lto-cgraph.c (get_alias_symbol): Remove weakref sanity check.
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "tree-flow.h"
94 #include "tree-pass.h"
95 #include "alloc-pool.h"
96 #include "basic-block.h"
97 #include "target.h"
98 #include "gimple-pretty-print.h"
99
100 /* FIXME: RTL headers have to be included here for optabs. */
101 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
102 #include "expr.h" /* Because optabs.h wants sepops. */
103 #include "optabs.h"
104
105 /* This structure represents one basic block that either computes a
106 division, or is a common dominator for basic block that compute a
107 division. */
108 struct occurrence {
109 /* The basic block represented by this structure. */
110 basic_block bb;
111
112 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
113 inserted in BB. */
114 tree recip_def;
115
116 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
117 was inserted in BB. */
118 gimple recip_def_stmt;
119
120 /* Pointer to a list of "struct occurrence"s for blocks dominated
121 by BB. */
122 struct occurrence *children;
123
124 /* Pointer to the next "struct occurrence"s in the list of blocks
125 sharing a common dominator. */
126 struct occurrence *next;
127
128 /* The number of divisions that are in BB before compute_merit. The
129 number of divisions that are in BB or post-dominate it after
130 compute_merit. */
131 int num_divisions;
132
133 /* True if the basic block has a division, false if it is a common
134 dominator for basic blocks that do. If it is false and trapping
135 math is active, BB is not a candidate for inserting a reciprocal. */
136 bool bb_has_division;
137 };
138
139 static struct
140 {
141 /* Number of 1.0/X ops inserted. */
142 int rdivs_inserted;
143
144 /* Number of 1.0/FUNC ops inserted. */
145 int rfuncs_inserted;
146 } reciprocal_stats;
147
148 static struct
149 {
150 /* Number of cexpi calls inserted. */
151 int inserted;
152 } sincos_stats;
153
154 static struct
155 {
156 /* Number of hand-written 16-bit bswaps found. */
157 int found_16bit;
158
159 /* Number of hand-written 32-bit bswaps found. */
160 int found_32bit;
161
162 /* Number of hand-written 64-bit bswaps found. */
163 int found_64bit;
164 } bswap_stats;
165
166 static struct
167 {
168 /* Number of widening multiplication ops inserted. */
169 int widen_mults_inserted;
170
171 /* Number of integer multiply-and-accumulate ops inserted. */
172 int maccs_inserted;
173
174 /* Number of fp fused multiply-add ops inserted. */
175 int fmas_inserted;
176 } widen_mul_stats;
177
178 /* The instance of "struct occurrence" representing the highest
179 interesting block in the dominator tree. */
180 static struct occurrence *occ_head;
181
182 /* Allocation pool for getting instances of "struct occurrence". */
183 static alloc_pool occ_pool;
184
185
186
187 /* Allocate and return a new struct occurrence for basic block BB, and
188 whose children list is headed by CHILDREN. */
189 static struct occurrence *
190 occ_new (basic_block bb, struct occurrence *children)
191 {
192 struct occurrence *occ;
193
194 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
195 memset (occ, 0, sizeof (struct occurrence));
196
197 occ->bb = bb;
198 occ->children = children;
199 return occ;
200 }
201
202
203 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
204 list of "struct occurrence"s, one per basic block, having IDOM as
205 their common dominator.
206
207 We try to insert NEW_OCC as deep as possible in the tree, and we also
208 insert any other block that is a common dominator for BB and one
209 block already in the tree. */
210
211 static void
212 insert_bb (struct occurrence *new_occ, basic_block idom,
213 struct occurrence **p_head)
214 {
215 struct occurrence *occ, **p_occ;
216
217 for (p_occ = p_head; (occ = *p_occ) != NULL; )
218 {
219 basic_block bb = new_occ->bb, occ_bb = occ->bb;
220 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
221 if (dom == bb)
222 {
223 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
224 from its list. */
225 *p_occ = occ->next;
226 occ->next = new_occ->children;
227 new_occ->children = occ;
228
229 /* Try the next block (it may as well be dominated by BB). */
230 }
231
232 else if (dom == occ_bb)
233 {
234 /* OCC_BB dominates BB. Tail recurse to look deeper. */
235 insert_bb (new_occ, dom, &occ->children);
236 return;
237 }
238
239 else if (dom != idom)
240 {
241 gcc_assert (!dom->aux);
242
243 /* There is a dominator between IDOM and BB, add it and make
244 two children out of NEW_OCC and OCC. First, remove OCC from
245 its list. */
246 *p_occ = occ->next;
247 new_occ->next = occ;
248 occ->next = NULL;
249
250 /* None of the previous blocks has DOM as a dominator: if we tail
251 recursed, we would reexamine them uselessly. Just switch BB with
252 DOM, and go on looking for blocks dominated by DOM. */
253 new_occ = occ_new (dom, new_occ);
254 }
255
256 else
257 {
258 /* Nothing special, go on with the next element. */
259 p_occ = &occ->next;
260 }
261 }
262
263 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
264 new_occ->next = *p_head;
265 *p_head = new_occ;
266 }
267
268 /* Register that we found a division in BB. */
269
270 static inline void
271 register_division_in (basic_block bb)
272 {
273 struct occurrence *occ;
274
275 occ = (struct occurrence *) bb->aux;
276 if (!occ)
277 {
278 occ = occ_new (bb, NULL);
279 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
280 }
281
282 occ->bb_has_division = true;
283 occ->num_divisions++;
284 }
285
286
287 /* Compute the number of divisions that postdominate each block in OCC and
288 its children. */
289
290 static void
291 compute_merit (struct occurrence *occ)
292 {
293 struct occurrence *occ_child;
294 basic_block dom = occ->bb;
295
296 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
297 {
298 basic_block bb;
299 if (occ_child->children)
300 compute_merit (occ_child);
301
302 if (flag_exceptions)
303 bb = single_noncomplex_succ (dom);
304 else
305 bb = dom;
306
307 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
308 occ->num_divisions += occ_child->num_divisions;
309 }
310 }
311
312
313 /* Return whether USE_STMT is a floating-point division by DEF. */
314 static inline bool
315 is_division_by (gimple use_stmt, tree def)
316 {
317 return is_gimple_assign (use_stmt)
318 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
319 && gimple_assign_rhs2 (use_stmt) == def
320 /* Do not recognize x / x as valid division, as we are getting
321 confused later by replacing all immediate uses x in such
322 a stmt. */
323 && gimple_assign_rhs1 (use_stmt) != def;
324 }
325
326 /* Walk the subset of the dominator tree rooted at OCC, setting the
327 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
328 the given basic block. The field may be left NULL, of course,
329 if it is not possible or profitable to do the optimization.
330
331 DEF_BSI is an iterator pointing at the statement defining DEF.
332 If RECIP_DEF is set, a dominator already has a computation that can
333 be used. */
334
335 static void
336 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
337 tree def, tree recip_def, int threshold)
338 {
339 tree type;
340 gimple new_stmt;
341 gimple_stmt_iterator gsi;
342 struct occurrence *occ_child;
343
344 if (!recip_def
345 && (occ->bb_has_division || !flag_trapping_math)
346 && occ->num_divisions >= threshold)
347 {
348 /* Make a variable with the replacement and substitute it. */
349 type = TREE_TYPE (def);
350 recip_def = create_tmp_reg (type, "reciptmp");
351 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
352 build_one_cst (type), def);
353
354 if (occ->bb_has_division)
355 {
356 /* Case 1: insert before an existing division. */
357 gsi = gsi_after_labels (occ->bb);
358 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
359 gsi_next (&gsi);
360
361 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
362 }
363 else if (def_gsi && occ->bb == def_gsi->bb)
364 {
365 /* Case 2: insert right after the definition. Note that this will
366 never happen if the definition statement can throw, because in
367 that case the sole successor of the statement's basic block will
368 dominate all the uses as well. */
369 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
370 }
371 else
372 {
373 /* Case 3: insert in a basic block not containing defs/uses. */
374 gsi = gsi_after_labels (occ->bb);
375 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
376 }
377
378 reciprocal_stats.rdivs_inserted++;
379
380 occ->recip_def_stmt = new_stmt;
381 }
382
383 occ->recip_def = recip_def;
384 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
385 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
386 }
387
388
389 /* Replace the division at USE_P with a multiplication by the reciprocal, if
390 possible. */
391
392 static inline void
393 replace_reciprocal (use_operand_p use_p)
394 {
395 gimple use_stmt = USE_STMT (use_p);
396 basic_block bb = gimple_bb (use_stmt);
397 struct occurrence *occ = (struct occurrence *) bb->aux;
398
399 if (optimize_bb_for_speed_p (bb)
400 && occ->recip_def && use_stmt != occ->recip_def_stmt)
401 {
402 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
403 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
404 SET_USE (use_p, occ->recip_def);
405 fold_stmt_inplace (&gsi);
406 update_stmt (use_stmt);
407 }
408 }
409
410
411 /* Free OCC and return one more "struct occurrence" to be freed. */
412
413 static struct occurrence *
414 free_bb (struct occurrence *occ)
415 {
416 struct occurrence *child, *next;
417
418 /* First get the two pointers hanging off OCC. */
419 next = occ->next;
420 child = occ->children;
421 occ->bb->aux = NULL;
422 pool_free (occ_pool, occ);
423
424 /* Now ensure that we don't recurse unless it is necessary. */
425 if (!child)
426 return next;
427 else
428 {
429 while (next)
430 next = free_bb (next);
431
432 return child;
433 }
434 }
435
436
437 /* Look for floating-point divisions among DEF's uses, and try to
438 replace them by multiplications with the reciprocal. Add
439 as many statements computing the reciprocal as needed.
440
441 DEF must be a GIMPLE register of a floating-point type. */
442
443 static void
444 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
445 {
446 use_operand_p use_p;
447 imm_use_iterator use_iter;
448 struct occurrence *occ;
449 int count = 0, threshold;
450
451 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
452
453 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
454 {
455 gimple use_stmt = USE_STMT (use_p);
456 if (is_division_by (use_stmt, def))
457 {
458 register_division_in (gimple_bb (use_stmt));
459 count++;
460 }
461 }
462
463 /* Do the expensive part only if we can hope to optimize something. */
464 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
465 if (count >= threshold)
466 {
467 gimple use_stmt;
468 for (occ = occ_head; occ; occ = occ->next)
469 {
470 compute_merit (occ);
471 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
472 }
473
474 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
475 {
476 if (is_division_by (use_stmt, def))
477 {
478 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
479 replace_reciprocal (use_p);
480 }
481 }
482 }
483
484 for (occ = occ_head; occ; )
485 occ = free_bb (occ);
486
487 occ_head = NULL;
488 }
489
490 static bool
491 gate_cse_reciprocals (void)
492 {
493 return optimize && flag_reciprocal_math;
494 }
495
496 /* Go through all the floating-point SSA_NAMEs, and call
497 execute_cse_reciprocals_1 on each of them. */
498 static unsigned int
499 execute_cse_reciprocals (void)
500 {
501 basic_block bb;
502 tree arg;
503
504 occ_pool = create_alloc_pool ("dominators for recip",
505 sizeof (struct occurrence),
506 n_basic_blocks / 3 + 1);
507
508 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
509 calculate_dominance_info (CDI_DOMINATORS);
510 calculate_dominance_info (CDI_POST_DOMINATORS);
511
512 #ifdef ENABLE_CHECKING
513 FOR_EACH_BB (bb)
514 gcc_assert (!bb->aux);
515 #endif
516
517 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
518 if (FLOAT_TYPE_P (TREE_TYPE (arg))
519 && is_gimple_reg (arg))
520 {
521 tree name = ssa_default_def (cfun, arg);
522 if (name)
523 execute_cse_reciprocals_1 (NULL, name);
524 }
525
526 FOR_EACH_BB (bb)
527 {
528 gimple_stmt_iterator gsi;
529 gimple phi;
530 tree def;
531
532 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
533 {
534 phi = gsi_stmt (gsi);
535 def = PHI_RESULT (phi);
536 if (! virtual_operand_p (def)
537 && FLOAT_TYPE_P (TREE_TYPE (def)))
538 execute_cse_reciprocals_1 (NULL, def);
539 }
540
541 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
542 {
543 gimple stmt = gsi_stmt (gsi);
544
545 if (gimple_has_lhs (stmt)
546 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
547 && FLOAT_TYPE_P (TREE_TYPE (def))
548 && TREE_CODE (def) == SSA_NAME)
549 execute_cse_reciprocals_1 (&gsi, def);
550 }
551
552 if (optimize_bb_for_size_p (bb))
553 continue;
554
555 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
556 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
557 {
558 gimple stmt = gsi_stmt (gsi);
559 tree fndecl;
560
561 if (is_gimple_assign (stmt)
562 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
563 {
564 tree arg1 = gimple_assign_rhs2 (stmt);
565 gimple stmt1;
566
567 if (TREE_CODE (arg1) != SSA_NAME)
568 continue;
569
570 stmt1 = SSA_NAME_DEF_STMT (arg1);
571
572 if (is_gimple_call (stmt1)
573 && gimple_call_lhs (stmt1)
574 && (fndecl = gimple_call_fndecl (stmt1))
575 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
576 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
577 {
578 enum built_in_function code;
579 bool md_code, fail;
580 imm_use_iterator ui;
581 use_operand_p use_p;
582
583 code = DECL_FUNCTION_CODE (fndecl);
584 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
585
586 fndecl = targetm.builtin_reciprocal (code, md_code, false);
587 if (!fndecl)
588 continue;
589
590 /* Check that all uses of the SSA name are divisions,
591 otherwise replacing the defining statement will do
592 the wrong thing. */
593 fail = false;
594 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
595 {
596 gimple stmt2 = USE_STMT (use_p);
597 if (is_gimple_debug (stmt2))
598 continue;
599 if (!is_gimple_assign (stmt2)
600 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
601 || gimple_assign_rhs1 (stmt2) == arg1
602 || gimple_assign_rhs2 (stmt2) != arg1)
603 {
604 fail = true;
605 break;
606 }
607 }
608 if (fail)
609 continue;
610
611 gimple_replace_lhs (stmt1, arg1);
612 gimple_call_set_fndecl (stmt1, fndecl);
613 update_stmt (stmt1);
614 reciprocal_stats.rfuncs_inserted++;
615
616 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
617 {
618 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
619 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
620 fold_stmt_inplace (&gsi);
621 update_stmt (stmt);
622 }
623 }
624 }
625 }
626 }
627
628 statistics_counter_event (cfun, "reciprocal divs inserted",
629 reciprocal_stats.rdivs_inserted);
630 statistics_counter_event (cfun, "reciprocal functions inserted",
631 reciprocal_stats.rfuncs_inserted);
632
633 free_dominance_info (CDI_DOMINATORS);
634 free_dominance_info (CDI_POST_DOMINATORS);
635 free_alloc_pool (occ_pool);
636 return 0;
637 }
638
639 struct gimple_opt_pass pass_cse_reciprocals =
640 {
641 {
642 GIMPLE_PASS,
643 "recip", /* name */
644 OPTGROUP_NONE, /* optinfo_flags */
645 gate_cse_reciprocals, /* gate */
646 execute_cse_reciprocals, /* execute */
647 NULL, /* sub */
648 NULL, /* next */
649 0, /* static_pass_number */
650 TV_NONE, /* tv_id */
651 PROP_ssa, /* properties_required */
652 0, /* properties_provided */
653 0, /* properties_destroyed */
654 0, /* todo_flags_start */
655 TODO_update_ssa | TODO_verify_ssa
656 | TODO_verify_stmts /* todo_flags_finish */
657 }
658 };
659
660 /* Records an occurrence at statement USE_STMT in the vector of trees
661 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
662 is not yet initialized. Returns true if the occurrence was pushed on
663 the vector. Adjusts *TOP_BB to be the basic block dominating all
664 statements in the vector. */
665
666 static bool
667 maybe_record_sincos (vec<gimple> *stmts,
668 basic_block *top_bb, gimple use_stmt)
669 {
670 basic_block use_bb = gimple_bb (use_stmt);
671 if (*top_bb
672 && (*top_bb == use_bb
673 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
674 stmts->safe_push (use_stmt);
675 else if (!*top_bb
676 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
677 {
678 stmts->safe_push (use_stmt);
679 *top_bb = use_bb;
680 }
681 else
682 return false;
683
684 return true;
685 }
686
687 /* Look for sin, cos and cexpi calls with the same argument NAME and
688 create a single call to cexpi CSEing the result in this case.
689 We first walk over all immediate uses of the argument collecting
690 statements that we can CSE in a vector and in a second pass replace
691 the statement rhs with a REALPART or IMAGPART expression on the
692 result of the cexpi call we insert before the use statement that
693 dominates all other candidates. */
694
695 static bool
696 execute_cse_sincos_1 (tree name)
697 {
698 gimple_stmt_iterator gsi;
699 imm_use_iterator use_iter;
700 tree fndecl, res, type;
701 gimple def_stmt, use_stmt, stmt;
702 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
703 vec<gimple> stmts = vNULL;
704 basic_block top_bb = NULL;
705 int i;
706 bool cfg_changed = false;
707
708 type = TREE_TYPE (name);
709 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
710 {
711 if (gimple_code (use_stmt) != GIMPLE_CALL
712 || !gimple_call_lhs (use_stmt)
713 || !(fndecl = gimple_call_fndecl (use_stmt))
714 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
715 continue;
716
717 switch (DECL_FUNCTION_CODE (fndecl))
718 {
719 CASE_FLT_FN (BUILT_IN_COS):
720 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
721 break;
722
723 CASE_FLT_FN (BUILT_IN_SIN):
724 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
725 break;
726
727 CASE_FLT_FN (BUILT_IN_CEXPI):
728 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
729 break;
730
731 default:;
732 }
733 }
734
735 if (seen_cos + seen_sin + seen_cexpi <= 1)
736 {
737 stmts.release ();
738 return false;
739 }
740
741 /* Simply insert cexpi at the beginning of top_bb but not earlier than
742 the name def statement. */
743 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
744 if (!fndecl)
745 return false;
746 stmt = gimple_build_call (fndecl, 1, name);
747 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
748 gimple_call_set_lhs (stmt, res);
749
750 def_stmt = SSA_NAME_DEF_STMT (name);
751 if (!SSA_NAME_IS_DEFAULT_DEF (name)
752 && gimple_code (def_stmt) != GIMPLE_PHI
753 && gimple_bb (def_stmt) == top_bb)
754 {
755 gsi = gsi_for_stmt (def_stmt);
756 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
757 }
758 else
759 {
760 gsi = gsi_after_labels (top_bb);
761 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
762 }
763 sincos_stats.inserted++;
764
765 /* And adjust the recorded old call sites. */
766 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
767 {
768 tree rhs = NULL;
769 fndecl = gimple_call_fndecl (use_stmt);
770
771 switch (DECL_FUNCTION_CODE (fndecl))
772 {
773 CASE_FLT_FN (BUILT_IN_COS):
774 rhs = fold_build1 (REALPART_EXPR, type, res);
775 break;
776
777 CASE_FLT_FN (BUILT_IN_SIN):
778 rhs = fold_build1 (IMAGPART_EXPR, type, res);
779 break;
780
781 CASE_FLT_FN (BUILT_IN_CEXPI):
782 rhs = res;
783 break;
784
785 default:;
786 gcc_unreachable ();
787 }
788
789 /* Replace call with a copy. */
790 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
791
792 gsi = gsi_for_stmt (use_stmt);
793 gsi_replace (&gsi, stmt, true);
794 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
795 cfg_changed = true;
796 }
797
798 stmts.release ();
799
800 return cfg_changed;
801 }
802
803 /* To evaluate powi(x,n), the floating point value x raised to the
804 constant integer exponent n, we use a hybrid algorithm that
805 combines the "window method" with look-up tables. For an
806 introduction to exponentiation algorithms and "addition chains",
807 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
808 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
809 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
810 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
811
812 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
813 multiplications to inline before calling the system library's pow
814 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
815 so this default never requires calling pow, powf or powl. */
816
817 #ifndef POWI_MAX_MULTS
818 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
819 #endif
820
821 /* The size of the "optimal power tree" lookup table. All
822 exponents less than this value are simply looked up in the
823 powi_table below. This threshold is also used to size the
824 cache of pseudo registers that hold intermediate results. */
825 #define POWI_TABLE_SIZE 256
826
827 /* The size, in bits of the window, used in the "window method"
828 exponentiation algorithm. This is equivalent to a radix of
829 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
830 #define POWI_WINDOW_SIZE 3
831
832 /* The following table is an efficient representation of an
833 "optimal power tree". For each value, i, the corresponding
834 value, j, in the table states than an optimal evaluation
835 sequence for calculating pow(x,i) can be found by evaluating
836 pow(x,j)*pow(x,i-j). An optimal power tree for the first
837 100 integers is given in Knuth's "Seminumerical algorithms". */
838
839 static const unsigned char powi_table[POWI_TABLE_SIZE] =
840 {
841 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
842 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
843 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
844 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
845 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
846 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
847 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
848 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
849 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
850 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
851 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
852 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
853 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
854 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
855 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
856 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
857 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
858 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
859 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
860 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
861 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
862 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
863 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
864 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
865 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
866 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
867 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
868 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
869 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
870 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
871 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
872 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
873 };
874
875
876 /* Return the number of multiplications required to calculate
877 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
878 subroutine of powi_cost. CACHE is an array indicating
879 which exponents have already been calculated. */
880
881 static int
882 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
883 {
884 /* If we've already calculated this exponent, then this evaluation
885 doesn't require any additional multiplications. */
886 if (cache[n])
887 return 0;
888
889 cache[n] = true;
890 return powi_lookup_cost (n - powi_table[n], cache)
891 + powi_lookup_cost (powi_table[n], cache) + 1;
892 }
893
894 /* Return the number of multiplications required to calculate
895 powi(x,n) for an arbitrary x, given the exponent N. This
896 function needs to be kept in sync with powi_as_mults below. */
897
898 static int
899 powi_cost (HOST_WIDE_INT n)
900 {
901 bool cache[POWI_TABLE_SIZE];
902 unsigned HOST_WIDE_INT digit;
903 unsigned HOST_WIDE_INT val;
904 int result;
905
906 if (n == 0)
907 return 0;
908
909 /* Ignore the reciprocal when calculating the cost. */
910 val = (n < 0) ? -n : n;
911
912 /* Initialize the exponent cache. */
913 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
914 cache[1] = true;
915
916 result = 0;
917
918 while (val >= POWI_TABLE_SIZE)
919 {
920 if (val & 1)
921 {
922 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
923 result += powi_lookup_cost (digit, cache)
924 + POWI_WINDOW_SIZE + 1;
925 val >>= POWI_WINDOW_SIZE;
926 }
927 else
928 {
929 val >>= 1;
930 result++;
931 }
932 }
933
934 return result + powi_lookup_cost (val, cache);
935 }
936
937 /* Recursive subroutine of powi_as_mults. This function takes the
938 array, CACHE, of already calculated exponents and an exponent N and
939 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
940
941 static tree
942 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
943 HOST_WIDE_INT n, tree *cache)
944 {
945 tree op0, op1, ssa_target;
946 unsigned HOST_WIDE_INT digit;
947 gimple mult_stmt;
948
949 if (n < POWI_TABLE_SIZE && cache[n])
950 return cache[n];
951
952 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
953
954 if (n < POWI_TABLE_SIZE)
955 {
956 cache[n] = ssa_target;
957 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
958 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
959 }
960 else if (n & 1)
961 {
962 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
963 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
964 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
965 }
966 else
967 {
968 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
969 op1 = op0;
970 }
971
972 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
973 gimple_set_location (mult_stmt, loc);
974 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
975
976 return ssa_target;
977 }
978
979 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
980 This function needs to be kept in sync with powi_cost above. */
981
982 static tree
983 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
984 tree arg0, HOST_WIDE_INT n)
985 {
986 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
987 gimple div_stmt;
988 tree target;
989
990 if (n == 0)
991 return build_real (type, dconst1);
992
993 memset (cache, 0, sizeof (cache));
994 cache[1] = arg0;
995
996 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
997 if (n >= 0)
998 return result;
999
1000 /* If the original exponent was negative, reciprocate the result. */
1001 target = make_temp_ssa_name (type, NULL, "powmult");
1002 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1003 build_real (type, dconst1),
1004 result);
1005 gimple_set_location (div_stmt, loc);
1006 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1007
1008 return target;
1009 }
1010
1011 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1012 location info LOC. If the arguments are appropriate, create an
1013 equivalent sequence of statements prior to GSI using an optimal
1014 number of multiplications, and return an expession holding the
1015 result. */
1016
1017 static tree
1018 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1020 {
1021 /* Avoid largest negative number. */
1022 if (n != -n
1023 && ((n >= -1 && n <= 2)
1024 || (optimize_function_for_speed_p (cfun)
1025 && powi_cost (n) <= POWI_MAX_MULTS)))
1026 return powi_as_mults (gsi, loc, arg0, n);
1027
1028 return NULL_TREE;
1029 }
1030
1031 /* Build a gimple call statement that calls FN with argument ARG.
1032 Set the lhs of the call statement to a fresh SSA name. Insert the
1033 statement prior to GSI's current position, and return the fresh
1034 SSA name. */
1035
1036 static tree
1037 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1038 tree fn, tree arg)
1039 {
1040 gimple call_stmt;
1041 tree ssa_target;
1042
1043 call_stmt = gimple_build_call (fn, 1, arg);
1044 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1045 gimple_set_lhs (call_stmt, ssa_target);
1046 gimple_set_location (call_stmt, loc);
1047 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1048
1049 return ssa_target;
1050 }
1051
1052 /* Build a gimple binary operation with the given CODE and arguments
1053 ARG0, ARG1, assigning the result to a new SSA name for variable
1054 TARGET. Insert the statement prior to GSI's current position, and
1055 return the fresh SSA name.*/
1056
1057 static tree
1058 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1059 const char *name, enum tree_code code,
1060 tree arg0, tree arg1)
1061 {
1062 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1063 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1064 gimple_set_location (stmt, loc);
1065 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1066 return result;
1067 }
1068
1069 /* Build a gimple reference operation with the given CODE and argument
1070 ARG, assigning the result to a new SSA name of TYPE with NAME.
1071 Insert the statement prior to GSI's current position, and return
1072 the fresh SSA name. */
1073
1074 static inline tree
1075 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1076 const char *name, enum tree_code code, tree arg0)
1077 {
1078 tree result = make_temp_ssa_name (type, NULL, name);
1079 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1080 gimple_set_location (stmt, loc);
1081 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1082 return result;
1083 }
1084
1085 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1086 prior to GSI's current position, and return the fresh SSA name. */
1087
1088 static tree
1089 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1090 tree type, tree val)
1091 {
1092 tree result = make_ssa_name (type, NULL);
1093 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1094 gimple_set_location (stmt, loc);
1095 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1096 return result;
1097 }
1098
1099 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1100 with location info LOC. If possible, create an equivalent and
1101 less expensive sequence of statements prior to GSI, and return an
1102 expession holding the result. */
1103
1104 static tree
1105 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1106 tree arg0, tree arg1)
1107 {
1108 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1109 REAL_VALUE_TYPE c2, dconst3;
1110 HOST_WIDE_INT n;
1111 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1112 enum machine_mode mode;
1113 bool hw_sqrt_exists, c_is_int, c2_is_int;
1114
1115 /* If the exponent isn't a constant, there's nothing of interest
1116 to be done. */
1117 if (TREE_CODE (arg1) != REAL_CST)
1118 return NULL_TREE;
1119
1120 /* If the exponent is equivalent to an integer, expand to an optimal
1121 multiplication sequence when profitable. */
1122 c = TREE_REAL_CST (arg1);
1123 n = real_to_integer (&c);
1124 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1125 c_is_int = real_identical (&c, &cint);
1126
1127 if (c_is_int
1128 && ((n >= -1 && n <= 2)
1129 || (flag_unsafe_math_optimizations
1130 && optimize_insn_for_speed_p ()
1131 && powi_cost (n) <= POWI_MAX_MULTS)))
1132 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1133
1134 /* Attempt various optimizations using sqrt and cbrt. */
1135 type = TREE_TYPE (arg0);
1136 mode = TYPE_MODE (type);
1137 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1138
1139 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1140 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1141 sqrt(-0) = -0. */
1142 if (sqrtfn
1143 && REAL_VALUES_EQUAL (c, dconsthalf)
1144 && !HONOR_SIGNED_ZEROS (mode))
1145 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1146
1147 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1148 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1149 so do this optimization even if -Os. Don't do this optimization
1150 if we don't have a hardware sqrt insn. */
1151 dconst1_4 = dconst1;
1152 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1153 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1154
1155 if (flag_unsafe_math_optimizations
1156 && sqrtfn
1157 && REAL_VALUES_EQUAL (c, dconst1_4)
1158 && hw_sqrt_exists)
1159 {
1160 /* sqrt(x) */
1161 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1162
1163 /* sqrt(sqrt(x)) */
1164 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1165 }
1166
1167 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1168 optimizing for space. Don't do this optimization if we don't have
1169 a hardware sqrt insn. */
1170 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1171 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1172
1173 if (flag_unsafe_math_optimizations
1174 && sqrtfn
1175 && optimize_function_for_speed_p (cfun)
1176 && REAL_VALUES_EQUAL (c, dconst3_4)
1177 && hw_sqrt_exists)
1178 {
1179 /* sqrt(x) */
1180 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1181
1182 /* sqrt(sqrt(x)) */
1183 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1184
1185 /* sqrt(x) * sqrt(sqrt(x)) */
1186 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1187 sqrt_arg0, sqrt_sqrt);
1188 }
1189
1190 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1191 optimizations since 1./3. is not exactly representable. If x
1192 is negative and finite, the correct value of pow(x,1./3.) is
1193 a NaN with the "invalid" exception raised, because the value
1194 of 1./3. actually has an even denominator. The correct value
1195 of cbrt(x) is a negative real value. */
1196 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1197 dconst1_3 = real_value_truncate (mode, dconst_third ());
1198
1199 if (flag_unsafe_math_optimizations
1200 && cbrtfn
1201 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1202 && REAL_VALUES_EQUAL (c, dconst1_3))
1203 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1204
1205 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1206 if we don't have a hardware sqrt insn. */
1207 dconst1_6 = dconst1_3;
1208 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1209
1210 if (flag_unsafe_math_optimizations
1211 && sqrtfn
1212 && cbrtfn
1213 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1214 && optimize_function_for_speed_p (cfun)
1215 && hw_sqrt_exists
1216 && REAL_VALUES_EQUAL (c, dconst1_6))
1217 {
1218 /* sqrt(x) */
1219 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1220
1221 /* cbrt(sqrt(x)) */
1222 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1223 }
1224
1225 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1226 and c not an integer, into
1227
1228 sqrt(x) * powi(x, n/2), n > 0;
1229 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1230
1231 Do not calculate the powi factor when n/2 = 0. */
1232 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1233 n = real_to_integer (&c2);
1234 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1235 c2_is_int = real_identical (&c2, &cint);
1236
1237 if (flag_unsafe_math_optimizations
1238 && sqrtfn
1239 && c2_is_int
1240 && !c_is_int
1241 && optimize_function_for_speed_p (cfun))
1242 {
1243 tree powi_x_ndiv2 = NULL_TREE;
1244
1245 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1246 possible or profitable, give up. Skip the degenerate case when
1247 n is 1 or -1, where the result is always 1. */
1248 if (absu_hwi (n) != 1)
1249 {
1250 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1251 abs_hwi (n / 2));
1252 if (!powi_x_ndiv2)
1253 return NULL_TREE;
1254 }
1255
1256 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1257 result of the optimal multiply sequence just calculated. */
1258 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1259
1260 if (absu_hwi (n) == 1)
1261 result = sqrt_arg0;
1262 else
1263 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1264 sqrt_arg0, powi_x_ndiv2);
1265
1266 /* If n is negative, reciprocate the result. */
1267 if (n < 0)
1268 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1269 build_real (type, dconst1), result);
1270 return result;
1271 }
1272
1273 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1274
1275 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1276 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1277
1278 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1279 different from pow(x, 1./3.) due to rounding and behavior with
1280 negative x, we need to constrain this transformation to unsafe
1281 math and positive x or finite math. */
1282 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1283 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1284 real_round (&c2, mode, &c2);
1285 n = real_to_integer (&c2);
1286 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1287 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1288 real_convert (&c2, mode, &c2);
1289
1290 if (flag_unsafe_math_optimizations
1291 && cbrtfn
1292 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1293 && real_identical (&c2, &c)
1294 && !c2_is_int
1295 && optimize_function_for_speed_p (cfun)
1296 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1297 {
1298 tree powi_x_ndiv3 = NULL_TREE;
1299
1300 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1301 possible or profitable, give up. Skip the degenerate case when
1302 abs(n) < 3, where the result is always 1. */
1303 if (absu_hwi (n) >= 3)
1304 {
1305 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1306 abs_hwi (n / 3));
1307 if (!powi_x_ndiv3)
1308 return NULL_TREE;
1309 }
1310
1311 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1312 as that creates an unnecessary variable. Instead, just produce
1313 either cbrt(x) or cbrt(x) * cbrt(x). */
1314 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1315
1316 if (absu_hwi (n) % 3 == 1)
1317 powi_cbrt_x = cbrt_x;
1318 else
1319 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1320 cbrt_x, cbrt_x);
1321
1322 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1323 if (absu_hwi (n) < 3)
1324 result = powi_cbrt_x;
1325 else
1326 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1327 powi_x_ndiv3, powi_cbrt_x);
1328
1329 /* If n is negative, reciprocate the result. */
1330 if (n < 0)
1331 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1332 build_real (type, dconst1), result);
1333
1334 return result;
1335 }
1336
1337 /* No optimizations succeeded. */
1338 return NULL_TREE;
1339 }
1340
1341 /* ARG is the argument to a cabs builtin call in GSI with location info
1342 LOC. Create a sequence of statements prior to GSI that calculates
1343 sqrt(R*R + I*I), where R and I are the real and imaginary components
1344 of ARG, respectively. Return an expression holding the result. */
1345
1346 static tree
1347 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1348 {
1349 tree real_part, imag_part, addend1, addend2, sum, result;
1350 tree type = TREE_TYPE (TREE_TYPE (arg));
1351 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1352 enum machine_mode mode = TYPE_MODE (type);
1353
1354 if (!flag_unsafe_math_optimizations
1355 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1356 || !sqrtfn
1357 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1358 return NULL_TREE;
1359
1360 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1361 REALPART_EXPR, arg);
1362 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1363 real_part, real_part);
1364 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1365 IMAGPART_EXPR, arg);
1366 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1367 imag_part, imag_part);
1368 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1369 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1370
1371 return result;
1372 }
1373
1374 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1375 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1376 an optimal number of multiplies, when n is a constant. */
1377
1378 static unsigned int
1379 execute_cse_sincos (void)
1380 {
1381 basic_block bb;
1382 bool cfg_changed = false;
1383
1384 calculate_dominance_info (CDI_DOMINATORS);
1385 memset (&sincos_stats, 0, sizeof (sincos_stats));
1386
1387 FOR_EACH_BB (bb)
1388 {
1389 gimple_stmt_iterator gsi;
1390 bool cleanup_eh = false;
1391
1392 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1393 {
1394 gimple stmt = gsi_stmt (gsi);
1395 tree fndecl;
1396
1397 /* Only the last stmt in a bb could throw, no need to call
1398 gimple_purge_dead_eh_edges if we change something in the middle
1399 of a basic block. */
1400 cleanup_eh = false;
1401
1402 if (is_gimple_call (stmt)
1403 && gimple_call_lhs (stmt)
1404 && (fndecl = gimple_call_fndecl (stmt))
1405 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1406 {
1407 tree arg, arg0, arg1, result;
1408 HOST_WIDE_INT n;
1409 location_t loc;
1410
1411 switch (DECL_FUNCTION_CODE (fndecl))
1412 {
1413 CASE_FLT_FN (BUILT_IN_COS):
1414 CASE_FLT_FN (BUILT_IN_SIN):
1415 CASE_FLT_FN (BUILT_IN_CEXPI):
1416 /* Make sure we have either sincos or cexp. */
1417 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1418 break;
1419
1420 arg = gimple_call_arg (stmt, 0);
1421 if (TREE_CODE (arg) == SSA_NAME)
1422 cfg_changed |= execute_cse_sincos_1 (arg);
1423 break;
1424
1425 CASE_FLT_FN (BUILT_IN_POW):
1426 arg0 = gimple_call_arg (stmt, 0);
1427 arg1 = gimple_call_arg (stmt, 1);
1428
1429 loc = gimple_location (stmt);
1430 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1431
1432 if (result)
1433 {
1434 tree lhs = gimple_get_lhs (stmt);
1435 gimple new_stmt = gimple_build_assign (lhs, result);
1436 gimple_set_location (new_stmt, loc);
1437 unlink_stmt_vdef (stmt);
1438 gsi_replace (&gsi, new_stmt, true);
1439 cleanup_eh = true;
1440 if (gimple_vdef (stmt))
1441 release_ssa_name (gimple_vdef (stmt));
1442 }
1443 break;
1444
1445 CASE_FLT_FN (BUILT_IN_POWI):
1446 arg0 = gimple_call_arg (stmt, 0);
1447 arg1 = gimple_call_arg (stmt, 1);
1448 loc = gimple_location (stmt);
1449
1450 if (real_minus_onep (arg0))
1451 {
1452 tree t0, t1, cond, one, minus_one;
1453 gimple stmt;
1454
1455 t0 = TREE_TYPE (arg0);
1456 t1 = TREE_TYPE (arg1);
1457 one = build_real (t0, dconst1);
1458 minus_one = build_real (t0, dconstm1);
1459
1460 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1461 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1462 arg1,
1463 build_int_cst (t1,
1464 1));
1465 gimple_set_location (stmt, loc);
1466 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1467
1468 result = make_temp_ssa_name (t0, NULL, "powi");
1469 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1470 cond,
1471 minus_one, one);
1472 gimple_set_location (stmt, loc);
1473 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1474 }
1475 else
1476 {
1477 if (!host_integerp (arg1, 0))
1478 break;
1479
1480 n = TREE_INT_CST_LOW (arg1);
1481 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1482 }
1483
1484 if (result)
1485 {
1486 tree lhs = gimple_get_lhs (stmt);
1487 gimple new_stmt = gimple_build_assign (lhs, result);
1488 gimple_set_location (new_stmt, loc);
1489 unlink_stmt_vdef (stmt);
1490 gsi_replace (&gsi, new_stmt, true);
1491 cleanup_eh = true;
1492 if (gimple_vdef (stmt))
1493 release_ssa_name (gimple_vdef (stmt));
1494 }
1495 break;
1496
1497 CASE_FLT_FN (BUILT_IN_CABS):
1498 arg0 = gimple_call_arg (stmt, 0);
1499 loc = gimple_location (stmt);
1500 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1501
1502 if (result)
1503 {
1504 tree lhs = gimple_get_lhs (stmt);
1505 gimple new_stmt = gimple_build_assign (lhs, result);
1506 gimple_set_location (new_stmt, loc);
1507 unlink_stmt_vdef (stmt);
1508 gsi_replace (&gsi, new_stmt, true);
1509 cleanup_eh = true;
1510 if (gimple_vdef (stmt))
1511 release_ssa_name (gimple_vdef (stmt));
1512 }
1513 break;
1514
1515 default:;
1516 }
1517 }
1518 }
1519 if (cleanup_eh)
1520 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1521 }
1522
1523 statistics_counter_event (cfun, "sincos statements inserted",
1524 sincos_stats.inserted);
1525
1526 free_dominance_info (CDI_DOMINATORS);
1527 return cfg_changed ? TODO_cleanup_cfg : 0;
1528 }
1529
1530 static bool
1531 gate_cse_sincos (void)
1532 {
1533 /* We no longer require either sincos or cexp, since powi expansion
1534 piggybacks on this pass. */
1535 return optimize;
1536 }
1537
1538 struct gimple_opt_pass pass_cse_sincos =
1539 {
1540 {
1541 GIMPLE_PASS,
1542 "sincos", /* name */
1543 OPTGROUP_NONE, /* optinfo_flags */
1544 gate_cse_sincos, /* gate */
1545 execute_cse_sincos, /* execute */
1546 NULL, /* sub */
1547 NULL, /* next */
1548 0, /* static_pass_number */
1549 TV_NONE, /* tv_id */
1550 PROP_ssa, /* properties_required */
1551 0, /* properties_provided */
1552 0, /* properties_destroyed */
1553 0, /* todo_flags_start */
1554 TODO_update_ssa | TODO_verify_ssa
1555 | TODO_verify_stmts /* todo_flags_finish */
1556 }
1557 };
1558
1559 /* A symbolic number is used to detect byte permutation and selection
1560 patterns. Therefore the field N contains an artificial number
1561 consisting of byte size markers:
1562
1563 0 - byte has the value 0
1564 1..size - byte contains the content of the byte
1565 number indexed with that value minus one */
1566
1567 struct symbolic_number {
1568 unsigned HOST_WIDEST_INT n;
1569 int size;
1570 };
1571
1572 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1573 number N. Return false if the requested operation is not permitted
1574 on a symbolic number. */
1575
1576 static inline bool
1577 do_shift_rotate (enum tree_code code,
1578 struct symbolic_number *n,
1579 int count)
1580 {
1581 if (count % 8 != 0)
1582 return false;
1583
1584 /* Zero out the extra bits of N in order to avoid them being shifted
1585 into the significant bits. */
1586 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1587 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1588
1589 switch (code)
1590 {
1591 case LSHIFT_EXPR:
1592 n->n <<= count;
1593 break;
1594 case RSHIFT_EXPR:
1595 n->n >>= count;
1596 break;
1597 case LROTATE_EXPR:
1598 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1599 break;
1600 case RROTATE_EXPR:
1601 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1602 break;
1603 default:
1604 return false;
1605 }
1606 /* Zero unused bits for size. */
1607 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1608 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1609 return true;
1610 }
1611
1612 /* Perform sanity checking for the symbolic number N and the gimple
1613 statement STMT. */
1614
1615 static inline bool
1616 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1617 {
1618 tree lhs_type;
1619
1620 lhs_type = gimple_expr_type (stmt);
1621
1622 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1623 return false;
1624
1625 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1626 return false;
1627
1628 return true;
1629 }
1630
1631 /* find_bswap_1 invokes itself recursively with N and tries to perform
1632 the operation given by the rhs of STMT on the result. If the
1633 operation could successfully be executed the function returns the
1634 tree expression of the source operand and NULL otherwise. */
1635
1636 static tree
1637 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1638 {
1639 enum tree_code code;
1640 tree rhs1, rhs2 = NULL;
1641 gimple rhs1_stmt, rhs2_stmt;
1642 tree source_expr1;
1643 enum gimple_rhs_class rhs_class;
1644
1645 if (!limit || !is_gimple_assign (stmt))
1646 return NULL_TREE;
1647
1648 rhs1 = gimple_assign_rhs1 (stmt);
1649
1650 if (TREE_CODE (rhs1) != SSA_NAME)
1651 return NULL_TREE;
1652
1653 code = gimple_assign_rhs_code (stmt);
1654 rhs_class = gimple_assign_rhs_class (stmt);
1655 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1656
1657 if (rhs_class == GIMPLE_BINARY_RHS)
1658 rhs2 = gimple_assign_rhs2 (stmt);
1659
1660 /* Handle unary rhs and binary rhs with integer constants as second
1661 operand. */
1662
1663 if (rhs_class == GIMPLE_UNARY_RHS
1664 || (rhs_class == GIMPLE_BINARY_RHS
1665 && TREE_CODE (rhs2) == INTEGER_CST))
1666 {
1667 if (code != BIT_AND_EXPR
1668 && code != LSHIFT_EXPR
1669 && code != RSHIFT_EXPR
1670 && code != LROTATE_EXPR
1671 && code != RROTATE_EXPR
1672 && code != NOP_EXPR
1673 && code != CONVERT_EXPR)
1674 return NULL_TREE;
1675
1676 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1677
1678 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1679 to initialize the symbolic number. */
1680 if (!source_expr1)
1681 {
1682 /* Set up the symbolic number N by setting each byte to a
1683 value between 1 and the byte size of rhs1. The highest
1684 order byte is set to n->size and the lowest order
1685 byte to 1. */
1686 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1687 if (n->size % BITS_PER_UNIT != 0)
1688 return NULL_TREE;
1689 n->size /= BITS_PER_UNIT;
1690 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1691 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1692
1693 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1694 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1695 (n->size * BITS_PER_UNIT)) - 1;
1696
1697 source_expr1 = rhs1;
1698 }
1699
1700 switch (code)
1701 {
1702 case BIT_AND_EXPR:
1703 {
1704 int i;
1705 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1706 unsigned HOST_WIDEST_INT tmp = val;
1707
1708 /* Only constants masking full bytes are allowed. */
1709 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1710 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1711 return NULL_TREE;
1712
1713 n->n &= val;
1714 }
1715 break;
1716 case LSHIFT_EXPR:
1717 case RSHIFT_EXPR:
1718 case LROTATE_EXPR:
1719 case RROTATE_EXPR:
1720 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1721 return NULL_TREE;
1722 break;
1723 CASE_CONVERT:
1724 {
1725 int type_size;
1726
1727 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1728 if (type_size % BITS_PER_UNIT != 0)
1729 return NULL_TREE;
1730
1731 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1732 {
1733 /* If STMT casts to a smaller type mask out the bits not
1734 belonging to the target type. */
1735 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1736 }
1737 n->size = type_size / BITS_PER_UNIT;
1738 }
1739 break;
1740 default:
1741 return NULL_TREE;
1742 };
1743 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1744 }
1745
1746 /* Handle binary rhs. */
1747
1748 if (rhs_class == GIMPLE_BINARY_RHS)
1749 {
1750 struct symbolic_number n1, n2;
1751 tree source_expr2;
1752
1753 if (code != BIT_IOR_EXPR)
1754 return NULL_TREE;
1755
1756 if (TREE_CODE (rhs2) != SSA_NAME)
1757 return NULL_TREE;
1758
1759 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1760
1761 switch (code)
1762 {
1763 case BIT_IOR_EXPR:
1764 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1765
1766 if (!source_expr1)
1767 return NULL_TREE;
1768
1769 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1770
1771 if (source_expr1 != source_expr2
1772 || n1.size != n2.size)
1773 return NULL_TREE;
1774
1775 n->size = n1.size;
1776 n->n = n1.n | n2.n;
1777
1778 if (!verify_symbolic_number_p (n, stmt))
1779 return NULL_TREE;
1780
1781 break;
1782 default:
1783 return NULL_TREE;
1784 }
1785 return source_expr1;
1786 }
1787 return NULL_TREE;
1788 }
1789
1790 /* Check if STMT completes a bswap implementation consisting of ORs,
1791 SHIFTs and ANDs. Return the source tree expression on which the
1792 byte swap is performed and NULL if no bswap was found. */
1793
1794 static tree
1795 find_bswap (gimple stmt)
1796 {
1797 /* The number which the find_bswap result should match in order to
1798 have a full byte swap. The number is shifted to the left according
1799 to the size of the symbolic number before using it. */
1800 unsigned HOST_WIDEST_INT cmp =
1801 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1802 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1803
1804 struct symbolic_number n;
1805 tree source_expr;
1806 int limit;
1807
1808 /* The last parameter determines the depth search limit. It usually
1809 correlates directly to the number of bytes to be touched. We
1810 increase that number by three here in order to also
1811 cover signed -> unsigned converions of the src operand as can be seen
1812 in libgcc, and for initial shift/and operation of the src operand. */
1813 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1814 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1815 source_expr = find_bswap_1 (stmt, &n, limit);
1816
1817 if (!source_expr)
1818 return NULL_TREE;
1819
1820 /* Zero out the extra bits of N and CMP. */
1821 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1822 {
1823 unsigned HOST_WIDEST_INT mask =
1824 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1825
1826 n.n &= mask;
1827 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1828 }
1829
1830 /* A complete byte swap should make the symbolic number to start
1831 with the largest digit in the highest order byte. */
1832 if (cmp != n.n)
1833 return NULL_TREE;
1834
1835 return source_expr;
1836 }
1837
1838 /* Find manual byte swap implementations and turn them into a bswap
1839 builtin invokation. */
1840
1841 static unsigned int
1842 execute_optimize_bswap (void)
1843 {
1844 basic_block bb;
1845 bool bswap16_p, bswap32_p, bswap64_p;
1846 bool changed = false;
1847 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1848
1849 if (BITS_PER_UNIT != 8)
1850 return 0;
1851
1852 if (sizeof (HOST_WIDEST_INT) < 8)
1853 return 0;
1854
1855 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1856 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1857 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1858 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1859 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1860 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1861 || (bswap32_p && word_mode == SImode)));
1862
1863 if (!bswap16_p && !bswap32_p && !bswap64_p)
1864 return 0;
1865
1866 /* Determine the argument type of the builtins. The code later on
1867 assumes that the return and argument type are the same. */
1868 if (bswap16_p)
1869 {
1870 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1871 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1872 }
1873
1874 if (bswap32_p)
1875 {
1876 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1877 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1878 }
1879
1880 if (bswap64_p)
1881 {
1882 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1883 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1884 }
1885
1886 memset (&bswap_stats, 0, sizeof (bswap_stats));
1887
1888 FOR_EACH_BB (bb)
1889 {
1890 gimple_stmt_iterator gsi;
1891
1892 /* We do a reverse scan for bswap patterns to make sure we get the
1893 widest match. As bswap pattern matching doesn't handle
1894 previously inserted smaller bswap replacements as sub-
1895 patterns, the wider variant wouldn't be detected. */
1896 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1897 {
1898 gimple stmt = gsi_stmt (gsi);
1899 tree bswap_src, bswap_type;
1900 tree bswap_tmp;
1901 tree fndecl = NULL_TREE;
1902 int type_size;
1903 gimple call;
1904
1905 if (!is_gimple_assign (stmt)
1906 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1907 continue;
1908
1909 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1910
1911 switch (type_size)
1912 {
1913 case 16:
1914 if (bswap16_p)
1915 {
1916 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1917 bswap_type = bswap16_type;
1918 }
1919 break;
1920 case 32:
1921 if (bswap32_p)
1922 {
1923 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1924 bswap_type = bswap32_type;
1925 }
1926 break;
1927 case 64:
1928 if (bswap64_p)
1929 {
1930 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1931 bswap_type = bswap64_type;
1932 }
1933 break;
1934 default:
1935 continue;
1936 }
1937
1938 if (!fndecl)
1939 continue;
1940
1941 bswap_src = find_bswap (stmt);
1942
1943 if (!bswap_src)
1944 continue;
1945
1946 changed = true;
1947 if (type_size == 16)
1948 bswap_stats.found_16bit++;
1949 else if (type_size == 32)
1950 bswap_stats.found_32bit++;
1951 else
1952 bswap_stats.found_64bit++;
1953
1954 bswap_tmp = bswap_src;
1955
1956 /* Convert the src expression if necessary. */
1957 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1958 {
1959 gimple convert_stmt;
1960 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1961 convert_stmt = gimple_build_assign_with_ops
1962 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
1963 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1964 }
1965
1966 call = gimple_build_call (fndecl, 1, bswap_tmp);
1967
1968 bswap_tmp = gimple_assign_lhs (stmt);
1969
1970 /* Convert the result if necessary. */
1971 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1972 {
1973 gimple convert_stmt;
1974 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1975 convert_stmt = gimple_build_assign_with_ops
1976 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1977 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1978 }
1979
1980 gimple_call_set_lhs (call, bswap_tmp);
1981
1982 if (dump_file)
1983 {
1984 fprintf (dump_file, "%d bit bswap implementation found at: ",
1985 (int)type_size);
1986 print_gimple_stmt (dump_file, stmt, 0, 0);
1987 }
1988
1989 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1990 gsi_remove (&gsi, true);
1991 }
1992 }
1993
1994 statistics_counter_event (cfun, "16-bit bswap implementations found",
1995 bswap_stats.found_16bit);
1996 statistics_counter_event (cfun, "32-bit bswap implementations found",
1997 bswap_stats.found_32bit);
1998 statistics_counter_event (cfun, "64-bit bswap implementations found",
1999 bswap_stats.found_64bit);
2000
2001 return (changed ? TODO_update_ssa | TODO_verify_ssa
2002 | TODO_verify_stmts : 0);
2003 }
2004
2005 static bool
2006 gate_optimize_bswap (void)
2007 {
2008 return flag_expensive_optimizations && optimize;
2009 }
2010
2011 struct gimple_opt_pass pass_optimize_bswap =
2012 {
2013 {
2014 GIMPLE_PASS,
2015 "bswap", /* name */
2016 OPTGROUP_NONE, /* optinfo_flags */
2017 gate_optimize_bswap, /* gate */
2018 execute_optimize_bswap, /* execute */
2019 NULL, /* sub */
2020 NULL, /* next */
2021 0, /* static_pass_number */
2022 TV_NONE, /* tv_id */
2023 PROP_ssa, /* properties_required */
2024 0, /* properties_provided */
2025 0, /* properties_destroyed */
2026 0, /* todo_flags_start */
2027 0 /* todo_flags_finish */
2028 }
2029 };
2030
2031 /* Return true if stmt is a type conversion operation that can be stripped
2032 when used in a widening multiply operation. */
2033 static bool
2034 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2035 {
2036 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2037
2038 if (TREE_CODE (result_type) == INTEGER_TYPE)
2039 {
2040 tree op_type;
2041 tree inner_op_type;
2042
2043 if (!CONVERT_EXPR_CODE_P (rhs_code))
2044 return false;
2045
2046 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2047
2048 /* If the type of OP has the same precision as the result, then
2049 we can strip this conversion. The multiply operation will be
2050 selected to create the correct extension as a by-product. */
2051 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2052 return true;
2053
2054 /* We can also strip a conversion if it preserves the signed-ness of
2055 the operation and doesn't narrow the range. */
2056 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2057
2058 /* If the inner-most type is unsigned, then we can strip any
2059 intermediate widening operation. If it's signed, then the
2060 intermediate widening operation must also be signed. */
2061 if ((TYPE_UNSIGNED (inner_op_type)
2062 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2063 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2064 return true;
2065
2066 return false;
2067 }
2068
2069 return rhs_code == FIXED_CONVERT_EXPR;
2070 }
2071
2072 /* Return true if RHS is a suitable operand for a widening multiplication,
2073 assuming a target type of TYPE.
2074 There are two cases:
2075
2076 - RHS makes some value at least twice as wide. Store that value
2077 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2078
2079 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2080 but leave *TYPE_OUT untouched. */
2081
2082 static bool
2083 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2084 tree *new_rhs_out)
2085 {
2086 gimple stmt;
2087 tree type1, rhs1;
2088
2089 if (TREE_CODE (rhs) == SSA_NAME)
2090 {
2091 stmt = SSA_NAME_DEF_STMT (rhs);
2092 if (is_gimple_assign (stmt))
2093 {
2094 if (! widening_mult_conversion_strippable_p (type, stmt))
2095 rhs1 = rhs;
2096 else
2097 {
2098 rhs1 = gimple_assign_rhs1 (stmt);
2099
2100 if (TREE_CODE (rhs1) == INTEGER_CST)
2101 {
2102 *new_rhs_out = rhs1;
2103 *type_out = NULL;
2104 return true;
2105 }
2106 }
2107 }
2108 else
2109 rhs1 = rhs;
2110
2111 type1 = TREE_TYPE (rhs1);
2112
2113 if (TREE_CODE (type1) != TREE_CODE (type)
2114 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2115 return false;
2116
2117 *new_rhs_out = rhs1;
2118 *type_out = type1;
2119 return true;
2120 }
2121
2122 if (TREE_CODE (rhs) == INTEGER_CST)
2123 {
2124 *new_rhs_out = rhs;
2125 *type_out = NULL;
2126 return true;
2127 }
2128
2129 return false;
2130 }
2131
2132 /* Return true if STMT performs a widening multiplication, assuming the
2133 output type is TYPE. If so, store the unwidened types of the operands
2134 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2135 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2136 and *TYPE2_OUT would give the operands of the multiplication. */
2137
2138 static bool
2139 is_widening_mult_p (gimple stmt,
2140 tree *type1_out, tree *rhs1_out,
2141 tree *type2_out, tree *rhs2_out)
2142 {
2143 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2144
2145 if (TREE_CODE (type) != INTEGER_TYPE
2146 && TREE_CODE (type) != FIXED_POINT_TYPE)
2147 return false;
2148
2149 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2150 rhs1_out))
2151 return false;
2152
2153 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2154 rhs2_out))
2155 return false;
2156
2157 if (*type1_out == NULL)
2158 {
2159 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2160 return false;
2161 *type1_out = *type2_out;
2162 }
2163
2164 if (*type2_out == NULL)
2165 {
2166 if (!int_fits_type_p (*rhs2_out, *type1_out))
2167 return false;
2168 *type2_out = *type1_out;
2169 }
2170
2171 /* Ensure that the larger of the two operands comes first. */
2172 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2173 {
2174 tree tmp;
2175 tmp = *type1_out;
2176 *type1_out = *type2_out;
2177 *type2_out = tmp;
2178 tmp = *rhs1_out;
2179 *rhs1_out = *rhs2_out;
2180 *rhs2_out = tmp;
2181 }
2182
2183 return true;
2184 }
2185
2186 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2187 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2188 value is true iff we converted the statement. */
2189
2190 static bool
2191 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2192 {
2193 tree lhs, rhs1, rhs2, type, type1, type2;
2194 enum insn_code handler;
2195 enum machine_mode to_mode, from_mode, actual_mode;
2196 optab op;
2197 int actual_precision;
2198 location_t loc = gimple_location (stmt);
2199 bool from_unsigned1, from_unsigned2;
2200
2201 lhs = gimple_assign_lhs (stmt);
2202 type = TREE_TYPE (lhs);
2203 if (TREE_CODE (type) != INTEGER_TYPE)
2204 return false;
2205
2206 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2207 return false;
2208
2209 to_mode = TYPE_MODE (type);
2210 from_mode = TYPE_MODE (type1);
2211 from_unsigned1 = TYPE_UNSIGNED (type1);
2212 from_unsigned2 = TYPE_UNSIGNED (type2);
2213
2214 if (from_unsigned1 && from_unsigned2)
2215 op = umul_widen_optab;
2216 else if (!from_unsigned1 && !from_unsigned2)
2217 op = smul_widen_optab;
2218 else
2219 op = usmul_widen_optab;
2220
2221 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2222 0, &actual_mode);
2223
2224 if (handler == CODE_FOR_nothing)
2225 {
2226 if (op != smul_widen_optab)
2227 {
2228 /* We can use a signed multiply with unsigned types as long as
2229 there is a wider mode to use, or it is the smaller of the two
2230 types that is unsigned. Note that type1 >= type2, always. */
2231 if ((TYPE_UNSIGNED (type1)
2232 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2233 || (TYPE_UNSIGNED (type2)
2234 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2235 {
2236 from_mode = GET_MODE_WIDER_MODE (from_mode);
2237 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2238 return false;
2239 }
2240
2241 op = smul_widen_optab;
2242 handler = find_widening_optab_handler_and_mode (op, to_mode,
2243 from_mode, 0,
2244 &actual_mode);
2245
2246 if (handler == CODE_FOR_nothing)
2247 return false;
2248
2249 from_unsigned1 = from_unsigned2 = false;
2250 }
2251 else
2252 return false;
2253 }
2254
2255 /* Ensure that the inputs to the handler are in the correct precison
2256 for the opcode. This will be the full mode size. */
2257 actual_precision = GET_MODE_PRECISION (actual_mode);
2258 if (2 * actual_precision > TYPE_PRECISION (type))
2259 return false;
2260 if (actual_precision != TYPE_PRECISION (type1)
2261 || from_unsigned1 != TYPE_UNSIGNED (type1))
2262 rhs1 = build_and_insert_cast (gsi, loc,
2263 build_nonstandard_integer_type
2264 (actual_precision, from_unsigned1), rhs1);
2265 if (actual_precision != TYPE_PRECISION (type2)
2266 || from_unsigned2 != TYPE_UNSIGNED (type2))
2267 rhs2 = build_and_insert_cast (gsi, loc,
2268 build_nonstandard_integer_type
2269 (actual_precision, from_unsigned2), rhs2);
2270
2271 /* Handle constants. */
2272 if (TREE_CODE (rhs1) == INTEGER_CST)
2273 rhs1 = fold_convert (type1, rhs1);
2274 if (TREE_CODE (rhs2) == INTEGER_CST)
2275 rhs2 = fold_convert (type2, rhs2);
2276
2277 gimple_assign_set_rhs1 (stmt, rhs1);
2278 gimple_assign_set_rhs2 (stmt, rhs2);
2279 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2280 update_stmt (stmt);
2281 widen_mul_stats.widen_mults_inserted++;
2282 return true;
2283 }
2284
2285 /* Process a single gimple statement STMT, which is found at the
2286 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2287 rhs (given by CODE), and try to convert it into a
2288 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2289 is true iff we converted the statement. */
2290
2291 static bool
2292 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2293 enum tree_code code)
2294 {
2295 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2296 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2297 tree type, type1, type2, optype;
2298 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2299 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2300 optab this_optab;
2301 enum tree_code wmult_code;
2302 enum insn_code handler;
2303 enum machine_mode to_mode, from_mode, actual_mode;
2304 location_t loc = gimple_location (stmt);
2305 int actual_precision;
2306 bool from_unsigned1, from_unsigned2;
2307
2308 lhs = gimple_assign_lhs (stmt);
2309 type = TREE_TYPE (lhs);
2310 if (TREE_CODE (type) != INTEGER_TYPE
2311 && TREE_CODE (type) != FIXED_POINT_TYPE)
2312 return false;
2313
2314 if (code == MINUS_EXPR)
2315 wmult_code = WIDEN_MULT_MINUS_EXPR;
2316 else
2317 wmult_code = WIDEN_MULT_PLUS_EXPR;
2318
2319 rhs1 = gimple_assign_rhs1 (stmt);
2320 rhs2 = gimple_assign_rhs2 (stmt);
2321
2322 if (TREE_CODE (rhs1) == SSA_NAME)
2323 {
2324 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2325 if (is_gimple_assign (rhs1_stmt))
2326 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2327 }
2328
2329 if (TREE_CODE (rhs2) == SSA_NAME)
2330 {
2331 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2332 if (is_gimple_assign (rhs2_stmt))
2333 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2334 }
2335
2336 /* Allow for one conversion statement between the multiply
2337 and addition/subtraction statement. If there are more than
2338 one conversions then we assume they would invalidate this
2339 transformation. If that's not the case then they should have
2340 been folded before now. */
2341 if (CONVERT_EXPR_CODE_P (rhs1_code))
2342 {
2343 conv1_stmt = rhs1_stmt;
2344 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2345 if (TREE_CODE (rhs1) == SSA_NAME)
2346 {
2347 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2348 if (is_gimple_assign (rhs1_stmt))
2349 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2350 }
2351 else
2352 return false;
2353 }
2354 if (CONVERT_EXPR_CODE_P (rhs2_code))
2355 {
2356 conv2_stmt = rhs2_stmt;
2357 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2358 if (TREE_CODE (rhs2) == SSA_NAME)
2359 {
2360 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2361 if (is_gimple_assign (rhs2_stmt))
2362 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2363 }
2364 else
2365 return false;
2366 }
2367
2368 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2369 is_widening_mult_p, but we still need the rhs returns.
2370
2371 It might also appear that it would be sufficient to use the existing
2372 operands of the widening multiply, but that would limit the choice of
2373 multiply-and-accumulate instructions. */
2374 if (code == PLUS_EXPR
2375 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2376 {
2377 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2378 &type2, &mult_rhs2))
2379 return false;
2380 add_rhs = rhs2;
2381 conv_stmt = conv1_stmt;
2382 }
2383 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2384 {
2385 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2386 &type2, &mult_rhs2))
2387 return false;
2388 add_rhs = rhs1;
2389 conv_stmt = conv2_stmt;
2390 }
2391 else
2392 return false;
2393
2394 to_mode = TYPE_MODE (type);
2395 from_mode = TYPE_MODE (type1);
2396 from_unsigned1 = TYPE_UNSIGNED (type1);
2397 from_unsigned2 = TYPE_UNSIGNED (type2);
2398 optype = type1;
2399
2400 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2401 if (from_unsigned1 != from_unsigned2)
2402 {
2403 if (!INTEGRAL_TYPE_P (type))
2404 return false;
2405 /* We can use a signed multiply with unsigned types as long as
2406 there is a wider mode to use, or it is the smaller of the two
2407 types that is unsigned. Note that type1 >= type2, always. */
2408 if ((from_unsigned1
2409 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2410 || (from_unsigned2
2411 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2412 {
2413 from_mode = GET_MODE_WIDER_MODE (from_mode);
2414 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2415 return false;
2416 }
2417
2418 from_unsigned1 = from_unsigned2 = false;
2419 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2420 false);
2421 }
2422
2423 /* If there was a conversion between the multiply and addition
2424 then we need to make sure it fits a multiply-and-accumulate.
2425 The should be a single mode change which does not change the
2426 value. */
2427 if (conv_stmt)
2428 {
2429 /* We use the original, unmodified data types for this. */
2430 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2431 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2432 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2433 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2434
2435 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2436 {
2437 /* Conversion is a truncate. */
2438 if (TYPE_PRECISION (to_type) < data_size)
2439 return false;
2440 }
2441 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2442 {
2443 /* Conversion is an extend. Check it's the right sort. */
2444 if (TYPE_UNSIGNED (from_type) != is_unsigned
2445 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2446 return false;
2447 }
2448 /* else convert is a no-op for our purposes. */
2449 }
2450
2451 /* Verify that the machine can perform a widening multiply
2452 accumulate in this mode/signedness combination, otherwise
2453 this transformation is likely to pessimize code. */
2454 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2455 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2456 from_mode, 0, &actual_mode);
2457
2458 if (handler == CODE_FOR_nothing)
2459 return false;
2460
2461 /* Ensure that the inputs to the handler are in the correct precison
2462 for the opcode. This will be the full mode size. */
2463 actual_precision = GET_MODE_PRECISION (actual_mode);
2464 if (actual_precision != TYPE_PRECISION (type1)
2465 || from_unsigned1 != TYPE_UNSIGNED (type1))
2466 mult_rhs1 = build_and_insert_cast (gsi, loc,
2467 build_nonstandard_integer_type
2468 (actual_precision, from_unsigned1),
2469 mult_rhs1);
2470 if (actual_precision != TYPE_PRECISION (type2)
2471 || from_unsigned2 != TYPE_UNSIGNED (type2))
2472 mult_rhs2 = build_and_insert_cast (gsi, loc,
2473 build_nonstandard_integer_type
2474 (actual_precision, from_unsigned2),
2475 mult_rhs2);
2476
2477 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2478 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2479
2480 /* Handle constants. */
2481 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2482 mult_rhs1 = fold_convert (type1, mult_rhs1);
2483 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2484 mult_rhs2 = fold_convert (type2, mult_rhs2);
2485
2486 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2487 add_rhs);
2488 update_stmt (gsi_stmt (*gsi));
2489 widen_mul_stats.maccs_inserted++;
2490 return true;
2491 }
2492
2493 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2494 with uses in additions and subtractions to form fused multiply-add
2495 operations. Returns true if successful and MUL_STMT should be removed. */
2496
2497 static bool
2498 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2499 {
2500 tree mul_result = gimple_get_lhs (mul_stmt);
2501 tree type = TREE_TYPE (mul_result);
2502 gimple use_stmt, neguse_stmt, fma_stmt;
2503 use_operand_p use_p;
2504 imm_use_iterator imm_iter;
2505
2506 if (FLOAT_TYPE_P (type)
2507 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2508 return false;
2509
2510 /* We don't want to do bitfield reduction ops. */
2511 if (INTEGRAL_TYPE_P (type)
2512 && (TYPE_PRECISION (type)
2513 != GET_MODE_PRECISION (TYPE_MODE (type))))
2514 return false;
2515
2516 /* If the target doesn't support it, don't generate it. We assume that
2517 if fma isn't available then fms, fnma or fnms are not either. */
2518 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2519 return false;
2520
2521 /* If the multiplication has zero uses, it is kept around probably because
2522 of -fnon-call-exceptions. Don't optimize it away in that case,
2523 it is DCE job. */
2524 if (has_zero_uses (mul_result))
2525 return false;
2526
2527 /* Make sure that the multiplication statement becomes dead after
2528 the transformation, thus that all uses are transformed to FMAs.
2529 This means we assume that an FMA operation has the same cost
2530 as an addition. */
2531 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2532 {
2533 enum tree_code use_code;
2534 tree result = mul_result;
2535 bool negate_p = false;
2536
2537 use_stmt = USE_STMT (use_p);
2538
2539 if (is_gimple_debug (use_stmt))
2540 continue;
2541
2542 /* For now restrict this operations to single basic blocks. In theory
2543 we would want to support sinking the multiplication in
2544 m = a*b;
2545 if ()
2546 ma = m + c;
2547 else
2548 d = m;
2549 to form a fma in the then block and sink the multiplication to the
2550 else block. */
2551 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2552 return false;
2553
2554 if (!is_gimple_assign (use_stmt))
2555 return false;
2556
2557 use_code = gimple_assign_rhs_code (use_stmt);
2558
2559 /* A negate on the multiplication leads to FNMA. */
2560 if (use_code == NEGATE_EXPR)
2561 {
2562 ssa_op_iter iter;
2563 use_operand_p usep;
2564
2565 result = gimple_assign_lhs (use_stmt);
2566
2567 /* Make sure the negate statement becomes dead with this
2568 single transformation. */
2569 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2570 &use_p, &neguse_stmt))
2571 return false;
2572
2573 /* Make sure the multiplication isn't also used on that stmt. */
2574 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2575 if (USE_FROM_PTR (usep) == mul_result)
2576 return false;
2577
2578 /* Re-validate. */
2579 use_stmt = neguse_stmt;
2580 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2581 return false;
2582 if (!is_gimple_assign (use_stmt))
2583 return false;
2584
2585 use_code = gimple_assign_rhs_code (use_stmt);
2586 negate_p = true;
2587 }
2588
2589 switch (use_code)
2590 {
2591 case MINUS_EXPR:
2592 if (gimple_assign_rhs2 (use_stmt) == result)
2593 negate_p = !negate_p;
2594 break;
2595 case PLUS_EXPR:
2596 break;
2597 default:
2598 /* FMA can only be formed from PLUS and MINUS. */
2599 return false;
2600 }
2601
2602 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2603 by a MULT_EXPR that we'll visit later, we might be able to
2604 get a more profitable match with fnma.
2605 OTOH, if we don't, a negate / fma pair has likely lower latency
2606 that a mult / subtract pair. */
2607 if (use_code == MINUS_EXPR && !negate_p
2608 && gimple_assign_rhs1 (use_stmt) == result
2609 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2610 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2611 {
2612 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2613
2614 if (TREE_CODE (rhs2) == SSA_NAME)
2615 {
2616 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2617 if (has_single_use (rhs2)
2618 && is_gimple_assign (stmt2)
2619 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2620 return false;
2621 }
2622 }
2623
2624 /* We can't handle a * b + a * b. */
2625 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2626 return false;
2627
2628 /* While it is possible to validate whether or not the exact form
2629 that we've recognized is available in the backend, the assumption
2630 is that the transformation is never a loss. For instance, suppose
2631 the target only has the plain FMA pattern available. Consider
2632 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2633 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2634 still have 3 operations, but in the FMA form the two NEGs are
2635 independent and could be run in parallel. */
2636 }
2637
2638 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2639 {
2640 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2641 enum tree_code use_code;
2642 tree addop, mulop1 = op1, result = mul_result;
2643 bool negate_p = false;
2644
2645 if (is_gimple_debug (use_stmt))
2646 continue;
2647
2648 use_code = gimple_assign_rhs_code (use_stmt);
2649 if (use_code == NEGATE_EXPR)
2650 {
2651 result = gimple_assign_lhs (use_stmt);
2652 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2653 gsi_remove (&gsi, true);
2654 release_defs (use_stmt);
2655
2656 use_stmt = neguse_stmt;
2657 gsi = gsi_for_stmt (use_stmt);
2658 use_code = gimple_assign_rhs_code (use_stmt);
2659 negate_p = true;
2660 }
2661
2662 if (gimple_assign_rhs1 (use_stmt) == result)
2663 {
2664 addop = gimple_assign_rhs2 (use_stmt);
2665 /* a * b - c -> a * b + (-c) */
2666 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2667 addop = force_gimple_operand_gsi (&gsi,
2668 build1 (NEGATE_EXPR,
2669 type, addop),
2670 true, NULL_TREE, true,
2671 GSI_SAME_STMT);
2672 }
2673 else
2674 {
2675 addop = gimple_assign_rhs1 (use_stmt);
2676 /* a - b * c -> (-b) * c + a */
2677 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2678 negate_p = !negate_p;
2679 }
2680
2681 if (negate_p)
2682 mulop1 = force_gimple_operand_gsi (&gsi,
2683 build1 (NEGATE_EXPR,
2684 type, mulop1),
2685 true, NULL_TREE, true,
2686 GSI_SAME_STMT);
2687
2688 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2689 gimple_assign_lhs (use_stmt),
2690 mulop1, op2,
2691 addop);
2692 gsi_replace (&gsi, fma_stmt, true);
2693 widen_mul_stats.fmas_inserted++;
2694 }
2695
2696 return true;
2697 }
2698
2699 /* Find integer multiplications where the operands are extended from
2700 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2701 where appropriate. */
2702
2703 static unsigned int
2704 execute_optimize_widening_mul (void)
2705 {
2706 basic_block bb;
2707 bool cfg_changed = false;
2708
2709 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2710
2711 FOR_EACH_BB (bb)
2712 {
2713 gimple_stmt_iterator gsi;
2714
2715 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2716 {
2717 gimple stmt = gsi_stmt (gsi);
2718 enum tree_code code;
2719
2720 if (is_gimple_assign (stmt))
2721 {
2722 code = gimple_assign_rhs_code (stmt);
2723 switch (code)
2724 {
2725 case MULT_EXPR:
2726 if (!convert_mult_to_widen (stmt, &gsi)
2727 && convert_mult_to_fma (stmt,
2728 gimple_assign_rhs1 (stmt),
2729 gimple_assign_rhs2 (stmt)))
2730 {
2731 gsi_remove (&gsi, true);
2732 release_defs (stmt);
2733 continue;
2734 }
2735 break;
2736
2737 case PLUS_EXPR:
2738 case MINUS_EXPR:
2739 convert_plusminus_to_widen (&gsi, stmt, code);
2740 break;
2741
2742 default:;
2743 }
2744 }
2745 else if (is_gimple_call (stmt)
2746 && gimple_call_lhs (stmt))
2747 {
2748 tree fndecl = gimple_call_fndecl (stmt);
2749 if (fndecl
2750 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2751 {
2752 switch (DECL_FUNCTION_CODE (fndecl))
2753 {
2754 case BUILT_IN_POWF:
2755 case BUILT_IN_POW:
2756 case BUILT_IN_POWL:
2757 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2758 && REAL_VALUES_EQUAL
2759 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2760 dconst2)
2761 && convert_mult_to_fma (stmt,
2762 gimple_call_arg (stmt, 0),
2763 gimple_call_arg (stmt, 0)))
2764 {
2765 unlink_stmt_vdef (stmt);
2766 if (gsi_remove (&gsi, true)
2767 && gimple_purge_dead_eh_edges (bb))
2768 cfg_changed = true;
2769 release_defs (stmt);
2770 continue;
2771 }
2772 break;
2773
2774 default:;
2775 }
2776 }
2777 }
2778 gsi_next (&gsi);
2779 }
2780 }
2781
2782 statistics_counter_event (cfun, "widening multiplications inserted",
2783 widen_mul_stats.widen_mults_inserted);
2784 statistics_counter_event (cfun, "widening maccs inserted",
2785 widen_mul_stats.maccs_inserted);
2786 statistics_counter_event (cfun, "fused multiply-adds inserted",
2787 widen_mul_stats.fmas_inserted);
2788
2789 return cfg_changed ? TODO_cleanup_cfg : 0;
2790 }
2791
2792 static bool
2793 gate_optimize_widening_mul (void)
2794 {
2795 return flag_expensive_optimizations && optimize;
2796 }
2797
2798 struct gimple_opt_pass pass_optimize_widening_mul =
2799 {
2800 {
2801 GIMPLE_PASS,
2802 "widening_mul", /* name */
2803 OPTGROUP_NONE, /* optinfo_flags */
2804 gate_optimize_widening_mul, /* gate */
2805 execute_optimize_widening_mul, /* execute */
2806 NULL, /* sub */
2807 NULL, /* next */
2808 0, /* static_pass_number */
2809 TV_NONE, /* tv_id */
2810 PROP_ssa, /* properties_required */
2811 0, /* properties_provided */
2812 0, /* properties_destroyed */
2813 0, /* todo_flags_start */
2814 TODO_verify_ssa
2815 | TODO_verify_stmts
2816 | TODO_update_ssa /* todo_flags_finish */
2817 }
2818 };