calls.c (store_one_arg): Remove incorrect const qualification on the type of the...
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "expr.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
114 #include "target.h"
115 #include "gimple-pretty-print.h"
116
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
120 #include "optabs.h"
121
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
124 division. */
125 struct occurrence {
126 /* The basic block represented by this structure. */
127 basic_block bb;
128
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 inserted in BB. */
131 tree recip_def;
132
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt;
136
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
138 by BB. */
139 struct occurrence *children;
140
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence *next;
144
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
147 compute_merit. */
148 int num_divisions;
149
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division;
154 };
155
156 static struct
157 {
158 /* Number of 1.0/X ops inserted. */
159 int rdivs_inserted;
160
161 /* Number of 1.0/FUNC ops inserted. */
162 int rfuncs_inserted;
163 } reciprocal_stats;
164
165 static struct
166 {
167 /* Number of cexpi calls inserted. */
168 int inserted;
169 } sincos_stats;
170
171 static struct
172 {
173 /* Number of hand-written 16-bit bswaps found. */
174 int found_16bit;
175
176 /* Number of hand-written 32-bit bswaps found. */
177 int found_32bit;
178
179 /* Number of hand-written 64-bit bswaps found. */
180 int found_64bit;
181 } bswap_stats;
182
183 static struct
184 {
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted;
187
188 /* Number of integer multiply-and-accumulate ops inserted. */
189 int maccs_inserted;
190
191 /* Number of fp fused multiply-add ops inserted. */
192 int fmas_inserted;
193 } widen_mul_stats;
194
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
198
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool;
201
202
203
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
208 {
209 struct occurrence *occ;
210
211 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
212 memset (occ, 0, sizeof (struct occurrence));
213
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
217 }
218
219
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
223
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
227
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
231 {
232 struct occurrence *occ, **p_occ;
233
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
235 {
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
239 {
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
245
246 /* Try the next block (it may as well be dominated by BB). */
247 }
248
249 else if (dom == occ_bb)
250 {
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
254 }
255
256 else if (dom != idom)
257 {
258 gcc_assert (!dom->aux);
259
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
266
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
271 }
272
273 else
274 {
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
277 }
278 }
279
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
283 }
284
285 /* Register that we found a division in BB. */
286
287 static inline void
288 register_division_in (basic_block bb)
289 {
290 struct occurrence *occ;
291
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
294 {
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
297 }
298
299 occ->bb_has_division = true;
300 occ->num_divisions++;
301 }
302
303
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
306
307 static void
308 compute_merit (struct occurrence *occ)
309 {
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
312
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
314 {
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
318
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
323
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
326 }
327 }
328
329
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple use_stmt, tree def)
333 {
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
341 }
342
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
347
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
351
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
355 {
356 tree type;
357 gimple new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
360
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
364 {
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
369 build_one_cst (type), def);
370
371 if (occ->bb_has_division)
372 {
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
377
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
379 }
380 else if (def_gsi && occ->bb == def_gsi->bb)
381 {
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
387 }
388 else
389 {
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
393 }
394
395 reciprocal_stats.rdivs_inserted++;
396
397 occ->recip_def_stmt = new_stmt;
398 }
399
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
403 }
404
405
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
408
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
411 {
412 gimple use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
415
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
418 {
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
424 }
425 }
426
427
428 /* Free OCC and return one more "struct occurrence" to be freed. */
429
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
432 {
433 struct occurrence *child, *next;
434
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 pool_free (occ_pool, occ);
440
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
445 {
446 while (next)
447 next = free_bb (next);
448
449 return child;
450 }
451 }
452
453
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
457
458 DEF must be a GIMPLE register of a floating-point type. */
459
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
462 {
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
467
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
469
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
471 {
472 gimple use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
474 {
475 register_division_in (gimple_bb (use_stmt));
476 count++;
477 }
478 }
479
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
483 {
484 gimple use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
486 {
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
489 }
490
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
492 {
493 if (is_division_by (use_stmt, def))
494 {
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
497 }
498 }
499 }
500
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
503
504 occ_head = NULL;
505 }
506
507 static bool
508 gate_cse_reciprocals (void)
509 {
510 return optimize && flag_reciprocal_math;
511 }
512
513 /* Go through all the floating-point SSA_NAMEs, and call
514 execute_cse_reciprocals_1 on each of them. */
515 static unsigned int
516 execute_cse_reciprocals (void)
517 {
518 basic_block bb;
519 tree arg;
520
521 occ_pool = create_alloc_pool ("dominators for recip",
522 sizeof (struct occurrence),
523 n_basic_blocks_for_fn (cfun) / 3 + 1);
524
525 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
526 calculate_dominance_info (CDI_DOMINATORS);
527 calculate_dominance_info (CDI_POST_DOMINATORS);
528
529 #ifdef ENABLE_CHECKING
530 FOR_EACH_BB_FN (bb, cfun)
531 gcc_assert (!bb->aux);
532 #endif
533
534 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
535 if (FLOAT_TYPE_P (TREE_TYPE (arg))
536 && is_gimple_reg (arg))
537 {
538 tree name = ssa_default_def (cfun, arg);
539 if (name)
540 execute_cse_reciprocals_1 (NULL, name);
541 }
542
543 FOR_EACH_BB_FN (bb, cfun)
544 {
545 gimple_stmt_iterator gsi;
546 gimple phi;
547 tree def;
548
549 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
550 {
551 phi = gsi_stmt (gsi);
552 def = PHI_RESULT (phi);
553 if (! virtual_operand_p (def)
554 && FLOAT_TYPE_P (TREE_TYPE (def)))
555 execute_cse_reciprocals_1 (NULL, def);
556 }
557
558 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
559 {
560 gimple stmt = gsi_stmt (gsi);
561
562 if (gimple_has_lhs (stmt)
563 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
564 && FLOAT_TYPE_P (TREE_TYPE (def))
565 && TREE_CODE (def) == SSA_NAME)
566 execute_cse_reciprocals_1 (&gsi, def);
567 }
568
569 if (optimize_bb_for_size_p (bb))
570 continue;
571
572 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
573 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
574 {
575 gimple stmt = gsi_stmt (gsi);
576 tree fndecl;
577
578 if (is_gimple_assign (stmt)
579 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
580 {
581 tree arg1 = gimple_assign_rhs2 (stmt);
582 gimple stmt1;
583
584 if (TREE_CODE (arg1) != SSA_NAME)
585 continue;
586
587 stmt1 = SSA_NAME_DEF_STMT (arg1);
588
589 if (is_gimple_call (stmt1)
590 && gimple_call_lhs (stmt1)
591 && (fndecl = gimple_call_fndecl (stmt1))
592 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
593 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
594 {
595 enum built_in_function code;
596 bool md_code, fail;
597 imm_use_iterator ui;
598 use_operand_p use_p;
599
600 code = DECL_FUNCTION_CODE (fndecl);
601 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
602
603 fndecl = targetm.builtin_reciprocal (code, md_code, false);
604 if (!fndecl)
605 continue;
606
607 /* Check that all uses of the SSA name are divisions,
608 otherwise replacing the defining statement will do
609 the wrong thing. */
610 fail = false;
611 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
612 {
613 gimple stmt2 = USE_STMT (use_p);
614 if (is_gimple_debug (stmt2))
615 continue;
616 if (!is_gimple_assign (stmt2)
617 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
618 || gimple_assign_rhs1 (stmt2) == arg1
619 || gimple_assign_rhs2 (stmt2) != arg1)
620 {
621 fail = true;
622 break;
623 }
624 }
625 if (fail)
626 continue;
627
628 gimple_replace_ssa_lhs (stmt1, arg1);
629 gimple_call_set_fndecl (stmt1, fndecl);
630 update_stmt (stmt1);
631 reciprocal_stats.rfuncs_inserted++;
632
633 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
634 {
635 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
636 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
637 fold_stmt_inplace (&gsi);
638 update_stmt (stmt);
639 }
640 }
641 }
642 }
643 }
644
645 statistics_counter_event (cfun, "reciprocal divs inserted",
646 reciprocal_stats.rdivs_inserted);
647 statistics_counter_event (cfun, "reciprocal functions inserted",
648 reciprocal_stats.rfuncs_inserted);
649
650 free_dominance_info (CDI_DOMINATORS);
651 free_dominance_info (CDI_POST_DOMINATORS);
652 free_alloc_pool (occ_pool);
653 return 0;
654 }
655
656 namespace {
657
658 const pass_data pass_data_cse_reciprocals =
659 {
660 GIMPLE_PASS, /* type */
661 "recip", /* name */
662 OPTGROUP_NONE, /* optinfo_flags */
663 true, /* has_gate */
664 true, /* has_execute */
665 TV_NONE, /* tv_id */
666 PROP_ssa, /* properties_required */
667 0, /* properties_provided */
668 0, /* properties_destroyed */
669 0, /* todo_flags_start */
670 ( TODO_update_ssa | TODO_verify_ssa
671 | TODO_verify_stmts ), /* todo_flags_finish */
672 };
673
674 class pass_cse_reciprocals : public gimple_opt_pass
675 {
676 public:
677 pass_cse_reciprocals (gcc::context *ctxt)
678 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
679 {}
680
681 /* opt_pass methods: */
682 bool gate () { return gate_cse_reciprocals (); }
683 unsigned int execute () { return execute_cse_reciprocals (); }
684
685 }; // class pass_cse_reciprocals
686
687 } // anon namespace
688
689 gimple_opt_pass *
690 make_pass_cse_reciprocals (gcc::context *ctxt)
691 {
692 return new pass_cse_reciprocals (ctxt);
693 }
694
695 /* Records an occurrence at statement USE_STMT in the vector of trees
696 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
697 is not yet initialized. Returns true if the occurrence was pushed on
698 the vector. Adjusts *TOP_BB to be the basic block dominating all
699 statements in the vector. */
700
701 static bool
702 maybe_record_sincos (vec<gimple> *stmts,
703 basic_block *top_bb, gimple use_stmt)
704 {
705 basic_block use_bb = gimple_bb (use_stmt);
706 if (*top_bb
707 && (*top_bb == use_bb
708 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
709 stmts->safe_push (use_stmt);
710 else if (!*top_bb
711 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
712 {
713 stmts->safe_push (use_stmt);
714 *top_bb = use_bb;
715 }
716 else
717 return false;
718
719 return true;
720 }
721
722 /* Look for sin, cos and cexpi calls with the same argument NAME and
723 create a single call to cexpi CSEing the result in this case.
724 We first walk over all immediate uses of the argument collecting
725 statements that we can CSE in a vector and in a second pass replace
726 the statement rhs with a REALPART or IMAGPART expression on the
727 result of the cexpi call we insert before the use statement that
728 dominates all other candidates. */
729
730 static bool
731 execute_cse_sincos_1 (tree name)
732 {
733 gimple_stmt_iterator gsi;
734 imm_use_iterator use_iter;
735 tree fndecl, res, type;
736 gimple def_stmt, use_stmt, stmt;
737 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
738 vec<gimple> stmts = vNULL;
739 basic_block top_bb = NULL;
740 int i;
741 bool cfg_changed = false;
742
743 type = TREE_TYPE (name);
744 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
745 {
746 if (gimple_code (use_stmt) != GIMPLE_CALL
747 || !gimple_call_lhs (use_stmt)
748 || !(fndecl = gimple_call_fndecl (use_stmt))
749 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
750 continue;
751
752 switch (DECL_FUNCTION_CODE (fndecl))
753 {
754 CASE_FLT_FN (BUILT_IN_COS):
755 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
756 break;
757
758 CASE_FLT_FN (BUILT_IN_SIN):
759 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
760 break;
761
762 CASE_FLT_FN (BUILT_IN_CEXPI):
763 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
764 break;
765
766 default:;
767 }
768 }
769
770 if (seen_cos + seen_sin + seen_cexpi <= 1)
771 {
772 stmts.release ();
773 return false;
774 }
775
776 /* Simply insert cexpi at the beginning of top_bb but not earlier than
777 the name def statement. */
778 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
779 if (!fndecl)
780 return false;
781 stmt = gimple_build_call (fndecl, 1, name);
782 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
783 gimple_call_set_lhs (stmt, res);
784
785 def_stmt = SSA_NAME_DEF_STMT (name);
786 if (!SSA_NAME_IS_DEFAULT_DEF (name)
787 && gimple_code (def_stmt) != GIMPLE_PHI
788 && gimple_bb (def_stmt) == top_bb)
789 {
790 gsi = gsi_for_stmt (def_stmt);
791 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
792 }
793 else
794 {
795 gsi = gsi_after_labels (top_bb);
796 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
797 }
798 sincos_stats.inserted++;
799
800 /* And adjust the recorded old call sites. */
801 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
802 {
803 tree rhs = NULL;
804 fndecl = gimple_call_fndecl (use_stmt);
805
806 switch (DECL_FUNCTION_CODE (fndecl))
807 {
808 CASE_FLT_FN (BUILT_IN_COS):
809 rhs = fold_build1 (REALPART_EXPR, type, res);
810 break;
811
812 CASE_FLT_FN (BUILT_IN_SIN):
813 rhs = fold_build1 (IMAGPART_EXPR, type, res);
814 break;
815
816 CASE_FLT_FN (BUILT_IN_CEXPI):
817 rhs = res;
818 break;
819
820 default:;
821 gcc_unreachable ();
822 }
823
824 /* Replace call with a copy. */
825 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
826
827 gsi = gsi_for_stmt (use_stmt);
828 gsi_replace (&gsi, stmt, true);
829 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
830 cfg_changed = true;
831 }
832
833 stmts.release ();
834
835 return cfg_changed;
836 }
837
838 /* To evaluate powi(x,n), the floating point value x raised to the
839 constant integer exponent n, we use a hybrid algorithm that
840 combines the "window method" with look-up tables. For an
841 introduction to exponentiation algorithms and "addition chains",
842 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
843 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
844 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
845 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
846
847 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
848 multiplications to inline before calling the system library's pow
849 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
850 so this default never requires calling pow, powf or powl. */
851
852 #ifndef POWI_MAX_MULTS
853 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
854 #endif
855
856 /* The size of the "optimal power tree" lookup table. All
857 exponents less than this value are simply looked up in the
858 powi_table below. This threshold is also used to size the
859 cache of pseudo registers that hold intermediate results. */
860 #define POWI_TABLE_SIZE 256
861
862 /* The size, in bits of the window, used in the "window method"
863 exponentiation algorithm. This is equivalent to a radix of
864 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
865 #define POWI_WINDOW_SIZE 3
866
867 /* The following table is an efficient representation of an
868 "optimal power tree". For each value, i, the corresponding
869 value, j, in the table states than an optimal evaluation
870 sequence for calculating pow(x,i) can be found by evaluating
871 pow(x,j)*pow(x,i-j). An optimal power tree for the first
872 100 integers is given in Knuth's "Seminumerical algorithms". */
873
874 static const unsigned char powi_table[POWI_TABLE_SIZE] =
875 {
876 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
877 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
878 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
879 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
880 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
881 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
882 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
883 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
884 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
885 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
886 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
887 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
888 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
889 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
890 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
891 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
892 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
893 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
894 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
895 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
896 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
897 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
898 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
899 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
900 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
901 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
902 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
903 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
904 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
905 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
906 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
907 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
908 };
909
910
911 /* Return the number of multiplications required to calculate
912 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
913 subroutine of powi_cost. CACHE is an array indicating
914 which exponents have already been calculated. */
915
916 static int
917 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
918 {
919 /* If we've already calculated this exponent, then this evaluation
920 doesn't require any additional multiplications. */
921 if (cache[n])
922 return 0;
923
924 cache[n] = true;
925 return powi_lookup_cost (n - powi_table[n], cache)
926 + powi_lookup_cost (powi_table[n], cache) + 1;
927 }
928
929 /* Return the number of multiplications required to calculate
930 powi(x,n) for an arbitrary x, given the exponent N. This
931 function needs to be kept in sync with powi_as_mults below. */
932
933 static int
934 powi_cost (HOST_WIDE_INT n)
935 {
936 bool cache[POWI_TABLE_SIZE];
937 unsigned HOST_WIDE_INT digit;
938 unsigned HOST_WIDE_INT val;
939 int result;
940
941 if (n == 0)
942 return 0;
943
944 /* Ignore the reciprocal when calculating the cost. */
945 val = (n < 0) ? -n : n;
946
947 /* Initialize the exponent cache. */
948 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
949 cache[1] = true;
950
951 result = 0;
952
953 while (val >= POWI_TABLE_SIZE)
954 {
955 if (val & 1)
956 {
957 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
958 result += powi_lookup_cost (digit, cache)
959 + POWI_WINDOW_SIZE + 1;
960 val >>= POWI_WINDOW_SIZE;
961 }
962 else
963 {
964 val >>= 1;
965 result++;
966 }
967 }
968
969 return result + powi_lookup_cost (val, cache);
970 }
971
972 /* Recursive subroutine of powi_as_mults. This function takes the
973 array, CACHE, of already calculated exponents and an exponent N and
974 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
975
976 static tree
977 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
978 HOST_WIDE_INT n, tree *cache)
979 {
980 tree op0, op1, ssa_target;
981 unsigned HOST_WIDE_INT digit;
982 gimple mult_stmt;
983
984 if (n < POWI_TABLE_SIZE && cache[n])
985 return cache[n];
986
987 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
988
989 if (n < POWI_TABLE_SIZE)
990 {
991 cache[n] = ssa_target;
992 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
994 }
995 else if (n & 1)
996 {
997 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
998 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1000 }
1001 else
1002 {
1003 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1004 op1 = op0;
1005 }
1006
1007 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1008 gimple_set_location (mult_stmt, loc);
1009 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1010
1011 return ssa_target;
1012 }
1013
1014 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1015 This function needs to be kept in sync with powi_cost above. */
1016
1017 static tree
1018 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1020 {
1021 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1022 gimple div_stmt;
1023 tree target;
1024
1025 if (n == 0)
1026 return build_real (type, dconst1);
1027
1028 memset (cache, 0, sizeof (cache));
1029 cache[1] = arg0;
1030
1031 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1032 if (n >= 0)
1033 return result;
1034
1035 /* If the original exponent was negative, reciprocate the result. */
1036 target = make_temp_ssa_name (type, NULL, "powmult");
1037 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1038 build_real (type, dconst1),
1039 result);
1040 gimple_set_location (div_stmt, loc);
1041 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1042
1043 return target;
1044 }
1045
1046 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1047 location info LOC. If the arguments are appropriate, create an
1048 equivalent sequence of statements prior to GSI using an optimal
1049 number of multiplications, and return an expession holding the
1050 result. */
1051
1052 static tree
1053 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1054 tree arg0, HOST_WIDE_INT n)
1055 {
1056 /* Avoid largest negative number. */
1057 if (n != -n
1058 && ((n >= -1 && n <= 2)
1059 || (optimize_function_for_speed_p (cfun)
1060 && powi_cost (n) <= POWI_MAX_MULTS)))
1061 return powi_as_mults (gsi, loc, arg0, n);
1062
1063 return NULL_TREE;
1064 }
1065
1066 /* Build a gimple call statement that calls FN with argument ARG.
1067 Set the lhs of the call statement to a fresh SSA name. Insert the
1068 statement prior to GSI's current position, and return the fresh
1069 SSA name. */
1070
1071 static tree
1072 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1073 tree fn, tree arg)
1074 {
1075 gimple call_stmt;
1076 tree ssa_target;
1077
1078 call_stmt = gimple_build_call (fn, 1, arg);
1079 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1080 gimple_set_lhs (call_stmt, ssa_target);
1081 gimple_set_location (call_stmt, loc);
1082 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1083
1084 return ssa_target;
1085 }
1086
1087 /* Build a gimple binary operation with the given CODE and arguments
1088 ARG0, ARG1, assigning the result to a new SSA name for variable
1089 TARGET. Insert the statement prior to GSI's current position, and
1090 return the fresh SSA name.*/
1091
1092 static tree
1093 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1094 const char *name, enum tree_code code,
1095 tree arg0, tree arg1)
1096 {
1097 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1098 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1099 gimple_set_location (stmt, loc);
1100 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1101 return result;
1102 }
1103
1104 /* Build a gimple reference operation with the given CODE and argument
1105 ARG, assigning the result to a new SSA name of TYPE with NAME.
1106 Insert the statement prior to GSI's current position, and return
1107 the fresh SSA name. */
1108
1109 static inline tree
1110 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1111 const char *name, enum tree_code code, tree arg0)
1112 {
1113 tree result = make_temp_ssa_name (type, NULL, name);
1114 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1115 gimple_set_location (stmt, loc);
1116 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1117 return result;
1118 }
1119
1120 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1121 prior to GSI's current position, and return the fresh SSA name. */
1122
1123 static tree
1124 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1125 tree type, tree val)
1126 {
1127 tree result = make_ssa_name (type, NULL);
1128 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1129 gimple_set_location (stmt, loc);
1130 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1131 return result;
1132 }
1133
1134 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1135 with location info LOC. If possible, create an equivalent and
1136 less expensive sequence of statements prior to GSI, and return an
1137 expession holding the result. */
1138
1139 static tree
1140 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1141 tree arg0, tree arg1)
1142 {
1143 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1144 REAL_VALUE_TYPE c2, dconst3;
1145 HOST_WIDE_INT n;
1146 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1147 enum machine_mode mode;
1148 bool hw_sqrt_exists, c_is_int, c2_is_int;
1149
1150 /* If the exponent isn't a constant, there's nothing of interest
1151 to be done. */
1152 if (TREE_CODE (arg1) != REAL_CST)
1153 return NULL_TREE;
1154
1155 /* If the exponent is equivalent to an integer, expand to an optimal
1156 multiplication sequence when profitable. */
1157 c = TREE_REAL_CST (arg1);
1158 n = real_to_integer (&c);
1159 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1160 c_is_int = real_identical (&c, &cint);
1161
1162 if (c_is_int
1163 && ((n >= -1 && n <= 2)
1164 || (flag_unsafe_math_optimizations
1165 && optimize_insn_for_speed_p ()
1166 && powi_cost (n) <= POWI_MAX_MULTS)))
1167 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1168
1169 /* Attempt various optimizations using sqrt and cbrt. */
1170 type = TREE_TYPE (arg0);
1171 mode = TYPE_MODE (type);
1172 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1173
1174 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1175 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1176 sqrt(-0) = -0. */
1177 if (sqrtfn
1178 && REAL_VALUES_EQUAL (c, dconsthalf)
1179 && !HONOR_SIGNED_ZEROS (mode))
1180 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1181
1182 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1183 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1184 so do this optimization even if -Os. Don't do this optimization
1185 if we don't have a hardware sqrt insn. */
1186 dconst1_4 = dconst1;
1187 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1188 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1189
1190 if (flag_unsafe_math_optimizations
1191 && sqrtfn
1192 && REAL_VALUES_EQUAL (c, dconst1_4)
1193 && hw_sqrt_exists)
1194 {
1195 /* sqrt(x) */
1196 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1197
1198 /* sqrt(sqrt(x)) */
1199 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1200 }
1201
1202 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1203 optimizing for space. Don't do this optimization if we don't have
1204 a hardware sqrt insn. */
1205 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1206 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1207
1208 if (flag_unsafe_math_optimizations
1209 && sqrtfn
1210 && optimize_function_for_speed_p (cfun)
1211 && REAL_VALUES_EQUAL (c, dconst3_4)
1212 && hw_sqrt_exists)
1213 {
1214 /* sqrt(x) */
1215 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1216
1217 /* sqrt(sqrt(x)) */
1218 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1219
1220 /* sqrt(x) * sqrt(sqrt(x)) */
1221 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1222 sqrt_arg0, sqrt_sqrt);
1223 }
1224
1225 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1226 optimizations since 1./3. is not exactly representable. If x
1227 is negative and finite, the correct value of pow(x,1./3.) is
1228 a NaN with the "invalid" exception raised, because the value
1229 of 1./3. actually has an even denominator. The correct value
1230 of cbrt(x) is a negative real value. */
1231 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1232 dconst1_3 = real_value_truncate (mode, dconst_third ());
1233
1234 if (flag_unsafe_math_optimizations
1235 && cbrtfn
1236 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1237 && REAL_VALUES_EQUAL (c, dconst1_3))
1238 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1239
1240 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1241 if we don't have a hardware sqrt insn. */
1242 dconst1_6 = dconst1_3;
1243 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1244
1245 if (flag_unsafe_math_optimizations
1246 && sqrtfn
1247 && cbrtfn
1248 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1249 && optimize_function_for_speed_p (cfun)
1250 && hw_sqrt_exists
1251 && REAL_VALUES_EQUAL (c, dconst1_6))
1252 {
1253 /* sqrt(x) */
1254 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1255
1256 /* cbrt(sqrt(x)) */
1257 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1258 }
1259
1260 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1261 and c not an integer, into
1262
1263 sqrt(x) * powi(x, n/2), n > 0;
1264 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1265
1266 Do not calculate the powi factor when n/2 = 0. */
1267 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1268 n = real_to_integer (&c2);
1269 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1270 c2_is_int = real_identical (&c2, &cint);
1271
1272 if (flag_unsafe_math_optimizations
1273 && sqrtfn
1274 && c2_is_int
1275 && !c_is_int
1276 && optimize_function_for_speed_p (cfun))
1277 {
1278 tree powi_x_ndiv2 = NULL_TREE;
1279
1280 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1281 possible or profitable, give up. Skip the degenerate case when
1282 n is 1 or -1, where the result is always 1. */
1283 if (absu_hwi (n) != 1)
1284 {
1285 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1286 abs_hwi (n / 2));
1287 if (!powi_x_ndiv2)
1288 return NULL_TREE;
1289 }
1290
1291 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1292 result of the optimal multiply sequence just calculated. */
1293 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1294
1295 if (absu_hwi (n) == 1)
1296 result = sqrt_arg0;
1297 else
1298 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1299 sqrt_arg0, powi_x_ndiv2);
1300
1301 /* If n is negative, reciprocate the result. */
1302 if (n < 0)
1303 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1304 build_real (type, dconst1), result);
1305 return result;
1306 }
1307
1308 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1309
1310 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1311 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1312
1313 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1314 different from pow(x, 1./3.) due to rounding and behavior with
1315 negative x, we need to constrain this transformation to unsafe
1316 math and positive x or finite math. */
1317 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1318 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1319 real_round (&c2, mode, &c2);
1320 n = real_to_integer (&c2);
1321 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1322 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1323 real_convert (&c2, mode, &c2);
1324
1325 if (flag_unsafe_math_optimizations
1326 && cbrtfn
1327 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1328 && real_identical (&c2, &c)
1329 && !c2_is_int
1330 && optimize_function_for_speed_p (cfun)
1331 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1332 {
1333 tree powi_x_ndiv3 = NULL_TREE;
1334
1335 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1336 possible or profitable, give up. Skip the degenerate case when
1337 abs(n) < 3, where the result is always 1. */
1338 if (absu_hwi (n) >= 3)
1339 {
1340 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1341 abs_hwi (n / 3));
1342 if (!powi_x_ndiv3)
1343 return NULL_TREE;
1344 }
1345
1346 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1347 as that creates an unnecessary variable. Instead, just produce
1348 either cbrt(x) or cbrt(x) * cbrt(x). */
1349 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1350
1351 if (absu_hwi (n) % 3 == 1)
1352 powi_cbrt_x = cbrt_x;
1353 else
1354 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 cbrt_x, cbrt_x);
1356
1357 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1358 if (absu_hwi (n) < 3)
1359 result = powi_cbrt_x;
1360 else
1361 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1362 powi_x_ndiv3, powi_cbrt_x);
1363
1364 /* If n is negative, reciprocate the result. */
1365 if (n < 0)
1366 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1367 build_real (type, dconst1), result);
1368
1369 return result;
1370 }
1371
1372 /* No optimizations succeeded. */
1373 return NULL_TREE;
1374 }
1375
1376 /* ARG is the argument to a cabs builtin call in GSI with location info
1377 LOC. Create a sequence of statements prior to GSI that calculates
1378 sqrt(R*R + I*I), where R and I are the real and imaginary components
1379 of ARG, respectively. Return an expression holding the result. */
1380
1381 static tree
1382 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1383 {
1384 tree real_part, imag_part, addend1, addend2, sum, result;
1385 tree type = TREE_TYPE (TREE_TYPE (arg));
1386 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1387 enum machine_mode mode = TYPE_MODE (type);
1388
1389 if (!flag_unsafe_math_optimizations
1390 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1391 || !sqrtfn
1392 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1393 return NULL_TREE;
1394
1395 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1396 REALPART_EXPR, arg);
1397 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1398 real_part, real_part);
1399 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1400 IMAGPART_EXPR, arg);
1401 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1402 imag_part, imag_part);
1403 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1404 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1405
1406 return result;
1407 }
1408
1409 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1410 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1411 an optimal number of multiplies, when n is a constant. */
1412
1413 static unsigned int
1414 execute_cse_sincos (void)
1415 {
1416 basic_block bb;
1417 bool cfg_changed = false;
1418
1419 calculate_dominance_info (CDI_DOMINATORS);
1420 memset (&sincos_stats, 0, sizeof (sincos_stats));
1421
1422 FOR_EACH_BB_FN (bb, cfun)
1423 {
1424 gimple_stmt_iterator gsi;
1425 bool cleanup_eh = false;
1426
1427 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1428 {
1429 gimple stmt = gsi_stmt (gsi);
1430 tree fndecl;
1431
1432 /* Only the last stmt in a bb could throw, no need to call
1433 gimple_purge_dead_eh_edges if we change something in the middle
1434 of a basic block. */
1435 cleanup_eh = false;
1436
1437 if (is_gimple_call (stmt)
1438 && gimple_call_lhs (stmt)
1439 && (fndecl = gimple_call_fndecl (stmt))
1440 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1441 {
1442 tree arg, arg0, arg1, result;
1443 HOST_WIDE_INT n;
1444 location_t loc;
1445
1446 switch (DECL_FUNCTION_CODE (fndecl))
1447 {
1448 CASE_FLT_FN (BUILT_IN_COS):
1449 CASE_FLT_FN (BUILT_IN_SIN):
1450 CASE_FLT_FN (BUILT_IN_CEXPI):
1451 /* Make sure we have either sincos or cexp. */
1452 if (!targetm.libc_has_function (function_c99_math_complex)
1453 && !targetm.libc_has_function (function_sincos))
1454 break;
1455
1456 arg = gimple_call_arg (stmt, 0);
1457 if (TREE_CODE (arg) == SSA_NAME)
1458 cfg_changed |= execute_cse_sincos_1 (arg);
1459 break;
1460
1461 CASE_FLT_FN (BUILT_IN_POW):
1462 arg0 = gimple_call_arg (stmt, 0);
1463 arg1 = gimple_call_arg (stmt, 1);
1464
1465 loc = gimple_location (stmt);
1466 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1467
1468 if (result)
1469 {
1470 tree lhs = gimple_get_lhs (stmt);
1471 gimple new_stmt = gimple_build_assign (lhs, result);
1472 gimple_set_location (new_stmt, loc);
1473 unlink_stmt_vdef (stmt);
1474 gsi_replace (&gsi, new_stmt, true);
1475 cleanup_eh = true;
1476 if (gimple_vdef (stmt))
1477 release_ssa_name (gimple_vdef (stmt));
1478 }
1479 break;
1480
1481 CASE_FLT_FN (BUILT_IN_POWI):
1482 arg0 = gimple_call_arg (stmt, 0);
1483 arg1 = gimple_call_arg (stmt, 1);
1484 loc = gimple_location (stmt);
1485
1486 if (real_minus_onep (arg0))
1487 {
1488 tree t0, t1, cond, one, minus_one;
1489 gimple stmt;
1490
1491 t0 = TREE_TYPE (arg0);
1492 t1 = TREE_TYPE (arg1);
1493 one = build_real (t0, dconst1);
1494 minus_one = build_real (t0, dconstm1);
1495
1496 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1497 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1498 arg1,
1499 build_int_cst (t1,
1500 1));
1501 gimple_set_location (stmt, loc);
1502 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1503
1504 result = make_temp_ssa_name (t0, NULL, "powi");
1505 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1506 cond,
1507 minus_one, one);
1508 gimple_set_location (stmt, loc);
1509 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1510 }
1511 else
1512 {
1513 if (!tree_fits_shwi_p (arg1))
1514 break;
1515
1516 n = tree_to_shwi (arg1);
1517 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1518 }
1519
1520 if (result)
1521 {
1522 tree lhs = gimple_get_lhs (stmt);
1523 gimple new_stmt = gimple_build_assign (lhs, result);
1524 gimple_set_location (new_stmt, loc);
1525 unlink_stmt_vdef (stmt);
1526 gsi_replace (&gsi, new_stmt, true);
1527 cleanup_eh = true;
1528 if (gimple_vdef (stmt))
1529 release_ssa_name (gimple_vdef (stmt));
1530 }
1531 break;
1532
1533 CASE_FLT_FN (BUILT_IN_CABS):
1534 arg0 = gimple_call_arg (stmt, 0);
1535 loc = gimple_location (stmt);
1536 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1537
1538 if (result)
1539 {
1540 tree lhs = gimple_get_lhs (stmt);
1541 gimple new_stmt = gimple_build_assign (lhs, result);
1542 gimple_set_location (new_stmt, loc);
1543 unlink_stmt_vdef (stmt);
1544 gsi_replace (&gsi, new_stmt, true);
1545 cleanup_eh = true;
1546 if (gimple_vdef (stmt))
1547 release_ssa_name (gimple_vdef (stmt));
1548 }
1549 break;
1550
1551 default:;
1552 }
1553 }
1554 }
1555 if (cleanup_eh)
1556 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1557 }
1558
1559 statistics_counter_event (cfun, "sincos statements inserted",
1560 sincos_stats.inserted);
1561
1562 free_dominance_info (CDI_DOMINATORS);
1563 return cfg_changed ? TODO_cleanup_cfg : 0;
1564 }
1565
1566 static bool
1567 gate_cse_sincos (void)
1568 {
1569 /* We no longer require either sincos or cexp, since powi expansion
1570 piggybacks on this pass. */
1571 return optimize;
1572 }
1573
1574 namespace {
1575
1576 const pass_data pass_data_cse_sincos =
1577 {
1578 GIMPLE_PASS, /* type */
1579 "sincos", /* name */
1580 OPTGROUP_NONE, /* optinfo_flags */
1581 true, /* has_gate */
1582 true, /* has_execute */
1583 TV_NONE, /* tv_id */
1584 PROP_ssa, /* properties_required */
1585 0, /* properties_provided */
1586 0, /* properties_destroyed */
1587 0, /* todo_flags_start */
1588 ( TODO_update_ssa | TODO_verify_ssa
1589 | TODO_verify_stmts ), /* todo_flags_finish */
1590 };
1591
1592 class pass_cse_sincos : public gimple_opt_pass
1593 {
1594 public:
1595 pass_cse_sincos (gcc::context *ctxt)
1596 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1597 {}
1598
1599 /* opt_pass methods: */
1600 bool gate () { return gate_cse_sincos (); }
1601 unsigned int execute () { return execute_cse_sincos (); }
1602
1603 }; // class pass_cse_sincos
1604
1605 } // anon namespace
1606
1607 gimple_opt_pass *
1608 make_pass_cse_sincos (gcc::context *ctxt)
1609 {
1610 return new pass_cse_sincos (ctxt);
1611 }
1612
1613 /* A symbolic number is used to detect byte permutation and selection
1614 patterns. Therefore the field N contains an artificial number
1615 consisting of byte size markers:
1616
1617 0 - byte has the value 0
1618 1..size - byte contains the content of the byte
1619 number indexed with that value minus one */
1620
1621 struct symbolic_number {
1622 unsigned HOST_WIDEST_INT n;
1623 int size;
1624 };
1625
1626 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1627 number N. Return false if the requested operation is not permitted
1628 on a symbolic number. */
1629
1630 static inline bool
1631 do_shift_rotate (enum tree_code code,
1632 struct symbolic_number *n,
1633 int count)
1634 {
1635 if (count % 8 != 0)
1636 return false;
1637
1638 /* Zero out the extra bits of N in order to avoid them being shifted
1639 into the significant bits. */
1640 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1641 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1642
1643 switch (code)
1644 {
1645 case LSHIFT_EXPR:
1646 n->n <<= count;
1647 break;
1648 case RSHIFT_EXPR:
1649 n->n >>= count;
1650 break;
1651 case LROTATE_EXPR:
1652 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1653 break;
1654 case RROTATE_EXPR:
1655 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1656 break;
1657 default:
1658 return false;
1659 }
1660 /* Zero unused bits for size. */
1661 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1662 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1663 return true;
1664 }
1665
1666 /* Perform sanity checking for the symbolic number N and the gimple
1667 statement STMT. */
1668
1669 static inline bool
1670 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1671 {
1672 tree lhs_type;
1673
1674 lhs_type = gimple_expr_type (stmt);
1675
1676 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1677 return false;
1678
1679 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1680 return false;
1681
1682 return true;
1683 }
1684
1685 /* find_bswap_1 invokes itself recursively with N and tries to perform
1686 the operation given by the rhs of STMT on the result. If the
1687 operation could successfully be executed the function returns the
1688 tree expression of the source operand and NULL otherwise. */
1689
1690 static tree
1691 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1692 {
1693 enum tree_code code;
1694 tree rhs1, rhs2 = NULL;
1695 gimple rhs1_stmt, rhs2_stmt;
1696 tree source_expr1;
1697 enum gimple_rhs_class rhs_class;
1698
1699 if (!limit || !is_gimple_assign (stmt))
1700 return NULL_TREE;
1701
1702 rhs1 = gimple_assign_rhs1 (stmt);
1703
1704 if (TREE_CODE (rhs1) != SSA_NAME)
1705 return NULL_TREE;
1706
1707 code = gimple_assign_rhs_code (stmt);
1708 rhs_class = gimple_assign_rhs_class (stmt);
1709 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1710
1711 if (rhs_class == GIMPLE_BINARY_RHS)
1712 rhs2 = gimple_assign_rhs2 (stmt);
1713
1714 /* Handle unary rhs and binary rhs with integer constants as second
1715 operand. */
1716
1717 if (rhs_class == GIMPLE_UNARY_RHS
1718 || (rhs_class == GIMPLE_BINARY_RHS
1719 && TREE_CODE (rhs2) == INTEGER_CST))
1720 {
1721 if (code != BIT_AND_EXPR
1722 && code != LSHIFT_EXPR
1723 && code != RSHIFT_EXPR
1724 && code != LROTATE_EXPR
1725 && code != RROTATE_EXPR
1726 && code != NOP_EXPR
1727 && code != CONVERT_EXPR)
1728 return NULL_TREE;
1729
1730 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1731
1732 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1733 to initialize the symbolic number. */
1734 if (!source_expr1)
1735 {
1736 /* Set up the symbolic number N by setting each byte to a
1737 value between 1 and the byte size of rhs1. The highest
1738 order byte is set to n->size and the lowest order
1739 byte to 1. */
1740 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1741 if (n->size % BITS_PER_UNIT != 0)
1742 return NULL_TREE;
1743 n->size /= BITS_PER_UNIT;
1744 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1745 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1746
1747 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1748 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1749 (n->size * BITS_PER_UNIT)) - 1;
1750
1751 source_expr1 = rhs1;
1752 }
1753
1754 switch (code)
1755 {
1756 case BIT_AND_EXPR:
1757 {
1758 int i;
1759 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1760 unsigned HOST_WIDEST_INT tmp = val;
1761
1762 /* Only constants masking full bytes are allowed. */
1763 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1764 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1765 return NULL_TREE;
1766
1767 n->n &= val;
1768 }
1769 break;
1770 case LSHIFT_EXPR:
1771 case RSHIFT_EXPR:
1772 case LROTATE_EXPR:
1773 case RROTATE_EXPR:
1774 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1775 return NULL_TREE;
1776 break;
1777 CASE_CONVERT:
1778 {
1779 int type_size;
1780
1781 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1782 if (type_size % BITS_PER_UNIT != 0)
1783 return NULL_TREE;
1784
1785 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1786 {
1787 /* If STMT casts to a smaller type mask out the bits not
1788 belonging to the target type. */
1789 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1790 }
1791 n->size = type_size / BITS_PER_UNIT;
1792 }
1793 break;
1794 default:
1795 return NULL_TREE;
1796 };
1797 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1798 }
1799
1800 /* Handle binary rhs. */
1801
1802 if (rhs_class == GIMPLE_BINARY_RHS)
1803 {
1804 int i;
1805 struct symbolic_number n1, n2;
1806 unsigned HOST_WIDEST_INT mask;
1807 tree source_expr2;
1808
1809 if (code != BIT_IOR_EXPR)
1810 return NULL_TREE;
1811
1812 if (TREE_CODE (rhs2) != SSA_NAME)
1813 return NULL_TREE;
1814
1815 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1816
1817 switch (code)
1818 {
1819 case BIT_IOR_EXPR:
1820 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1821
1822 if (!source_expr1)
1823 return NULL_TREE;
1824
1825 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1826
1827 if (source_expr1 != source_expr2
1828 || n1.size != n2.size)
1829 return NULL_TREE;
1830
1831 n->size = n1.size;
1832 for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
1833 {
1834 unsigned HOST_WIDEST_INT masked1, masked2;
1835
1836 masked1 = n1.n & mask;
1837 masked2 = n2.n & mask;
1838 if (masked1 && masked2 && masked1 != masked2)
1839 return NULL_TREE;
1840 }
1841 n->n = n1.n | n2.n;
1842
1843 if (!verify_symbolic_number_p (n, stmt))
1844 return NULL_TREE;
1845
1846 break;
1847 default:
1848 return NULL_TREE;
1849 }
1850 return source_expr1;
1851 }
1852 return NULL_TREE;
1853 }
1854
1855 /* Check if STMT completes a bswap implementation consisting of ORs,
1856 SHIFTs and ANDs. Return the source tree expression on which the
1857 byte swap is performed and NULL if no bswap was found. */
1858
1859 static tree
1860 find_bswap (gimple stmt)
1861 {
1862 /* The number which the find_bswap result should match in order to
1863 have a full byte swap. The number is shifted to the left according
1864 to the size of the symbolic number before using it. */
1865 unsigned HOST_WIDEST_INT cmp =
1866 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1867 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1868
1869 struct symbolic_number n;
1870 tree source_expr;
1871 int limit;
1872
1873 /* The last parameter determines the depth search limit. It usually
1874 correlates directly to the number of bytes to be touched. We
1875 increase that number by three here in order to also
1876 cover signed -> unsigned converions of the src operand as can be seen
1877 in libgcc, and for initial shift/and operation of the src operand. */
1878 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1879 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1880 source_expr = find_bswap_1 (stmt, &n, limit);
1881
1882 if (!source_expr)
1883 return NULL_TREE;
1884
1885 /* Zero out the extra bits of N and CMP. */
1886 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1887 {
1888 unsigned HOST_WIDEST_INT mask =
1889 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1890
1891 n.n &= mask;
1892 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1893 }
1894
1895 /* A complete byte swap should make the symbolic number to start
1896 with the largest digit in the highest order byte. */
1897 if (cmp != n.n)
1898 return NULL_TREE;
1899
1900 return source_expr;
1901 }
1902
1903 /* Find manual byte swap implementations and turn them into a bswap
1904 builtin invokation. */
1905
1906 static unsigned int
1907 execute_optimize_bswap (void)
1908 {
1909 basic_block bb;
1910 bool bswap16_p, bswap32_p, bswap64_p;
1911 bool changed = false;
1912 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1913
1914 if (BITS_PER_UNIT != 8)
1915 return 0;
1916
1917 if (sizeof (HOST_WIDEST_INT) < 8)
1918 return 0;
1919
1920 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1921 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1922 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1923 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1924 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1925 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1926 || (bswap32_p && word_mode == SImode)));
1927
1928 if (!bswap16_p && !bswap32_p && !bswap64_p)
1929 return 0;
1930
1931 /* Determine the argument type of the builtins. The code later on
1932 assumes that the return and argument type are the same. */
1933 if (bswap16_p)
1934 {
1935 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1936 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1937 }
1938
1939 if (bswap32_p)
1940 {
1941 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1942 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1943 }
1944
1945 if (bswap64_p)
1946 {
1947 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1948 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1949 }
1950
1951 memset (&bswap_stats, 0, sizeof (bswap_stats));
1952
1953 FOR_EACH_BB_FN (bb, cfun)
1954 {
1955 gimple_stmt_iterator gsi;
1956
1957 /* We do a reverse scan for bswap patterns to make sure we get the
1958 widest match. As bswap pattern matching doesn't handle
1959 previously inserted smaller bswap replacements as sub-
1960 patterns, the wider variant wouldn't be detected. */
1961 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1962 {
1963 gimple stmt = gsi_stmt (gsi);
1964 tree bswap_src, bswap_type;
1965 tree bswap_tmp;
1966 tree fndecl = NULL_TREE;
1967 int type_size;
1968 gimple call;
1969
1970 if (!is_gimple_assign (stmt)
1971 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1972 continue;
1973
1974 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1975
1976 switch (type_size)
1977 {
1978 case 16:
1979 if (bswap16_p)
1980 {
1981 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1982 bswap_type = bswap16_type;
1983 }
1984 break;
1985 case 32:
1986 if (bswap32_p)
1987 {
1988 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1989 bswap_type = bswap32_type;
1990 }
1991 break;
1992 case 64:
1993 if (bswap64_p)
1994 {
1995 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1996 bswap_type = bswap64_type;
1997 }
1998 break;
1999 default:
2000 continue;
2001 }
2002
2003 if (!fndecl)
2004 continue;
2005
2006 bswap_src = find_bswap (stmt);
2007
2008 if (!bswap_src)
2009 continue;
2010
2011 changed = true;
2012 if (type_size == 16)
2013 bswap_stats.found_16bit++;
2014 else if (type_size == 32)
2015 bswap_stats.found_32bit++;
2016 else
2017 bswap_stats.found_64bit++;
2018
2019 bswap_tmp = bswap_src;
2020
2021 /* Convert the src expression if necessary. */
2022 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2023 {
2024 gimple convert_stmt;
2025 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2026 convert_stmt = gimple_build_assign_with_ops
2027 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
2028 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2029 }
2030
2031 call = gimple_build_call (fndecl, 1, bswap_tmp);
2032
2033 bswap_tmp = gimple_assign_lhs (stmt);
2034
2035 /* Convert the result if necessary. */
2036 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2037 {
2038 gimple convert_stmt;
2039 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2040 convert_stmt = gimple_build_assign_with_ops
2041 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
2042 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2043 }
2044
2045 gimple_call_set_lhs (call, bswap_tmp);
2046
2047 if (dump_file)
2048 {
2049 fprintf (dump_file, "%d bit bswap implementation found at: ",
2050 (int)type_size);
2051 print_gimple_stmt (dump_file, stmt, 0, 0);
2052 }
2053
2054 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2055 gsi_remove (&gsi, true);
2056 }
2057 }
2058
2059 statistics_counter_event (cfun, "16-bit bswap implementations found",
2060 bswap_stats.found_16bit);
2061 statistics_counter_event (cfun, "32-bit bswap implementations found",
2062 bswap_stats.found_32bit);
2063 statistics_counter_event (cfun, "64-bit bswap implementations found",
2064 bswap_stats.found_64bit);
2065
2066 return (changed ? TODO_update_ssa | TODO_verify_ssa
2067 | TODO_verify_stmts : 0);
2068 }
2069
2070 static bool
2071 gate_optimize_bswap (void)
2072 {
2073 return flag_expensive_optimizations && optimize;
2074 }
2075
2076 namespace {
2077
2078 const pass_data pass_data_optimize_bswap =
2079 {
2080 GIMPLE_PASS, /* type */
2081 "bswap", /* name */
2082 OPTGROUP_NONE, /* optinfo_flags */
2083 true, /* has_gate */
2084 true, /* has_execute */
2085 TV_NONE, /* tv_id */
2086 PROP_ssa, /* properties_required */
2087 0, /* properties_provided */
2088 0, /* properties_destroyed */
2089 0, /* todo_flags_start */
2090 0, /* todo_flags_finish */
2091 };
2092
2093 class pass_optimize_bswap : public gimple_opt_pass
2094 {
2095 public:
2096 pass_optimize_bswap (gcc::context *ctxt)
2097 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2098 {}
2099
2100 /* opt_pass methods: */
2101 bool gate () { return gate_optimize_bswap (); }
2102 unsigned int execute () { return execute_optimize_bswap (); }
2103
2104 }; // class pass_optimize_bswap
2105
2106 } // anon namespace
2107
2108 gimple_opt_pass *
2109 make_pass_optimize_bswap (gcc::context *ctxt)
2110 {
2111 return new pass_optimize_bswap (ctxt);
2112 }
2113
2114 /* Return true if stmt is a type conversion operation that can be stripped
2115 when used in a widening multiply operation. */
2116 static bool
2117 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2118 {
2119 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2120
2121 if (TREE_CODE (result_type) == INTEGER_TYPE)
2122 {
2123 tree op_type;
2124 tree inner_op_type;
2125
2126 if (!CONVERT_EXPR_CODE_P (rhs_code))
2127 return false;
2128
2129 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2130
2131 /* If the type of OP has the same precision as the result, then
2132 we can strip this conversion. The multiply operation will be
2133 selected to create the correct extension as a by-product. */
2134 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2135 return true;
2136
2137 /* We can also strip a conversion if it preserves the signed-ness of
2138 the operation and doesn't narrow the range. */
2139 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2140
2141 /* If the inner-most type is unsigned, then we can strip any
2142 intermediate widening operation. If it's signed, then the
2143 intermediate widening operation must also be signed. */
2144 if ((TYPE_UNSIGNED (inner_op_type)
2145 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2146 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2147 return true;
2148
2149 return false;
2150 }
2151
2152 return rhs_code == FIXED_CONVERT_EXPR;
2153 }
2154
2155 /* Return true if RHS is a suitable operand for a widening multiplication,
2156 assuming a target type of TYPE.
2157 There are two cases:
2158
2159 - RHS makes some value at least twice as wide. Store that value
2160 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2161
2162 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2163 but leave *TYPE_OUT untouched. */
2164
2165 static bool
2166 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2167 tree *new_rhs_out)
2168 {
2169 gimple stmt;
2170 tree type1, rhs1;
2171
2172 if (TREE_CODE (rhs) == SSA_NAME)
2173 {
2174 stmt = SSA_NAME_DEF_STMT (rhs);
2175 if (is_gimple_assign (stmt))
2176 {
2177 if (! widening_mult_conversion_strippable_p (type, stmt))
2178 rhs1 = rhs;
2179 else
2180 {
2181 rhs1 = gimple_assign_rhs1 (stmt);
2182
2183 if (TREE_CODE (rhs1) == INTEGER_CST)
2184 {
2185 *new_rhs_out = rhs1;
2186 *type_out = NULL;
2187 return true;
2188 }
2189 }
2190 }
2191 else
2192 rhs1 = rhs;
2193
2194 type1 = TREE_TYPE (rhs1);
2195
2196 if (TREE_CODE (type1) != TREE_CODE (type)
2197 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2198 return false;
2199
2200 *new_rhs_out = rhs1;
2201 *type_out = type1;
2202 return true;
2203 }
2204
2205 if (TREE_CODE (rhs) == INTEGER_CST)
2206 {
2207 *new_rhs_out = rhs;
2208 *type_out = NULL;
2209 return true;
2210 }
2211
2212 return false;
2213 }
2214
2215 /* Return true if STMT performs a widening multiplication, assuming the
2216 output type is TYPE. If so, store the unwidened types of the operands
2217 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2218 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2219 and *TYPE2_OUT would give the operands of the multiplication. */
2220
2221 static bool
2222 is_widening_mult_p (gimple stmt,
2223 tree *type1_out, tree *rhs1_out,
2224 tree *type2_out, tree *rhs2_out)
2225 {
2226 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2227
2228 if (TREE_CODE (type) != INTEGER_TYPE
2229 && TREE_CODE (type) != FIXED_POINT_TYPE)
2230 return false;
2231
2232 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2233 rhs1_out))
2234 return false;
2235
2236 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2237 rhs2_out))
2238 return false;
2239
2240 if (*type1_out == NULL)
2241 {
2242 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2243 return false;
2244 *type1_out = *type2_out;
2245 }
2246
2247 if (*type2_out == NULL)
2248 {
2249 if (!int_fits_type_p (*rhs2_out, *type1_out))
2250 return false;
2251 *type2_out = *type1_out;
2252 }
2253
2254 /* Ensure that the larger of the two operands comes first. */
2255 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2256 {
2257 tree tmp;
2258 tmp = *type1_out;
2259 *type1_out = *type2_out;
2260 *type2_out = tmp;
2261 tmp = *rhs1_out;
2262 *rhs1_out = *rhs2_out;
2263 *rhs2_out = tmp;
2264 }
2265
2266 return true;
2267 }
2268
2269 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2270 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2271 value is true iff we converted the statement. */
2272
2273 static bool
2274 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2275 {
2276 tree lhs, rhs1, rhs2, type, type1, type2;
2277 enum insn_code handler;
2278 enum machine_mode to_mode, from_mode, actual_mode;
2279 optab op;
2280 int actual_precision;
2281 location_t loc = gimple_location (stmt);
2282 bool from_unsigned1, from_unsigned2;
2283
2284 lhs = gimple_assign_lhs (stmt);
2285 type = TREE_TYPE (lhs);
2286 if (TREE_CODE (type) != INTEGER_TYPE)
2287 return false;
2288
2289 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2290 return false;
2291
2292 to_mode = TYPE_MODE (type);
2293 from_mode = TYPE_MODE (type1);
2294 from_unsigned1 = TYPE_UNSIGNED (type1);
2295 from_unsigned2 = TYPE_UNSIGNED (type2);
2296
2297 if (from_unsigned1 && from_unsigned2)
2298 op = umul_widen_optab;
2299 else if (!from_unsigned1 && !from_unsigned2)
2300 op = smul_widen_optab;
2301 else
2302 op = usmul_widen_optab;
2303
2304 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2305 0, &actual_mode);
2306
2307 if (handler == CODE_FOR_nothing)
2308 {
2309 if (op != smul_widen_optab)
2310 {
2311 /* We can use a signed multiply with unsigned types as long as
2312 there is a wider mode to use, or it is the smaller of the two
2313 types that is unsigned. Note that type1 >= type2, always. */
2314 if ((TYPE_UNSIGNED (type1)
2315 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2316 || (TYPE_UNSIGNED (type2)
2317 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2318 {
2319 from_mode = GET_MODE_WIDER_MODE (from_mode);
2320 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2321 return false;
2322 }
2323
2324 op = smul_widen_optab;
2325 handler = find_widening_optab_handler_and_mode (op, to_mode,
2326 from_mode, 0,
2327 &actual_mode);
2328
2329 if (handler == CODE_FOR_nothing)
2330 return false;
2331
2332 from_unsigned1 = from_unsigned2 = false;
2333 }
2334 else
2335 return false;
2336 }
2337
2338 /* Ensure that the inputs to the handler are in the correct precison
2339 for the opcode. This will be the full mode size. */
2340 actual_precision = GET_MODE_PRECISION (actual_mode);
2341 if (2 * actual_precision > TYPE_PRECISION (type))
2342 return false;
2343 if (actual_precision != TYPE_PRECISION (type1)
2344 || from_unsigned1 != TYPE_UNSIGNED (type1))
2345 rhs1 = build_and_insert_cast (gsi, loc,
2346 build_nonstandard_integer_type
2347 (actual_precision, from_unsigned1), rhs1);
2348 if (actual_precision != TYPE_PRECISION (type2)
2349 || from_unsigned2 != TYPE_UNSIGNED (type2))
2350 rhs2 = build_and_insert_cast (gsi, loc,
2351 build_nonstandard_integer_type
2352 (actual_precision, from_unsigned2), rhs2);
2353
2354 /* Handle constants. */
2355 if (TREE_CODE (rhs1) == INTEGER_CST)
2356 rhs1 = fold_convert (type1, rhs1);
2357 if (TREE_CODE (rhs2) == INTEGER_CST)
2358 rhs2 = fold_convert (type2, rhs2);
2359
2360 gimple_assign_set_rhs1 (stmt, rhs1);
2361 gimple_assign_set_rhs2 (stmt, rhs2);
2362 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2363 update_stmt (stmt);
2364 widen_mul_stats.widen_mults_inserted++;
2365 return true;
2366 }
2367
2368 /* Process a single gimple statement STMT, which is found at the
2369 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2370 rhs (given by CODE), and try to convert it into a
2371 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2372 is true iff we converted the statement. */
2373
2374 static bool
2375 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2376 enum tree_code code)
2377 {
2378 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2379 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2380 tree type, type1, type2, optype;
2381 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2382 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2383 optab this_optab;
2384 enum tree_code wmult_code;
2385 enum insn_code handler;
2386 enum machine_mode to_mode, from_mode, actual_mode;
2387 location_t loc = gimple_location (stmt);
2388 int actual_precision;
2389 bool from_unsigned1, from_unsigned2;
2390
2391 lhs = gimple_assign_lhs (stmt);
2392 type = TREE_TYPE (lhs);
2393 if (TREE_CODE (type) != INTEGER_TYPE
2394 && TREE_CODE (type) != FIXED_POINT_TYPE)
2395 return false;
2396
2397 if (code == MINUS_EXPR)
2398 wmult_code = WIDEN_MULT_MINUS_EXPR;
2399 else
2400 wmult_code = WIDEN_MULT_PLUS_EXPR;
2401
2402 rhs1 = gimple_assign_rhs1 (stmt);
2403 rhs2 = gimple_assign_rhs2 (stmt);
2404
2405 if (TREE_CODE (rhs1) == SSA_NAME)
2406 {
2407 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2408 if (is_gimple_assign (rhs1_stmt))
2409 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2410 }
2411
2412 if (TREE_CODE (rhs2) == SSA_NAME)
2413 {
2414 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2415 if (is_gimple_assign (rhs2_stmt))
2416 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2417 }
2418
2419 /* Allow for one conversion statement between the multiply
2420 and addition/subtraction statement. If there are more than
2421 one conversions then we assume they would invalidate this
2422 transformation. If that's not the case then they should have
2423 been folded before now. */
2424 if (CONVERT_EXPR_CODE_P (rhs1_code))
2425 {
2426 conv1_stmt = rhs1_stmt;
2427 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2428 if (TREE_CODE (rhs1) == SSA_NAME)
2429 {
2430 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2431 if (is_gimple_assign (rhs1_stmt))
2432 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2433 }
2434 else
2435 return false;
2436 }
2437 if (CONVERT_EXPR_CODE_P (rhs2_code))
2438 {
2439 conv2_stmt = rhs2_stmt;
2440 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2441 if (TREE_CODE (rhs2) == SSA_NAME)
2442 {
2443 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2444 if (is_gimple_assign (rhs2_stmt))
2445 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2446 }
2447 else
2448 return false;
2449 }
2450
2451 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2452 is_widening_mult_p, but we still need the rhs returns.
2453
2454 It might also appear that it would be sufficient to use the existing
2455 operands of the widening multiply, but that would limit the choice of
2456 multiply-and-accumulate instructions.
2457
2458 If the widened-multiplication result has more than one uses, it is
2459 probably wiser not to do the conversion. */
2460 if (code == PLUS_EXPR
2461 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2462 {
2463 if (!has_single_use (rhs1)
2464 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2465 &type2, &mult_rhs2))
2466 return false;
2467 add_rhs = rhs2;
2468 conv_stmt = conv1_stmt;
2469 }
2470 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2471 {
2472 if (!has_single_use (rhs2)
2473 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2474 &type2, &mult_rhs2))
2475 return false;
2476 add_rhs = rhs1;
2477 conv_stmt = conv2_stmt;
2478 }
2479 else
2480 return false;
2481
2482 to_mode = TYPE_MODE (type);
2483 from_mode = TYPE_MODE (type1);
2484 from_unsigned1 = TYPE_UNSIGNED (type1);
2485 from_unsigned2 = TYPE_UNSIGNED (type2);
2486 optype = type1;
2487
2488 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2489 if (from_unsigned1 != from_unsigned2)
2490 {
2491 if (!INTEGRAL_TYPE_P (type))
2492 return false;
2493 /* We can use a signed multiply with unsigned types as long as
2494 there is a wider mode to use, or it is the smaller of the two
2495 types that is unsigned. Note that type1 >= type2, always. */
2496 if ((from_unsigned1
2497 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2498 || (from_unsigned2
2499 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2500 {
2501 from_mode = GET_MODE_WIDER_MODE (from_mode);
2502 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2503 return false;
2504 }
2505
2506 from_unsigned1 = from_unsigned2 = false;
2507 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2508 false);
2509 }
2510
2511 /* If there was a conversion between the multiply and addition
2512 then we need to make sure it fits a multiply-and-accumulate.
2513 The should be a single mode change which does not change the
2514 value. */
2515 if (conv_stmt)
2516 {
2517 /* We use the original, unmodified data types for this. */
2518 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2519 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2520 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2521 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2522
2523 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2524 {
2525 /* Conversion is a truncate. */
2526 if (TYPE_PRECISION (to_type) < data_size)
2527 return false;
2528 }
2529 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2530 {
2531 /* Conversion is an extend. Check it's the right sort. */
2532 if (TYPE_UNSIGNED (from_type) != is_unsigned
2533 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2534 return false;
2535 }
2536 /* else convert is a no-op for our purposes. */
2537 }
2538
2539 /* Verify that the machine can perform a widening multiply
2540 accumulate in this mode/signedness combination, otherwise
2541 this transformation is likely to pessimize code. */
2542 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2543 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2544 from_mode, 0, &actual_mode);
2545
2546 if (handler == CODE_FOR_nothing)
2547 return false;
2548
2549 /* Ensure that the inputs to the handler are in the correct precison
2550 for the opcode. This will be the full mode size. */
2551 actual_precision = GET_MODE_PRECISION (actual_mode);
2552 if (actual_precision != TYPE_PRECISION (type1)
2553 || from_unsigned1 != TYPE_UNSIGNED (type1))
2554 mult_rhs1 = build_and_insert_cast (gsi, loc,
2555 build_nonstandard_integer_type
2556 (actual_precision, from_unsigned1),
2557 mult_rhs1);
2558 if (actual_precision != TYPE_PRECISION (type2)
2559 || from_unsigned2 != TYPE_UNSIGNED (type2))
2560 mult_rhs2 = build_and_insert_cast (gsi, loc,
2561 build_nonstandard_integer_type
2562 (actual_precision, from_unsigned2),
2563 mult_rhs2);
2564
2565 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2566 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2567
2568 /* Handle constants. */
2569 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2570 mult_rhs1 = fold_convert (type1, mult_rhs1);
2571 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2572 mult_rhs2 = fold_convert (type2, mult_rhs2);
2573
2574 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2575 add_rhs);
2576 update_stmt (gsi_stmt (*gsi));
2577 widen_mul_stats.maccs_inserted++;
2578 return true;
2579 }
2580
2581 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2582 with uses in additions and subtractions to form fused multiply-add
2583 operations. Returns true if successful and MUL_STMT should be removed. */
2584
2585 static bool
2586 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2587 {
2588 tree mul_result = gimple_get_lhs (mul_stmt);
2589 tree type = TREE_TYPE (mul_result);
2590 gimple use_stmt, neguse_stmt, fma_stmt;
2591 use_operand_p use_p;
2592 imm_use_iterator imm_iter;
2593
2594 if (FLOAT_TYPE_P (type)
2595 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2596 return false;
2597
2598 /* We don't want to do bitfield reduction ops. */
2599 if (INTEGRAL_TYPE_P (type)
2600 && (TYPE_PRECISION (type)
2601 != GET_MODE_PRECISION (TYPE_MODE (type))))
2602 return false;
2603
2604 /* If the target doesn't support it, don't generate it. We assume that
2605 if fma isn't available then fms, fnma or fnms are not either. */
2606 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2607 return false;
2608
2609 /* If the multiplication has zero uses, it is kept around probably because
2610 of -fnon-call-exceptions. Don't optimize it away in that case,
2611 it is DCE job. */
2612 if (has_zero_uses (mul_result))
2613 return false;
2614
2615 /* Make sure that the multiplication statement becomes dead after
2616 the transformation, thus that all uses are transformed to FMAs.
2617 This means we assume that an FMA operation has the same cost
2618 as an addition. */
2619 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2620 {
2621 enum tree_code use_code;
2622 tree result = mul_result;
2623 bool negate_p = false;
2624
2625 use_stmt = USE_STMT (use_p);
2626
2627 if (is_gimple_debug (use_stmt))
2628 continue;
2629
2630 /* For now restrict this operations to single basic blocks. In theory
2631 we would want to support sinking the multiplication in
2632 m = a*b;
2633 if ()
2634 ma = m + c;
2635 else
2636 d = m;
2637 to form a fma in the then block and sink the multiplication to the
2638 else block. */
2639 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2640 return false;
2641
2642 if (!is_gimple_assign (use_stmt))
2643 return false;
2644
2645 use_code = gimple_assign_rhs_code (use_stmt);
2646
2647 /* A negate on the multiplication leads to FNMA. */
2648 if (use_code == NEGATE_EXPR)
2649 {
2650 ssa_op_iter iter;
2651 use_operand_p usep;
2652
2653 result = gimple_assign_lhs (use_stmt);
2654
2655 /* Make sure the negate statement becomes dead with this
2656 single transformation. */
2657 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2658 &use_p, &neguse_stmt))
2659 return false;
2660
2661 /* Make sure the multiplication isn't also used on that stmt. */
2662 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2663 if (USE_FROM_PTR (usep) == mul_result)
2664 return false;
2665
2666 /* Re-validate. */
2667 use_stmt = neguse_stmt;
2668 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2669 return false;
2670 if (!is_gimple_assign (use_stmt))
2671 return false;
2672
2673 use_code = gimple_assign_rhs_code (use_stmt);
2674 negate_p = true;
2675 }
2676
2677 switch (use_code)
2678 {
2679 case MINUS_EXPR:
2680 if (gimple_assign_rhs2 (use_stmt) == result)
2681 negate_p = !negate_p;
2682 break;
2683 case PLUS_EXPR:
2684 break;
2685 default:
2686 /* FMA can only be formed from PLUS and MINUS. */
2687 return false;
2688 }
2689
2690 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2691 by a MULT_EXPR that we'll visit later, we might be able to
2692 get a more profitable match with fnma.
2693 OTOH, if we don't, a negate / fma pair has likely lower latency
2694 that a mult / subtract pair. */
2695 if (use_code == MINUS_EXPR && !negate_p
2696 && gimple_assign_rhs1 (use_stmt) == result
2697 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2698 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2699 {
2700 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2701
2702 if (TREE_CODE (rhs2) == SSA_NAME)
2703 {
2704 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2705 if (has_single_use (rhs2)
2706 && is_gimple_assign (stmt2)
2707 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2708 return false;
2709 }
2710 }
2711
2712 /* We can't handle a * b + a * b. */
2713 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2714 return false;
2715
2716 /* While it is possible to validate whether or not the exact form
2717 that we've recognized is available in the backend, the assumption
2718 is that the transformation is never a loss. For instance, suppose
2719 the target only has the plain FMA pattern available. Consider
2720 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2721 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2722 still have 3 operations, but in the FMA form the two NEGs are
2723 independent and could be run in parallel. */
2724 }
2725
2726 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2727 {
2728 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2729 enum tree_code use_code;
2730 tree addop, mulop1 = op1, result = mul_result;
2731 bool negate_p = false;
2732
2733 if (is_gimple_debug (use_stmt))
2734 continue;
2735
2736 use_code = gimple_assign_rhs_code (use_stmt);
2737 if (use_code == NEGATE_EXPR)
2738 {
2739 result = gimple_assign_lhs (use_stmt);
2740 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2741 gsi_remove (&gsi, true);
2742 release_defs (use_stmt);
2743
2744 use_stmt = neguse_stmt;
2745 gsi = gsi_for_stmt (use_stmt);
2746 use_code = gimple_assign_rhs_code (use_stmt);
2747 negate_p = true;
2748 }
2749
2750 if (gimple_assign_rhs1 (use_stmt) == result)
2751 {
2752 addop = gimple_assign_rhs2 (use_stmt);
2753 /* a * b - c -> a * b + (-c) */
2754 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2755 addop = force_gimple_operand_gsi (&gsi,
2756 build1 (NEGATE_EXPR,
2757 type, addop),
2758 true, NULL_TREE, true,
2759 GSI_SAME_STMT);
2760 }
2761 else
2762 {
2763 addop = gimple_assign_rhs1 (use_stmt);
2764 /* a - b * c -> (-b) * c + a */
2765 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2766 negate_p = !negate_p;
2767 }
2768
2769 if (negate_p)
2770 mulop1 = force_gimple_operand_gsi (&gsi,
2771 build1 (NEGATE_EXPR,
2772 type, mulop1),
2773 true, NULL_TREE, true,
2774 GSI_SAME_STMT);
2775
2776 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2777 gimple_assign_lhs (use_stmt),
2778 mulop1, op2,
2779 addop);
2780 gsi_replace (&gsi, fma_stmt, true);
2781 widen_mul_stats.fmas_inserted++;
2782 }
2783
2784 return true;
2785 }
2786
2787 /* Find integer multiplications where the operands are extended from
2788 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2789 where appropriate. */
2790
2791 static unsigned int
2792 execute_optimize_widening_mul (void)
2793 {
2794 basic_block bb;
2795 bool cfg_changed = false;
2796
2797 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2798
2799 FOR_EACH_BB_FN (bb, cfun)
2800 {
2801 gimple_stmt_iterator gsi;
2802
2803 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2804 {
2805 gimple stmt = gsi_stmt (gsi);
2806 enum tree_code code;
2807
2808 if (is_gimple_assign (stmt))
2809 {
2810 code = gimple_assign_rhs_code (stmt);
2811 switch (code)
2812 {
2813 case MULT_EXPR:
2814 if (!convert_mult_to_widen (stmt, &gsi)
2815 && convert_mult_to_fma (stmt,
2816 gimple_assign_rhs1 (stmt),
2817 gimple_assign_rhs2 (stmt)))
2818 {
2819 gsi_remove (&gsi, true);
2820 release_defs (stmt);
2821 continue;
2822 }
2823 break;
2824
2825 case PLUS_EXPR:
2826 case MINUS_EXPR:
2827 convert_plusminus_to_widen (&gsi, stmt, code);
2828 break;
2829
2830 default:;
2831 }
2832 }
2833 else if (is_gimple_call (stmt)
2834 && gimple_call_lhs (stmt))
2835 {
2836 tree fndecl = gimple_call_fndecl (stmt);
2837 if (fndecl
2838 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2839 {
2840 switch (DECL_FUNCTION_CODE (fndecl))
2841 {
2842 case BUILT_IN_POWF:
2843 case BUILT_IN_POW:
2844 case BUILT_IN_POWL:
2845 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2846 && REAL_VALUES_EQUAL
2847 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2848 dconst2)
2849 && convert_mult_to_fma (stmt,
2850 gimple_call_arg (stmt, 0),
2851 gimple_call_arg (stmt, 0)))
2852 {
2853 unlink_stmt_vdef (stmt);
2854 if (gsi_remove (&gsi, true)
2855 && gimple_purge_dead_eh_edges (bb))
2856 cfg_changed = true;
2857 release_defs (stmt);
2858 continue;
2859 }
2860 break;
2861
2862 default:;
2863 }
2864 }
2865 }
2866 gsi_next (&gsi);
2867 }
2868 }
2869
2870 statistics_counter_event (cfun, "widening multiplications inserted",
2871 widen_mul_stats.widen_mults_inserted);
2872 statistics_counter_event (cfun, "widening maccs inserted",
2873 widen_mul_stats.maccs_inserted);
2874 statistics_counter_event (cfun, "fused multiply-adds inserted",
2875 widen_mul_stats.fmas_inserted);
2876
2877 return cfg_changed ? TODO_cleanup_cfg : 0;
2878 }
2879
2880 static bool
2881 gate_optimize_widening_mul (void)
2882 {
2883 return flag_expensive_optimizations && optimize;
2884 }
2885
2886 namespace {
2887
2888 const pass_data pass_data_optimize_widening_mul =
2889 {
2890 GIMPLE_PASS, /* type */
2891 "widening_mul", /* name */
2892 OPTGROUP_NONE, /* optinfo_flags */
2893 true, /* has_gate */
2894 true, /* has_execute */
2895 TV_NONE, /* tv_id */
2896 PROP_ssa, /* properties_required */
2897 0, /* properties_provided */
2898 0, /* properties_destroyed */
2899 0, /* todo_flags_start */
2900 ( TODO_verify_ssa | TODO_verify_stmts
2901 | TODO_update_ssa ), /* todo_flags_finish */
2902 };
2903
2904 class pass_optimize_widening_mul : public gimple_opt_pass
2905 {
2906 public:
2907 pass_optimize_widening_mul (gcc::context *ctxt)
2908 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
2909 {}
2910
2911 /* opt_pass methods: */
2912 bool gate () { return gate_optimize_widening_mul (); }
2913 unsigned int execute () { return execute_optimize_widening_mul (); }
2914
2915 }; // class pass_optimize_widening_mul
2916
2917 } // anon namespace
2918
2919 gimple_opt_pass *
2920 make_pass_optimize_widening_mul (gcc::context *ctxt)
2921 {
2922 return new pass_optimize_widening_mul (ctxt);
2923 }