gimple.h (gimple_build_assign_stat): Remove prototype.
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "predict.h"
94 #include "vec.h"
95 #include "hashtab.h"
96 #include "hash-set.h"
97 #include "machmode.h"
98 #include "hard-reg-set.h"
99 #include "input.h"
100 #include "function.h"
101 #include "dominance.h"
102 #include "cfg.h"
103 #include "basic-block.h"
104 #include "tree-ssa-alias.h"
105 #include "internal-fn.h"
106 #include "gimple-fold.h"
107 #include "gimple-expr.h"
108 #include "is-a.h"
109 #include "gimple.h"
110 #include "gimple-iterator.h"
111 #include "gimplify.h"
112 #include "gimplify-me.h"
113 #include "stor-layout.h"
114 #include "gimple-ssa.h"
115 #include "tree-cfg.h"
116 #include "tree-phinodes.h"
117 #include "ssa-iterators.h"
118 #include "stringpool.h"
119 #include "tree-ssanames.h"
120 #include "expr.h"
121 #include "tree-dfa.h"
122 #include "tree-ssa.h"
123 #include "tree-pass.h"
124 #include "alloc-pool.h"
125 #include "target.h"
126 #include "gimple-pretty-print.h"
127 #include "builtins.h"
128
129 /* FIXME: RTL headers have to be included here for optabs. */
130 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
131 #include "expr.h" /* Because optabs.h wants sepops. */
132 #include "insn-codes.h"
133 #include "optabs.h"
134
135 /* This structure represents one basic block that either computes a
136 division, or is a common dominator for basic block that compute a
137 division. */
138 struct occurrence {
139 /* The basic block represented by this structure. */
140 basic_block bb;
141
142 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
143 inserted in BB. */
144 tree recip_def;
145
146 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
147 was inserted in BB. */
148 gimple recip_def_stmt;
149
150 /* Pointer to a list of "struct occurrence"s for blocks dominated
151 by BB. */
152 struct occurrence *children;
153
154 /* Pointer to the next "struct occurrence"s in the list of blocks
155 sharing a common dominator. */
156 struct occurrence *next;
157
158 /* The number of divisions that are in BB before compute_merit. The
159 number of divisions that are in BB or post-dominate it after
160 compute_merit. */
161 int num_divisions;
162
163 /* True if the basic block has a division, false if it is a common
164 dominator for basic blocks that do. If it is false and trapping
165 math is active, BB is not a candidate for inserting a reciprocal. */
166 bool bb_has_division;
167 };
168
169 static struct
170 {
171 /* Number of 1.0/X ops inserted. */
172 int rdivs_inserted;
173
174 /* Number of 1.0/FUNC ops inserted. */
175 int rfuncs_inserted;
176 } reciprocal_stats;
177
178 static struct
179 {
180 /* Number of cexpi calls inserted. */
181 int inserted;
182 } sincos_stats;
183
184 static struct
185 {
186 /* Number of hand-written 16-bit nop / bswaps found. */
187 int found_16bit;
188
189 /* Number of hand-written 32-bit nop / bswaps found. */
190 int found_32bit;
191
192 /* Number of hand-written 64-bit nop / bswaps found. */
193 int found_64bit;
194 } nop_stats, bswap_stats;
195
196 static struct
197 {
198 /* Number of widening multiplication ops inserted. */
199 int widen_mults_inserted;
200
201 /* Number of integer multiply-and-accumulate ops inserted. */
202 int maccs_inserted;
203
204 /* Number of fp fused multiply-add ops inserted. */
205 int fmas_inserted;
206 } widen_mul_stats;
207
208 /* The instance of "struct occurrence" representing the highest
209 interesting block in the dominator tree. */
210 static struct occurrence *occ_head;
211
212 /* Allocation pool for getting instances of "struct occurrence". */
213 static alloc_pool occ_pool;
214
215
216
217 /* Allocate and return a new struct occurrence for basic block BB, and
218 whose children list is headed by CHILDREN. */
219 static struct occurrence *
220 occ_new (basic_block bb, struct occurrence *children)
221 {
222 struct occurrence *occ;
223
224 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
225 memset (occ, 0, sizeof (struct occurrence));
226
227 occ->bb = bb;
228 occ->children = children;
229 return occ;
230 }
231
232
233 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
234 list of "struct occurrence"s, one per basic block, having IDOM as
235 their common dominator.
236
237 We try to insert NEW_OCC as deep as possible in the tree, and we also
238 insert any other block that is a common dominator for BB and one
239 block already in the tree. */
240
241 static void
242 insert_bb (struct occurrence *new_occ, basic_block idom,
243 struct occurrence **p_head)
244 {
245 struct occurrence *occ, **p_occ;
246
247 for (p_occ = p_head; (occ = *p_occ) != NULL; )
248 {
249 basic_block bb = new_occ->bb, occ_bb = occ->bb;
250 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
251 if (dom == bb)
252 {
253 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
254 from its list. */
255 *p_occ = occ->next;
256 occ->next = new_occ->children;
257 new_occ->children = occ;
258
259 /* Try the next block (it may as well be dominated by BB). */
260 }
261
262 else if (dom == occ_bb)
263 {
264 /* OCC_BB dominates BB. Tail recurse to look deeper. */
265 insert_bb (new_occ, dom, &occ->children);
266 return;
267 }
268
269 else if (dom != idom)
270 {
271 gcc_assert (!dom->aux);
272
273 /* There is a dominator between IDOM and BB, add it and make
274 two children out of NEW_OCC and OCC. First, remove OCC from
275 its list. */
276 *p_occ = occ->next;
277 new_occ->next = occ;
278 occ->next = NULL;
279
280 /* None of the previous blocks has DOM as a dominator: if we tail
281 recursed, we would reexamine them uselessly. Just switch BB with
282 DOM, and go on looking for blocks dominated by DOM. */
283 new_occ = occ_new (dom, new_occ);
284 }
285
286 else
287 {
288 /* Nothing special, go on with the next element. */
289 p_occ = &occ->next;
290 }
291 }
292
293 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
294 new_occ->next = *p_head;
295 *p_head = new_occ;
296 }
297
298 /* Register that we found a division in BB. */
299
300 static inline void
301 register_division_in (basic_block bb)
302 {
303 struct occurrence *occ;
304
305 occ = (struct occurrence *) bb->aux;
306 if (!occ)
307 {
308 occ = occ_new (bb, NULL);
309 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
310 }
311
312 occ->bb_has_division = true;
313 occ->num_divisions++;
314 }
315
316
317 /* Compute the number of divisions that postdominate each block in OCC and
318 its children. */
319
320 static void
321 compute_merit (struct occurrence *occ)
322 {
323 struct occurrence *occ_child;
324 basic_block dom = occ->bb;
325
326 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
327 {
328 basic_block bb;
329 if (occ_child->children)
330 compute_merit (occ_child);
331
332 if (flag_exceptions)
333 bb = single_noncomplex_succ (dom);
334 else
335 bb = dom;
336
337 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
338 occ->num_divisions += occ_child->num_divisions;
339 }
340 }
341
342
343 /* Return whether USE_STMT is a floating-point division by DEF. */
344 static inline bool
345 is_division_by (gimple use_stmt, tree def)
346 {
347 return is_gimple_assign (use_stmt)
348 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
349 && gimple_assign_rhs2 (use_stmt) == def
350 /* Do not recognize x / x as valid division, as we are getting
351 confused later by replacing all immediate uses x in such
352 a stmt. */
353 && gimple_assign_rhs1 (use_stmt) != def;
354 }
355
356 /* Walk the subset of the dominator tree rooted at OCC, setting the
357 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
358 the given basic block. The field may be left NULL, of course,
359 if it is not possible or profitable to do the optimization.
360
361 DEF_BSI is an iterator pointing at the statement defining DEF.
362 If RECIP_DEF is set, a dominator already has a computation that can
363 be used. */
364
365 static void
366 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
367 tree def, tree recip_def, int threshold)
368 {
369 tree type;
370 gassign *new_stmt;
371 gimple_stmt_iterator gsi;
372 struct occurrence *occ_child;
373
374 if (!recip_def
375 && (occ->bb_has_division || !flag_trapping_math)
376 && occ->num_divisions >= threshold)
377 {
378 /* Make a variable with the replacement and substitute it. */
379 type = TREE_TYPE (def);
380 recip_def = create_tmp_reg (type, "reciptmp");
381 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
382 build_one_cst (type), def);
383
384 if (occ->bb_has_division)
385 {
386 /* Case 1: insert before an existing division. */
387 gsi = gsi_after_labels (occ->bb);
388 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
389 gsi_next (&gsi);
390
391 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
392 }
393 else if (def_gsi && occ->bb == def_gsi->bb)
394 {
395 /* Case 2: insert right after the definition. Note that this will
396 never happen if the definition statement can throw, because in
397 that case the sole successor of the statement's basic block will
398 dominate all the uses as well. */
399 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
400 }
401 else
402 {
403 /* Case 3: insert in a basic block not containing defs/uses. */
404 gsi = gsi_after_labels (occ->bb);
405 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
406 }
407
408 reciprocal_stats.rdivs_inserted++;
409
410 occ->recip_def_stmt = new_stmt;
411 }
412
413 occ->recip_def = recip_def;
414 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
415 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
416 }
417
418
419 /* Replace the division at USE_P with a multiplication by the reciprocal, if
420 possible. */
421
422 static inline void
423 replace_reciprocal (use_operand_p use_p)
424 {
425 gimple use_stmt = USE_STMT (use_p);
426 basic_block bb = gimple_bb (use_stmt);
427 struct occurrence *occ = (struct occurrence *) bb->aux;
428
429 if (optimize_bb_for_speed_p (bb)
430 && occ->recip_def && use_stmt != occ->recip_def_stmt)
431 {
432 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
433 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
434 SET_USE (use_p, occ->recip_def);
435 fold_stmt_inplace (&gsi);
436 update_stmt (use_stmt);
437 }
438 }
439
440
441 /* Free OCC and return one more "struct occurrence" to be freed. */
442
443 static struct occurrence *
444 free_bb (struct occurrence *occ)
445 {
446 struct occurrence *child, *next;
447
448 /* First get the two pointers hanging off OCC. */
449 next = occ->next;
450 child = occ->children;
451 occ->bb->aux = NULL;
452 pool_free (occ_pool, occ);
453
454 /* Now ensure that we don't recurse unless it is necessary. */
455 if (!child)
456 return next;
457 else
458 {
459 while (next)
460 next = free_bb (next);
461
462 return child;
463 }
464 }
465
466
467 /* Look for floating-point divisions among DEF's uses, and try to
468 replace them by multiplications with the reciprocal. Add
469 as many statements computing the reciprocal as needed.
470
471 DEF must be a GIMPLE register of a floating-point type. */
472
473 static void
474 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
475 {
476 use_operand_p use_p;
477 imm_use_iterator use_iter;
478 struct occurrence *occ;
479 int count = 0, threshold;
480
481 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
482
483 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
484 {
485 gimple use_stmt = USE_STMT (use_p);
486 if (is_division_by (use_stmt, def))
487 {
488 register_division_in (gimple_bb (use_stmt));
489 count++;
490 }
491 }
492
493 /* Do the expensive part only if we can hope to optimize something. */
494 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
495 if (count >= threshold)
496 {
497 gimple use_stmt;
498 for (occ = occ_head; occ; occ = occ->next)
499 {
500 compute_merit (occ);
501 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
502 }
503
504 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
505 {
506 if (is_division_by (use_stmt, def))
507 {
508 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
509 replace_reciprocal (use_p);
510 }
511 }
512 }
513
514 for (occ = occ_head; occ; )
515 occ = free_bb (occ);
516
517 occ_head = NULL;
518 }
519
520 /* Go through all the floating-point SSA_NAMEs, and call
521 execute_cse_reciprocals_1 on each of them. */
522 namespace {
523
524 const pass_data pass_data_cse_reciprocals =
525 {
526 GIMPLE_PASS, /* type */
527 "recip", /* name */
528 OPTGROUP_NONE, /* optinfo_flags */
529 TV_NONE, /* tv_id */
530 PROP_ssa, /* properties_required */
531 0, /* properties_provided */
532 0, /* properties_destroyed */
533 0, /* todo_flags_start */
534 TODO_update_ssa, /* todo_flags_finish */
535 };
536
537 class pass_cse_reciprocals : public gimple_opt_pass
538 {
539 public:
540 pass_cse_reciprocals (gcc::context *ctxt)
541 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
542 {}
543
544 /* opt_pass methods: */
545 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
546 virtual unsigned int execute (function *);
547
548 }; // class pass_cse_reciprocals
549
550 unsigned int
551 pass_cse_reciprocals::execute (function *fun)
552 {
553 basic_block bb;
554 tree arg;
555
556 occ_pool = create_alloc_pool ("dominators for recip",
557 sizeof (struct occurrence),
558 n_basic_blocks_for_fn (fun) / 3 + 1);
559
560 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
561 calculate_dominance_info (CDI_DOMINATORS);
562 calculate_dominance_info (CDI_POST_DOMINATORS);
563
564 #ifdef ENABLE_CHECKING
565 FOR_EACH_BB_FN (bb, fun)
566 gcc_assert (!bb->aux);
567 #endif
568
569 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
570 if (FLOAT_TYPE_P (TREE_TYPE (arg))
571 && is_gimple_reg (arg))
572 {
573 tree name = ssa_default_def (fun, arg);
574 if (name)
575 execute_cse_reciprocals_1 (NULL, name);
576 }
577
578 FOR_EACH_BB_FN (bb, fun)
579 {
580 tree def;
581
582 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
583 gsi_next (&gsi))
584 {
585 gphi *phi = gsi.phi ();
586 def = PHI_RESULT (phi);
587 if (! virtual_operand_p (def)
588 && FLOAT_TYPE_P (TREE_TYPE (def)))
589 execute_cse_reciprocals_1 (NULL, def);
590 }
591
592 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
593 gsi_next (&gsi))
594 {
595 gimple stmt = gsi_stmt (gsi);
596
597 if (gimple_has_lhs (stmt)
598 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
599 && FLOAT_TYPE_P (TREE_TYPE (def))
600 && TREE_CODE (def) == SSA_NAME)
601 execute_cse_reciprocals_1 (&gsi, def);
602 }
603
604 if (optimize_bb_for_size_p (bb))
605 continue;
606
607 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
608 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
609 gsi_next (&gsi))
610 {
611 gimple stmt = gsi_stmt (gsi);
612 tree fndecl;
613
614 if (is_gimple_assign (stmt)
615 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
616 {
617 tree arg1 = gimple_assign_rhs2 (stmt);
618 gimple stmt1;
619
620 if (TREE_CODE (arg1) != SSA_NAME)
621 continue;
622
623 stmt1 = SSA_NAME_DEF_STMT (arg1);
624
625 if (is_gimple_call (stmt1)
626 && gimple_call_lhs (stmt1)
627 && (fndecl = gimple_call_fndecl (stmt1))
628 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
629 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
630 {
631 enum built_in_function code;
632 bool md_code, fail;
633 imm_use_iterator ui;
634 use_operand_p use_p;
635
636 code = DECL_FUNCTION_CODE (fndecl);
637 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
638
639 fndecl = targetm.builtin_reciprocal (code, md_code, false);
640 if (!fndecl)
641 continue;
642
643 /* Check that all uses of the SSA name are divisions,
644 otherwise replacing the defining statement will do
645 the wrong thing. */
646 fail = false;
647 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
648 {
649 gimple stmt2 = USE_STMT (use_p);
650 if (is_gimple_debug (stmt2))
651 continue;
652 if (!is_gimple_assign (stmt2)
653 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
654 || gimple_assign_rhs1 (stmt2) == arg1
655 || gimple_assign_rhs2 (stmt2) != arg1)
656 {
657 fail = true;
658 break;
659 }
660 }
661 if (fail)
662 continue;
663
664 gimple_replace_ssa_lhs (stmt1, arg1);
665 gimple_call_set_fndecl (stmt1, fndecl);
666 update_stmt (stmt1);
667 reciprocal_stats.rfuncs_inserted++;
668
669 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
670 {
671 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
672 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
673 fold_stmt_inplace (&gsi);
674 update_stmt (stmt);
675 }
676 }
677 }
678 }
679 }
680
681 statistics_counter_event (fun, "reciprocal divs inserted",
682 reciprocal_stats.rdivs_inserted);
683 statistics_counter_event (fun, "reciprocal functions inserted",
684 reciprocal_stats.rfuncs_inserted);
685
686 free_dominance_info (CDI_DOMINATORS);
687 free_dominance_info (CDI_POST_DOMINATORS);
688 free_alloc_pool (occ_pool);
689 return 0;
690 }
691
692 } // anon namespace
693
694 gimple_opt_pass *
695 make_pass_cse_reciprocals (gcc::context *ctxt)
696 {
697 return new pass_cse_reciprocals (ctxt);
698 }
699
700 /* Records an occurrence at statement USE_STMT in the vector of trees
701 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
702 is not yet initialized. Returns true if the occurrence was pushed on
703 the vector. Adjusts *TOP_BB to be the basic block dominating all
704 statements in the vector. */
705
706 static bool
707 maybe_record_sincos (vec<gimple> *stmts,
708 basic_block *top_bb, gimple use_stmt)
709 {
710 basic_block use_bb = gimple_bb (use_stmt);
711 if (*top_bb
712 && (*top_bb == use_bb
713 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
714 stmts->safe_push (use_stmt);
715 else if (!*top_bb
716 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
717 {
718 stmts->safe_push (use_stmt);
719 *top_bb = use_bb;
720 }
721 else
722 return false;
723
724 return true;
725 }
726
727 /* Look for sin, cos and cexpi calls with the same argument NAME and
728 create a single call to cexpi CSEing the result in this case.
729 We first walk over all immediate uses of the argument collecting
730 statements that we can CSE in a vector and in a second pass replace
731 the statement rhs with a REALPART or IMAGPART expression on the
732 result of the cexpi call we insert before the use statement that
733 dominates all other candidates. */
734
735 static bool
736 execute_cse_sincos_1 (tree name)
737 {
738 gimple_stmt_iterator gsi;
739 imm_use_iterator use_iter;
740 tree fndecl, res, type;
741 gimple def_stmt, use_stmt, stmt;
742 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
743 vec<gimple> stmts = vNULL;
744 basic_block top_bb = NULL;
745 int i;
746 bool cfg_changed = false;
747
748 type = TREE_TYPE (name);
749 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
750 {
751 if (gimple_code (use_stmt) != GIMPLE_CALL
752 || !gimple_call_lhs (use_stmt)
753 || !(fndecl = gimple_call_fndecl (use_stmt))
754 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
755 continue;
756
757 switch (DECL_FUNCTION_CODE (fndecl))
758 {
759 CASE_FLT_FN (BUILT_IN_COS):
760 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
761 break;
762
763 CASE_FLT_FN (BUILT_IN_SIN):
764 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
765 break;
766
767 CASE_FLT_FN (BUILT_IN_CEXPI):
768 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
769 break;
770
771 default:;
772 }
773 }
774
775 if (seen_cos + seen_sin + seen_cexpi <= 1)
776 {
777 stmts.release ();
778 return false;
779 }
780
781 /* Simply insert cexpi at the beginning of top_bb but not earlier than
782 the name def statement. */
783 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
784 if (!fndecl)
785 return false;
786 stmt = gimple_build_call (fndecl, 1, name);
787 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
788 gimple_call_set_lhs (stmt, res);
789
790 def_stmt = SSA_NAME_DEF_STMT (name);
791 if (!SSA_NAME_IS_DEFAULT_DEF (name)
792 && gimple_code (def_stmt) != GIMPLE_PHI
793 && gimple_bb (def_stmt) == top_bb)
794 {
795 gsi = gsi_for_stmt (def_stmt);
796 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
797 }
798 else
799 {
800 gsi = gsi_after_labels (top_bb);
801 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
802 }
803 sincos_stats.inserted++;
804
805 /* And adjust the recorded old call sites. */
806 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
807 {
808 tree rhs = NULL;
809 fndecl = gimple_call_fndecl (use_stmt);
810
811 switch (DECL_FUNCTION_CODE (fndecl))
812 {
813 CASE_FLT_FN (BUILT_IN_COS):
814 rhs = fold_build1 (REALPART_EXPR, type, res);
815 break;
816
817 CASE_FLT_FN (BUILT_IN_SIN):
818 rhs = fold_build1 (IMAGPART_EXPR, type, res);
819 break;
820
821 CASE_FLT_FN (BUILT_IN_CEXPI):
822 rhs = res;
823 break;
824
825 default:;
826 gcc_unreachable ();
827 }
828
829 /* Replace call with a copy. */
830 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
831
832 gsi = gsi_for_stmt (use_stmt);
833 gsi_replace (&gsi, stmt, true);
834 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
835 cfg_changed = true;
836 }
837
838 stmts.release ();
839
840 return cfg_changed;
841 }
842
843 /* To evaluate powi(x,n), the floating point value x raised to the
844 constant integer exponent n, we use a hybrid algorithm that
845 combines the "window method" with look-up tables. For an
846 introduction to exponentiation algorithms and "addition chains",
847 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
848 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
849 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
850 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
851
852 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
853 multiplications to inline before calling the system library's pow
854 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
855 so this default never requires calling pow, powf or powl. */
856
857 #ifndef POWI_MAX_MULTS
858 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
859 #endif
860
861 /* The size of the "optimal power tree" lookup table. All
862 exponents less than this value are simply looked up in the
863 powi_table below. This threshold is also used to size the
864 cache of pseudo registers that hold intermediate results. */
865 #define POWI_TABLE_SIZE 256
866
867 /* The size, in bits of the window, used in the "window method"
868 exponentiation algorithm. This is equivalent to a radix of
869 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
870 #define POWI_WINDOW_SIZE 3
871
872 /* The following table is an efficient representation of an
873 "optimal power tree". For each value, i, the corresponding
874 value, j, in the table states than an optimal evaluation
875 sequence for calculating pow(x,i) can be found by evaluating
876 pow(x,j)*pow(x,i-j). An optimal power tree for the first
877 100 integers is given in Knuth's "Seminumerical algorithms". */
878
879 static const unsigned char powi_table[POWI_TABLE_SIZE] =
880 {
881 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
882 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
883 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
884 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
885 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
886 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
887 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
888 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
889 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
890 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
891 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
892 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
893 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
894 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
895 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
896 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
897 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
898 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
899 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
900 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
901 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
902 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
903 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
904 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
905 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
906 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
907 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
908 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
909 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
910 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
911 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
912 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
913 };
914
915
916 /* Return the number of multiplications required to calculate
917 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
918 subroutine of powi_cost. CACHE is an array indicating
919 which exponents have already been calculated. */
920
921 static int
922 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
923 {
924 /* If we've already calculated this exponent, then this evaluation
925 doesn't require any additional multiplications. */
926 if (cache[n])
927 return 0;
928
929 cache[n] = true;
930 return powi_lookup_cost (n - powi_table[n], cache)
931 + powi_lookup_cost (powi_table[n], cache) + 1;
932 }
933
934 /* Return the number of multiplications required to calculate
935 powi(x,n) for an arbitrary x, given the exponent N. This
936 function needs to be kept in sync with powi_as_mults below. */
937
938 static int
939 powi_cost (HOST_WIDE_INT n)
940 {
941 bool cache[POWI_TABLE_SIZE];
942 unsigned HOST_WIDE_INT digit;
943 unsigned HOST_WIDE_INT val;
944 int result;
945
946 if (n == 0)
947 return 0;
948
949 /* Ignore the reciprocal when calculating the cost. */
950 val = (n < 0) ? -n : n;
951
952 /* Initialize the exponent cache. */
953 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
954 cache[1] = true;
955
956 result = 0;
957
958 while (val >= POWI_TABLE_SIZE)
959 {
960 if (val & 1)
961 {
962 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
963 result += powi_lookup_cost (digit, cache)
964 + POWI_WINDOW_SIZE + 1;
965 val >>= POWI_WINDOW_SIZE;
966 }
967 else
968 {
969 val >>= 1;
970 result++;
971 }
972 }
973
974 return result + powi_lookup_cost (val, cache);
975 }
976
977 /* Recursive subroutine of powi_as_mults. This function takes the
978 array, CACHE, of already calculated exponents and an exponent N and
979 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
980
981 static tree
982 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
983 HOST_WIDE_INT n, tree *cache)
984 {
985 tree op0, op1, ssa_target;
986 unsigned HOST_WIDE_INT digit;
987 gassign *mult_stmt;
988
989 if (n < POWI_TABLE_SIZE && cache[n])
990 return cache[n];
991
992 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
993
994 if (n < POWI_TABLE_SIZE)
995 {
996 cache[n] = ssa_target;
997 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
998 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
999 }
1000 else if (n & 1)
1001 {
1002 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1003 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1004 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1005 }
1006 else
1007 {
1008 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1009 op1 = op0;
1010 }
1011
1012 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1013 gimple_set_location (mult_stmt, loc);
1014 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1015
1016 return ssa_target;
1017 }
1018
1019 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1020 This function needs to be kept in sync with powi_cost above. */
1021
1022 static tree
1023 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1024 tree arg0, HOST_WIDE_INT n)
1025 {
1026 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1027 gassign *div_stmt;
1028 tree target;
1029
1030 if (n == 0)
1031 return build_real (type, dconst1);
1032
1033 memset (cache, 0, sizeof (cache));
1034 cache[1] = arg0;
1035
1036 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1037 if (n >= 0)
1038 return result;
1039
1040 /* If the original exponent was negative, reciprocate the result. */
1041 target = make_temp_ssa_name (type, NULL, "powmult");
1042 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1043 build_real (type, dconst1), result);
1044 gimple_set_location (div_stmt, loc);
1045 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1046
1047 return target;
1048 }
1049
1050 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1051 location info LOC. If the arguments are appropriate, create an
1052 equivalent sequence of statements prior to GSI using an optimal
1053 number of multiplications, and return an expession holding the
1054 result. */
1055
1056 static tree
1057 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1058 tree arg0, HOST_WIDE_INT n)
1059 {
1060 /* Avoid largest negative number. */
1061 if (n != -n
1062 && ((n >= -1 && n <= 2)
1063 || (optimize_function_for_speed_p (cfun)
1064 && powi_cost (n) <= POWI_MAX_MULTS)))
1065 return powi_as_mults (gsi, loc, arg0, n);
1066
1067 return NULL_TREE;
1068 }
1069
1070 /* Build a gimple call statement that calls FN with argument ARG.
1071 Set the lhs of the call statement to a fresh SSA name. Insert the
1072 statement prior to GSI's current position, and return the fresh
1073 SSA name. */
1074
1075 static tree
1076 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1077 tree fn, tree arg)
1078 {
1079 gcall *call_stmt;
1080 tree ssa_target;
1081
1082 call_stmt = gimple_build_call (fn, 1, arg);
1083 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1084 gimple_set_lhs (call_stmt, ssa_target);
1085 gimple_set_location (call_stmt, loc);
1086 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1087
1088 return ssa_target;
1089 }
1090
1091 /* Build a gimple binary operation with the given CODE and arguments
1092 ARG0, ARG1, assigning the result to a new SSA name for variable
1093 TARGET. Insert the statement prior to GSI's current position, and
1094 return the fresh SSA name.*/
1095
1096 static tree
1097 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1098 const char *name, enum tree_code code,
1099 tree arg0, tree arg1)
1100 {
1101 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1102 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1103 gimple_set_location (stmt, loc);
1104 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1105 return result;
1106 }
1107
1108 /* Build a gimple reference operation with the given CODE and argument
1109 ARG, assigning the result to a new SSA name of TYPE with NAME.
1110 Insert the statement prior to GSI's current position, and return
1111 the fresh SSA name. */
1112
1113 static inline tree
1114 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1115 const char *name, enum tree_code code, tree arg0)
1116 {
1117 tree result = make_temp_ssa_name (type, NULL, name);
1118 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1119 gimple_set_location (stmt, loc);
1120 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1121 return result;
1122 }
1123
1124 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1125 prior to GSI's current position, and return the fresh SSA name. */
1126
1127 static tree
1128 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1129 tree type, tree val)
1130 {
1131 tree result = make_ssa_name (type);
1132 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1133 gimple_set_location (stmt, loc);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1135 return result;
1136 }
1137
1138 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1139 with location info LOC. If possible, create an equivalent and
1140 less expensive sequence of statements prior to GSI, and return an
1141 expession holding the result. */
1142
1143 static tree
1144 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1145 tree arg0, tree arg1)
1146 {
1147 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1148 REAL_VALUE_TYPE c2, dconst3;
1149 HOST_WIDE_INT n;
1150 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1151 machine_mode mode;
1152 bool hw_sqrt_exists, c_is_int, c2_is_int;
1153
1154 /* If the exponent isn't a constant, there's nothing of interest
1155 to be done. */
1156 if (TREE_CODE (arg1) != REAL_CST)
1157 return NULL_TREE;
1158
1159 /* If the exponent is equivalent to an integer, expand to an optimal
1160 multiplication sequence when profitable. */
1161 c = TREE_REAL_CST (arg1);
1162 n = real_to_integer (&c);
1163 real_from_integer (&cint, VOIDmode, n, SIGNED);
1164 c_is_int = real_identical (&c, &cint);
1165
1166 if (c_is_int
1167 && ((n >= -1 && n <= 2)
1168 || (flag_unsafe_math_optimizations
1169 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1170 && powi_cost (n) <= POWI_MAX_MULTS)))
1171 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1172
1173 /* Attempt various optimizations using sqrt and cbrt. */
1174 type = TREE_TYPE (arg0);
1175 mode = TYPE_MODE (type);
1176 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1177
1178 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1179 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1180 sqrt(-0) = -0. */
1181 if (sqrtfn
1182 && REAL_VALUES_EQUAL (c, dconsthalf)
1183 && !HONOR_SIGNED_ZEROS (mode))
1184 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1185
1186 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1187 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1188 so do this optimization even if -Os. Don't do this optimization
1189 if we don't have a hardware sqrt insn. */
1190 dconst1_4 = dconst1;
1191 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1192 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1193
1194 if (flag_unsafe_math_optimizations
1195 && sqrtfn
1196 && REAL_VALUES_EQUAL (c, dconst1_4)
1197 && hw_sqrt_exists)
1198 {
1199 /* sqrt(x) */
1200 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1201
1202 /* sqrt(sqrt(x)) */
1203 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1204 }
1205
1206 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1207 optimizing for space. Don't do this optimization if we don't have
1208 a hardware sqrt insn. */
1209 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1210 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1211
1212 if (flag_unsafe_math_optimizations
1213 && sqrtfn
1214 && optimize_function_for_speed_p (cfun)
1215 && REAL_VALUES_EQUAL (c, dconst3_4)
1216 && hw_sqrt_exists)
1217 {
1218 /* sqrt(x) */
1219 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1220
1221 /* sqrt(sqrt(x)) */
1222 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1223
1224 /* sqrt(x) * sqrt(sqrt(x)) */
1225 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1226 sqrt_arg0, sqrt_sqrt);
1227 }
1228
1229 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1230 optimizations since 1./3. is not exactly representable. If x
1231 is negative and finite, the correct value of pow(x,1./3.) is
1232 a NaN with the "invalid" exception raised, because the value
1233 of 1./3. actually has an even denominator. The correct value
1234 of cbrt(x) is a negative real value. */
1235 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1236 dconst1_3 = real_value_truncate (mode, dconst_third ());
1237
1238 if (flag_unsafe_math_optimizations
1239 && cbrtfn
1240 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1241 && REAL_VALUES_EQUAL (c, dconst1_3))
1242 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1243
1244 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1245 if we don't have a hardware sqrt insn. */
1246 dconst1_6 = dconst1_3;
1247 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1248
1249 if (flag_unsafe_math_optimizations
1250 && sqrtfn
1251 && cbrtfn
1252 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1253 && optimize_function_for_speed_p (cfun)
1254 && hw_sqrt_exists
1255 && REAL_VALUES_EQUAL (c, dconst1_6))
1256 {
1257 /* sqrt(x) */
1258 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1259
1260 /* cbrt(sqrt(x)) */
1261 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1262 }
1263
1264 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1265 and c not an integer, into
1266
1267 sqrt(x) * powi(x, n/2), n > 0;
1268 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1269
1270 Do not calculate the powi factor when n/2 = 0. */
1271 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1272 n = real_to_integer (&c2);
1273 real_from_integer (&cint, VOIDmode, n, SIGNED);
1274 c2_is_int = real_identical (&c2, &cint);
1275
1276 if (flag_unsafe_math_optimizations
1277 && sqrtfn
1278 && c2_is_int
1279 && !c_is_int
1280 && optimize_function_for_speed_p (cfun))
1281 {
1282 tree powi_x_ndiv2 = NULL_TREE;
1283
1284 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1285 possible or profitable, give up. Skip the degenerate case when
1286 n is 1 or -1, where the result is always 1. */
1287 if (absu_hwi (n) != 1)
1288 {
1289 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1290 abs_hwi (n / 2));
1291 if (!powi_x_ndiv2)
1292 return NULL_TREE;
1293 }
1294
1295 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1296 result of the optimal multiply sequence just calculated. */
1297 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1298
1299 if (absu_hwi (n) == 1)
1300 result = sqrt_arg0;
1301 else
1302 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1303 sqrt_arg0, powi_x_ndiv2);
1304
1305 /* If n is negative, reciprocate the result. */
1306 if (n < 0)
1307 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1308 build_real (type, dconst1), result);
1309 return result;
1310 }
1311
1312 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1313
1314 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1315 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1316
1317 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1318 different from pow(x, 1./3.) due to rounding and behavior with
1319 negative x, we need to constrain this transformation to unsafe
1320 math and positive x or finite math. */
1321 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1322 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1323 real_round (&c2, mode, &c2);
1324 n = real_to_integer (&c2);
1325 real_from_integer (&cint, VOIDmode, n, SIGNED);
1326 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1327 real_convert (&c2, mode, &c2);
1328
1329 if (flag_unsafe_math_optimizations
1330 && cbrtfn
1331 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1332 && real_identical (&c2, &c)
1333 && !c2_is_int
1334 && optimize_function_for_speed_p (cfun)
1335 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1336 {
1337 tree powi_x_ndiv3 = NULL_TREE;
1338
1339 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1340 possible or profitable, give up. Skip the degenerate case when
1341 abs(n) < 3, where the result is always 1. */
1342 if (absu_hwi (n) >= 3)
1343 {
1344 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1345 abs_hwi (n / 3));
1346 if (!powi_x_ndiv3)
1347 return NULL_TREE;
1348 }
1349
1350 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1351 as that creates an unnecessary variable. Instead, just produce
1352 either cbrt(x) or cbrt(x) * cbrt(x). */
1353 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1354
1355 if (absu_hwi (n) % 3 == 1)
1356 powi_cbrt_x = cbrt_x;
1357 else
1358 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1359 cbrt_x, cbrt_x);
1360
1361 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1362 if (absu_hwi (n) < 3)
1363 result = powi_cbrt_x;
1364 else
1365 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1366 powi_x_ndiv3, powi_cbrt_x);
1367
1368 /* If n is negative, reciprocate the result. */
1369 if (n < 0)
1370 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1371 build_real (type, dconst1), result);
1372
1373 return result;
1374 }
1375
1376 /* No optimizations succeeded. */
1377 return NULL_TREE;
1378 }
1379
1380 /* ARG is the argument to a cabs builtin call in GSI with location info
1381 LOC. Create a sequence of statements prior to GSI that calculates
1382 sqrt(R*R + I*I), where R and I are the real and imaginary components
1383 of ARG, respectively. Return an expression holding the result. */
1384
1385 static tree
1386 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1387 {
1388 tree real_part, imag_part, addend1, addend2, sum, result;
1389 tree type = TREE_TYPE (TREE_TYPE (arg));
1390 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1391 machine_mode mode = TYPE_MODE (type);
1392
1393 if (!flag_unsafe_math_optimizations
1394 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1395 || !sqrtfn
1396 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1397 return NULL_TREE;
1398
1399 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1400 REALPART_EXPR, arg);
1401 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1402 real_part, real_part);
1403 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1404 IMAGPART_EXPR, arg);
1405 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1406 imag_part, imag_part);
1407 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1408 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1409
1410 return result;
1411 }
1412
1413 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1414 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1415 an optimal number of multiplies, when n is a constant. */
1416
1417 namespace {
1418
1419 const pass_data pass_data_cse_sincos =
1420 {
1421 GIMPLE_PASS, /* type */
1422 "sincos", /* name */
1423 OPTGROUP_NONE, /* optinfo_flags */
1424 TV_NONE, /* tv_id */
1425 PROP_ssa, /* properties_required */
1426 0, /* properties_provided */
1427 0, /* properties_destroyed */
1428 0, /* todo_flags_start */
1429 TODO_update_ssa, /* todo_flags_finish */
1430 };
1431
1432 class pass_cse_sincos : public gimple_opt_pass
1433 {
1434 public:
1435 pass_cse_sincos (gcc::context *ctxt)
1436 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1437 {}
1438
1439 /* opt_pass methods: */
1440 virtual bool gate (function *)
1441 {
1442 /* We no longer require either sincos or cexp, since powi expansion
1443 piggybacks on this pass. */
1444 return optimize;
1445 }
1446
1447 virtual unsigned int execute (function *);
1448
1449 }; // class pass_cse_sincos
1450
1451 unsigned int
1452 pass_cse_sincos::execute (function *fun)
1453 {
1454 basic_block bb;
1455 bool cfg_changed = false;
1456
1457 calculate_dominance_info (CDI_DOMINATORS);
1458 memset (&sincos_stats, 0, sizeof (sincos_stats));
1459
1460 FOR_EACH_BB_FN (bb, fun)
1461 {
1462 gimple_stmt_iterator gsi;
1463 bool cleanup_eh = false;
1464
1465 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1466 {
1467 gimple stmt = gsi_stmt (gsi);
1468 tree fndecl;
1469
1470 /* Only the last stmt in a bb could throw, no need to call
1471 gimple_purge_dead_eh_edges if we change something in the middle
1472 of a basic block. */
1473 cleanup_eh = false;
1474
1475 if (is_gimple_call (stmt)
1476 && gimple_call_lhs (stmt)
1477 && (fndecl = gimple_call_fndecl (stmt))
1478 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1479 {
1480 tree arg, arg0, arg1, result;
1481 HOST_WIDE_INT n;
1482 location_t loc;
1483
1484 switch (DECL_FUNCTION_CODE (fndecl))
1485 {
1486 CASE_FLT_FN (BUILT_IN_COS):
1487 CASE_FLT_FN (BUILT_IN_SIN):
1488 CASE_FLT_FN (BUILT_IN_CEXPI):
1489 /* Make sure we have either sincos or cexp. */
1490 if (!targetm.libc_has_function (function_c99_math_complex)
1491 && !targetm.libc_has_function (function_sincos))
1492 break;
1493
1494 arg = gimple_call_arg (stmt, 0);
1495 if (TREE_CODE (arg) == SSA_NAME)
1496 cfg_changed |= execute_cse_sincos_1 (arg);
1497 break;
1498
1499 CASE_FLT_FN (BUILT_IN_POW):
1500 arg0 = gimple_call_arg (stmt, 0);
1501 arg1 = gimple_call_arg (stmt, 1);
1502
1503 loc = gimple_location (stmt);
1504 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1505
1506 if (result)
1507 {
1508 tree lhs = gimple_get_lhs (stmt);
1509 gassign *new_stmt = gimple_build_assign (lhs, result);
1510 gimple_set_location (new_stmt, loc);
1511 unlink_stmt_vdef (stmt);
1512 gsi_replace (&gsi, new_stmt, true);
1513 cleanup_eh = true;
1514 if (gimple_vdef (stmt))
1515 release_ssa_name (gimple_vdef (stmt));
1516 }
1517 break;
1518
1519 CASE_FLT_FN (BUILT_IN_POWI):
1520 arg0 = gimple_call_arg (stmt, 0);
1521 arg1 = gimple_call_arg (stmt, 1);
1522 loc = gimple_location (stmt);
1523
1524 if (real_minus_onep (arg0))
1525 {
1526 tree t0, t1, cond, one, minus_one;
1527 gassign *stmt;
1528
1529 t0 = TREE_TYPE (arg0);
1530 t1 = TREE_TYPE (arg1);
1531 one = build_real (t0, dconst1);
1532 minus_one = build_real (t0, dconstm1);
1533
1534 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1535 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1536 arg1, build_int_cst (t1, 1));
1537 gimple_set_location (stmt, loc);
1538 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1539
1540 result = make_temp_ssa_name (t0, NULL, "powi");
1541 stmt = gimple_build_assign (result, COND_EXPR, cond,
1542 minus_one, one);
1543 gimple_set_location (stmt, loc);
1544 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1545 }
1546 else
1547 {
1548 if (!tree_fits_shwi_p (arg1))
1549 break;
1550
1551 n = tree_to_shwi (arg1);
1552 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1553 }
1554
1555 if (result)
1556 {
1557 tree lhs = gimple_get_lhs (stmt);
1558 gassign *new_stmt = gimple_build_assign (lhs, result);
1559 gimple_set_location (new_stmt, loc);
1560 unlink_stmt_vdef (stmt);
1561 gsi_replace (&gsi, new_stmt, true);
1562 cleanup_eh = true;
1563 if (gimple_vdef (stmt))
1564 release_ssa_name (gimple_vdef (stmt));
1565 }
1566 break;
1567
1568 CASE_FLT_FN (BUILT_IN_CABS):
1569 arg0 = gimple_call_arg (stmt, 0);
1570 loc = gimple_location (stmt);
1571 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1572
1573 if (result)
1574 {
1575 tree lhs = gimple_get_lhs (stmt);
1576 gassign *new_stmt = gimple_build_assign (lhs, result);
1577 gimple_set_location (new_stmt, loc);
1578 unlink_stmt_vdef (stmt);
1579 gsi_replace (&gsi, new_stmt, true);
1580 cleanup_eh = true;
1581 if (gimple_vdef (stmt))
1582 release_ssa_name (gimple_vdef (stmt));
1583 }
1584 break;
1585
1586 default:;
1587 }
1588 }
1589 }
1590 if (cleanup_eh)
1591 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1592 }
1593
1594 statistics_counter_event (fun, "sincos statements inserted",
1595 sincos_stats.inserted);
1596
1597 free_dominance_info (CDI_DOMINATORS);
1598 return cfg_changed ? TODO_cleanup_cfg : 0;
1599 }
1600
1601 } // anon namespace
1602
1603 gimple_opt_pass *
1604 make_pass_cse_sincos (gcc::context *ctxt)
1605 {
1606 return new pass_cse_sincos (ctxt);
1607 }
1608
1609 /* A symbolic number is used to detect byte permutation and selection
1610 patterns. Therefore the field N contains an artificial number
1611 consisting of octet sized markers:
1612
1613 0 - target byte has the value 0
1614 FF - target byte has an unknown value (eg. due to sign extension)
1615 1..size - marker value is the target byte index minus one.
1616
1617 To detect permutations on memory sources (arrays and structures), a symbolic
1618 number is also associated a base address (the array or structure the load is
1619 made from), an offset from the base address and a range which gives the
1620 difference between the highest and lowest accessed memory location to make
1621 such a symbolic number. The range is thus different from size which reflects
1622 the size of the type of current expression. Note that for non memory source,
1623 range holds the same value as size.
1624
1625 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1626 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1627 still have a size of 2 but this time a range of 1. */
1628
1629 struct symbolic_number {
1630 uint64_t n;
1631 tree type;
1632 tree base_addr;
1633 tree offset;
1634 HOST_WIDE_INT bytepos;
1635 tree alias_set;
1636 tree vuse;
1637 unsigned HOST_WIDE_INT range;
1638 };
1639
1640 #define BITS_PER_MARKER 8
1641 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1642 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1643 #define HEAD_MARKER(n, size) \
1644 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1645
1646 /* The number which the find_bswap_or_nop_1 result should match in
1647 order to have a nop. The number is masked according to the size of
1648 the symbolic number before using it. */
1649 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1650 (uint64_t)0x08070605 << 32 | 0x04030201)
1651
1652 /* The number which the find_bswap_or_nop_1 result should match in
1653 order to have a byte swap. The number is masked according to the
1654 size of the symbolic number before using it. */
1655 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1656 (uint64_t)0x01020304 << 32 | 0x05060708)
1657
1658 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1659 number N. Return false if the requested operation is not permitted
1660 on a symbolic number. */
1661
1662 static inline bool
1663 do_shift_rotate (enum tree_code code,
1664 struct symbolic_number *n,
1665 int count)
1666 {
1667 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1668 unsigned head_marker;
1669
1670 if (count % BITS_PER_UNIT != 0)
1671 return false;
1672 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1673
1674 /* Zero out the extra bits of N in order to avoid them being shifted
1675 into the significant bits. */
1676 if (size < 64 / BITS_PER_MARKER)
1677 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1678
1679 switch (code)
1680 {
1681 case LSHIFT_EXPR:
1682 n->n <<= count;
1683 break;
1684 case RSHIFT_EXPR:
1685 head_marker = HEAD_MARKER (n->n, size);
1686 n->n >>= count;
1687 /* Arithmetic shift of signed type: result is dependent on the value. */
1688 if (!TYPE_UNSIGNED (n->type) && head_marker)
1689 for (i = 0; i < count / BITS_PER_MARKER; i++)
1690 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1691 << ((size - 1 - i) * BITS_PER_MARKER);
1692 break;
1693 case LROTATE_EXPR:
1694 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1695 break;
1696 case RROTATE_EXPR:
1697 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1698 break;
1699 default:
1700 return false;
1701 }
1702 /* Zero unused bits for size. */
1703 if (size < 64 / BITS_PER_MARKER)
1704 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1705 return true;
1706 }
1707
1708 /* Perform sanity checking for the symbolic number N and the gimple
1709 statement STMT. */
1710
1711 static inline bool
1712 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1713 {
1714 tree lhs_type;
1715
1716 lhs_type = gimple_expr_type (stmt);
1717
1718 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1719 return false;
1720
1721 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1722 return false;
1723
1724 return true;
1725 }
1726
1727 /* Initialize the symbolic number N for the bswap pass from the base element
1728 SRC manipulated by the bitwise OR expression. */
1729
1730 static bool
1731 init_symbolic_number (struct symbolic_number *n, tree src)
1732 {
1733 int size;
1734
1735 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1736
1737 /* Set up the symbolic number N by setting each byte to a value between 1 and
1738 the byte size of rhs1. The highest order byte is set to n->size and the
1739 lowest order byte to 1. */
1740 n->type = TREE_TYPE (src);
1741 size = TYPE_PRECISION (n->type);
1742 if (size % BITS_PER_UNIT != 0)
1743 return false;
1744 size /= BITS_PER_UNIT;
1745 if (size > 64 / BITS_PER_MARKER)
1746 return false;
1747 n->range = size;
1748 n->n = CMPNOP;
1749
1750 if (size < 64 / BITS_PER_MARKER)
1751 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1752
1753 return true;
1754 }
1755
1756 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1757 the answer. If so, REF is that memory source and the base of the memory area
1758 accessed and the offset of the access from that base are recorded in N. */
1759
1760 bool
1761 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1762 {
1763 /* Leaf node is an array or component ref. Memorize its base and
1764 offset from base to compare to other such leaf node. */
1765 HOST_WIDE_INT bitsize, bitpos;
1766 machine_mode mode;
1767 int unsignedp, volatilep;
1768 tree offset, base_addr;
1769
1770 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1771 return false;
1772
1773 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1774 &unsignedp, &volatilep, false);
1775
1776 if (TREE_CODE (base_addr) == MEM_REF)
1777 {
1778 offset_int bit_offset = 0;
1779 tree off = TREE_OPERAND (base_addr, 1);
1780
1781 if (!integer_zerop (off))
1782 {
1783 offset_int boff, coff = mem_ref_offset (base_addr);
1784 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1785 bit_offset += boff;
1786 }
1787
1788 base_addr = TREE_OPERAND (base_addr, 0);
1789
1790 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1791 if (wi::neg_p (bit_offset))
1792 {
1793 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1794 offset_int tem = bit_offset.and_not (mask);
1795 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1796 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1797 bit_offset -= tem;
1798 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1799 if (offset)
1800 offset = size_binop (PLUS_EXPR, offset,
1801 wide_int_to_tree (sizetype, tem));
1802 else
1803 offset = wide_int_to_tree (sizetype, tem);
1804 }
1805
1806 bitpos += bit_offset.to_shwi ();
1807 }
1808
1809 if (bitpos % BITS_PER_UNIT)
1810 return false;
1811 if (bitsize % BITS_PER_UNIT)
1812 return false;
1813
1814 if (!init_symbolic_number (n, ref))
1815 return false;
1816 n->base_addr = base_addr;
1817 n->offset = offset;
1818 n->bytepos = bitpos / BITS_PER_UNIT;
1819 n->alias_set = reference_alias_ptr_type (ref);
1820 n->vuse = gimple_vuse (stmt);
1821 return true;
1822 }
1823
1824 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1825 the operation given by the rhs of STMT on the result. If the operation
1826 could successfully be executed the function returns a gimple stmt whose
1827 rhs's first tree is the expression of the source operand and NULL
1828 otherwise. */
1829
1830 static gimple
1831 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1832 {
1833 enum tree_code code;
1834 tree rhs1, rhs2 = NULL;
1835 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1836 enum gimple_rhs_class rhs_class;
1837
1838 if (!limit || !is_gimple_assign (stmt))
1839 return NULL;
1840
1841 rhs1 = gimple_assign_rhs1 (stmt);
1842
1843 if (find_bswap_or_nop_load (stmt, rhs1, n))
1844 return stmt;
1845
1846 if (TREE_CODE (rhs1) != SSA_NAME)
1847 return NULL;
1848
1849 code = gimple_assign_rhs_code (stmt);
1850 rhs_class = gimple_assign_rhs_class (stmt);
1851 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1852
1853 if (rhs_class == GIMPLE_BINARY_RHS)
1854 rhs2 = gimple_assign_rhs2 (stmt);
1855
1856 /* Handle unary rhs and binary rhs with integer constants as second
1857 operand. */
1858
1859 if (rhs_class == GIMPLE_UNARY_RHS
1860 || (rhs_class == GIMPLE_BINARY_RHS
1861 && TREE_CODE (rhs2) == INTEGER_CST))
1862 {
1863 if (code != BIT_AND_EXPR
1864 && code != LSHIFT_EXPR
1865 && code != RSHIFT_EXPR
1866 && code != LROTATE_EXPR
1867 && code != RROTATE_EXPR
1868 && !CONVERT_EXPR_CODE_P (code))
1869 return NULL;
1870
1871 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1872
1873 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1874 we have to initialize the symbolic number. */
1875 if (!source_stmt1)
1876 {
1877 if (gimple_assign_load_p (stmt)
1878 || !init_symbolic_number (n, rhs1))
1879 return NULL;
1880 source_stmt1 = stmt;
1881 }
1882
1883 switch (code)
1884 {
1885 case BIT_AND_EXPR:
1886 {
1887 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1888 uint64_t val = int_cst_value (rhs2), mask = 0;
1889 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
1890
1891 /* Only constants masking full bytes are allowed. */
1892 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1893 if ((val & tmp) != 0 && (val & tmp) != tmp)
1894 return NULL;
1895 else if (val & tmp)
1896 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
1897
1898 n->n &= mask;
1899 }
1900 break;
1901 case LSHIFT_EXPR:
1902 case RSHIFT_EXPR:
1903 case LROTATE_EXPR:
1904 case RROTATE_EXPR:
1905 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1906 return NULL;
1907 break;
1908 CASE_CONVERT:
1909 {
1910 int i, type_size, old_type_size;
1911 tree type;
1912
1913 type = gimple_expr_type (stmt);
1914 type_size = TYPE_PRECISION (type);
1915 if (type_size % BITS_PER_UNIT != 0)
1916 return NULL;
1917 type_size /= BITS_PER_UNIT;
1918 if (type_size > 64 / BITS_PER_MARKER)
1919 return NULL;
1920
1921 /* Sign extension: result is dependent on the value. */
1922 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1923 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1924 && HEAD_MARKER (n->n, old_type_size))
1925 for (i = 0; i < type_size - old_type_size; i++)
1926 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1927 << ((type_size - 1 - i) * BITS_PER_MARKER);
1928
1929 if (type_size < 64 / BITS_PER_MARKER)
1930 {
1931 /* If STMT casts to a smaller type mask out the bits not
1932 belonging to the target type. */
1933 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
1934 }
1935 n->type = type;
1936 if (!n->base_addr)
1937 n->range = type_size;
1938 }
1939 break;
1940 default:
1941 return NULL;
1942 };
1943 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
1944 }
1945
1946 /* Handle binary rhs. */
1947
1948 if (rhs_class == GIMPLE_BINARY_RHS)
1949 {
1950 int i, size;
1951 struct symbolic_number n1, n2;
1952 uint64_t mask;
1953 gimple source_stmt2;
1954
1955 if (code != BIT_IOR_EXPR)
1956 return NULL;
1957
1958 if (TREE_CODE (rhs2) != SSA_NAME)
1959 return NULL;
1960
1961 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1962
1963 switch (code)
1964 {
1965 case BIT_IOR_EXPR:
1966 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
1967
1968 if (!source_stmt1)
1969 return NULL;
1970
1971 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
1972
1973 if (!source_stmt2)
1974 return NULL;
1975
1976 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1977 return NULL;
1978
1979 if (!n1.vuse != !n2.vuse ||
1980 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
1981 return NULL;
1982
1983 if (gimple_assign_rhs1 (source_stmt1)
1984 != gimple_assign_rhs1 (source_stmt2))
1985 {
1986 int64_t inc;
1987 HOST_WIDE_INT off_sub;
1988 struct symbolic_number *n_ptr;
1989
1990 if (!n1.base_addr || !n2.base_addr
1991 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
1992 return NULL;
1993 if (!n1.offset != !n2.offset ||
1994 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
1995 return NULL;
1996
1997 /* We swap n1 with n2 to have n1 < n2. */
1998 if (n2.bytepos < n1.bytepos)
1999 {
2000 struct symbolic_number tmpn;
2001
2002 tmpn = n2;
2003 n2 = n1;
2004 n1 = tmpn;
2005 source_stmt1 = source_stmt2;
2006 }
2007
2008 off_sub = n2.bytepos - n1.bytepos;
2009
2010 /* Check that the range of memory covered can be represented by
2011 a symbolic number. */
2012 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
2013 return NULL;
2014 n->range = n2.range + off_sub;
2015
2016 /* Reinterpret byte marks in symbolic number holding the value of
2017 bigger weight according to target endianness. */
2018 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
2019 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
2020 if (BYTES_BIG_ENDIAN)
2021 n_ptr = &n1;
2022 else
2023 n_ptr = &n2;
2024 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2025 {
2026 unsigned marker =
2027 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2028 if (marker && marker != MARKER_BYTE_UNKNOWN)
2029 n_ptr->n += inc;
2030 }
2031 }
2032 else
2033 n->range = n1.range;
2034
2035 if (!n1.alias_set
2036 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2037 n->alias_set = n1.alias_set;
2038 else
2039 n->alias_set = ptr_type_node;
2040 n->vuse = n1.vuse;
2041 n->base_addr = n1.base_addr;
2042 n->offset = n1.offset;
2043 n->bytepos = n1.bytepos;
2044 n->type = n1.type;
2045 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2046 for (i = 0, mask = MARKER_MASK; i < size;
2047 i++, mask <<= BITS_PER_MARKER)
2048 {
2049 uint64_t masked1, masked2;
2050
2051 masked1 = n1.n & mask;
2052 masked2 = n2.n & mask;
2053 if (masked1 && masked2 && masked1 != masked2)
2054 return NULL;
2055 }
2056 n->n = n1.n | n2.n;
2057
2058 if (!verify_symbolic_number_p (n, stmt))
2059 return NULL;
2060
2061 break;
2062 default:
2063 return NULL;
2064 }
2065 return source_stmt1;
2066 }
2067 return NULL;
2068 }
2069
2070 /* Check if STMT completes a bswap implementation or a read in a given
2071 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2072 accordingly. It also sets N to represent the kind of operations
2073 performed: size of the resulting expression and whether it works on
2074 a memory source, and if so alias-set and vuse. At last, the
2075 function returns a stmt whose rhs's first tree is the source
2076 expression. */
2077
2078 static gimple
2079 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2080 {
2081 /* The number which the find_bswap_or_nop_1 result should match in order
2082 to have a full byte swap. The number is shifted to the right
2083 according to the size of the symbolic number before using it. */
2084 uint64_t cmpxchg = CMPXCHG;
2085 uint64_t cmpnop = CMPNOP;
2086
2087 gimple source_stmt;
2088 int limit;
2089
2090 /* The last parameter determines the depth search limit. It usually
2091 correlates directly to the number n of bytes to be touched. We
2092 increase that number by log2(n) + 1 here in order to also
2093 cover signed -> unsigned conversions of the src operand as can be seen
2094 in libgcc, and for initial shift/and operation of the src operand. */
2095 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2096 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2097 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2098
2099 if (!source_stmt)
2100 return NULL;
2101
2102 /* Find real size of result (highest non zero byte). */
2103 if (n->base_addr)
2104 {
2105 int rsize;
2106 uint64_t tmpn;
2107
2108 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2109 n->range = rsize;
2110 }
2111
2112 /* Zero out the extra bits of N and CMP*. */
2113 if (n->range < (int) sizeof (int64_t))
2114 {
2115 uint64_t mask;
2116
2117 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2118 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2119 cmpnop &= mask;
2120 }
2121
2122 /* A complete byte swap should make the symbolic number to start with
2123 the largest digit in the highest order byte. Unchanged symbolic
2124 number indicates a read with same endianness as target architecture. */
2125 if (n->n == cmpnop)
2126 *bswap = false;
2127 else if (n->n == cmpxchg)
2128 *bswap = true;
2129 else
2130 return NULL;
2131
2132 /* Useless bit manipulation performed by code. */
2133 if (!n->base_addr && n->n == cmpnop)
2134 return NULL;
2135
2136 n->range *= BITS_PER_UNIT;
2137 return source_stmt;
2138 }
2139
2140 namespace {
2141
2142 const pass_data pass_data_optimize_bswap =
2143 {
2144 GIMPLE_PASS, /* type */
2145 "bswap", /* name */
2146 OPTGROUP_NONE, /* optinfo_flags */
2147 TV_NONE, /* tv_id */
2148 PROP_ssa, /* properties_required */
2149 0, /* properties_provided */
2150 0, /* properties_destroyed */
2151 0, /* todo_flags_start */
2152 0, /* todo_flags_finish */
2153 };
2154
2155 class pass_optimize_bswap : public gimple_opt_pass
2156 {
2157 public:
2158 pass_optimize_bswap (gcc::context *ctxt)
2159 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2160 {}
2161
2162 /* opt_pass methods: */
2163 virtual bool gate (function *)
2164 {
2165 return flag_expensive_optimizations && optimize;
2166 }
2167
2168 virtual unsigned int execute (function *);
2169
2170 }; // class pass_optimize_bswap
2171
2172 /* Perform the bswap optimization: replace the expression computed in the rhs
2173 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2174 Which of these alternatives replace the rhs is given by N->base_addr (non
2175 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2176 load to perform are also given in N while the builtin bswap invoke is given
2177 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2178 load statements involved to construct the rhs in CUR_STMT and N->range gives
2179 the size of the rhs expression for maintaining some statistics.
2180
2181 Note that if the replacement involve a load, CUR_STMT is moved just after
2182 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2183 changing of basic block. */
2184
2185 static bool
2186 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2187 tree load_type, struct symbolic_number *n, bool bswap)
2188 {
2189 gimple_stmt_iterator gsi;
2190 tree src, tmp, tgt;
2191 gimple bswap_stmt;
2192
2193 gsi = gsi_for_stmt (cur_stmt);
2194 src = gimple_assign_rhs1 (src_stmt);
2195 tgt = gimple_assign_lhs (cur_stmt);
2196
2197 /* Need to load the value from memory first. */
2198 if (n->base_addr)
2199 {
2200 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2201 tree addr_expr, addr_tmp, val_expr, val_tmp;
2202 tree load_offset_ptr, aligned_load_type;
2203 gimple addr_stmt, load_stmt;
2204 unsigned align;
2205
2206 align = get_object_alignment (src);
2207 if (bswap
2208 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2209 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2210 return false;
2211
2212 /* Move cur_stmt just before one of the load of the original
2213 to ensure it has the same VUSE. See PR61517 for what could
2214 go wrong. */
2215 gsi_move_before (&gsi, &gsi_ins);
2216 gsi = gsi_for_stmt (cur_stmt);
2217
2218 /* Compute address to load from and cast according to the size
2219 of the load. */
2220 addr_expr = build_fold_addr_expr (unshare_expr (src));
2221 if (is_gimple_min_invariant (addr_expr))
2222 addr_tmp = addr_expr;
2223 else
2224 {
2225 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2226 "load_src");
2227 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2228 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2229 }
2230
2231 /* Perform the load. */
2232 aligned_load_type = load_type;
2233 if (align < TYPE_ALIGN (load_type))
2234 aligned_load_type = build_aligned_type (load_type, align);
2235 load_offset_ptr = build_int_cst (n->alias_set, 0);
2236 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2237 load_offset_ptr);
2238
2239 if (!bswap)
2240 {
2241 if (n->range == 16)
2242 nop_stats.found_16bit++;
2243 else if (n->range == 32)
2244 nop_stats.found_32bit++;
2245 else
2246 {
2247 gcc_assert (n->range == 64);
2248 nop_stats.found_64bit++;
2249 }
2250
2251 /* Convert the result of load if necessary. */
2252 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2253 {
2254 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2255 "load_dst");
2256 load_stmt = gimple_build_assign (val_tmp, val_expr);
2257 gimple_set_vuse (load_stmt, n->vuse);
2258 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2259 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2260 }
2261 else
2262 {
2263 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2264 gimple_set_vuse (cur_stmt, n->vuse);
2265 }
2266 update_stmt (cur_stmt);
2267
2268 if (dump_file)
2269 {
2270 fprintf (dump_file,
2271 "%d bit load in target endianness found at: ",
2272 (int)n->range);
2273 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2274 }
2275 return true;
2276 }
2277 else
2278 {
2279 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2280 load_stmt = gimple_build_assign (val_tmp, val_expr);
2281 gimple_set_vuse (load_stmt, n->vuse);
2282 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2283 }
2284 src = val_tmp;
2285 }
2286
2287 if (n->range == 16)
2288 bswap_stats.found_16bit++;
2289 else if (n->range == 32)
2290 bswap_stats.found_32bit++;
2291 else
2292 {
2293 gcc_assert (n->range == 64);
2294 bswap_stats.found_64bit++;
2295 }
2296
2297 tmp = src;
2298
2299 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2300 are considered as rotation of 2N bit values by N bits is generally not
2301 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2302 0x03040102 while a bswap for that value is 0x04030201. */
2303 if (bswap && n->range == 16)
2304 {
2305 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2306 bswap_type = TREE_TYPE (src);
2307 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2308 bswap_stmt = gimple_build_assign (NULL, src);
2309 }
2310 else
2311 {
2312 /* Convert the src expression if necessary. */
2313 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2314 {
2315 gimple convert_stmt;
2316 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2317 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2318 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2319 }
2320
2321 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2322 }
2323
2324 tmp = tgt;
2325
2326 /* Convert the result if necessary. */
2327 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2328 {
2329 gimple convert_stmt;
2330 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2331 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2332 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2333 }
2334
2335 gimple_set_lhs (bswap_stmt, tmp);
2336
2337 if (dump_file)
2338 {
2339 fprintf (dump_file, "%d bit bswap implementation found at: ",
2340 (int)n->range);
2341 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2342 }
2343
2344 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2345 gsi_remove (&gsi, true);
2346 return true;
2347 }
2348
2349 /* Find manual byte swap implementations as well as load in a given
2350 endianness. Byte swaps are turned into a bswap builtin invokation
2351 while endian loads are converted to bswap builtin invokation or
2352 simple load according to the target endianness. */
2353
2354 unsigned int
2355 pass_optimize_bswap::execute (function *fun)
2356 {
2357 basic_block bb;
2358 bool bswap16_p, bswap32_p, bswap64_p;
2359 bool changed = false;
2360 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2361
2362 if (BITS_PER_UNIT != 8)
2363 return 0;
2364
2365 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2366 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
2367 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2368 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2369 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2370 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2371 || (bswap32_p && word_mode == SImode)));
2372
2373 /* Determine the argument type of the builtins. The code later on
2374 assumes that the return and argument type are the same. */
2375 if (bswap16_p)
2376 {
2377 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2378 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2379 }
2380
2381 if (bswap32_p)
2382 {
2383 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2384 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2385 }
2386
2387 if (bswap64_p)
2388 {
2389 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2390 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2391 }
2392
2393 memset (&nop_stats, 0, sizeof (nop_stats));
2394 memset (&bswap_stats, 0, sizeof (bswap_stats));
2395
2396 FOR_EACH_BB_FN (bb, fun)
2397 {
2398 gimple_stmt_iterator gsi;
2399
2400 /* We do a reverse scan for bswap patterns to make sure we get the
2401 widest match. As bswap pattern matching doesn't handle previously
2402 inserted smaller bswap replacements as sub-patterns, the wider
2403 variant wouldn't be detected. */
2404 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2405 {
2406 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2407 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2408 enum tree_code code;
2409 struct symbolic_number n;
2410 bool bswap;
2411
2412 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2413 might be moved to a different basic block by bswap_replace and gsi
2414 must not points to it if that's the case. Moving the gsi_prev
2415 there make sure that gsi points to the statement previous to
2416 cur_stmt while still making sure that all statements are
2417 considered in this basic block. */
2418 gsi_prev (&gsi);
2419
2420 if (!is_gimple_assign (cur_stmt))
2421 continue;
2422
2423 code = gimple_assign_rhs_code (cur_stmt);
2424 switch (code)
2425 {
2426 case LROTATE_EXPR:
2427 case RROTATE_EXPR:
2428 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2429 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2430 % BITS_PER_UNIT)
2431 continue;
2432 /* Fall through. */
2433 case BIT_IOR_EXPR:
2434 break;
2435 default:
2436 continue;
2437 }
2438
2439 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2440
2441 if (!src_stmt)
2442 continue;
2443
2444 switch (n.range)
2445 {
2446 case 16:
2447 /* Already in canonical form, nothing to do. */
2448 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2449 continue;
2450 load_type = uint16_type_node;
2451 if (bswap16_p)
2452 {
2453 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2454 bswap_type = bswap16_type;
2455 }
2456 break;
2457 case 32:
2458 load_type = uint32_type_node;
2459 if (bswap32_p)
2460 {
2461 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2462 bswap_type = bswap32_type;
2463 }
2464 break;
2465 case 64:
2466 load_type = uint64_type_node;
2467 if (bswap64_p)
2468 {
2469 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2470 bswap_type = bswap64_type;
2471 }
2472 break;
2473 default:
2474 continue;
2475 }
2476
2477 if (bswap && !fndecl)
2478 continue;
2479
2480 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2481 &n, bswap))
2482 changed = true;
2483 }
2484 }
2485
2486 statistics_counter_event (fun, "16-bit nop implementations found",
2487 nop_stats.found_16bit);
2488 statistics_counter_event (fun, "32-bit nop implementations found",
2489 nop_stats.found_32bit);
2490 statistics_counter_event (fun, "64-bit nop implementations found",
2491 nop_stats.found_64bit);
2492 statistics_counter_event (fun, "16-bit bswap implementations found",
2493 bswap_stats.found_16bit);
2494 statistics_counter_event (fun, "32-bit bswap implementations found",
2495 bswap_stats.found_32bit);
2496 statistics_counter_event (fun, "64-bit bswap implementations found",
2497 bswap_stats.found_64bit);
2498
2499 return (changed ? TODO_update_ssa : 0);
2500 }
2501
2502 } // anon namespace
2503
2504 gimple_opt_pass *
2505 make_pass_optimize_bswap (gcc::context *ctxt)
2506 {
2507 return new pass_optimize_bswap (ctxt);
2508 }
2509
2510 /* Return true if stmt is a type conversion operation that can be stripped
2511 when used in a widening multiply operation. */
2512 static bool
2513 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2514 {
2515 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2516
2517 if (TREE_CODE (result_type) == INTEGER_TYPE)
2518 {
2519 tree op_type;
2520 tree inner_op_type;
2521
2522 if (!CONVERT_EXPR_CODE_P (rhs_code))
2523 return false;
2524
2525 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2526
2527 /* If the type of OP has the same precision as the result, then
2528 we can strip this conversion. The multiply operation will be
2529 selected to create the correct extension as a by-product. */
2530 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2531 return true;
2532
2533 /* We can also strip a conversion if it preserves the signed-ness of
2534 the operation and doesn't narrow the range. */
2535 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2536
2537 /* If the inner-most type is unsigned, then we can strip any
2538 intermediate widening operation. If it's signed, then the
2539 intermediate widening operation must also be signed. */
2540 if ((TYPE_UNSIGNED (inner_op_type)
2541 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2542 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2543 return true;
2544
2545 return false;
2546 }
2547
2548 return rhs_code == FIXED_CONVERT_EXPR;
2549 }
2550
2551 /* Return true if RHS is a suitable operand for a widening multiplication,
2552 assuming a target type of TYPE.
2553 There are two cases:
2554
2555 - RHS makes some value at least twice as wide. Store that value
2556 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2557
2558 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2559 but leave *TYPE_OUT untouched. */
2560
2561 static bool
2562 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2563 tree *new_rhs_out)
2564 {
2565 gimple stmt;
2566 tree type1, rhs1;
2567
2568 if (TREE_CODE (rhs) == SSA_NAME)
2569 {
2570 stmt = SSA_NAME_DEF_STMT (rhs);
2571 if (is_gimple_assign (stmt))
2572 {
2573 if (! widening_mult_conversion_strippable_p (type, stmt))
2574 rhs1 = rhs;
2575 else
2576 {
2577 rhs1 = gimple_assign_rhs1 (stmt);
2578
2579 if (TREE_CODE (rhs1) == INTEGER_CST)
2580 {
2581 *new_rhs_out = rhs1;
2582 *type_out = NULL;
2583 return true;
2584 }
2585 }
2586 }
2587 else
2588 rhs1 = rhs;
2589
2590 type1 = TREE_TYPE (rhs1);
2591
2592 if (TREE_CODE (type1) != TREE_CODE (type)
2593 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2594 return false;
2595
2596 *new_rhs_out = rhs1;
2597 *type_out = type1;
2598 return true;
2599 }
2600
2601 if (TREE_CODE (rhs) == INTEGER_CST)
2602 {
2603 *new_rhs_out = rhs;
2604 *type_out = NULL;
2605 return true;
2606 }
2607
2608 return false;
2609 }
2610
2611 /* Return true if STMT performs a widening multiplication, assuming the
2612 output type is TYPE. If so, store the unwidened types of the operands
2613 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2614 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2615 and *TYPE2_OUT would give the operands of the multiplication. */
2616
2617 static bool
2618 is_widening_mult_p (gimple stmt,
2619 tree *type1_out, tree *rhs1_out,
2620 tree *type2_out, tree *rhs2_out)
2621 {
2622 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2623
2624 if (TREE_CODE (type) != INTEGER_TYPE
2625 && TREE_CODE (type) != FIXED_POINT_TYPE)
2626 return false;
2627
2628 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2629 rhs1_out))
2630 return false;
2631
2632 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2633 rhs2_out))
2634 return false;
2635
2636 if (*type1_out == NULL)
2637 {
2638 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2639 return false;
2640 *type1_out = *type2_out;
2641 }
2642
2643 if (*type2_out == NULL)
2644 {
2645 if (!int_fits_type_p (*rhs2_out, *type1_out))
2646 return false;
2647 *type2_out = *type1_out;
2648 }
2649
2650 /* Ensure that the larger of the two operands comes first. */
2651 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2652 {
2653 tree tmp;
2654 tmp = *type1_out;
2655 *type1_out = *type2_out;
2656 *type2_out = tmp;
2657 tmp = *rhs1_out;
2658 *rhs1_out = *rhs2_out;
2659 *rhs2_out = tmp;
2660 }
2661
2662 return true;
2663 }
2664
2665 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2666 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2667 value is true iff we converted the statement. */
2668
2669 static bool
2670 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2671 {
2672 tree lhs, rhs1, rhs2, type, type1, type2;
2673 enum insn_code handler;
2674 machine_mode to_mode, from_mode, actual_mode;
2675 optab op;
2676 int actual_precision;
2677 location_t loc = gimple_location (stmt);
2678 bool from_unsigned1, from_unsigned2;
2679
2680 lhs = gimple_assign_lhs (stmt);
2681 type = TREE_TYPE (lhs);
2682 if (TREE_CODE (type) != INTEGER_TYPE)
2683 return false;
2684
2685 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2686 return false;
2687
2688 to_mode = TYPE_MODE (type);
2689 from_mode = TYPE_MODE (type1);
2690 from_unsigned1 = TYPE_UNSIGNED (type1);
2691 from_unsigned2 = TYPE_UNSIGNED (type2);
2692
2693 if (from_unsigned1 && from_unsigned2)
2694 op = umul_widen_optab;
2695 else if (!from_unsigned1 && !from_unsigned2)
2696 op = smul_widen_optab;
2697 else
2698 op = usmul_widen_optab;
2699
2700 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2701 0, &actual_mode);
2702
2703 if (handler == CODE_FOR_nothing)
2704 {
2705 if (op != smul_widen_optab)
2706 {
2707 /* We can use a signed multiply with unsigned types as long as
2708 there is a wider mode to use, or it is the smaller of the two
2709 types that is unsigned. Note that type1 >= type2, always. */
2710 if ((TYPE_UNSIGNED (type1)
2711 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2712 || (TYPE_UNSIGNED (type2)
2713 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2714 {
2715 from_mode = GET_MODE_WIDER_MODE (from_mode);
2716 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2717 return false;
2718 }
2719
2720 op = smul_widen_optab;
2721 handler = find_widening_optab_handler_and_mode (op, to_mode,
2722 from_mode, 0,
2723 &actual_mode);
2724
2725 if (handler == CODE_FOR_nothing)
2726 return false;
2727
2728 from_unsigned1 = from_unsigned2 = false;
2729 }
2730 else
2731 return false;
2732 }
2733
2734 /* Ensure that the inputs to the handler are in the correct precison
2735 for the opcode. This will be the full mode size. */
2736 actual_precision = GET_MODE_PRECISION (actual_mode);
2737 if (2 * actual_precision > TYPE_PRECISION (type))
2738 return false;
2739 if (actual_precision != TYPE_PRECISION (type1)
2740 || from_unsigned1 != TYPE_UNSIGNED (type1))
2741 rhs1 = build_and_insert_cast (gsi, loc,
2742 build_nonstandard_integer_type
2743 (actual_precision, from_unsigned1), rhs1);
2744 if (actual_precision != TYPE_PRECISION (type2)
2745 || from_unsigned2 != TYPE_UNSIGNED (type2))
2746 rhs2 = build_and_insert_cast (gsi, loc,
2747 build_nonstandard_integer_type
2748 (actual_precision, from_unsigned2), rhs2);
2749
2750 /* Handle constants. */
2751 if (TREE_CODE (rhs1) == INTEGER_CST)
2752 rhs1 = fold_convert (type1, rhs1);
2753 if (TREE_CODE (rhs2) == INTEGER_CST)
2754 rhs2 = fold_convert (type2, rhs2);
2755
2756 gimple_assign_set_rhs1 (stmt, rhs1);
2757 gimple_assign_set_rhs2 (stmt, rhs2);
2758 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2759 update_stmt (stmt);
2760 widen_mul_stats.widen_mults_inserted++;
2761 return true;
2762 }
2763
2764 /* Process a single gimple statement STMT, which is found at the
2765 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2766 rhs (given by CODE), and try to convert it into a
2767 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2768 is true iff we converted the statement. */
2769
2770 static bool
2771 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2772 enum tree_code code)
2773 {
2774 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2775 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2776 tree type, type1, type2, optype;
2777 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2778 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2779 optab this_optab;
2780 enum tree_code wmult_code;
2781 enum insn_code handler;
2782 machine_mode to_mode, from_mode, actual_mode;
2783 location_t loc = gimple_location (stmt);
2784 int actual_precision;
2785 bool from_unsigned1, from_unsigned2;
2786
2787 lhs = gimple_assign_lhs (stmt);
2788 type = TREE_TYPE (lhs);
2789 if (TREE_CODE (type) != INTEGER_TYPE
2790 && TREE_CODE (type) != FIXED_POINT_TYPE)
2791 return false;
2792
2793 if (code == MINUS_EXPR)
2794 wmult_code = WIDEN_MULT_MINUS_EXPR;
2795 else
2796 wmult_code = WIDEN_MULT_PLUS_EXPR;
2797
2798 rhs1 = gimple_assign_rhs1 (stmt);
2799 rhs2 = gimple_assign_rhs2 (stmt);
2800
2801 if (TREE_CODE (rhs1) == SSA_NAME)
2802 {
2803 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2804 if (is_gimple_assign (rhs1_stmt))
2805 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2806 }
2807
2808 if (TREE_CODE (rhs2) == SSA_NAME)
2809 {
2810 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2811 if (is_gimple_assign (rhs2_stmt))
2812 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2813 }
2814
2815 /* Allow for one conversion statement between the multiply
2816 and addition/subtraction statement. If there are more than
2817 one conversions then we assume they would invalidate this
2818 transformation. If that's not the case then they should have
2819 been folded before now. */
2820 if (CONVERT_EXPR_CODE_P (rhs1_code))
2821 {
2822 conv1_stmt = rhs1_stmt;
2823 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2824 if (TREE_CODE (rhs1) == SSA_NAME)
2825 {
2826 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2827 if (is_gimple_assign (rhs1_stmt))
2828 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2829 }
2830 else
2831 return false;
2832 }
2833 if (CONVERT_EXPR_CODE_P (rhs2_code))
2834 {
2835 conv2_stmt = rhs2_stmt;
2836 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2837 if (TREE_CODE (rhs2) == SSA_NAME)
2838 {
2839 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2840 if (is_gimple_assign (rhs2_stmt))
2841 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2842 }
2843 else
2844 return false;
2845 }
2846
2847 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2848 is_widening_mult_p, but we still need the rhs returns.
2849
2850 It might also appear that it would be sufficient to use the existing
2851 operands of the widening multiply, but that would limit the choice of
2852 multiply-and-accumulate instructions.
2853
2854 If the widened-multiplication result has more than one uses, it is
2855 probably wiser not to do the conversion. */
2856 if (code == PLUS_EXPR
2857 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2858 {
2859 if (!has_single_use (rhs1)
2860 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2861 &type2, &mult_rhs2))
2862 return false;
2863 add_rhs = rhs2;
2864 conv_stmt = conv1_stmt;
2865 }
2866 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2867 {
2868 if (!has_single_use (rhs2)
2869 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2870 &type2, &mult_rhs2))
2871 return false;
2872 add_rhs = rhs1;
2873 conv_stmt = conv2_stmt;
2874 }
2875 else
2876 return false;
2877
2878 to_mode = TYPE_MODE (type);
2879 from_mode = TYPE_MODE (type1);
2880 from_unsigned1 = TYPE_UNSIGNED (type1);
2881 from_unsigned2 = TYPE_UNSIGNED (type2);
2882 optype = type1;
2883
2884 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2885 if (from_unsigned1 != from_unsigned2)
2886 {
2887 if (!INTEGRAL_TYPE_P (type))
2888 return false;
2889 /* We can use a signed multiply with unsigned types as long as
2890 there is a wider mode to use, or it is the smaller of the two
2891 types that is unsigned. Note that type1 >= type2, always. */
2892 if ((from_unsigned1
2893 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2894 || (from_unsigned2
2895 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2896 {
2897 from_mode = GET_MODE_WIDER_MODE (from_mode);
2898 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2899 return false;
2900 }
2901
2902 from_unsigned1 = from_unsigned2 = false;
2903 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2904 false);
2905 }
2906
2907 /* If there was a conversion between the multiply and addition
2908 then we need to make sure it fits a multiply-and-accumulate.
2909 The should be a single mode change which does not change the
2910 value. */
2911 if (conv_stmt)
2912 {
2913 /* We use the original, unmodified data types for this. */
2914 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2915 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2916 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2917 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2918
2919 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2920 {
2921 /* Conversion is a truncate. */
2922 if (TYPE_PRECISION (to_type) < data_size)
2923 return false;
2924 }
2925 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2926 {
2927 /* Conversion is an extend. Check it's the right sort. */
2928 if (TYPE_UNSIGNED (from_type) != is_unsigned
2929 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2930 return false;
2931 }
2932 /* else convert is a no-op for our purposes. */
2933 }
2934
2935 /* Verify that the machine can perform a widening multiply
2936 accumulate in this mode/signedness combination, otherwise
2937 this transformation is likely to pessimize code. */
2938 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2939 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2940 from_mode, 0, &actual_mode);
2941
2942 if (handler == CODE_FOR_nothing)
2943 return false;
2944
2945 /* Ensure that the inputs to the handler are in the correct precison
2946 for the opcode. This will be the full mode size. */
2947 actual_precision = GET_MODE_PRECISION (actual_mode);
2948 if (actual_precision != TYPE_PRECISION (type1)
2949 || from_unsigned1 != TYPE_UNSIGNED (type1))
2950 mult_rhs1 = build_and_insert_cast (gsi, loc,
2951 build_nonstandard_integer_type
2952 (actual_precision, from_unsigned1),
2953 mult_rhs1);
2954 if (actual_precision != TYPE_PRECISION (type2)
2955 || from_unsigned2 != TYPE_UNSIGNED (type2))
2956 mult_rhs2 = build_and_insert_cast (gsi, loc,
2957 build_nonstandard_integer_type
2958 (actual_precision, from_unsigned2),
2959 mult_rhs2);
2960
2961 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2962 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2963
2964 /* Handle constants. */
2965 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2966 mult_rhs1 = fold_convert (type1, mult_rhs1);
2967 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2968 mult_rhs2 = fold_convert (type2, mult_rhs2);
2969
2970 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2971 add_rhs);
2972 update_stmt (gsi_stmt (*gsi));
2973 widen_mul_stats.maccs_inserted++;
2974 return true;
2975 }
2976
2977 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2978 with uses in additions and subtractions to form fused multiply-add
2979 operations. Returns true if successful and MUL_STMT should be removed. */
2980
2981 static bool
2982 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2983 {
2984 tree mul_result = gimple_get_lhs (mul_stmt);
2985 tree type = TREE_TYPE (mul_result);
2986 gimple use_stmt, neguse_stmt;
2987 gassign *fma_stmt;
2988 use_operand_p use_p;
2989 imm_use_iterator imm_iter;
2990
2991 if (FLOAT_TYPE_P (type)
2992 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2993 return false;
2994
2995 /* We don't want to do bitfield reduction ops. */
2996 if (INTEGRAL_TYPE_P (type)
2997 && (TYPE_PRECISION (type)
2998 != GET_MODE_PRECISION (TYPE_MODE (type))))
2999 return false;
3000
3001 /* If the target doesn't support it, don't generate it. We assume that
3002 if fma isn't available then fms, fnma or fnms are not either. */
3003 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3004 return false;
3005
3006 /* If the multiplication has zero uses, it is kept around probably because
3007 of -fnon-call-exceptions. Don't optimize it away in that case,
3008 it is DCE job. */
3009 if (has_zero_uses (mul_result))
3010 return false;
3011
3012 /* Make sure that the multiplication statement becomes dead after
3013 the transformation, thus that all uses are transformed to FMAs.
3014 This means we assume that an FMA operation has the same cost
3015 as an addition. */
3016 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3017 {
3018 enum tree_code use_code;
3019 tree result = mul_result;
3020 bool negate_p = false;
3021
3022 use_stmt = USE_STMT (use_p);
3023
3024 if (is_gimple_debug (use_stmt))
3025 continue;
3026
3027 /* For now restrict this operations to single basic blocks. In theory
3028 we would want to support sinking the multiplication in
3029 m = a*b;
3030 if ()
3031 ma = m + c;
3032 else
3033 d = m;
3034 to form a fma in the then block and sink the multiplication to the
3035 else block. */
3036 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3037 return false;
3038
3039 if (!is_gimple_assign (use_stmt))
3040 return false;
3041
3042 use_code = gimple_assign_rhs_code (use_stmt);
3043
3044 /* A negate on the multiplication leads to FNMA. */
3045 if (use_code == NEGATE_EXPR)
3046 {
3047 ssa_op_iter iter;
3048 use_operand_p usep;
3049
3050 result = gimple_assign_lhs (use_stmt);
3051
3052 /* Make sure the negate statement becomes dead with this
3053 single transformation. */
3054 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3055 &use_p, &neguse_stmt))
3056 return false;
3057
3058 /* Make sure the multiplication isn't also used on that stmt. */
3059 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3060 if (USE_FROM_PTR (usep) == mul_result)
3061 return false;
3062
3063 /* Re-validate. */
3064 use_stmt = neguse_stmt;
3065 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3066 return false;
3067 if (!is_gimple_assign (use_stmt))
3068 return false;
3069
3070 use_code = gimple_assign_rhs_code (use_stmt);
3071 negate_p = true;
3072 }
3073
3074 switch (use_code)
3075 {
3076 case MINUS_EXPR:
3077 if (gimple_assign_rhs2 (use_stmt) == result)
3078 negate_p = !negate_p;
3079 break;
3080 case PLUS_EXPR:
3081 break;
3082 default:
3083 /* FMA can only be formed from PLUS and MINUS. */
3084 return false;
3085 }
3086
3087 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3088 by a MULT_EXPR that we'll visit later, we might be able to
3089 get a more profitable match with fnma.
3090 OTOH, if we don't, a negate / fma pair has likely lower latency
3091 that a mult / subtract pair. */
3092 if (use_code == MINUS_EXPR && !negate_p
3093 && gimple_assign_rhs1 (use_stmt) == result
3094 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3095 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3096 {
3097 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3098
3099 if (TREE_CODE (rhs2) == SSA_NAME)
3100 {
3101 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3102 if (has_single_use (rhs2)
3103 && is_gimple_assign (stmt2)
3104 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3105 return false;
3106 }
3107 }
3108
3109 /* We can't handle a * b + a * b. */
3110 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3111 return false;
3112
3113 /* While it is possible to validate whether or not the exact form
3114 that we've recognized is available in the backend, the assumption
3115 is that the transformation is never a loss. For instance, suppose
3116 the target only has the plain FMA pattern available. Consider
3117 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3118 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3119 still have 3 operations, but in the FMA form the two NEGs are
3120 independent and could be run in parallel. */
3121 }
3122
3123 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3124 {
3125 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3126 enum tree_code use_code;
3127 tree addop, mulop1 = op1, result = mul_result;
3128 bool negate_p = false;
3129
3130 if (is_gimple_debug (use_stmt))
3131 continue;
3132
3133 use_code = gimple_assign_rhs_code (use_stmt);
3134 if (use_code == NEGATE_EXPR)
3135 {
3136 result = gimple_assign_lhs (use_stmt);
3137 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3138 gsi_remove (&gsi, true);
3139 release_defs (use_stmt);
3140
3141 use_stmt = neguse_stmt;
3142 gsi = gsi_for_stmt (use_stmt);
3143 use_code = gimple_assign_rhs_code (use_stmt);
3144 negate_p = true;
3145 }
3146
3147 if (gimple_assign_rhs1 (use_stmt) == result)
3148 {
3149 addop = gimple_assign_rhs2 (use_stmt);
3150 /* a * b - c -> a * b + (-c) */
3151 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3152 addop = force_gimple_operand_gsi (&gsi,
3153 build1 (NEGATE_EXPR,
3154 type, addop),
3155 true, NULL_TREE, true,
3156 GSI_SAME_STMT);
3157 }
3158 else
3159 {
3160 addop = gimple_assign_rhs1 (use_stmt);
3161 /* a - b * c -> (-b) * c + a */
3162 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3163 negate_p = !negate_p;
3164 }
3165
3166 if (negate_p)
3167 mulop1 = force_gimple_operand_gsi (&gsi,
3168 build1 (NEGATE_EXPR,
3169 type, mulop1),
3170 true, NULL_TREE, true,
3171 GSI_SAME_STMT);
3172
3173 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3174 FMA_EXPR, mulop1, op2, addop);
3175 gsi_replace (&gsi, fma_stmt, true);
3176 widen_mul_stats.fmas_inserted++;
3177 }
3178
3179 return true;
3180 }
3181
3182 /* Find integer multiplications where the operands are extended from
3183 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3184 where appropriate. */
3185
3186 namespace {
3187
3188 const pass_data pass_data_optimize_widening_mul =
3189 {
3190 GIMPLE_PASS, /* type */
3191 "widening_mul", /* name */
3192 OPTGROUP_NONE, /* optinfo_flags */
3193 TV_NONE, /* tv_id */
3194 PROP_ssa, /* properties_required */
3195 0, /* properties_provided */
3196 0, /* properties_destroyed */
3197 0, /* todo_flags_start */
3198 TODO_update_ssa, /* todo_flags_finish */
3199 };
3200
3201 class pass_optimize_widening_mul : public gimple_opt_pass
3202 {
3203 public:
3204 pass_optimize_widening_mul (gcc::context *ctxt)
3205 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3206 {}
3207
3208 /* opt_pass methods: */
3209 virtual bool gate (function *)
3210 {
3211 return flag_expensive_optimizations && optimize;
3212 }
3213
3214 virtual unsigned int execute (function *);
3215
3216 }; // class pass_optimize_widening_mul
3217
3218 unsigned int
3219 pass_optimize_widening_mul::execute (function *fun)
3220 {
3221 basic_block bb;
3222 bool cfg_changed = false;
3223
3224 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3225
3226 FOR_EACH_BB_FN (bb, fun)
3227 {
3228 gimple_stmt_iterator gsi;
3229
3230 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3231 {
3232 gimple stmt = gsi_stmt (gsi);
3233 enum tree_code code;
3234
3235 if (is_gimple_assign (stmt))
3236 {
3237 code = gimple_assign_rhs_code (stmt);
3238 switch (code)
3239 {
3240 case MULT_EXPR:
3241 if (!convert_mult_to_widen (stmt, &gsi)
3242 && convert_mult_to_fma (stmt,
3243 gimple_assign_rhs1 (stmt),
3244 gimple_assign_rhs2 (stmt)))
3245 {
3246 gsi_remove (&gsi, true);
3247 release_defs (stmt);
3248 continue;
3249 }
3250 break;
3251
3252 case PLUS_EXPR:
3253 case MINUS_EXPR:
3254 convert_plusminus_to_widen (&gsi, stmt, code);
3255 break;
3256
3257 default:;
3258 }
3259 }
3260 else if (is_gimple_call (stmt)
3261 && gimple_call_lhs (stmt))
3262 {
3263 tree fndecl = gimple_call_fndecl (stmt);
3264 if (fndecl
3265 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3266 {
3267 switch (DECL_FUNCTION_CODE (fndecl))
3268 {
3269 case BUILT_IN_POWF:
3270 case BUILT_IN_POW:
3271 case BUILT_IN_POWL:
3272 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3273 && REAL_VALUES_EQUAL
3274 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3275 dconst2)
3276 && convert_mult_to_fma (stmt,
3277 gimple_call_arg (stmt, 0),
3278 gimple_call_arg (stmt, 0)))
3279 {
3280 unlink_stmt_vdef (stmt);
3281 if (gsi_remove (&gsi, true)
3282 && gimple_purge_dead_eh_edges (bb))
3283 cfg_changed = true;
3284 release_defs (stmt);
3285 continue;
3286 }
3287 break;
3288
3289 default:;
3290 }
3291 }
3292 }
3293 gsi_next (&gsi);
3294 }
3295 }
3296
3297 statistics_counter_event (fun, "widening multiplications inserted",
3298 widen_mul_stats.widen_mults_inserted);
3299 statistics_counter_event (fun, "widening maccs inserted",
3300 widen_mul_stats.maccs_inserted);
3301 statistics_counter_event (fun, "fused multiply-adds inserted",
3302 widen_mul_stats.fmas_inserted);
3303
3304 return cfg_changed ? TODO_cleanup_cfg : 0;
3305 }
3306
3307 } // anon namespace
3308
3309 gimple_opt_pass *
3310 make_pass_optimize_widening_mul (gcc::context *ctxt)
3311 {
3312 return new pass_optimize_widening_mul (ctxt);
3313 }