decl.c, [...]: Remove redundant enum from machine_mode.
[gcc.git] / gcc / tree-ssa-loop-prefetch.c
1 /* Array prefetching.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "predict.h"
28 #include "vec.h"
29 #include "hashtab.h"
30 #include "hash-set.h"
31 #include "machmode.h"
32 #include "hard-reg-set.h"
33 #include "input.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "basic-block.h"
38 #include "tree-pretty-print.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-expr.h"
42 #include "is-a.h"
43 #include "gimple.h"
44 #include "gimplify.h"
45 #include "gimple-iterator.h"
46 #include "gimplify-me.h"
47 #include "gimple-ssa.h"
48 #include "tree-ssa-loop-ivopts.h"
49 #include "tree-ssa-loop-manip.h"
50 #include "tree-ssa-loop-niter.h"
51 #include "tree-ssa-loop.h"
52 #include "tree-into-ssa.h"
53 #include "cfgloop.h"
54 #include "tree-pass.h"
55 #include "insn-config.h"
56 #include "tree-chrec.h"
57 #include "tree-scalar-evolution.h"
58 #include "diagnostic-core.h"
59 #include "params.h"
60 #include "langhooks.h"
61 #include "tree-inline.h"
62 #include "tree-data-ref.h"
63
64
65 /* FIXME: Needed for optabs, but this should all be moved to a TBD interface
66 between the GIMPLE and RTL worlds. */
67 #include "expr.h"
68 #include "optabs.h"
69 #include "recog.h"
70
71 /* This pass inserts prefetch instructions to optimize cache usage during
72 accesses to arrays in loops. It processes loops sequentially and:
73
74 1) Gathers all memory references in the single loop.
75 2) For each of the references it decides when it is profitable to prefetch
76 it. To do it, we evaluate the reuse among the accesses, and determines
77 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
78 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
79 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
80 iterations of the loop that are zero modulo PREFETCH_MOD). For example
81 (assuming cache line size is 64 bytes, char has size 1 byte and there
82 is no hardware sequential prefetch):
83
84 char *a;
85 for (i = 0; i < max; i++)
86 {
87 a[255] = ...; (0)
88 a[i] = ...; (1)
89 a[i + 64] = ...; (2)
90 a[16*i] = ...; (3)
91 a[187*i] = ...; (4)
92 a[187*i + 50] = ...; (5)
93 }
94
95 (0) obviously has PREFETCH_BEFORE 1
96 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
97 location 64 iterations before it, and PREFETCH_MOD 64 (since
98 it hits the same cache line otherwise).
99 (2) has PREFETCH_MOD 64
100 (3) has PREFETCH_MOD 4
101 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
102 the cache line accessed by (5) is the same with probability only
103 7/32.
104 (5) has PREFETCH_MOD 1 as well.
105
106 Additionally, we use data dependence analysis to determine for each
107 reference the distance till the first reuse; this information is used
108 to determine the temporality of the issued prefetch instruction.
109
110 3) We determine how much ahead we need to prefetch. The number of
111 iterations needed is time to fetch / time spent in one iteration of
112 the loop. The problem is that we do not know either of these values,
113 so we just make a heuristic guess based on a magic (possibly)
114 target-specific constant and size of the loop.
115
116 4) Determine which of the references we prefetch. We take into account
117 that there is a maximum number of simultaneous prefetches (provided
118 by machine description). We prefetch as many prefetches as possible
119 while still within this bound (starting with those with lowest
120 prefetch_mod, since they are responsible for most of the cache
121 misses).
122
123 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
124 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
125 prefetching nonaccessed memory.
126 TODO -- actually implement peeling.
127
128 6) We actually emit the prefetch instructions. ??? Perhaps emit the
129 prefetch instructions with guards in cases where 5) was not sufficient
130 to satisfy the constraints?
131
132 A cost model is implemented to determine whether or not prefetching is
133 profitable for a given loop. The cost model has three heuristics:
134
135 1. Function trip_count_to_ahead_ratio_too_small_p implements a
136 heuristic that determines whether or not the loop has too few
137 iterations (compared to ahead). Prefetching is not likely to be
138 beneficial if the trip count to ahead ratio is below a certain
139 minimum.
140
141 2. Function mem_ref_count_reasonable_p implements a heuristic that
142 determines whether the given loop has enough CPU ops that can be
143 overlapped with cache missing memory ops. If not, the loop
144 won't benefit from prefetching. In the implementation,
145 prefetching is not considered beneficial if the ratio between
146 the instruction count and the mem ref count is below a certain
147 minimum.
148
149 3. Function insn_to_prefetch_ratio_too_small_p implements a
150 heuristic that disables prefetching in a loop if the prefetching
151 cost is above a certain limit. The relative prefetching cost is
152 estimated by taking the ratio between the prefetch count and the
153 total intruction count (this models the I-cache cost).
154
155 The limits used in these heuristics are defined as parameters with
156 reasonable default values. Machine-specific default values will be
157 added later.
158
159 Some other TODO:
160 -- write and use more general reuse analysis (that could be also used
161 in other cache aimed loop optimizations)
162 -- make it behave sanely together with the prefetches given by user
163 (now we just ignore them; at the very least we should avoid
164 optimizing loops in that user put his own prefetches)
165 -- we assume cache line size alignment of arrays; this could be
166 improved. */
167
168 /* Magic constants follow. These should be replaced by machine specific
169 numbers. */
170
171 /* True if write can be prefetched by a read prefetch. */
172
173 #ifndef WRITE_CAN_USE_READ_PREFETCH
174 #define WRITE_CAN_USE_READ_PREFETCH 1
175 #endif
176
177 /* True if read can be prefetched by a write prefetch. */
178
179 #ifndef READ_CAN_USE_WRITE_PREFETCH
180 #define READ_CAN_USE_WRITE_PREFETCH 0
181 #endif
182
183 /* The size of the block loaded by a single prefetch. Usually, this is
184 the same as cache line size (at the moment, we only consider one level
185 of cache hierarchy). */
186
187 #ifndef PREFETCH_BLOCK
188 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
189 #endif
190
191 /* Do we have a forward hardware sequential prefetching? */
192
193 #ifndef HAVE_FORWARD_PREFETCH
194 #define HAVE_FORWARD_PREFETCH 0
195 #endif
196
197 /* Do we have a backward hardware sequential prefetching? */
198
199 #ifndef HAVE_BACKWARD_PREFETCH
200 #define HAVE_BACKWARD_PREFETCH 0
201 #endif
202
203 /* In some cases we are only able to determine that there is a certain
204 probability that the two accesses hit the same cache line. In this
205 case, we issue the prefetches for both of them if this probability
206 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
207
208 #ifndef ACCEPTABLE_MISS_RATE
209 #define ACCEPTABLE_MISS_RATE 50
210 #endif
211
212 #ifndef HAVE_prefetch
213 #define HAVE_prefetch 0
214 #endif
215
216 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
217 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
218
219 /* We consider a memory access nontemporal if it is not reused sooner than
220 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
221 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
222 so that we use nontemporal prefetches e.g. if single memory location
223 is accessed several times in a single iteration of the loop. */
224 #define NONTEMPORAL_FRACTION 16
225
226 /* In case we have to emit a memory fence instruction after the loop that
227 uses nontemporal stores, this defines the builtin to use. */
228
229 #ifndef FENCE_FOLLOWING_MOVNT
230 #define FENCE_FOLLOWING_MOVNT NULL_TREE
231 #endif
232
233 /* It is not profitable to prefetch when the trip count is not at
234 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
235 For example, in a loop with a prefetch ahead distance of 10,
236 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
237 profitable to prefetch when the trip count is greater or equal to
238 40. In that case, 30 out of the 40 iterations will benefit from
239 prefetching. */
240
241 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
242 #define TRIP_COUNT_TO_AHEAD_RATIO 4
243 #endif
244
245 /* The group of references between that reuse may occur. */
246
247 struct mem_ref_group
248 {
249 tree base; /* Base of the reference. */
250 tree step; /* Step of the reference. */
251 struct mem_ref *refs; /* References in the group. */
252 struct mem_ref_group *next; /* Next group of references. */
253 };
254
255 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
256
257 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
258
259 /* Do not generate a prefetch if the unroll factor is significantly less
260 than what is required by the prefetch. This is to avoid redundant
261 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
262 2, prefetching requires unrolling the loop 16 times, but
263 the loop is actually unrolled twice. In this case (ratio = 8),
264 prefetching is not likely to be beneficial. */
265
266 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
267 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
268 #endif
269
270 /* Some of the prefetch computations have quadratic complexity. We want to
271 avoid huge compile times and, therefore, want to limit the amount of
272 memory references per loop where we consider prefetching. */
273
274 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
275 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
276 #endif
277
278 /* The memory reference. */
279
280 struct mem_ref
281 {
282 gimple stmt; /* Statement in that the reference appears. */
283 tree mem; /* The reference. */
284 HOST_WIDE_INT delta; /* Constant offset of the reference. */
285 struct mem_ref_group *group; /* The group of references it belongs to. */
286 unsigned HOST_WIDE_INT prefetch_mod;
287 /* Prefetch only each PREFETCH_MOD-th
288 iteration. */
289 unsigned HOST_WIDE_INT prefetch_before;
290 /* Prefetch only first PREFETCH_BEFORE
291 iterations. */
292 unsigned reuse_distance; /* The amount of data accessed before the first
293 reuse of this value. */
294 struct mem_ref *next; /* The next reference in the group. */
295 unsigned write_p : 1; /* Is it a write? */
296 unsigned independent_p : 1; /* True if the reference is independent on
297 all other references inside the loop. */
298 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
299 unsigned storent_p : 1; /* True if we changed the store to a
300 nontemporal one. */
301 };
302
303 /* Dumps information about memory reference */
304 static void
305 dump_mem_details (FILE *file, tree base, tree step,
306 HOST_WIDE_INT delta, bool write_p)
307 {
308 fprintf (file, "(base ");
309 print_generic_expr (file, base, TDF_SLIM);
310 fprintf (file, ", step ");
311 if (cst_and_fits_in_hwi (step))
312 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
313 else
314 print_generic_expr (file, step, TDF_TREE);
315 fprintf (file, ")\n");
316 fprintf (file, " delta ");
317 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
318 fprintf (file, "\n");
319 fprintf (file, " %s\n", write_p ? "write" : "read");
320 fprintf (file, "\n");
321 }
322
323 /* Dumps information about reference REF to FILE. */
324
325 static void
326 dump_mem_ref (FILE *file, struct mem_ref *ref)
327 {
328 fprintf (file, "Reference %p:\n", (void *) ref);
329
330 fprintf (file, " group %p ", (void *) ref->group);
331
332 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
333 ref->write_p);
334 }
335
336 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
337 exist. */
338
339 static struct mem_ref_group *
340 find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
341 {
342 struct mem_ref_group *group;
343
344 for (; *groups; groups = &(*groups)->next)
345 {
346 if (operand_equal_p ((*groups)->step, step, 0)
347 && operand_equal_p ((*groups)->base, base, 0))
348 return *groups;
349
350 /* If step is an integer constant, keep the list of groups sorted
351 by decreasing step. */
352 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
353 && int_cst_value ((*groups)->step) < int_cst_value (step))
354 break;
355 }
356
357 group = XNEW (struct mem_ref_group);
358 group->base = base;
359 group->step = step;
360 group->refs = NULL;
361 group->next = *groups;
362 *groups = group;
363
364 return group;
365 }
366
367 /* Records a memory reference MEM in GROUP with offset DELTA and write status
368 WRITE_P. The reference occurs in statement STMT. */
369
370 static void
371 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
372 HOST_WIDE_INT delta, bool write_p)
373 {
374 struct mem_ref **aref;
375
376 /* Do not record the same address twice. */
377 for (aref = &group->refs; *aref; aref = &(*aref)->next)
378 {
379 /* It does not have to be possible for write reference to reuse the read
380 prefetch, or vice versa. */
381 if (!WRITE_CAN_USE_READ_PREFETCH
382 && write_p
383 && !(*aref)->write_p)
384 continue;
385 if (!READ_CAN_USE_WRITE_PREFETCH
386 && !write_p
387 && (*aref)->write_p)
388 continue;
389
390 if ((*aref)->delta == delta)
391 return;
392 }
393
394 (*aref) = XNEW (struct mem_ref);
395 (*aref)->stmt = stmt;
396 (*aref)->mem = mem;
397 (*aref)->delta = delta;
398 (*aref)->write_p = write_p;
399 (*aref)->prefetch_before = PREFETCH_ALL;
400 (*aref)->prefetch_mod = 1;
401 (*aref)->reuse_distance = 0;
402 (*aref)->issue_prefetch_p = false;
403 (*aref)->group = group;
404 (*aref)->next = NULL;
405 (*aref)->independent_p = false;
406 (*aref)->storent_p = false;
407
408 if (dump_file && (dump_flags & TDF_DETAILS))
409 dump_mem_ref (dump_file, *aref);
410 }
411
412 /* Release memory references in GROUPS. */
413
414 static void
415 release_mem_refs (struct mem_ref_group *groups)
416 {
417 struct mem_ref_group *next_g;
418 struct mem_ref *ref, *next_r;
419
420 for (; groups; groups = next_g)
421 {
422 next_g = groups->next;
423 for (ref = groups->refs; ref; ref = next_r)
424 {
425 next_r = ref->next;
426 free (ref);
427 }
428 free (groups);
429 }
430 }
431
432 /* A structure used to pass arguments to idx_analyze_ref. */
433
434 struct ar_data
435 {
436 struct loop *loop; /* Loop of the reference. */
437 gimple stmt; /* Statement of the reference. */
438 tree *step; /* Step of the memory reference. */
439 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
440 };
441
442 /* Analyzes a single INDEX of a memory reference to obtain information
443 described at analyze_ref. Callback for for_each_index. */
444
445 static bool
446 idx_analyze_ref (tree base, tree *index, void *data)
447 {
448 struct ar_data *ar_data = (struct ar_data *) data;
449 tree ibase, step, stepsize;
450 HOST_WIDE_INT idelta = 0, imult = 1;
451 affine_iv iv;
452
453 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
454 *index, &iv, true))
455 return false;
456 ibase = iv.base;
457 step = iv.step;
458
459 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
460 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
461 {
462 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
463 ibase = TREE_OPERAND (ibase, 0);
464 }
465 if (cst_and_fits_in_hwi (ibase))
466 {
467 idelta += int_cst_value (ibase);
468 ibase = build_int_cst (TREE_TYPE (ibase), 0);
469 }
470
471 if (TREE_CODE (base) == ARRAY_REF)
472 {
473 stepsize = array_ref_element_size (base);
474 if (!cst_and_fits_in_hwi (stepsize))
475 return false;
476 imult = int_cst_value (stepsize);
477 step = fold_build2 (MULT_EXPR, sizetype,
478 fold_convert (sizetype, step),
479 fold_convert (sizetype, stepsize));
480 idelta *= imult;
481 }
482
483 if (*ar_data->step == NULL_TREE)
484 *ar_data->step = step;
485 else
486 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
487 fold_convert (sizetype, *ar_data->step),
488 fold_convert (sizetype, step));
489 *ar_data->delta += idelta;
490 *index = ibase;
491
492 return true;
493 }
494
495 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
496 STEP are integer constants and iter is number of iterations of LOOP. The
497 reference occurs in statement STMT. Strips nonaddressable component
498 references from REF_P. */
499
500 static bool
501 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
502 tree *step, HOST_WIDE_INT *delta,
503 gimple stmt)
504 {
505 struct ar_data ar_data;
506 tree off;
507 HOST_WIDE_INT bit_offset;
508 tree ref = *ref_p;
509
510 *step = NULL_TREE;
511 *delta = 0;
512
513 /* First strip off the component references. Ignore bitfields.
514 Also strip off the real and imagine parts of a complex, so that
515 they can have the same base. */
516 if (TREE_CODE (ref) == REALPART_EXPR
517 || TREE_CODE (ref) == IMAGPART_EXPR
518 || (TREE_CODE (ref) == COMPONENT_REF
519 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
520 {
521 if (TREE_CODE (ref) == IMAGPART_EXPR)
522 *delta += int_size_in_bytes (TREE_TYPE (ref));
523 ref = TREE_OPERAND (ref, 0);
524 }
525
526 *ref_p = ref;
527
528 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
529 {
530 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
531 bit_offset = TREE_INT_CST_LOW (off);
532 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
533
534 *delta += bit_offset / BITS_PER_UNIT;
535 }
536
537 *base = unshare_expr (ref);
538 ar_data.loop = loop;
539 ar_data.stmt = stmt;
540 ar_data.step = step;
541 ar_data.delta = delta;
542 return for_each_index (base, idx_analyze_ref, &ar_data);
543 }
544
545 /* Record a memory reference REF to the list REFS. The reference occurs in
546 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
547 reference was recorded, false otherwise. */
548
549 static bool
550 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
551 tree ref, bool write_p, gimple stmt)
552 {
553 tree base, step;
554 HOST_WIDE_INT delta;
555 struct mem_ref_group *agrp;
556
557 if (get_base_address (ref) == NULL)
558 return false;
559
560 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
561 return false;
562 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
563 if (step == NULL_TREE)
564 return false;
565
566 /* Stop if the address of BASE could not be taken. */
567 if (may_be_nonaddressable_p (base))
568 return false;
569
570 /* Limit non-constant step prefetching only to the innermost loops and
571 only when the step is loop invariant in the entire loop nest. */
572 if (!cst_and_fits_in_hwi (step))
573 {
574 if (loop->inner != NULL)
575 {
576 if (dump_file && (dump_flags & TDF_DETAILS))
577 {
578 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
579 print_generic_expr (dump_file, ref, TDF_TREE);
580 fprintf (dump_file,":");
581 dump_mem_details (dump_file, base, step, delta, write_p);
582 fprintf (dump_file,
583 "Ignoring %p, non-constant step prefetching is "
584 "limited to inner most loops \n",
585 (void *) ref);
586 }
587 return false;
588 }
589 else
590 {
591 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
592 {
593 if (dump_file && (dump_flags & TDF_DETAILS))
594 {
595 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
596 print_generic_expr (dump_file, ref, TDF_TREE);
597 fprintf (dump_file,":");
598 dump_mem_details (dump_file, base, step, delta, write_p);
599 fprintf (dump_file,
600 "Not prefetching, ignoring %p due to "
601 "loop variant step\n",
602 (void *) ref);
603 }
604 return false;
605 }
606 }
607 }
608
609 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
610 are integer constants. */
611 agrp = find_or_create_group (refs, base, step);
612 record_ref (agrp, stmt, ref, delta, write_p);
613
614 return true;
615 }
616
617 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
618 true if there are no other memory references inside the loop. */
619
620 static struct mem_ref_group *
621 gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
622 {
623 basic_block *body = get_loop_body_in_dom_order (loop);
624 basic_block bb;
625 unsigned i;
626 gimple_stmt_iterator bsi;
627 gimple stmt;
628 tree lhs, rhs;
629 struct mem_ref_group *refs = NULL;
630
631 *no_other_refs = true;
632 *ref_count = 0;
633
634 /* Scan the loop body in order, so that the former references precede the
635 later ones. */
636 for (i = 0; i < loop->num_nodes; i++)
637 {
638 bb = body[i];
639 if (bb->loop_father != loop)
640 continue;
641
642 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
643 {
644 stmt = gsi_stmt (bsi);
645
646 if (gimple_code (stmt) != GIMPLE_ASSIGN)
647 {
648 if (gimple_vuse (stmt)
649 || (is_gimple_call (stmt)
650 && !(gimple_call_flags (stmt) & ECF_CONST)))
651 *no_other_refs = false;
652 continue;
653 }
654
655 lhs = gimple_assign_lhs (stmt);
656 rhs = gimple_assign_rhs1 (stmt);
657
658 if (REFERENCE_CLASS_P (rhs))
659 {
660 *no_other_refs &= gather_memory_references_ref (loop, &refs,
661 rhs, false, stmt);
662 *ref_count += 1;
663 }
664 if (REFERENCE_CLASS_P (lhs))
665 {
666 *no_other_refs &= gather_memory_references_ref (loop, &refs,
667 lhs, true, stmt);
668 *ref_count += 1;
669 }
670 }
671 }
672 free (body);
673
674 return refs;
675 }
676
677 /* Prune the prefetch candidate REF using the self-reuse. */
678
679 static void
680 prune_ref_by_self_reuse (struct mem_ref *ref)
681 {
682 HOST_WIDE_INT step;
683 bool backward;
684
685 /* If the step size is non constant, we cannot calculate prefetch_mod. */
686 if (!cst_and_fits_in_hwi (ref->group->step))
687 return;
688
689 step = int_cst_value (ref->group->step);
690
691 backward = step < 0;
692
693 if (step == 0)
694 {
695 /* Prefetch references to invariant address just once. */
696 ref->prefetch_before = 1;
697 return;
698 }
699
700 if (backward)
701 step = -step;
702
703 if (step > PREFETCH_BLOCK)
704 return;
705
706 if ((backward && HAVE_BACKWARD_PREFETCH)
707 || (!backward && HAVE_FORWARD_PREFETCH))
708 {
709 ref->prefetch_before = 1;
710 return;
711 }
712
713 ref->prefetch_mod = PREFETCH_BLOCK / step;
714 }
715
716 /* Divides X by BY, rounding down. */
717
718 static HOST_WIDE_INT
719 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
720 {
721 gcc_assert (by > 0);
722
723 if (x >= 0)
724 return x / by;
725 else
726 return (x + by - 1) / by;
727 }
728
729 /* Given a CACHE_LINE_SIZE and two inductive memory references
730 with a common STEP greater than CACHE_LINE_SIZE and an address
731 difference DELTA, compute the probability that they will fall
732 in different cache lines. Return true if the computed miss rate
733 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
734 number of distinct iterations after which the pattern repeats itself.
735 ALIGN_UNIT is the unit of alignment in bytes. */
736
737 static bool
738 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
739 HOST_WIDE_INT step, HOST_WIDE_INT delta,
740 unsigned HOST_WIDE_INT distinct_iters,
741 int align_unit)
742 {
743 unsigned align, iter;
744 int total_positions, miss_positions, max_allowed_miss_positions;
745 int address1, address2, cache_line1, cache_line2;
746
747 /* It always misses if delta is greater than or equal to the cache
748 line size. */
749 if (delta >= (HOST_WIDE_INT) cache_line_size)
750 return false;
751
752 miss_positions = 0;
753 total_positions = (cache_line_size / align_unit) * distinct_iters;
754 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
755
756 /* Iterate through all possible alignments of the first
757 memory reference within its cache line. */
758 for (align = 0; align < cache_line_size; align += align_unit)
759
760 /* Iterate through all distinct iterations. */
761 for (iter = 0; iter < distinct_iters; iter++)
762 {
763 address1 = align + step * iter;
764 address2 = address1 + delta;
765 cache_line1 = address1 / cache_line_size;
766 cache_line2 = address2 / cache_line_size;
767 if (cache_line1 != cache_line2)
768 {
769 miss_positions += 1;
770 if (miss_positions > max_allowed_miss_positions)
771 return false;
772 }
773 }
774 return true;
775 }
776
777 /* Prune the prefetch candidate REF using the reuse with BY.
778 If BY_IS_BEFORE is true, BY is before REF in the loop. */
779
780 static void
781 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
782 bool by_is_before)
783 {
784 HOST_WIDE_INT step;
785 bool backward;
786 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
787 HOST_WIDE_INT delta = delta_b - delta_r;
788 HOST_WIDE_INT hit_from;
789 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
790 HOST_WIDE_INT reduced_step;
791 unsigned HOST_WIDE_INT reduced_prefetch_block;
792 tree ref_type;
793 int align_unit;
794
795 /* If the step is non constant we cannot calculate prefetch_before. */
796 if (!cst_and_fits_in_hwi (ref->group->step)) {
797 return;
798 }
799
800 step = int_cst_value (ref->group->step);
801
802 backward = step < 0;
803
804
805 if (delta == 0)
806 {
807 /* If the references has the same address, only prefetch the
808 former. */
809 if (by_is_before)
810 ref->prefetch_before = 0;
811
812 return;
813 }
814
815 if (!step)
816 {
817 /* If the reference addresses are invariant and fall into the
818 same cache line, prefetch just the first one. */
819 if (!by_is_before)
820 return;
821
822 if (ddown (ref->delta, PREFETCH_BLOCK)
823 != ddown (by->delta, PREFETCH_BLOCK))
824 return;
825
826 ref->prefetch_before = 0;
827 return;
828 }
829
830 /* Only prune the reference that is behind in the array. */
831 if (backward)
832 {
833 if (delta > 0)
834 return;
835
836 /* Transform the data so that we may assume that the accesses
837 are forward. */
838 delta = - delta;
839 step = -step;
840 delta_r = PREFETCH_BLOCK - 1 - delta_r;
841 delta_b = PREFETCH_BLOCK - 1 - delta_b;
842 }
843 else
844 {
845 if (delta < 0)
846 return;
847 }
848
849 /* Check whether the two references are likely to hit the same cache
850 line, and how distant the iterations in that it occurs are from
851 each other. */
852
853 if (step <= PREFETCH_BLOCK)
854 {
855 /* The accesses are sure to meet. Let us check when. */
856 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
857 prefetch_before = (hit_from - delta_r + step - 1) / step;
858
859 /* Do not reduce prefetch_before if we meet beyond cache size. */
860 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
861 prefetch_before = PREFETCH_ALL;
862 if (prefetch_before < ref->prefetch_before)
863 ref->prefetch_before = prefetch_before;
864
865 return;
866 }
867
868 /* A more complicated case with step > prefetch_block. First reduce
869 the ratio between the step and the cache line size to its simplest
870 terms. The resulting denominator will then represent the number of
871 distinct iterations after which each address will go back to its
872 initial location within the cache line. This computation assumes
873 that PREFETCH_BLOCK is a power of two. */
874 prefetch_block = PREFETCH_BLOCK;
875 reduced_prefetch_block = prefetch_block;
876 reduced_step = step;
877 while ((reduced_step & 1) == 0
878 && reduced_prefetch_block > 1)
879 {
880 reduced_step >>= 1;
881 reduced_prefetch_block >>= 1;
882 }
883
884 prefetch_before = delta / step;
885 delta %= step;
886 ref_type = TREE_TYPE (ref->mem);
887 align_unit = TYPE_ALIGN (ref_type) / 8;
888 if (is_miss_rate_acceptable (prefetch_block, step, delta,
889 reduced_prefetch_block, align_unit))
890 {
891 /* Do not reduce prefetch_before if we meet beyond cache size. */
892 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
893 prefetch_before = PREFETCH_ALL;
894 if (prefetch_before < ref->prefetch_before)
895 ref->prefetch_before = prefetch_before;
896
897 return;
898 }
899
900 /* Try also the following iteration. */
901 prefetch_before++;
902 delta = step - delta;
903 if (is_miss_rate_acceptable (prefetch_block, step, delta,
904 reduced_prefetch_block, align_unit))
905 {
906 if (prefetch_before < ref->prefetch_before)
907 ref->prefetch_before = prefetch_before;
908
909 return;
910 }
911
912 /* The ref probably does not reuse by. */
913 return;
914 }
915
916 /* Prune the prefetch candidate REF using the reuses with other references
917 in REFS. */
918
919 static void
920 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
921 {
922 struct mem_ref *prune_by;
923 bool before = true;
924
925 prune_ref_by_self_reuse (ref);
926
927 for (prune_by = refs; prune_by; prune_by = prune_by->next)
928 {
929 if (prune_by == ref)
930 {
931 before = false;
932 continue;
933 }
934
935 if (!WRITE_CAN_USE_READ_PREFETCH
936 && ref->write_p
937 && !prune_by->write_p)
938 continue;
939 if (!READ_CAN_USE_WRITE_PREFETCH
940 && !ref->write_p
941 && prune_by->write_p)
942 continue;
943
944 prune_ref_by_group_reuse (ref, prune_by, before);
945 }
946 }
947
948 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
949
950 static void
951 prune_group_by_reuse (struct mem_ref_group *group)
952 {
953 struct mem_ref *ref_pruned;
954
955 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
956 {
957 prune_ref_by_reuse (ref_pruned, group->refs);
958
959 if (dump_file && (dump_flags & TDF_DETAILS))
960 {
961 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
962
963 if (ref_pruned->prefetch_before == PREFETCH_ALL
964 && ref_pruned->prefetch_mod == 1)
965 fprintf (dump_file, " no restrictions");
966 else if (ref_pruned->prefetch_before == 0)
967 fprintf (dump_file, " do not prefetch");
968 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
969 fprintf (dump_file, " prefetch once");
970 else
971 {
972 if (ref_pruned->prefetch_before != PREFETCH_ALL)
973 {
974 fprintf (dump_file, " prefetch before ");
975 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
976 ref_pruned->prefetch_before);
977 }
978 if (ref_pruned->prefetch_mod != 1)
979 {
980 fprintf (dump_file, " prefetch mod ");
981 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
982 ref_pruned->prefetch_mod);
983 }
984 }
985 fprintf (dump_file, "\n");
986 }
987 }
988 }
989
990 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
991
992 static void
993 prune_by_reuse (struct mem_ref_group *groups)
994 {
995 for (; groups; groups = groups->next)
996 prune_group_by_reuse (groups);
997 }
998
999 /* Returns true if we should issue prefetch for REF. */
1000
1001 static bool
1002 should_issue_prefetch_p (struct mem_ref *ref)
1003 {
1004 /* For now do not issue prefetches for only first few of the
1005 iterations. */
1006 if (ref->prefetch_before != PREFETCH_ALL)
1007 {
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1010 (void *) ref);
1011 return false;
1012 }
1013
1014 /* Do not prefetch nontemporal stores. */
1015 if (ref->storent_p)
1016 {
1017 if (dump_file && (dump_flags & TDF_DETAILS))
1018 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1019 return false;
1020 }
1021
1022 return true;
1023 }
1024
1025 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1026 AHEAD is the number of iterations to prefetch ahead (which corresponds
1027 to the number of simultaneous instances of one prefetch running at a
1028 time). UNROLL_FACTOR is the factor by that the loop is going to be
1029 unrolled. Returns true if there is anything to prefetch. */
1030
1031 static bool
1032 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1033 unsigned ahead)
1034 {
1035 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1036 unsigned slots_per_prefetch;
1037 struct mem_ref *ref;
1038 bool any = false;
1039
1040 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1041 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
1042
1043 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1044 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1045 it will need a prefetch slot. */
1046 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
1047 if (dump_file && (dump_flags & TDF_DETAILS))
1048 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1049 slots_per_prefetch);
1050
1051 /* For now we just take memory references one by one and issue
1052 prefetches for as many as possible. The groups are sorted
1053 starting with the largest step, since the references with
1054 large step are more likely to cause many cache misses. */
1055
1056 for (; groups; groups = groups->next)
1057 for (ref = groups->refs; ref; ref = ref->next)
1058 {
1059 if (!should_issue_prefetch_p (ref))
1060 continue;
1061
1062 /* The loop is far from being sufficiently unrolled for this
1063 prefetch. Do not generate prefetch to avoid many redudant
1064 prefetches. */
1065 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1066 continue;
1067
1068 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1069 and we unroll the loop UNROLL_FACTOR times, we need to insert
1070 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1071 iteration. */
1072 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1073 / ref->prefetch_mod);
1074 prefetch_slots = n_prefetches * slots_per_prefetch;
1075
1076 /* If more than half of the prefetches would be lost anyway, do not
1077 issue the prefetch. */
1078 if (2 * remaining_prefetch_slots < prefetch_slots)
1079 continue;
1080
1081 ref->issue_prefetch_p = true;
1082
1083 if (remaining_prefetch_slots <= prefetch_slots)
1084 return true;
1085 remaining_prefetch_slots -= prefetch_slots;
1086 any = true;
1087 }
1088
1089 return any;
1090 }
1091
1092 /* Return TRUE if no prefetch is going to be generated in the given
1093 GROUPS. */
1094
1095 static bool
1096 nothing_to_prefetch_p (struct mem_ref_group *groups)
1097 {
1098 struct mem_ref *ref;
1099
1100 for (; groups; groups = groups->next)
1101 for (ref = groups->refs; ref; ref = ref->next)
1102 if (should_issue_prefetch_p (ref))
1103 return false;
1104
1105 return true;
1106 }
1107
1108 /* Estimate the number of prefetches in the given GROUPS.
1109 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1110
1111 static int
1112 estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
1113 {
1114 struct mem_ref *ref;
1115 unsigned n_prefetches;
1116 int prefetch_count = 0;
1117
1118 for (; groups; groups = groups->next)
1119 for (ref = groups->refs; ref; ref = ref->next)
1120 if (should_issue_prefetch_p (ref))
1121 {
1122 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1123 / ref->prefetch_mod);
1124 prefetch_count += n_prefetches;
1125 }
1126
1127 return prefetch_count;
1128 }
1129
1130 /* Issue prefetches for the reference REF into loop as decided before.
1131 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1132 is the factor by which LOOP was unrolled. */
1133
1134 static void
1135 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1136 {
1137 HOST_WIDE_INT delta;
1138 tree addr, addr_base, write_p, local, forward;
1139 gimple prefetch;
1140 gimple_stmt_iterator bsi;
1141 unsigned n_prefetches, ap;
1142 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
1143
1144 if (dump_file && (dump_flags & TDF_DETAILS))
1145 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1146 nontemporal ? " nontemporal" : "",
1147 (void *) ref);
1148
1149 bsi = gsi_for_stmt (ref->stmt);
1150
1151 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1152 / ref->prefetch_mod);
1153 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
1154 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1155 true, NULL, true, GSI_SAME_STMT);
1156 write_p = ref->write_p ? integer_one_node : integer_zero_node;
1157 local = nontemporal ? integer_zero_node : integer_three_node;
1158
1159 for (ap = 0; ap < n_prefetches; ap++)
1160 {
1161 if (cst_and_fits_in_hwi (ref->group->step))
1162 {
1163 /* Determine the address to prefetch. */
1164 delta = (ahead + ap * ref->prefetch_mod) *
1165 int_cst_value (ref->group->step);
1166 addr = fold_build_pointer_plus_hwi (addr_base, delta);
1167 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1168 true, GSI_SAME_STMT);
1169 }
1170 else
1171 {
1172 /* The step size is non-constant but loop-invariant. We use the
1173 heuristic to simply prefetch ahead iterations ahead. */
1174 forward = fold_build2 (MULT_EXPR, sizetype,
1175 fold_convert (sizetype, ref->group->step),
1176 fold_convert (sizetype, size_int (ahead)));
1177 addr = fold_build_pointer_plus (addr_base, forward);
1178 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1179 NULL, true, GSI_SAME_STMT);
1180 }
1181 /* Create the prefetch instruction. */
1182 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
1183 3, addr, write_p, local);
1184 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
1185 }
1186 }
1187
1188 /* Issue prefetches for the references in GROUPS into loop as decided before.
1189 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1190 factor by that LOOP was unrolled. */
1191
1192 static void
1193 issue_prefetches (struct mem_ref_group *groups,
1194 unsigned unroll_factor, unsigned ahead)
1195 {
1196 struct mem_ref *ref;
1197
1198 for (; groups; groups = groups->next)
1199 for (ref = groups->refs; ref; ref = ref->next)
1200 if (ref->issue_prefetch_p)
1201 issue_prefetch_ref (ref, unroll_factor, ahead);
1202 }
1203
1204 /* Returns true if REF is a memory write for that a nontemporal store insn
1205 can be used. */
1206
1207 static bool
1208 nontemporal_store_p (struct mem_ref *ref)
1209 {
1210 machine_mode mode;
1211 enum insn_code code;
1212
1213 /* REF must be a write that is not reused. We require it to be independent
1214 on all other memory references in the loop, as the nontemporal stores may
1215 be reordered with respect to other memory references. */
1216 if (!ref->write_p
1217 || !ref->independent_p
1218 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1219 return false;
1220
1221 /* Check that we have the storent instruction for the mode. */
1222 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1223 if (mode == BLKmode)
1224 return false;
1225
1226 code = optab_handler (storent_optab, mode);
1227 return code != CODE_FOR_nothing;
1228 }
1229
1230 /* If REF is a nontemporal store, we mark the corresponding modify statement
1231 and return true. Otherwise, we return false. */
1232
1233 static bool
1234 mark_nontemporal_store (struct mem_ref *ref)
1235 {
1236 if (!nontemporal_store_p (ref))
1237 return false;
1238
1239 if (dump_file && (dump_flags & TDF_DETAILS))
1240 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1241 (void *) ref);
1242
1243 gimple_assign_set_nontemporal_move (ref->stmt, true);
1244 ref->storent_p = true;
1245
1246 return true;
1247 }
1248
1249 /* Issue a memory fence instruction after LOOP. */
1250
1251 static void
1252 emit_mfence_after_loop (struct loop *loop)
1253 {
1254 vec<edge> exits = get_loop_exit_edges (loop);
1255 edge exit;
1256 gimple call;
1257 gimple_stmt_iterator bsi;
1258 unsigned i;
1259
1260 FOR_EACH_VEC_ELT (exits, i, exit)
1261 {
1262 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
1263
1264 if (!single_pred_p (exit->dest)
1265 /* If possible, we prefer not to insert the fence on other paths
1266 in cfg. */
1267 && !(exit->flags & EDGE_ABNORMAL))
1268 split_loop_exit_edge (exit);
1269 bsi = gsi_after_labels (exit->dest);
1270
1271 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
1272 }
1273
1274 exits.release ();
1275 update_ssa (TODO_update_ssa_only_virtuals);
1276 }
1277
1278 /* Returns true if we can use storent in loop, false otherwise. */
1279
1280 static bool
1281 may_use_storent_in_loop_p (struct loop *loop)
1282 {
1283 bool ret = true;
1284
1285 if (loop->inner != NULL)
1286 return false;
1287
1288 /* If we must issue a mfence insn after using storent, check that there
1289 is a suitable place for it at each of the loop exits. */
1290 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1291 {
1292 vec<edge> exits = get_loop_exit_edges (loop);
1293 unsigned i;
1294 edge exit;
1295
1296 FOR_EACH_VEC_ELT (exits, i, exit)
1297 if ((exit->flags & EDGE_ABNORMAL)
1298 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1299 ret = false;
1300
1301 exits.release ();
1302 }
1303
1304 return ret;
1305 }
1306
1307 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1308 references in the loop. */
1309
1310 static void
1311 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1312 {
1313 struct mem_ref *ref;
1314 bool any = false;
1315
1316 if (!may_use_storent_in_loop_p (loop))
1317 return;
1318
1319 for (; groups; groups = groups->next)
1320 for (ref = groups->refs; ref; ref = ref->next)
1321 any |= mark_nontemporal_store (ref);
1322
1323 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1324 emit_mfence_after_loop (loop);
1325 }
1326
1327 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1328 this is the case, fill in DESC by the description of number of
1329 iterations. */
1330
1331 static bool
1332 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1333 unsigned factor)
1334 {
1335 if (!can_unroll_loop_p (loop, factor, desc))
1336 return false;
1337
1338 /* We only consider loops without control flow for unrolling. This is not
1339 a hard restriction -- tree_unroll_loop works with arbitrary loops
1340 as well; but the unrolling/prefetching is usually more profitable for
1341 loops consisting of a single basic block, and we want to limit the
1342 code growth. */
1343 if (loop->num_nodes > 2)
1344 return false;
1345
1346 return true;
1347 }
1348
1349 /* Determine the coefficient by that unroll LOOP, from the information
1350 contained in the list of memory references REFS. Description of
1351 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1352 insns of the LOOP. EST_NITER is the estimated number of iterations of
1353 the loop, or -1 if no estimate is available. */
1354
1355 static unsigned
1356 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
1357 unsigned ninsns, struct tree_niter_desc *desc,
1358 HOST_WIDE_INT est_niter)
1359 {
1360 unsigned upper_bound;
1361 unsigned nfactor, factor, mod_constraint;
1362 struct mem_ref_group *agp;
1363 struct mem_ref *ref;
1364
1365 /* First check whether the loop is not too large to unroll. We ignore
1366 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1367 from unrolling them enough to make exactly one cache line covered by each
1368 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1369 us from unrolling the loops too many times in cases where we only expect
1370 gains from better scheduling and decreasing loop overhead, which is not
1371 the case here. */
1372 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
1373
1374 /* If we unrolled the loop more times than it iterates, the unrolled version
1375 of the loop would be never entered. */
1376 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1377 upper_bound = est_niter;
1378
1379 if (upper_bound <= 1)
1380 return 1;
1381
1382 /* Choose the factor so that we may prefetch each cache just once,
1383 but bound the unrolling by UPPER_BOUND. */
1384 factor = 1;
1385 for (agp = refs; agp; agp = agp->next)
1386 for (ref = agp->refs; ref; ref = ref->next)
1387 if (should_issue_prefetch_p (ref))
1388 {
1389 mod_constraint = ref->prefetch_mod;
1390 nfactor = least_common_multiple (mod_constraint, factor);
1391 if (nfactor <= upper_bound)
1392 factor = nfactor;
1393 }
1394
1395 if (!should_unroll_loop_p (loop, desc, factor))
1396 return 1;
1397
1398 return factor;
1399 }
1400
1401 /* Returns the total volume of the memory references REFS, taking into account
1402 reuses in the innermost loop and cache line size. TODO -- we should also
1403 take into account reuses across the iterations of the loops in the loop
1404 nest. */
1405
1406 static unsigned
1407 volume_of_references (struct mem_ref_group *refs)
1408 {
1409 unsigned volume = 0;
1410 struct mem_ref_group *gr;
1411 struct mem_ref *ref;
1412
1413 for (gr = refs; gr; gr = gr->next)
1414 for (ref = gr->refs; ref; ref = ref->next)
1415 {
1416 /* Almost always reuses another value? */
1417 if (ref->prefetch_before != PREFETCH_ALL)
1418 continue;
1419
1420 /* If several iterations access the same cache line, use the size of
1421 the line divided by this number. Otherwise, a cache line is
1422 accessed in each iteration. TODO -- in the latter case, we should
1423 take the size of the reference into account, rounding it up on cache
1424 line size multiple. */
1425 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1426 }
1427 return volume;
1428 }
1429
1430 /* Returns the volume of memory references accessed across VEC iterations of
1431 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1432 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1433
1434 static unsigned
1435 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1436 {
1437 unsigned i;
1438
1439 for (i = 0; i < n; i++)
1440 if (vec[i] != 0)
1441 break;
1442
1443 if (i == n)
1444 return 0;
1445
1446 gcc_assert (vec[i] > 0);
1447
1448 /* We ignore the parts of the distance vector in subloops, since usually
1449 the numbers of iterations are much smaller. */
1450 return loop_sizes[i] * vec[i];
1451 }
1452
1453 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1454 at the position corresponding to the loop of the step. N is the depth
1455 of the considered loop nest, and, LOOP is its innermost loop. */
1456
1457 static void
1458 add_subscript_strides (tree access_fn, unsigned stride,
1459 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1460 {
1461 struct loop *aloop;
1462 tree step;
1463 HOST_WIDE_INT astep;
1464 unsigned min_depth = loop_depth (loop) - n;
1465
1466 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1467 {
1468 aloop = get_chrec_loop (access_fn);
1469 step = CHREC_RIGHT (access_fn);
1470 access_fn = CHREC_LEFT (access_fn);
1471
1472 if ((unsigned) loop_depth (aloop) <= min_depth)
1473 continue;
1474
1475 if (tree_fits_shwi_p (step))
1476 astep = tree_to_shwi (step);
1477 else
1478 astep = L1_CACHE_LINE_SIZE;
1479
1480 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1481
1482 }
1483 }
1484
1485 /* Returns the volume of memory references accessed between two consecutive
1486 self-reuses of the reference DR. We consider the subscripts of DR in N
1487 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1488 loops. LOOP is the innermost loop of the current loop nest. */
1489
1490 static unsigned
1491 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1492 struct loop *loop)
1493 {
1494 tree stride, access_fn;
1495 HOST_WIDE_INT *strides, astride;
1496 vec<tree> access_fns;
1497 tree ref = DR_REF (dr);
1498 unsigned i, ret = ~0u;
1499
1500 /* In the following example:
1501
1502 for (i = 0; i < N; i++)
1503 for (j = 0; j < N; j++)
1504 use (a[j][i]);
1505 the same cache line is accessed each N steps (except if the change from
1506 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1507 we cannot rely purely on the results of the data dependence analysis.
1508
1509 Instead, we compute the stride of the reference in each loop, and consider
1510 the innermost loop in that the stride is less than cache size. */
1511
1512 strides = XCNEWVEC (HOST_WIDE_INT, n);
1513 access_fns = DR_ACCESS_FNS (dr);
1514
1515 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
1516 {
1517 /* Keep track of the reference corresponding to the subscript, so that we
1518 know its stride. */
1519 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1520 ref = TREE_OPERAND (ref, 0);
1521
1522 if (TREE_CODE (ref) == ARRAY_REF)
1523 {
1524 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1525 if (tree_fits_uhwi_p (stride))
1526 astride = tree_to_uhwi (stride);
1527 else
1528 astride = L1_CACHE_LINE_SIZE;
1529
1530 ref = TREE_OPERAND (ref, 0);
1531 }
1532 else
1533 astride = 1;
1534
1535 add_subscript_strides (access_fn, astride, strides, n, loop);
1536 }
1537
1538 for (i = n; i-- > 0; )
1539 {
1540 unsigned HOST_WIDE_INT s;
1541
1542 s = strides[i] < 0 ? -strides[i] : strides[i];
1543
1544 if (s < (unsigned) L1_CACHE_LINE_SIZE
1545 && (loop_sizes[i]
1546 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1547 {
1548 ret = loop_sizes[i];
1549 break;
1550 }
1551 }
1552
1553 free (strides);
1554 return ret;
1555 }
1556
1557 /* Determines the distance till the first reuse of each reference in REFS
1558 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1559 memory references in the loop. Return false if the analysis fails. */
1560
1561 static bool
1562 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1563 bool no_other_refs)
1564 {
1565 struct loop *nest, *aloop;
1566 vec<data_reference_p> datarefs = vNULL;
1567 vec<ddr_p> dependences = vNULL;
1568 struct mem_ref_group *gr;
1569 struct mem_ref *ref, *refb;
1570 vec<loop_p> vloops = vNULL;
1571 unsigned *loop_data_size;
1572 unsigned i, j, n;
1573 unsigned volume, dist, adist;
1574 HOST_WIDE_INT vol;
1575 data_reference_p dr;
1576 ddr_p dep;
1577
1578 if (loop->inner)
1579 return true;
1580
1581 /* Find the outermost loop of the loop nest of loop (we require that
1582 there are no sibling loops inside the nest). */
1583 nest = loop;
1584 while (1)
1585 {
1586 aloop = loop_outer (nest);
1587
1588 if (aloop == current_loops->tree_root
1589 || aloop->inner->next)
1590 break;
1591
1592 nest = aloop;
1593 }
1594
1595 /* For each loop, determine the amount of data accessed in each iteration.
1596 We use this to estimate whether the reference is evicted from the
1597 cache before its reuse. */
1598 find_loop_nest (nest, &vloops);
1599 n = vloops.length ();
1600 loop_data_size = XNEWVEC (unsigned, n);
1601 volume = volume_of_references (refs);
1602 i = n;
1603 while (i-- != 0)
1604 {
1605 loop_data_size[i] = volume;
1606 /* Bound the volume by the L2 cache size, since above this bound,
1607 all dependence distances are equivalent. */
1608 if (volume > L2_CACHE_SIZE_BYTES)
1609 continue;
1610
1611 aloop = vloops[i];
1612 vol = estimated_stmt_executions_int (aloop);
1613 if (vol == -1)
1614 vol = expected_loop_iterations (aloop);
1615 volume *= vol;
1616 }
1617
1618 /* Prepare the references in the form suitable for data dependence
1619 analysis. We ignore unanalyzable data references (the results
1620 are used just as a heuristics to estimate temporality of the
1621 references, hence we do not need to worry about correctness). */
1622 for (gr = refs; gr; gr = gr->next)
1623 for (ref = gr->refs; ref; ref = ref->next)
1624 {
1625 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1626 ref->mem, ref->stmt, !ref->write_p);
1627
1628 if (dr)
1629 {
1630 ref->reuse_distance = volume;
1631 dr->aux = ref;
1632 datarefs.safe_push (dr);
1633 }
1634 else
1635 no_other_refs = false;
1636 }
1637
1638 FOR_EACH_VEC_ELT (datarefs, i, dr)
1639 {
1640 dist = self_reuse_distance (dr, loop_data_size, n, loop);
1641 ref = (struct mem_ref *) dr->aux;
1642 if (ref->reuse_distance > dist)
1643 ref->reuse_distance = dist;
1644
1645 if (no_other_refs)
1646 ref->independent_p = true;
1647 }
1648
1649 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1650 return false;
1651
1652 FOR_EACH_VEC_ELT (dependences, i, dep)
1653 {
1654 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1655 continue;
1656
1657 ref = (struct mem_ref *) DDR_A (dep)->aux;
1658 refb = (struct mem_ref *) DDR_B (dep)->aux;
1659
1660 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1661 || DDR_NUM_DIST_VECTS (dep) == 0)
1662 {
1663 /* If the dependence cannot be analyzed, assume that there might be
1664 a reuse. */
1665 dist = 0;
1666
1667 ref->independent_p = false;
1668 refb->independent_p = false;
1669 }
1670 else
1671 {
1672 /* The distance vectors are normalized to be always lexicographically
1673 positive, hence we cannot tell just from them whether DDR_A comes
1674 before DDR_B or vice versa. However, it is not important,
1675 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1676 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1677 in cache (and marking it as nontemporal would not affect
1678 anything). */
1679
1680 dist = volume;
1681 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1682 {
1683 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1684 loop_data_size, n);
1685
1686 /* If this is a dependence in the innermost loop (i.e., the
1687 distances in all superloops are zero) and it is not
1688 the trivial self-dependence with distance zero, record that
1689 the references are not completely independent. */
1690 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1691 && (ref != refb
1692 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1693 {
1694 ref->independent_p = false;
1695 refb->independent_p = false;
1696 }
1697
1698 /* Ignore accesses closer than
1699 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1700 so that we use nontemporal prefetches e.g. if single memory
1701 location is accessed several times in a single iteration of
1702 the loop. */
1703 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1704 continue;
1705
1706 if (adist < dist)
1707 dist = adist;
1708 }
1709 }
1710
1711 if (ref->reuse_distance > dist)
1712 ref->reuse_distance = dist;
1713 if (refb->reuse_distance > dist)
1714 refb->reuse_distance = dist;
1715 }
1716
1717 free_dependence_relations (dependences);
1718 free_data_refs (datarefs);
1719 free (loop_data_size);
1720
1721 if (dump_file && (dump_flags & TDF_DETAILS))
1722 {
1723 fprintf (dump_file, "Reuse distances:\n");
1724 for (gr = refs; gr; gr = gr->next)
1725 for (ref = gr->refs; ref; ref = ref->next)
1726 fprintf (dump_file, " ref %p distance %u\n",
1727 (void *) ref, ref->reuse_distance);
1728 }
1729
1730 return true;
1731 }
1732
1733 /* Determine whether or not the trip count to ahead ratio is too small based
1734 on prefitablility consideration.
1735 AHEAD: the iteration ahead distance,
1736 EST_NITER: the estimated trip count. */
1737
1738 static bool
1739 trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1740 {
1741 /* Assume trip count to ahead ratio is big enough if the trip count could not
1742 be estimated at compile time. */
1743 if (est_niter < 0)
1744 return false;
1745
1746 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1747 {
1748 if (dump_file && (dump_flags & TDF_DETAILS))
1749 fprintf (dump_file,
1750 "Not prefetching -- loop estimated to roll only %d times\n",
1751 (int) est_niter);
1752 return true;
1753 }
1754
1755 return false;
1756 }
1757
1758 /* Determine whether or not the number of memory references in the loop is
1759 reasonable based on the profitablity and compilation time considerations.
1760 NINSNS: estimated number of instructions in the loop,
1761 MEM_REF_COUNT: total number of memory references in the loop. */
1762
1763 static bool
1764 mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
1765 {
1766 int insn_to_mem_ratio;
1767
1768 if (mem_ref_count == 0)
1769 return false;
1770
1771 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1772 (compute_all_dependences) have high costs based on quadratic complexity.
1773 To avoid huge compilation time, we give up prefetching if mem_ref_count
1774 is too large. */
1775 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1776 return false;
1777
1778 /* Prefetching improves performance by overlapping cache missing
1779 memory accesses with CPU operations. If the loop does not have
1780 enough CPU operations to overlap with memory operations, prefetching
1781 won't give a significant benefit. One approximate way of checking
1782 this is to require the ratio of instructions to memory references to
1783 be above a certain limit. This approximation works well in practice.
1784 TODO: Implement a more precise computation by estimating the time
1785 for each CPU or memory op in the loop. Time estimates for memory ops
1786 should account for cache misses. */
1787 insn_to_mem_ratio = ninsns / mem_ref_count;
1788
1789 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1790 {
1791 if (dump_file && (dump_flags & TDF_DETAILS))
1792 fprintf (dump_file,
1793 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1794 insn_to_mem_ratio);
1795 return false;
1796 }
1797
1798 return true;
1799 }
1800
1801 /* Determine whether or not the instruction to prefetch ratio in the loop is
1802 too small based on the profitablity consideration.
1803 NINSNS: estimated number of instructions in the loop,
1804 PREFETCH_COUNT: an estimate of the number of prefetches,
1805 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1806
1807 static bool
1808 insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1809 unsigned unroll_factor)
1810 {
1811 int insn_to_prefetch_ratio;
1812
1813 /* Prefetching most likely causes performance degradation when the instruction
1814 to prefetch ratio is too small. Too many prefetch instructions in a loop
1815 may reduce the I-cache performance.
1816 (unroll_factor * ninsns) is used to estimate the number of instructions in
1817 the unrolled loop. This implementation is a bit simplistic -- the number
1818 of issued prefetch instructions is also affected by unrolling. So,
1819 prefetch_mod and the unroll factor should be taken into account when
1820 determining prefetch_count. Also, the number of insns of the unrolled
1821 loop will usually be significantly smaller than the number of insns of the
1822 original loop * unroll_factor (at least the induction variable increases
1823 and the exit branches will get eliminated), so it might be better to use
1824 tree_estimate_loop_size + estimated_unrolled_size. */
1825 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1826 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
1827 {
1828 if (dump_file && (dump_flags & TDF_DETAILS))
1829 fprintf (dump_file,
1830 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1831 insn_to_prefetch_ratio);
1832 return true;
1833 }
1834
1835 return false;
1836 }
1837
1838
1839 /* Issue prefetch instructions for array references in LOOP. Returns
1840 true if the LOOP was unrolled. */
1841
1842 static bool
1843 loop_prefetch_arrays (struct loop *loop)
1844 {
1845 struct mem_ref_group *refs;
1846 unsigned ahead, ninsns, time, unroll_factor;
1847 HOST_WIDE_INT est_niter;
1848 struct tree_niter_desc desc;
1849 bool unrolled = false, no_other_refs;
1850 unsigned prefetch_count;
1851 unsigned mem_ref_count;
1852
1853 if (optimize_loop_nest_for_size_p (loop))
1854 {
1855 if (dump_file && (dump_flags & TDF_DETAILS))
1856 fprintf (dump_file, " ignored (cold area)\n");
1857 return false;
1858 }
1859
1860 /* FIXME: the time should be weighted by the probabilities of the blocks in
1861 the loop body. */
1862 time = tree_num_loop_insns (loop, &eni_time_weights);
1863 if (time == 0)
1864 return false;
1865
1866 ahead = (PREFETCH_LATENCY + time - 1) / time;
1867 est_niter = estimated_stmt_executions_int (loop);
1868 if (est_niter == -1)
1869 est_niter = max_stmt_executions_int (loop);
1870
1871 /* Prefetching is not likely to be profitable if the trip count to ahead
1872 ratio is too small. */
1873 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1874 return false;
1875
1876 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1877
1878 /* Step 1: gather the memory references. */
1879 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
1880
1881 /* Give up prefetching if the number of memory references in the
1882 loop is not reasonable based on profitablity and compilation time
1883 considerations. */
1884 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1885 goto fail;
1886
1887 /* Step 2: estimate the reuse effects. */
1888 prune_by_reuse (refs);
1889
1890 if (nothing_to_prefetch_p (refs))
1891 goto fail;
1892
1893 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1894 goto fail;
1895
1896 /* Step 3: determine unroll factor. */
1897 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1898 est_niter);
1899
1900 /* Estimate prefetch count for the unrolled loop. */
1901 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1902 if (prefetch_count == 0)
1903 goto fail;
1904
1905 if (dump_file && (dump_flags & TDF_DETAILS))
1906 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1907 HOST_WIDE_INT_PRINT_DEC "\n"
1908 "insn count %d, mem ref count %d, prefetch count %d\n",
1909 ahead, unroll_factor, est_niter,
1910 ninsns, mem_ref_count, prefetch_count);
1911
1912 /* Prefetching is not likely to be profitable if the instruction to prefetch
1913 ratio is too small. */
1914 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1915 unroll_factor))
1916 goto fail;
1917
1918 mark_nontemporal_stores (loop, refs);
1919
1920 /* Step 4: what to prefetch? */
1921 if (!schedule_prefetches (refs, unroll_factor, ahead))
1922 goto fail;
1923
1924 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1925 iterations so that we do not issue superfluous prefetches. */
1926 if (unroll_factor != 1)
1927 {
1928 tree_unroll_loop (loop, unroll_factor,
1929 single_dom_exit (loop), &desc);
1930 unrolled = true;
1931 }
1932
1933 /* Step 6: issue the prefetches. */
1934 issue_prefetches (refs, unroll_factor, ahead);
1935
1936 fail:
1937 release_mem_refs (refs);
1938 return unrolled;
1939 }
1940
1941 /* Issue prefetch instructions for array references in loops. */
1942
1943 unsigned int
1944 tree_ssa_prefetch_arrays (void)
1945 {
1946 struct loop *loop;
1947 bool unrolled = false;
1948 int todo_flags = 0;
1949
1950 if (!HAVE_prefetch
1951 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1952 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1953 of processor costs and i486 does not have prefetch, but
1954 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1955 || PREFETCH_BLOCK == 0)
1956 return 0;
1957
1958 if (dump_file && (dump_flags & TDF_DETAILS))
1959 {
1960 fprintf (dump_file, "Prefetching parameters:\n");
1961 fprintf (dump_file, " simultaneous prefetches: %d\n",
1962 SIMULTANEOUS_PREFETCHES);
1963 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
1964 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
1965 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1966 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
1967 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
1968 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1969 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1970 MIN_INSN_TO_PREFETCH_RATIO);
1971 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1972 PREFETCH_MIN_INSN_TO_MEM_RATIO);
1973 fprintf (dump_file, "\n");
1974 }
1975
1976 initialize_original_copy_tables ();
1977
1978 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
1979 {
1980 tree type = build_function_type_list (void_type_node,
1981 const_ptr_type_node, NULL_TREE);
1982 tree decl = add_builtin_function ("__builtin_prefetch", type,
1983 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1984 NULL, NULL_TREE);
1985 DECL_IS_NOVOPS (decl) = true;
1986 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
1987 }
1988
1989 /* We assume that size of cache line is a power of two, so verify this
1990 here. */
1991 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1992
1993 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1994 {
1995 if (dump_file && (dump_flags & TDF_DETAILS))
1996 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1997
1998 unrolled |= loop_prefetch_arrays (loop);
1999
2000 if (dump_file && (dump_flags & TDF_DETAILS))
2001 fprintf (dump_file, "\n\n");
2002 }
2003
2004 if (unrolled)
2005 {
2006 scev_reset ();
2007 todo_flags |= TODO_cleanup_cfg;
2008 }
2009
2010 free_original_copy_tables ();
2011 return todo_flags;
2012 }
2013
2014 /* Prefetching. */
2015
2016 namespace {
2017
2018 const pass_data pass_data_loop_prefetch =
2019 {
2020 GIMPLE_PASS, /* type */
2021 "aprefetch", /* name */
2022 OPTGROUP_LOOP, /* optinfo_flags */
2023 TV_TREE_PREFETCH, /* tv_id */
2024 ( PROP_cfg | PROP_ssa ), /* properties_required */
2025 0, /* properties_provided */
2026 0, /* properties_destroyed */
2027 0, /* todo_flags_start */
2028 0, /* todo_flags_finish */
2029 };
2030
2031 class pass_loop_prefetch : public gimple_opt_pass
2032 {
2033 public:
2034 pass_loop_prefetch (gcc::context *ctxt)
2035 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2036 {}
2037
2038 /* opt_pass methods: */
2039 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
2040 virtual unsigned int execute (function *);
2041
2042 }; // class pass_loop_prefetch
2043
2044 unsigned int
2045 pass_loop_prefetch::execute (function *fun)
2046 {
2047 if (number_of_loops (fun) <= 1)
2048 return 0;
2049
2050 return tree_ssa_prefetch_arrays ();
2051 }
2052
2053 } // anon namespace
2054
2055 gimple_opt_pass *
2056 make_pass_loop_prefetch (gcc::context *ctxt)
2057 {
2058 return new pass_loop_prefetch (ctxt);
2059 }
2060
2061