFETCH_BLOCK)
868 {
869 /* The accesses are sure to meet. Let us check when. */
870 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
871 prefetch_before = (hit_from - delta_r + step - 1) / step;
872
873 /* Do not reduce prefetch_before if we meet beyond cache size. */
874 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
875 prefetch_before = PREFETCH_ALL;
876 if (prefetch_before < ref->prefetch_before)
877 ref->prefetch_before = prefetch_before;
878
879 return;
880 }
881
882 /* A more complicated case with step > prefetch_block. First reduce
883 the ratio between the step and the cache line size to its simplest
884 terms. The resulting denominator will then represent the number of
885 distinct iterations after which each address will go back to its
886 initial location within the cache line. This computation assumes
887 that PREFETCH_BLOCK is a power of two. */
888 prefetch_block = PREFETCH_BLOCK;
889 reduced_prefetch_block = prefetch_block;
890 reduced_step = step;
891 while ((reduced_step & 1) == 0
892 && reduced_prefetch_block > 1)
893 {
894 reduced_step >>= 1;
895 reduced_prefetch_block >>= 1;
896 }
897
898 prefetch_before = delta / step;
899 delta %= step;
900 ref_type = TREE_TYPE (ref->mem);
901 align_unit = TYPE_ALIGN (ref_type) / 8;
902 if (is_miss_rate_acceptable (prefetch_block, step, delta,
903 reduced_prefetch_block, align_unit))
904 {
905 /* Do not reduce prefetch_before if we meet beyond cache size. */
906 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
907 prefetch_before = PREFETCH_ALL;
908 if (prefetch_before < ref->prefetch_before)
909 ref->prefetch_before = prefetch_before;
910
911 return;
912 }
913
914 /* Try also the following iteration. */
915 prefetch_before++;
916 delta = step - delta;
917 if (is_miss_rate_acceptable (prefetch_block, step, delta,
918 reduced_prefetch_block, align_unit))
919 {
920 if (prefetch_before < ref->prefetch_before)
921 ref->prefetch_before = prefetch_before;
922
923 return;
924 }
925
926 /* The ref probably does not reuse by. */
927 return;
928 }
929
930 /* Prune the prefetch candidate REF using the reuses with other references
931 in REFS. */
932
933 static void
934 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
935 {
936 struct mem_ref *prune_by;
937 bool before = true;
938
939 prune_ref_by_self_reuse (ref);
940
941 for (prune_by = refs; prune_by; prune_by = prune_by->next)
942 {
943 if (prune_by == ref)
944 {
945 before = false;
946 continue;
947 }
948
949 if (!WRITE_CAN_USE_READ_PREFETCH
950 && ref->write_p
951 && !prune_by->write_p)
952 continue;
953 if (!READ_CAN_USE_WRITE_PREFETCH
954 && !ref->write_p
955 && prune_by->write_p)
956 continue;
957
958 prune_ref_by_group_reuse (ref, prune_by, before);
959 }
960 }
961
962 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
963
964 static void
965 prune_group_by_reuse (struct mem_ref_group *group)
966 {
967 struct mem_ref *ref_pruned;
968
969 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
970 {
971 prune_ref_by_reuse (ref_pruned, group->refs);
972
973 if (dump_file && (dump_flags & TDF_DETAILS))
974 {
975 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
976
977 if (ref_pruned->prefetch_before == PREFETCH_ALL
978 && ref_pruned->prefetch_mod == 1)
979 fprintf (dump_file, " no restrictions");
980 else if (ref_pruned->prefetch_before == 0)
981 fprintf (dump_file, " do not prefetch");
982 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
983 fprintf (dump_file, " prefetch once");
984 else
985 {
986 if (ref_pruned->prefetch_before != PREFETCH_ALL)
987 {
988 fprintf (dump_file, " prefetch before ");
989 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
990 ref_pruned->prefetch_before);
991 }
992 if (ref_pruned->prefetch_mod != 1)
993 {
994 fprintf (dump_file, " prefetch mod ");
995 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
996 ref_pruned->prefetch_mod);
997 }
998 }
999 fprintf (dump_file, "\n");
1000 }
1001 }
1002 }
1003
1004 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
1005
1006 static void
1007 prune_by_reuse (struct mem_ref_group *groups)
1008 {
1009 for (; groups; groups = groups->next)
1010 prune_group_by_reuse (groups);
1011 }
1012
1013 /* Returns true if we should issue prefetch for REF. */
1014
1015 static bool
1016 should_issue_prefetch_p (struct mem_ref *ref)
1017 {
1018 /* For now do not issue prefetches for only first few of the
1019 iterations. */
1020 if (ref->prefetch_before != PREFETCH_ALL)
1021 {
1022 if (dump_file && (dump_flags & TDF_DETAILS))
1023 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1024 (void *) ref);
1025 return false;
1026 }
1027
1028 /* Do not prefetch nontemporal stores. */
1029 if (ref->storent_p)
1030 {
1031 if (dump_file && (dump_flags & TDF_DETAILS))
1032 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1033 return false;
1034 }
1035
1036 return true;
1037 }
1038
1039 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1040 AHEAD is the number of iterations to prefetch ahead (which corresponds
1041 to the number of simultaneous instances of one prefetch running at a
1042 time). UNROLL_FACTOR is the factor by that the loop is going to be
1043 unrolled. Returns true if there is anything to prefetch. */
1044
1045 static bool
1046 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1047 unsigned ahead)
1048 {
1049 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1050 unsigned slots_per_prefetch;
1051 struct mem_ref *ref;
1052 bool any = false;
1053
1054 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1055 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1056
1057 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1058 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1059 it will need a prefetch slot. */
1060 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1061 if (dump_file && (dump_flags & TDF_DETAILS))
1062 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1063 slots_per_prefetch);
1064
1065 /* For now we just take memory references one by one and issue
1066 prefetches for as many as possible. The groups are sorted
1067 starting with the largest step, since the references with
1068 large step are more likely to cause many cache misses. */
1069
1070 for (; groups; groups = groups->next)
1071 for (ref = groups->refs; ref; ref = ref->next)
1072 {
1073 if (!should_issue_prefetch_p (ref))
1074 continue;
1075
1076 /* The loop is far from being sufficiently unrolled for this
1077 prefetch. Do not generate prefetch to avoid many redudant
1078 prefetches. */
1079 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1080 continue;
1081
1082 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1083 and we unroll the loop UNROLL_FACTOR times, we need to insert
1084 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1085 iteration. */
1086 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1087 / ref->prefetch_mod);
1088 prefetch_slots = n_prefetches * slots_per_prefetch;
1089
1090 /* If more than half of the prefetches would be lost anyway, do not
1091 issue the prefetch. */
1092 if (2 * remaining_prefetch_slots < prefetch_slots)
1093 continue;
1094
1095 ref->issue_prefetch_p = true;
1096
1097 if (remaining_prefetch_slots <= prefetch_slots)
1098 return true;
1099 remaining_prefetch_slots -= prefetch_slots;
1100 any = true;
1101 }
1102
1103 return any;
1104 }
1105
1106 /* Return TRUE if no prefetch is going to be generated in the given
1107 GROUPS. */
1108
1109 static bool
1110 nothing_to_prefetch_p (struct mem_ref_group *groups)
1111 {
1112 struct mem_ref *ref;
1113
1114 for (; groups; groups = groups->next)
1115 for (ref = groups->refs; ref; ref = ref->next)
1116 if (should_issue_prefetch_p (ref))
1117 return false;
1118
1119 return true;
1120 }
1121
1122 /* Estimate the number of prefetches in the given GROUPS.
1123 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1124
1125 static int
1126 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1127 {
1128 struct mem_ref *ref;
1129 unsigned n_prefetches;
1130 int prefetch_count = 0;
1131
1132 for (; groups; groups = groups->next)
1133 for (ref = groups->refs; ref; ref = ref->next)
1134 if (should_issue_prefetch_p (ref))
1135 {
1136 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1137 / ref->prefetch_mod);
1138 prefetch_count += n_prefetches;
1139 }
1140
1141 return prefetch_count;
1142 }
1143
1144 /* Issue prefetches for the reference REF into loop as decided before.
1145 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1146 is the factor by which LOOP was unrolled. */
1147
1148 static void
1149 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1150 {
1151 HOST_WIDE_INT delta;
1152 tree addr, addr_base, write_p, local, forward;
1153 gcall *prefetch;
1154 gimple_stmt_iterator bsi;
1155 unsigned n_prefetches, ap;
1156 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1157
1158 if (dump_file && (dump_flags & TDF_DETAILS))
1159 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1160 nontemporal ? " nontemporal" : "",
1161 (void *) ref);
1162
1163 bsi = gsi_for_stmt (ref->stmt);
1164
1165 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1166 / ref->prefetch_mod);
1167 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1168 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1169 true, NULL, true, GSI_SAME_STMT);
1170 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1171 local = nontemporal ? integer_zero_node : integer_three_node;
1172
1173 for (ap = 0; ap < n_prefetches; ap++)
1174 {
1175 if (cst_and_fits_in_hwi (ref->group->step))
1176 {
1177 /* Determine the address to prefetch. */
1178 delta = (ahead + ap * ref->prefetch_mod) *
1179 int_cst_value (ref->group->step);
1180 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1181 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1182 true, GSI_SAME_STMT);
1183 }
1184 else
1185 {
1186 /* The step size is non-constant but loop-invariant. We use the
1187 heuristic to simply prefetch ahead iterations ahead. */
1188 forward = fold_build2 (MULT_EXPR, sizetype,
1189 fold_convert (sizetype, ref->group->step),
1190 fold_convert (sizetype, size_int (ahead)));
1191 addr = fold_build_pointer_plus (addr_base, forward);
1192 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1193 NULL, true, GSI_SAME_STMT);
1194 }
1195 /* Create the prefetch instruction. */
1196 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1197 3, addr, write_p, local);
1198 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1199 }
1200 }
1201
1202 /* Issue prefetches for the references in GROUPS into loop as decided before.
1203 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1204 factor by that LOOP was unrolled. */
1205
1206 static void
1207 issue_prefetches (struct mem_ref_group *groups,
1208 unsigned unroll_factor, unsigned ahead)
1209 {
1210 struct mem_ref *ref;
1211
1212 for (; groups; groups = groups->next)
1213 for (ref = groups->refs; ref; ref = ref->next)
1214 if (ref->issue_prefetch_p)
1215 issue_prefetch_ref (ref, unroll_factor, ahead);
1216 }
1217
1218 /* Returns true if REF is a memory write for that a nontemporal store insn
1219 can be used. */
1220
1221 static bool
1222 nontemporal_store_p (struct mem_ref *ref)
1223 {
1224 machine_mode mode;
1225 enum insn_code code;
1226
1227 /* REF must be a write that is not reused. We require it to be independent
1228 on all other memory references in the loop, as the nontemporal stores may
1229 be reordered with respect to other memory references. */
1230 if (!ref->write_p
1231 || !ref->independent_p
1232 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1233 return false;
1234
1235 /* Check that we have the storent instruction for the mode. */
1236 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1237 if (mode == BLKmode)
1238 return false;
1239
1240 code = optab_handler (storent_optab, mode);
1241 return code != CODE_FOR_nothing;
1242 }
1243
1244 /* If REF is a nontemporal store, we mark the corresponding modify statement
1245 and return true. Otherwise, we return false. */
1246
1247 static bool
1248 mark_nontemporal_store (struct mem_ref *ref)
1249 {
1250 if (!nontemporal_store_p (ref))
1251 return false;
1252
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1255 (void *) ref);
1256
1257 gimple_assign_set_nontemporal_move (ref->stmt, true);
1258 ref->storent_p = true;
1259
1260 return true;
1261 }
1262
1263 /* Issue a memory fence instruction after LOOP. */
1264
1265 static void
1266 emit_mfence_after_loop (struct loop *loop)
1267 {
1268 vec<edge> exits = get_loop_exit_edges (loop);
1269 edge exit;
1270 gcall *call;
1271 gimple_stmt_iterator bsi;
1272 unsigned i;
1273
1274 FOR_EACH_VEC_ELT (exits, i, exit)
1275 {
1276 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1277
1278 if (!single_pred_p (exit->dest)
1279 /* If possible, we prefer not to insert the fence on other paths
1280 in cfg. */
1281 && !(exit->flags & EDGE_ABNORMAL))
1282 split_loop_exit_edge (exit);
1283 bsi = gsi_after_labels (exit->dest);
1284
1285 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1286 }
1287
1288 exits.release ();
1289 update_ssa (TODO_update_ssa_only_virtuals);
1290 }
1291
1292 /* Returns true if we can use storent in loop, false otherwise. */
1293
1294 static bool
1295 may_use_storent_in_loop_p (struct loop *loop)
1296 {
1297 bool ret = true;
1298
1299 if (loop->inner != NULL)
1300 return false;
1301
1302 /* If we must issue a mfence insn after using storent, check that there
1303 is a suitable place for it at each of the loop exits. */
1304 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1305 {
1306 vec<edge> exits = get_loop_exit_edges (loop);
1307 unsigned i;
1308 edge exit;
1309
1310 FOR_EACH_VEC_ELT (exits, i, exit)
1311 if ((exit->flags & EDGE_ABNORMAL)
1312 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1313 ret = false;
1314
1315 exits.release ();
1316 }
1317
1318 return ret;
1319 }
1320
1321 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1322 references in the loop. */
1323
1324 static void
1325 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1326 {
1327 struct mem_ref *ref;
1328 bool any = false;
1329
1330 if (!may_use_storent_in_loop_p (loop))
1331 return;
1332
1333 for (; groups; groups = groups->next)
1334 for (ref = groups->refs; ref; ref = ref->next)
1335 any |= mark_nontemporal_store (ref);
1336
1337 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1338 emit_mfence_after_loop (loop);
1339 }
1340
1341 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1342 this is the case, fill in DESC by the description of number of
1343 iterations. */
1344
1345 static bool
1346 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1347 unsigned factor)
1348 {
1349 if (!can_unroll_loop_p (loop, factor, desc))
1350 return false;
1351
1352 /* We only consider loops without control flow for unrolling. This is not
1353 a hard restriction -- tree_unroll_loop works with arbitrary loops
1354 as well; but the unrolling/prefetching is usually more profitable for
1355 loops consisting of a single basic block, and we want to limit the
1356 code growth. */
1357 if (loop->num_nodes > 2)
1358 return false;
1359
1360 return true;
1361 }
1362
1363 /* Determine the coefficient by that unroll LOOP, from the information
1364 contained in the list of memory references REFS. Description of
1365 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1366 insns of the LOOP. EST_NITER is the estimated number of iterations of
1367 the loop, or -1 if no estimate is available. */
1368
1369 static unsigned
1370 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1371 unsigned ninsns, struct tree_niter_desc *desc,
1372 HOST_WIDE_INT est_niter)
1373 {
1374 unsigned upper_bound;
1375 unsigned nfactor, factor, mod_constraint;
1376 struct mem_ref_group *agp;
1377 struct mem_ref *ref;
1378
1379 /* First check whether the loop is not too large to unroll. We ignore
1380 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1381 from unrolling them enough to make exactly one cache line covered by each
1382 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1383 us from unrolling the loops too many times in cases where we only expect
1384 gains from better scheduling and decreasing loop overhead, which is not
1385 the case here. */
1386 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1387
1388 /* If we unrolled the loop more times than it iterates, the unrolled version
1389 of the loop would be never entered. */
1390 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1391 upper_bound = est_niter;
1392
1393 if (upper_bound <= 1)
1394 return 1;
1395
1396 /* Choose the factor so that we may prefetch each cache just once,
1397 but bound the unrolling by UPPER_BOUND. */
1398 factor = 1;
1399 for (agp = refs; agp; agp = agp->next)
1400 for (ref = agp->refs; ref; ref = ref->next)
1401 if (should_issue_prefetch_p (ref))
1402 {
1403 mod_constraint = ref->prefetch_mod;
1404 nfactor = least_common_multiple (mod_constraint, factor);
1405 if (nfactor <= upper_bound)
1406 factor = nfactor;
1407 }
1408
1409 if (!should_unroll_loop_p (loop, desc, factor))
1410 return 1;
1411
1412 return factor;
1413 }
1414
1415 /* Returns the total volume of the memory references REFS, taking into account
1416 reuses in the innermost loop and cache line size. TODO -- we should also
1417 take into account reuses across the iterations of the loops in the loop
1418 nest. */
1419
1420 static unsigned
1421 volume_of_references (struct mem_ref_group *refs)
1422 {
1423 unsigned volume = 0;
1424 struct mem_ref_group *gr;
1425 struct mem_ref *ref;
1426
1427 for (gr = refs; gr; gr = gr->next)
1428 for (ref = gr->refs; ref; ref = ref->next)
1429 {
1430 /* Almost always reuses another value? */
1431 if (ref->prefetch_before != PREFETCH_ALL)
1432 continue;
1433
1434 /* If several iterations access the same cache line, use the size of
1435 the line divided by this number. Otherwise, a cache line is
1436 accessed in each iteration. TODO -- in the latter case, we should
1437 take the size of the reference into account, rounding it up on cache
1438 line size multiple. */
1439 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1440 }
1441 return volume;
1442 }
1443
1444 /* Returns the volume of memory references accessed across VEC iterations of
1445 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1446 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1447
1448 static unsigned
1449 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1450 {
1451 unsigned i;
1452
1453 for (i = 0; i < n; i++)
1454 if (vec[i] != 0)
1455 break;
1456
1457 if (i == n)
1458 return 0;
1459
1460 gcc_assert (vec[i] > 0);
1461
1462 /* We ignore the parts of the distance vector in subloops, since usually
1463 the numbers of iterations are much smaller. */
1464 return loop_sizes[i] * vec[i];
1465 }
1466
1467 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1468 at the position corresponding to the loop of the step. N is the depth
1469 of the considered loop nest, and, LOOP is its innermost loop. */
1470
1471 static void
1472 add_subscript_strides (tree access_fn, unsigned stride,
1473 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1474 {
1475 struct loop *aloop;
1476 tree step;
1477 HOST_WIDE_INT astep;
1478 unsigned min_depth = loop_depth (loop) - n;
1479
1480 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1481 {
1482 aloop = get_chrec_loop (access_fn);
1483 step = CHREC_RIGHT (access_fn);
1484 access_fn = CHREC_LEFT (access_fn);
1485
1486 if ((unsigned) loop_depth (aloop) <= min_depth)
1487 continue;
1488
1489 if (tree_fits_shwi_p (step))
1490 astep = tree_to_shwi (step);
1491 else
1492 astep = L1_CACHE_LINE_SIZE;
1493
1494 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1495
1496 }
1497 }
1498
1499 /* Returns the volume of memory references accessed between two consecutive
1500 self-reuses of the reference DR. We consider the subscripts of DR in N
1501 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1502 loops. LOOP is the innermost loop of the current loop nest. */
1503
1504 static unsigned
1505 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1506 struct loop *loop)
1507 {
1508 tree stride, access_fn;
1509 HOST_WIDE_INT *strides, astride;
1510 vec<tree> access_fns;
1511 tree ref = DR_REF (dr);
1512 unsigned i, ret = ~0u;
1513
1514 /* In the following example:
1515
1516 for (i = 0; i < N; i++)
1517 for (j = 0; j < N; j++)
1518 use (a[j][i]);
1519 the same cache line is accessed each N steps (except if the change from
1520 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1521 we cannot rely purely on the results of the data dependence analysis.
1522
1523 Instead, we compute the stride of the reference in each loop, and consider
1524 the innermost loop in that the stride is less than cache size. */
1525
1526 strides = XCNEWVEC (HOST_WIDE_INT, n);
1527 access_fns = DR_ACCESS_FNS (dr);
1528
1529 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1530 {
1531 /* Keep track of the reference corresponding to the subscript, so that we
1532 know its stride. */
1533 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1534 ref = TREE_OPERAND (ref, 0);
1535
1536 if (TREE_CODE (ref) == ARRAY_REF)
1537 {
1538 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1539 if (tree_fits_uhwi_p (stride))
1540 astride = tree_to_uhwi (stride);
1541 else
1542 astride = L1_CACHE_LINE_SIZE;
1543
1544 ref = TREE_OPERAND (ref, 0);
1545 }
1546 else
1547 astride = 1;
1548
1549 add_subscript_strides (access_fn, astride, strides, n, loop);
1550 }
1551
1552 for (i = n; i-- > 0; )
1553 {
1554 unsigned HOST_WIDE_INT s;
1555
1556 s = strides[i] < 0 ? -strides[i] : strides[i];
1557
1558 if (s < (unsigned) L1_CACHE_LINE_SIZE
1559 && (loop_sizes[i]
1560 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1561 {
1562 ret = loop_sizes[i];
1563 break;
1564 }
1565 }
1566
1567 free (strides);
1568 return ret;
1569 }
1570
1571 /* Determines the distance till the first reuse of each reference in REFS
1572 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1573 memory references in the loop. Return false if the analysis fails. */
1574
1575 static bool
1576 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1577 bool no_other_refs)
1578 {
1579 struct loop *nest, *aloop;
1580 vec<data_reference_p> datarefs = vNULL;
1581 vec<ddr_p> dependences = vNULL;
1582 struct mem_ref_group *gr;
1583 struct mem_ref *ref, *refb;
1584 vec<loop_p> vloops = vNULL;
1585 unsigned *loop_data_size;
1586 unsigned i, j, n;
1587 unsigned volume, dist, adist;
1588 HOST_WIDE_INT vol;
1589 data_reference_p dr;
1590 ddr_p dep;
1591
1592 if (loop->inner)
1593 return true;
1594
1595 /* Find the outermost loop of the loop nest of loop (we require that
1596 there are no sibling loops inside the nest). */
1597 nest = loop;
1598 while (1)
1599 {
1600 aloop = loop_outer (nest);
1601
1602 if (aloop == current_loops->tree_root
1603 || aloop->inner->next)
1604 break;
1605
1606 nest = aloop;
1607 }
1608
1609 /* For each loop, determine the amount of data accessed in each iteration.
1610 We use this to estimate whether the reference is evicted from the
1611 cache before its reuse. */
1612 find_loop_nest (nest, &vloops);
1613 n = vloops.length ();
1614 loop_data_size = XNEWVEC (unsigned, n);
1615 volume = volume_of_references (refs);
1616 i = n;
1617 while (i-- != 0)
1618 {
1619 loop_data_size[i] = volume;
1620 /* Bound the volume by the L2 cache size, since above this bound,
1621 all dependence distances are equivalent. */
1622 if (volume > L2_CACHE_SIZE_BYTES)
1623 continue;
1624
1625 aloop = vloops[i];
1626 vol = estimated_stmt_executions_int (aloop);
1627 if (vol == -1)
1628 vol = expected_loop_iterations (aloop);
1629 volume *= vol;
1630 }
1631
1632 /* Prepare the references in the form suitable for data dependence
1633 analysis. We ignore unanalyzable data references (the results
1634 are used just as a heuristics to estimate temporality of the
1635 references, hence we do not need to worry about correctness). */
1636 for (gr = refs; gr; gr = gr->next)
1637 for (ref = gr->refs; ref; ref = ref->next)
1638 {
1639 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1640 ref->mem, ref->stmt, !ref->write_p);
1641
1642 if (dr)
1643 {
1644 ref->reuse_distance = volume;
1645 dr->aux = ref;
1646 datarefs.safe_push (dr);
1647 }
1648 else
1649 no_other_refs = false;
1650 }
1651
1652 FOR_EACH_VEC_ELT (datarefs, i, dr)
1653 {
1654 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1655 ref = (struct mem_ref *) dr->aux;
1656 if (ref->reuse_distance > dist)
1657 ref->reuse_distance = dist;
1658
1659 if (no_other_refs)
1660 ref->independent_p = true;
1661 }
1662
1663 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1664 return false;
1665
1666 FOR_EACH_VEC_ELT (dependences, i, dep)
1667 {
1668 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1669 continue;
1670
1671 ref = (struct mem_ref *) DDR_A (dep)->aux;
1672 refb = (struct mem_ref *) DDR_B (dep)->aux;
1673
1674 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1675 || DDR_NUM_DIST_VECTS (dep) == 0)
1676 {
1677 /* If the dependence cannot be analyzed, assume that there might be
1678 a reuse. */
1679 dist = 0;
1680
1681 ref->independent_p = false;
1682 refb->independent_p = false;
1683 }
1684 else
1685 {
1686 /* The distance vectors are normalized to be always lexicographically
1687 positive, hence we cannot tell just from them whether DDR_A comes
1688 before DDR_B or vice versa. However, it is not important,
1689 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1690 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1691 in cache (and marking it as nontemporal would not affect
1692 anything). */
1693
1694 dist = volume;
1695 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1696 {
1697 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1698 loop_data_size, n);
1699
1700 /* If this is a dependence in the innermost loop (i.e., the
1701 distances in all superloops are zero) and it is not
1702 the trivial self-dependence with distance zero, record that
1703 the references are not completely independent. */
1704 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1705 && (ref != refb
1706 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1707 {
1708 ref->independent_p = false;
1709 refb->independent_p = false;
1710 }
1711
1712 /* Ignore accesses closer than
1713 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1714 so that we use nontemporal prefetches e.g. if single memory
1715 location is accessed several times in a single iteration of
1716 the loop. */
1717 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1718 continue;
1719
1720 if (adist < dist)
1721 dist = adist;
1722 }
1723 }
1724
1725 if (ref->reuse_distance > dist)
1726 ref->reuse_distance = dist;
1727 if (refb->reuse_distance > dist)
1728 refb->reuse_distance = dist;
1729 }
1730
1731 free_dependence_relations (dependences);
1732 free_data_refs (datarefs);
1733 free (loop_data_size);
1734
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 {
1737 fprintf (dump_file, "Reuse distances:\n");
1738 for (gr = refs; gr; gr = gr->next)
1739 for (ref = gr->refs; ref; ref = ref->next)
1740 fprintf (dump_file, " ref %p distance %u\n",
1741 (void *) ref, ref->reuse_distance);
1742 }
1743
1744 return true;
1745 }
1746
1747 /* Determine whether or not the trip count to ahead ratio is too small based
1748 on prefitablility consideration.
1749 AHEAD: the iteration ahead distance,
1750 EST_NITER: the estimated trip count. */
1751
1752 static bool
1753 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1754 {
1755 /* Assume trip count to ahead ratio is big enough if the trip count could not
1756 be estimated at compile time. */
1757 if (est_niter < 0)
1758 return false;
1759
1760 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1761 {
1762 if (dump_file && (dump_flags & TDF_DETAILS))
1763 fprintf (dump_file,
1764 "Not prefetching -- loop estimated to roll only %d times\n",
1765 (int) est_niter);
1766 return true;
1767 }
1768
1769 return false;
1770 }
1771
1772 /* Determine whether or not the number of memory references in the loop is
1773 reasonable based on the profitablity and compilation time considerations.
1774 NINSNS: estimated number of instructions in the loop,
1775 MEM_REF_COUNT: total number of memory references in the loop. */
1776
1777 static bool
1778 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1779 {
1780 int insn_to_mem_ratio;
1781
1782 if (mem_ref_count == 0)
1783 return false;
1784
1785 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1786 (compute_all_dependences) have high costs based on quadratic complexity.
1787 To avoid huge compilation time, we give up prefetching if mem_ref_count
1788 is too large. */
1789 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1790 return false;
1791
1792 /* Prefetching improves performance by overlapping cache missing
1793 memory accesses with CPU operations. If the loop does not have
1794 enough CPU operations to overlap with memory operations, prefetching
1795 won't give a significant benefit. One approximate way of checking
1796 this is to require the ratio of instructions to memory references to
1797 be above a certain limit. This approximation works well in practice.
1798 TODO: Implement a more precise computation by estimating the time
1799 for each CPU or memory op in the loop. Time estimates for memory ops
1800 should account for cache misses. */
1801 insn_to_mem_ratio = ninsns / mem_ref_count;
1802
1803 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1804 {
1805 if (dump_file && (dump_flags & TDF_DETAILS))
1806 fprintf (dump_file,
1807 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1808 insn_to_mem_ratio);
1809 return false;
1810 }
1811
1812 return true;
1813 }
1814
1815 /* Determine whether or not the instruction to prefetch ratio in the loop is
1816 too small based on the profitablity consideration.
1817 NINSNS: estimated number of instructions in the loop,
1818 PREFETCH_COUNT: an estimate of the number of prefetches,
1819 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1820
1821 static bool
1822 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1823 unsigned unroll_factor)
1824 {
1825 int insn_to_prefetch_ratio;
1826
1827 /* Prefetching most likely causes performance degradation when the instruction
1828 to prefetch ratio is too small. Too many prefetch instructions in a loop
1829 may reduce the I-cache performance.
1830 (unroll_factor * ninsns) is used to estimate the number of instructions in
1831 the unrolled loop. This implementation is a bit simplistic -- the number
1832 of issued prefetch instructions is also affected by unrolling. So,
1833 prefetch_mod and the unroll factor should be taken into account when
1834 determining prefetch_count. Also, the number of insns of the unrolled
1835 loop will usually be significantly smaller than the number of insns of the
1836 original loop * unroll_factor (at least the induction variable increases
1837 and the exit branches will get eliminated), so it might be better to use
1838 tree_estimate_loop_size + estimated_unrolled_size. */
1839 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1840 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1841 {
1842 if (dump_file && (dump_flags & TDF_DETAILS))
1843 fprintf (dump_file,
1844 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1845 insn_to_prefetch_ratio);
1846 return true;
1847 }
1848
1849 return false;
1850 }
1851
1852
1853 /* Issue prefetch instructions for array references in LOOP. Returns
1854 true if the LOOP was unrolled. */
1855
1856 static bool
1857 loop_prefetch_arrays (struct loop *loop)
1858 {
1859 struct mem_ref_group *refs;
1860 unsigned ahead, ninsns, time, unroll_factor;
1861 HOST_WIDE_INT est_niter;
1862 struct tree_niter_desc desc;
1863 bool unrolled = false, no_other_refs;
1864 unsigned prefetch_count;
1865 unsigned mem_ref_count;
1866
1867 if (optimize_loop_nest_for_size_p (loop))
1868 {
1869 if (dump_file && (dump_flags & TDF_DETAILS))
1870 fprintf (dump_file, " ignored (cold area)\n");
1871 return false;
1872 }
1873
1874 /* FIXME: the time should be weighted by the probabilities of the blocks in
1875 the loop body. */
1876 time = tree_num_loop_insns (loop, &eni_time_weights);
1877 if (time == 0)
1878 return false;
1879
1880 ahead = (PREFETCH_LATENCY + time - 1) / time;
1881 est_niter = estimated_stmt_executions_int (loop);
1882 if (est_niter == -1)
1883 est_niter = max_stmt_executions_int (loop);
1884
1885 /* Prefetching is not likely to be profitable if the trip count to ahead
1886 ratio is too small. */
1887 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1888 return false;
1889
1890 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1891
1892 /* Step 1: gather the memory references. */
1893 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1894
1895 /* Give up prefetching if the number of memory references in the
1896 loop is not reasonable based on profitablity and compilation time
1897 considerations. */
1898 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1899 goto fail;
1900
1901 /* Step 2: estimate the reuse effects. */
1902 prune_by_reuse (refs);
1903
1904 if (nothing_to_prefetch_p (refs))
1905 goto fail;
1906
1907 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1908 goto fail;
1909
1910 /* Step 3: determine unroll factor. */
1911 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1912 est_niter);
1913
1914 /* Estimate prefetch count for the unrolled loop. */
1915 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1916 if (prefetch_count == 0)
1917 goto fail;
1918
1919 if (dump_file && (dump_flags & TDF_DETAILS))
1920 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1921 HOST_WIDE_INT_PRINT_DEC "\n"
1922 "insn count %d, mem ref count %d, prefetch count %d\n",
1923 ahead, unroll_factor, est_niter,
1924 ninsns, mem_ref_count, prefetch_count);
1925
1926 /* Prefetching is not likely to be profitable if the instruction to prefetch
1927 ratio is too small. */
1928 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1929 unroll_factor))
1930 goto fail;
1931
1932 mark_nontemporal_stores (loop, refs);
1933
1934 /* Step 4: what to prefetch? */
1935 if (!schedule_prefetches (refs, unroll_factor, ahead))
1936 goto fail;
1937
1938 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1939 iterations so that we do not issue superfluous prefetches. */
1940 if (unroll_factor != 1)
1941 {
1942 tree_unroll_loop (loop, unroll_factor,
1943 single_dom_exit (loop), &desc);
1944 unrolled = true;
1945 }
1946
1947 /* Step 6: issue the prefetches. */
1948 issue_prefetches (refs, unroll_factor, ahead);
1949
1950 fail:
1951 release_mem_refs (refs);
1952 return unrolled;
1953 }
1954
1955 /* Issue prefetch instructions for array references in loops. */
1956
1957 unsigned int
1958 tree_ssa_prefetch_arrays (void)
1959 {
1960 struct loop *loop;
1961 bool unrolled = false;
1962 int todo_flags = 0;
1963
1964 if (!HAVE_prefetch
1965 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1966 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1967 of processor costs and i486 does not have prefetch, but
1968 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1969 || PREFETCH_BLOCK == 0)
1970 return 0;
1971
1972 if (dump_file && (dump_flags & TDF_DETAILS))
1973 {
1974 fprintf (dump_file, "Prefetching parameters:\n");
1975 fprintf (dump_file, " simultaneous prefetches: %d\n",
1976 SIMULTANEOUS_PREFETCHES);
1977 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1978 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1979 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1980 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1981 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1982 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1983 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1984 MIN_INSN_TO_PREFETCH_RATIO);
1985 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1986 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1987 fprintf (dump_file, "\n");
1988 }
1989
1990 initialize_original_copy_tables ();
1991
1992 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1993 {
1994 tree type = build_function_type_list (void_type_node,
1995 const_ptr_type_node, NULL_TREE);
1996 tree decl = add_builtin_function ("__builtin_prefetch", type,
1997 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1998 NULL, NULL_TREE);
1999 DECL_IS_NOVOPS (decl) = true;
2000 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
2001 }
2002
2003 /* We assume that size of cache line is a power of two, so verify this
2004 here. */
2005 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
2006
2007 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2008 {
2009 if (dump_file && (dump_flags & TDF_DETAILS))
2010 fprintf (dump_file, "Processing loop %d:\n", loop->num);
2011
2012 unrolled |= loop_prefetch_arrays (loop);
2013
2014 if (dump_file && (dump_flags & TDF_DETAILS))
2015 fprintf (dump_file, "\n\n");
2016 }
2017
2018 if (unrolled)
2019 {
2020 scev_reset ();
2021 todo_flags |= TODO_cleanup_cfg;
2022 }
2023
2024 free_original_copy_tables ();
2025 return todo_flags;
2026 }
2027
2028 /* Prefetching. */
2029
2030 namespace {
2031
2032 const pass_data pass_data_loop_prefetch =
2033 {
2034 GIMPLE_PASS, /* type */
2035 "aprefetch", /* name */
2036 OPTGROUP_LOOP, /* optinfo_flags */
2037 TV_TREE_PREFETCH, /* tv_id */
2038 ( PROP_cfg | PROP_ssa ), /* properties_required */
2039 0, /* properties_provided */
2040 0, /* properties_destroyed */
2041 0, /* todo_flags_start */
2042 0, /* todo_flags_finish */
2043 };
2044
2045 class pass_loop_prefetch : public gimple_opt_pass
2046 {
2047 public:
2048 pass_loop_prefetch (gcc::context *ctxt)
2049 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2050 {}
2051
2052 /* opt_pass methods: */
2053 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2054 virtual unsigned int execute (function *);
2055
2056 }; // class pass_loop_prefetch
2057
2058 unsigned int
2059 pass_loop_prefetch::execute (function *fun)
2060 {
2061 if (number_of_loops (fun) <= 1)
2062 return 0;
2063
2064 return tree_ssa_prefetch_arrays ();
2065 }
2066
2067 } // anon namespace
2068
2069 gimple_opt_pass *
2070 make_pass_loop_prefetch (gcc::context *ctxt)
2071 {
2072 return new pass_loop_prefetch (ctxt);
2073 }
2074
2075