a-clrefi.adb, [...]: New files
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "real.h"
96 #include "timevar.h"
97 #include "tree-pass.h"
98 #include "alloc-pool.h"
99 #include "basic-block.h"
100 #include "target.h"
101
102
103 /* This structure represents one basic block that either computes a
104 division, or is a common dominator for basic block that compute a
105 division. */
106 struct occurrence {
107 /* The basic block represented by this structure. */
108 basic_block bb;
109
110 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
111 inserted in BB. */
112 tree recip_def;
113
114 /* If non-NULL, the GIMPLE_MODIFY_STMT for a reciprocal computation that
115 was inserted in BB. */
116 tree recip_def_stmt;
117
118 /* Pointer to a list of "struct occurrence"s for blocks dominated
119 by BB. */
120 struct occurrence *children;
121
122 /* Pointer to the next "struct occurrence"s in the list of blocks
123 sharing a common dominator. */
124 struct occurrence *next;
125
126 /* The number of divisions that are in BB before compute_merit. The
127 number of divisions that are in BB or post-dominate it after
128 compute_merit. */
129 int num_divisions;
130
131 /* True if the basic block has a division, false if it is a common
132 dominator for basic blocks that do. If it is false and trapping
133 math is active, BB is not a candidate for inserting a reciprocal. */
134 bool bb_has_division;
135 };
136
137
138 /* The instance of "struct occurrence" representing the highest
139 interesting block in the dominator tree. */
140 static struct occurrence *occ_head;
141
142 /* Allocation pool for getting instances of "struct occurrence". */
143 static alloc_pool occ_pool;
144
145
146
147 /* Allocate and return a new struct occurrence for basic block BB, and
148 whose children list is headed by CHILDREN. */
149 static struct occurrence *
150 occ_new (basic_block bb, struct occurrence *children)
151 {
152 struct occurrence *occ;
153
154 occ = bb->aux = pool_alloc (occ_pool);
155 memset (occ, 0, sizeof (struct occurrence));
156
157 occ->bb = bb;
158 occ->children = children;
159 return occ;
160 }
161
162
163 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
164 list of "struct occurrence"s, one per basic block, having IDOM as
165 their common dominator.
166
167 We try to insert NEW_OCC as deep as possible in the tree, and we also
168 insert any other block that is a common dominator for BB and one
169 block already in the tree. */
170
171 static void
172 insert_bb (struct occurrence *new_occ, basic_block idom,
173 struct occurrence **p_head)
174 {
175 struct occurrence *occ, **p_occ;
176
177 for (p_occ = p_head; (occ = *p_occ) != NULL; )
178 {
179 basic_block bb = new_occ->bb, occ_bb = occ->bb;
180 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
181 if (dom == bb)
182 {
183 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
184 from its list. */
185 *p_occ = occ->next;
186 occ->next = new_occ->children;
187 new_occ->children = occ;
188
189 /* Try the next block (it may as well be dominated by BB). */
190 }
191
192 else if (dom == occ_bb)
193 {
194 /* OCC_BB dominates BB. Tail recurse to look deeper. */
195 insert_bb (new_occ, dom, &occ->children);
196 return;
197 }
198
199 else if (dom != idom)
200 {
201 gcc_assert (!dom->aux);
202
203 /* There is a dominator between IDOM and BB, add it and make
204 two children out of NEW_OCC and OCC. First, remove OCC from
205 its list. */
206 *p_occ = occ->next;
207 new_occ->next = occ;
208 occ->next = NULL;
209
210 /* None of the previous blocks has DOM as a dominator: if we tail
211 recursed, we would reexamine them uselessly. Just switch BB with
212 DOM, and go on looking for blocks dominated by DOM. */
213 new_occ = occ_new (dom, new_occ);
214 }
215
216 else
217 {
218 /* Nothing special, go on with the next element. */
219 p_occ = &occ->next;
220 }
221 }
222
223 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
224 new_occ->next = *p_head;
225 *p_head = new_occ;
226 }
227
228 /* Register that we found a division in BB. */
229
230 static inline void
231 register_division_in (basic_block bb)
232 {
233 struct occurrence *occ;
234
235 occ = (struct occurrence *) bb->aux;
236 if (!occ)
237 {
238 occ = occ_new (bb, NULL);
239 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
240 }
241
242 occ->bb_has_division = true;
243 occ->num_divisions++;
244 }
245
246
247 /* Compute the number of divisions that postdominate each block in OCC and
248 its children. */
249
250 static void
251 compute_merit (struct occurrence *occ)
252 {
253 struct occurrence *occ_child;
254 basic_block dom = occ->bb;
255
256 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
257 {
258 basic_block bb;
259 if (occ_child->children)
260 compute_merit (occ_child);
261
262 if (flag_exceptions)
263 bb = single_noncomplex_succ (dom);
264 else
265 bb = dom;
266
267 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
268 occ->num_divisions += occ_child->num_divisions;
269 }
270 }
271
272
273 /* Return whether USE_STMT is a floating-point division by DEF. */
274 static inline bool
275 is_division_by (tree use_stmt, tree def)
276 {
277 return TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
278 && TREE_CODE (GIMPLE_STMT_OPERAND (use_stmt, 1)) == RDIV_EXPR
279 && TREE_OPERAND (GIMPLE_STMT_OPERAND (use_stmt, 1), 1) == def;
280 }
281
282 /* Walk the subset of the dominator tree rooted at OCC, setting the
283 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
284 the given basic block. The field may be left NULL, of course,
285 if it is not possible or profitable to do the optimization.
286
287 DEF_BSI is an iterator pointing at the statement defining DEF.
288 If RECIP_DEF is set, a dominator already has a computation that can
289 be used. */
290
291 static void
292 insert_reciprocals (block_stmt_iterator *def_bsi, struct occurrence *occ,
293 tree def, tree recip_def, int threshold)
294 {
295 tree type, new_stmt;
296 block_stmt_iterator bsi;
297 struct occurrence *occ_child;
298
299 if (!recip_def
300 && (occ->bb_has_division || !flag_trapping_math)
301 && occ->num_divisions >= threshold)
302 {
303 /* Make a variable with the replacement and substitute it. */
304 type = TREE_TYPE (def);
305 recip_def = make_rename_temp (type, "reciptmp");
306 new_stmt = build_gimple_modify_stmt (recip_def,
307 fold_build2 (RDIV_EXPR, type,
308 build_one_cst (type),
309 def));
310
311
312 if (occ->bb_has_division)
313 {
314 /* Case 1: insert before an existing division. */
315 bsi = bsi_after_labels (occ->bb);
316 while (!bsi_end_p (bsi) && !is_division_by (bsi_stmt (bsi), def))
317 bsi_next (&bsi);
318
319 bsi_insert_before (&bsi, new_stmt, BSI_SAME_STMT);
320 }
321 else if (def_bsi && occ->bb == def_bsi->bb)
322 {
323 /* Case 2: insert right after the definition. Note that this will
324 never happen if the definition statement can throw, because in
325 that case the sole successor of the statement's basic block will
326 dominate all the uses as well. */
327 bsi_insert_after (def_bsi, new_stmt, BSI_NEW_STMT);
328 }
329 else
330 {
331 /* Case 3: insert in a basic block not containing defs/uses. */
332 bsi = bsi_after_labels (occ->bb);
333 bsi_insert_before (&bsi, new_stmt, BSI_SAME_STMT);
334 }
335
336 occ->recip_def_stmt = new_stmt;
337 }
338
339 occ->recip_def = recip_def;
340 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
341 insert_reciprocals (def_bsi, occ_child, def, recip_def, threshold);
342 }
343
344
345 /* Replace the division at USE_P with a multiplication by the reciprocal, if
346 possible. */
347
348 static inline void
349 replace_reciprocal (use_operand_p use_p)
350 {
351 tree use_stmt = USE_STMT (use_p);
352 basic_block bb = bb_for_stmt (use_stmt);
353 struct occurrence *occ = (struct occurrence *) bb->aux;
354
355 if (occ->recip_def && use_stmt != occ->recip_def_stmt)
356 {
357 TREE_SET_CODE (GIMPLE_STMT_OPERAND (use_stmt, 1), MULT_EXPR);
358 SET_USE (use_p, occ->recip_def);
359 fold_stmt_inplace (use_stmt);
360 update_stmt (use_stmt);
361 }
362 }
363
364
365 /* Free OCC and return one more "struct occurrence" to be freed. */
366
367 static struct occurrence *
368 free_bb (struct occurrence *occ)
369 {
370 struct occurrence *child, *next;
371
372 /* First get the two pointers hanging off OCC. */
373 next = occ->next;
374 child = occ->children;
375 occ->bb->aux = NULL;
376 pool_free (occ_pool, occ);
377
378 /* Now ensure that we don't recurse unless it is necessary. */
379 if (!child)
380 return next;
381 else
382 {
383 while (next)
384 next = free_bb (next);
385
386 return child;
387 }
388 }
389
390
391 /* Look for floating-point divisions among DEF's uses, and try to
392 replace them by multiplications with the reciprocal. Add
393 as many statements computing the reciprocal as needed.
394
395 DEF must be a GIMPLE register of a floating-point type. */
396
397 static void
398 execute_cse_reciprocals_1 (block_stmt_iterator *def_bsi, tree def)
399 {
400 use_operand_p use_p;
401 imm_use_iterator use_iter;
402 struct occurrence *occ;
403 int count = 0, threshold;
404
405 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
406
407 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
408 {
409 tree use_stmt = USE_STMT (use_p);
410 if (is_division_by (use_stmt, def))
411 {
412 register_division_in (bb_for_stmt (use_stmt));
413 count++;
414 }
415 }
416
417 /* Do the expensive part only if we can hope to optimize something. */
418 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
419 if (count >= threshold)
420 {
421 tree use_stmt;
422 for (occ = occ_head; occ; occ = occ->next)
423 {
424 compute_merit (occ);
425 insert_reciprocals (def_bsi, occ, def, NULL, threshold);
426 }
427
428 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
429 {
430 if (is_division_by (use_stmt, def))
431 {
432 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
433 replace_reciprocal (use_p);
434 }
435 }
436 }
437
438 for (occ = occ_head; occ; )
439 occ = free_bb (occ);
440
441 occ_head = NULL;
442 }
443
444 static bool
445 gate_cse_reciprocals (void)
446 {
447 return optimize && !optimize_size && flag_unsafe_math_optimizations;
448 }
449
450 /* Go through all the floating-point SSA_NAMEs, and call
451 execute_cse_reciprocals_1 on each of them. */
452 static unsigned int
453 execute_cse_reciprocals (void)
454 {
455 basic_block bb;
456 tree arg;
457
458 occ_pool = create_alloc_pool ("dominators for recip",
459 sizeof (struct occurrence),
460 n_basic_blocks / 3 + 1);
461
462 calculate_dominance_info (CDI_DOMINATORS);
463 calculate_dominance_info (CDI_POST_DOMINATORS);
464
465 #ifdef ENABLE_CHECKING
466 FOR_EACH_BB (bb)
467 gcc_assert (!bb->aux);
468 #endif
469
470 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = TREE_CHAIN (arg))
471 if (gimple_default_def (cfun, arg)
472 && FLOAT_TYPE_P (TREE_TYPE (arg))
473 && is_gimple_reg (arg))
474 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
475
476 FOR_EACH_BB (bb)
477 {
478 block_stmt_iterator bsi;
479 tree phi, def;
480
481 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
482 {
483 def = PHI_RESULT (phi);
484 if (FLOAT_TYPE_P (TREE_TYPE (def))
485 && is_gimple_reg (def))
486 execute_cse_reciprocals_1 (NULL, def);
487 }
488
489 for (bsi = bsi_after_labels (bb); !bsi_end_p (bsi); bsi_next (&bsi))
490 {
491 tree stmt = bsi_stmt (bsi);
492
493 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
494 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
495 && FLOAT_TYPE_P (TREE_TYPE (def))
496 && TREE_CODE (def) == SSA_NAME)
497 execute_cse_reciprocals_1 (&bsi, def);
498 }
499 }
500
501 free_dominance_info (CDI_DOMINATORS);
502 free_dominance_info (CDI_POST_DOMINATORS);
503 free_alloc_pool (occ_pool);
504 return 0;
505 }
506
507 struct tree_opt_pass pass_cse_reciprocals =
508 {
509 "recip", /* name */
510 gate_cse_reciprocals, /* gate */
511 execute_cse_reciprocals, /* execute */
512 NULL, /* sub */
513 NULL, /* next */
514 0, /* static_pass_number */
515 0, /* tv_id */
516 PROP_ssa, /* properties_required */
517 0, /* properties_provided */
518 0, /* properties_destroyed */
519 0, /* todo_flags_start */
520 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
521 | TODO_verify_stmts, /* todo_flags_finish */
522 0 /* letter */
523 };
524
525 /* Records an occurrence at statement USE_STMT in the vector of trees
526 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
527 is not yet initialized. Returns true if the occurrence was pushed on
528 the vector. Adjusts *TOP_BB to be the basic block dominating all
529 statements in the vector. */
530
531 static bool
532 maybe_record_sincos (VEC(tree, heap) **stmts,
533 basic_block *top_bb, tree use_stmt)
534 {
535 basic_block use_bb = bb_for_stmt (use_stmt);
536 if (*top_bb
537 && (*top_bb == use_bb
538 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
539 VEC_safe_push (tree, heap, *stmts, use_stmt);
540 else if (!*top_bb
541 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
542 {
543 VEC_safe_push (tree, heap, *stmts, use_stmt);
544 *top_bb = use_bb;
545 }
546 else
547 return false;
548
549 return true;
550 }
551
552 /* Look for sin, cos and cexpi calls with the same argument NAME and
553 create a single call to cexpi CSEing the result in this case.
554 We first walk over all immediate uses of the argument collecting
555 statements that we can CSE in a vector and in a second pass replace
556 the statement rhs with a REALPART or IMAGPART expression on the
557 result of the cexpi call we insert before the use statement that
558 dominates all other candidates. */
559
560 static void
561 execute_cse_sincos_1 (tree name)
562 {
563 block_stmt_iterator bsi;
564 imm_use_iterator use_iter;
565 tree def_stmt, use_stmt, fndecl, res, call, stmt, type;
566 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
567 VEC(tree, heap) *stmts = NULL;
568 basic_block top_bb = NULL;
569 int i;
570
571 type = TREE_TYPE (name);
572 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
573 {
574 if (TREE_CODE (use_stmt) != GIMPLE_MODIFY_STMT
575 || TREE_CODE (GIMPLE_STMT_OPERAND (use_stmt, 1)) != CALL_EXPR
576 || !(fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (use_stmt, 1)))
577 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
578 continue;
579
580 switch (DECL_FUNCTION_CODE (fndecl))
581 {
582 CASE_FLT_FN (BUILT_IN_COS):
583 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
584 break;
585
586 CASE_FLT_FN (BUILT_IN_SIN):
587 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
588 break;
589
590 CASE_FLT_FN (BUILT_IN_CEXPI):
591 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
592 break;
593
594 default:;
595 }
596 }
597
598 if (seen_cos + seen_sin + seen_cexpi <= 1)
599 {
600 VEC_free(tree, heap, stmts);
601 return;
602 }
603
604 /* Simply insert cexpi at the beginning of top_bb but not earlier than
605 the name def statement. */
606 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
607 if (!fndecl)
608 return;
609 res = make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
610 call = build_call_expr (fndecl, 1, name);
611 stmt = build_gimple_modify_stmt (res, call);
612 def_stmt = SSA_NAME_DEF_STMT (name);
613 if (bb_for_stmt (def_stmt) == top_bb
614 && TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT)
615 {
616 bsi = bsi_for_stmt (def_stmt);
617 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
618 }
619 else
620 {
621 bsi = bsi_after_labels (top_bb);
622 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
623 }
624 update_stmt (stmt);
625
626 /* And adjust the recorded old call sites. */
627 for (i = 0; VEC_iterate(tree, stmts, i, use_stmt); ++i)
628 {
629 fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (use_stmt, 1));
630 switch (DECL_FUNCTION_CODE (fndecl))
631 {
632 CASE_FLT_FN (BUILT_IN_COS):
633 GIMPLE_STMT_OPERAND (use_stmt, 1) = fold_build1 (REALPART_EXPR,
634 type, res);
635 break;
636
637 CASE_FLT_FN (BUILT_IN_SIN):
638 GIMPLE_STMT_OPERAND (use_stmt, 1) = fold_build1 (IMAGPART_EXPR,
639 type, res);
640 break;
641
642 CASE_FLT_FN (BUILT_IN_CEXPI):
643 GIMPLE_STMT_OPERAND (use_stmt, 1) = res;
644 break;
645
646 default:;
647 gcc_unreachable ();
648 }
649
650 update_stmt (use_stmt);
651 }
652
653 VEC_free(tree, heap, stmts);
654 }
655
656 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
657 on the SSA_NAME argument of each of them. */
658
659 static unsigned int
660 execute_cse_sincos (void)
661 {
662 basic_block bb;
663
664 calculate_dominance_info (CDI_DOMINATORS);
665
666 FOR_EACH_BB (bb)
667 {
668 block_stmt_iterator bsi;
669
670 for (bsi = bsi_after_labels (bb); !bsi_end_p (bsi); bsi_next (&bsi))
671 {
672 tree stmt = bsi_stmt (bsi);
673 tree fndecl;
674
675 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
676 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == CALL_EXPR
677 && (fndecl = get_callee_fndecl (GIMPLE_STMT_OPERAND (stmt, 1)))
678 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
679 {
680 tree arg;
681
682 switch (DECL_FUNCTION_CODE (fndecl))
683 {
684 CASE_FLT_FN (BUILT_IN_COS):
685 CASE_FLT_FN (BUILT_IN_SIN):
686 CASE_FLT_FN (BUILT_IN_CEXPI):
687 arg = GIMPLE_STMT_OPERAND (stmt, 1);
688 arg = CALL_EXPR_ARG (arg, 0);
689 if (TREE_CODE (arg) == SSA_NAME)
690 execute_cse_sincos_1 (arg);
691 break;
692
693 default:;
694 }
695 }
696 }
697 }
698
699 free_dominance_info (CDI_DOMINATORS);
700 return 0;
701 }
702
703 static bool
704 gate_cse_sincos (void)
705 {
706 /* Make sure we have either sincos or cexp. */
707 return (TARGET_HAS_SINCOS
708 || TARGET_C99_FUNCTIONS)
709 && optimize;
710 }
711
712 struct tree_opt_pass pass_cse_sincos =
713 {
714 "sincos", /* name */
715 gate_cse_sincos, /* gate */
716 execute_cse_sincos, /* execute */
717 NULL, /* sub */
718 NULL, /* next */
719 0, /* static_pass_number */
720 0, /* tv_id */
721 PROP_ssa, /* properties_required */
722 0, /* properties_provided */
723 0, /* properties_destroyed */
724 0, /* todo_flags_start */
725 TODO_dump_func | TODO_update_ssa | TODO_verify_ssa
726 | TODO_verify_stmts, /* todo_flags_finish */
727 0 /* letter */
728 };