pass current function to opt_pass::gate ()
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "expr.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
114 #include "target.h"
115 #include "gimple-pretty-print.h"
116
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
120 #include "optabs.h"
121
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
124 division. */
125 struct occurrence {
126 /* The basic block represented by this structure. */
127 basic_block bb;
128
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 inserted in BB. */
131 tree recip_def;
132
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt;
136
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
138 by BB. */
139 struct occurrence *children;
140
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence *next;
144
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
147 compute_merit. */
148 int num_divisions;
149
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division;
154 };
155
156 static struct
157 {
158 /* Number of 1.0/X ops inserted. */
159 int rdivs_inserted;
160
161 /* Number of 1.0/FUNC ops inserted. */
162 int rfuncs_inserted;
163 } reciprocal_stats;
164
165 static struct
166 {
167 /* Number of cexpi calls inserted. */
168 int inserted;
169 } sincos_stats;
170
171 static struct
172 {
173 /* Number of hand-written 16-bit bswaps found. */
174 int found_16bit;
175
176 /* Number of hand-written 32-bit bswaps found. */
177 int found_32bit;
178
179 /* Number of hand-written 64-bit bswaps found. */
180 int found_64bit;
181 } bswap_stats;
182
183 static struct
184 {
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted;
187
188 /* Number of integer multiply-and-accumulate ops inserted. */
189 int maccs_inserted;
190
191 /* Number of fp fused multiply-add ops inserted. */
192 int fmas_inserted;
193 } widen_mul_stats;
194
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
198
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool;
201
202
203
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
208 {
209 struct occurrence *occ;
210
211 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
212 memset (occ, 0, sizeof (struct occurrence));
213
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
217 }
218
219
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
223
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
227
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
231 {
232 struct occurrence *occ, **p_occ;
233
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
235 {
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
239 {
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
245
246 /* Try the next block (it may as well be dominated by BB). */
247 }
248
249 else if (dom == occ_bb)
250 {
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
254 }
255
256 else if (dom != idom)
257 {
258 gcc_assert (!dom->aux);
259
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
266
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
271 }
272
273 else
274 {
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
277 }
278 }
279
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
283 }
284
285 /* Register that we found a division in BB. */
286
287 static inline void
288 register_division_in (basic_block bb)
289 {
290 struct occurrence *occ;
291
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
294 {
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
297 }
298
299 occ->bb_has_division = true;
300 occ->num_divisions++;
301 }
302
303
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
306
307 static void
308 compute_merit (struct occurrence *occ)
309 {
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
312
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
314 {
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
318
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
323
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
326 }
327 }
328
329
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple use_stmt, tree def)
333 {
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
341 }
342
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
347
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
351
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
355 {
356 tree type;
357 gimple new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
360
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
364 {
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
369 build_one_cst (type), def);
370
371 if (occ->bb_has_division)
372 {
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
377
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
379 }
380 else if (def_gsi && occ->bb == def_gsi->bb)
381 {
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
387 }
388 else
389 {
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
393 }
394
395 reciprocal_stats.rdivs_inserted++;
396
397 occ->recip_def_stmt = new_stmt;
398 }
399
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
403 }
404
405
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
408
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
411 {
412 gimple use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
415
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
418 {
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
424 }
425 }
426
427
428 /* Free OCC and return one more "struct occurrence" to be freed. */
429
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
432 {
433 struct occurrence *child, *next;
434
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 pool_free (occ_pool, occ);
440
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
445 {
446 while (next)
447 next = free_bb (next);
448
449 return child;
450 }
451 }
452
453
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
457
458 DEF must be a GIMPLE register of a floating-point type. */
459
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
462 {
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
467
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
469
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
471 {
472 gimple use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
474 {
475 register_division_in (gimple_bb (use_stmt));
476 count++;
477 }
478 }
479
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
483 {
484 gimple use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
486 {
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
489 }
490
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
492 {
493 if (is_division_by (use_stmt, def))
494 {
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
497 }
498 }
499 }
500
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
503
504 occ_head = NULL;
505 }
506
507 /* Go through all the floating-point SSA_NAMEs, and call
508 execute_cse_reciprocals_1 on each of them. */
509 static unsigned int
510 execute_cse_reciprocals (void)
511 {
512 basic_block bb;
513 tree arg;
514
515 occ_pool = create_alloc_pool ("dominators for recip",
516 sizeof (struct occurrence),
517 n_basic_blocks_for_fn (cfun) / 3 + 1);
518
519 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
520 calculate_dominance_info (CDI_DOMINATORS);
521 calculate_dominance_info (CDI_POST_DOMINATORS);
522
523 #ifdef ENABLE_CHECKING
524 FOR_EACH_BB_FN (bb, cfun)
525 gcc_assert (!bb->aux);
526 #endif
527
528 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
529 if (FLOAT_TYPE_P (TREE_TYPE (arg))
530 && is_gimple_reg (arg))
531 {
532 tree name = ssa_default_def (cfun, arg);
533 if (name)
534 execute_cse_reciprocals_1 (NULL, name);
535 }
536
537 FOR_EACH_BB_FN (bb, cfun)
538 {
539 gimple_stmt_iterator gsi;
540 gimple phi;
541 tree def;
542
543 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
544 {
545 phi = gsi_stmt (gsi);
546 def = PHI_RESULT (phi);
547 if (! virtual_operand_p (def)
548 && FLOAT_TYPE_P (TREE_TYPE (def)))
549 execute_cse_reciprocals_1 (NULL, def);
550 }
551
552 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
553 {
554 gimple stmt = gsi_stmt (gsi);
555
556 if (gimple_has_lhs (stmt)
557 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
558 && FLOAT_TYPE_P (TREE_TYPE (def))
559 && TREE_CODE (def) == SSA_NAME)
560 execute_cse_reciprocals_1 (&gsi, def);
561 }
562
563 if (optimize_bb_for_size_p (bb))
564 continue;
565
566 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
567 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
568 {
569 gimple stmt = gsi_stmt (gsi);
570 tree fndecl;
571
572 if (is_gimple_assign (stmt)
573 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
574 {
575 tree arg1 = gimple_assign_rhs2 (stmt);
576 gimple stmt1;
577
578 if (TREE_CODE (arg1) != SSA_NAME)
579 continue;
580
581 stmt1 = SSA_NAME_DEF_STMT (arg1);
582
583 if (is_gimple_call (stmt1)
584 && gimple_call_lhs (stmt1)
585 && (fndecl = gimple_call_fndecl (stmt1))
586 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
587 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
588 {
589 enum built_in_function code;
590 bool md_code, fail;
591 imm_use_iterator ui;
592 use_operand_p use_p;
593
594 code = DECL_FUNCTION_CODE (fndecl);
595 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
596
597 fndecl = targetm.builtin_reciprocal (code, md_code, false);
598 if (!fndecl)
599 continue;
600
601 /* Check that all uses of the SSA name are divisions,
602 otherwise replacing the defining statement will do
603 the wrong thing. */
604 fail = false;
605 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
606 {
607 gimple stmt2 = USE_STMT (use_p);
608 if (is_gimple_debug (stmt2))
609 continue;
610 if (!is_gimple_assign (stmt2)
611 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
612 || gimple_assign_rhs1 (stmt2) == arg1
613 || gimple_assign_rhs2 (stmt2) != arg1)
614 {
615 fail = true;
616 break;
617 }
618 }
619 if (fail)
620 continue;
621
622 gimple_replace_ssa_lhs (stmt1, arg1);
623 gimple_call_set_fndecl (stmt1, fndecl);
624 update_stmt (stmt1);
625 reciprocal_stats.rfuncs_inserted++;
626
627 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
628 {
629 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
630 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
631 fold_stmt_inplace (&gsi);
632 update_stmt (stmt);
633 }
634 }
635 }
636 }
637 }
638
639 statistics_counter_event (cfun, "reciprocal divs inserted",
640 reciprocal_stats.rdivs_inserted);
641 statistics_counter_event (cfun, "reciprocal functions inserted",
642 reciprocal_stats.rfuncs_inserted);
643
644 free_dominance_info (CDI_DOMINATORS);
645 free_dominance_info (CDI_POST_DOMINATORS);
646 free_alloc_pool (occ_pool);
647 return 0;
648 }
649
650 namespace {
651
652 const pass_data pass_data_cse_reciprocals =
653 {
654 GIMPLE_PASS, /* type */
655 "recip", /* name */
656 OPTGROUP_NONE, /* optinfo_flags */
657 true, /* has_execute */
658 TV_NONE, /* tv_id */
659 PROP_ssa, /* properties_required */
660 0, /* properties_provided */
661 0, /* properties_destroyed */
662 0, /* todo_flags_start */
663 ( TODO_update_ssa | TODO_verify_ssa
664 | TODO_verify_stmts ), /* todo_flags_finish */
665 };
666
667 class pass_cse_reciprocals : public gimple_opt_pass
668 {
669 public:
670 pass_cse_reciprocals (gcc::context *ctxt)
671 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
672 {}
673
674 /* opt_pass methods: */
675 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
676 unsigned int execute () { return execute_cse_reciprocals (); }
677
678 }; // class pass_cse_reciprocals
679
680 } // anon namespace
681
682 gimple_opt_pass *
683 make_pass_cse_reciprocals (gcc::context *ctxt)
684 {
685 return new pass_cse_reciprocals (ctxt);
686 }
687
688 /* Records an occurrence at statement USE_STMT in the vector of trees
689 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
690 is not yet initialized. Returns true if the occurrence was pushed on
691 the vector. Adjusts *TOP_BB to be the basic block dominating all
692 statements in the vector. */
693
694 static bool
695 maybe_record_sincos (vec<gimple> *stmts,
696 basic_block *top_bb, gimple use_stmt)
697 {
698 basic_block use_bb = gimple_bb (use_stmt);
699 if (*top_bb
700 && (*top_bb == use_bb
701 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
702 stmts->safe_push (use_stmt);
703 else if (!*top_bb
704 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
705 {
706 stmts->safe_push (use_stmt);
707 *top_bb = use_bb;
708 }
709 else
710 return false;
711
712 return true;
713 }
714
715 /* Look for sin, cos and cexpi calls with the same argument NAME and
716 create a single call to cexpi CSEing the result in this case.
717 We first walk over all immediate uses of the argument collecting
718 statements that we can CSE in a vector and in a second pass replace
719 the statement rhs with a REALPART or IMAGPART expression on the
720 result of the cexpi call we insert before the use statement that
721 dominates all other candidates. */
722
723 static bool
724 execute_cse_sincos_1 (tree name)
725 {
726 gimple_stmt_iterator gsi;
727 imm_use_iterator use_iter;
728 tree fndecl, res, type;
729 gimple def_stmt, use_stmt, stmt;
730 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
731 vec<gimple> stmts = vNULL;
732 basic_block top_bb = NULL;
733 int i;
734 bool cfg_changed = false;
735
736 type = TREE_TYPE (name);
737 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
738 {
739 if (gimple_code (use_stmt) != GIMPLE_CALL
740 || !gimple_call_lhs (use_stmt)
741 || !(fndecl = gimple_call_fndecl (use_stmt))
742 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
743 continue;
744
745 switch (DECL_FUNCTION_CODE (fndecl))
746 {
747 CASE_FLT_FN (BUILT_IN_COS):
748 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
749 break;
750
751 CASE_FLT_FN (BUILT_IN_SIN):
752 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
753 break;
754
755 CASE_FLT_FN (BUILT_IN_CEXPI):
756 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
757 break;
758
759 default:;
760 }
761 }
762
763 if (seen_cos + seen_sin + seen_cexpi <= 1)
764 {
765 stmts.release ();
766 return false;
767 }
768
769 /* Simply insert cexpi at the beginning of top_bb but not earlier than
770 the name def statement. */
771 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
772 if (!fndecl)
773 return false;
774 stmt = gimple_build_call (fndecl, 1, name);
775 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
776 gimple_call_set_lhs (stmt, res);
777
778 def_stmt = SSA_NAME_DEF_STMT (name);
779 if (!SSA_NAME_IS_DEFAULT_DEF (name)
780 && gimple_code (def_stmt) != GIMPLE_PHI
781 && gimple_bb (def_stmt) == top_bb)
782 {
783 gsi = gsi_for_stmt (def_stmt);
784 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
785 }
786 else
787 {
788 gsi = gsi_after_labels (top_bb);
789 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
790 }
791 sincos_stats.inserted++;
792
793 /* And adjust the recorded old call sites. */
794 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
795 {
796 tree rhs = NULL;
797 fndecl = gimple_call_fndecl (use_stmt);
798
799 switch (DECL_FUNCTION_CODE (fndecl))
800 {
801 CASE_FLT_FN (BUILT_IN_COS):
802 rhs = fold_build1 (REALPART_EXPR, type, res);
803 break;
804
805 CASE_FLT_FN (BUILT_IN_SIN):
806 rhs = fold_build1 (IMAGPART_EXPR, type, res);
807 break;
808
809 CASE_FLT_FN (BUILT_IN_CEXPI):
810 rhs = res;
811 break;
812
813 default:;
814 gcc_unreachable ();
815 }
816
817 /* Replace call with a copy. */
818 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
819
820 gsi = gsi_for_stmt (use_stmt);
821 gsi_replace (&gsi, stmt, true);
822 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
823 cfg_changed = true;
824 }
825
826 stmts.release ();
827
828 return cfg_changed;
829 }
830
831 /* To evaluate powi(x,n), the floating point value x raised to the
832 constant integer exponent n, we use a hybrid algorithm that
833 combines the "window method" with look-up tables. For an
834 introduction to exponentiation algorithms and "addition chains",
835 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
836 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
837 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
838 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
839
840 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
841 multiplications to inline before calling the system library's pow
842 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
843 so this default never requires calling pow, powf or powl. */
844
845 #ifndef POWI_MAX_MULTS
846 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
847 #endif
848
849 /* The size of the "optimal power tree" lookup table. All
850 exponents less than this value are simply looked up in the
851 powi_table below. This threshold is also used to size the
852 cache of pseudo registers that hold intermediate results. */
853 #define POWI_TABLE_SIZE 256
854
855 /* The size, in bits of the window, used in the "window method"
856 exponentiation algorithm. This is equivalent to a radix of
857 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
858 #define POWI_WINDOW_SIZE 3
859
860 /* The following table is an efficient representation of an
861 "optimal power tree". For each value, i, the corresponding
862 value, j, in the table states than an optimal evaluation
863 sequence for calculating pow(x,i) can be found by evaluating
864 pow(x,j)*pow(x,i-j). An optimal power tree for the first
865 100 integers is given in Knuth's "Seminumerical algorithms". */
866
867 static const unsigned char powi_table[POWI_TABLE_SIZE] =
868 {
869 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
870 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
871 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
872 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
873 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
874 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
875 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
876 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
877 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
878 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
879 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
880 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
881 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
882 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
883 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
884 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
885 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
886 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
887 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
888 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
889 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
890 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
891 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
892 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
893 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
894 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
895 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
896 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
897 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
898 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
899 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
900 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
901 };
902
903
904 /* Return the number of multiplications required to calculate
905 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
906 subroutine of powi_cost. CACHE is an array indicating
907 which exponents have already been calculated. */
908
909 static int
910 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
911 {
912 /* If we've already calculated this exponent, then this evaluation
913 doesn't require any additional multiplications. */
914 if (cache[n])
915 return 0;
916
917 cache[n] = true;
918 return powi_lookup_cost (n - powi_table[n], cache)
919 + powi_lookup_cost (powi_table[n], cache) + 1;
920 }
921
922 /* Return the number of multiplications required to calculate
923 powi(x,n) for an arbitrary x, given the exponent N. This
924 function needs to be kept in sync with powi_as_mults below. */
925
926 static int
927 powi_cost (HOST_WIDE_INT n)
928 {
929 bool cache[POWI_TABLE_SIZE];
930 unsigned HOST_WIDE_INT digit;
931 unsigned HOST_WIDE_INT val;
932 int result;
933
934 if (n == 0)
935 return 0;
936
937 /* Ignore the reciprocal when calculating the cost. */
938 val = (n < 0) ? -n : n;
939
940 /* Initialize the exponent cache. */
941 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
942 cache[1] = true;
943
944 result = 0;
945
946 while (val >= POWI_TABLE_SIZE)
947 {
948 if (val & 1)
949 {
950 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
951 result += powi_lookup_cost (digit, cache)
952 + POWI_WINDOW_SIZE + 1;
953 val >>= POWI_WINDOW_SIZE;
954 }
955 else
956 {
957 val >>= 1;
958 result++;
959 }
960 }
961
962 return result + powi_lookup_cost (val, cache);
963 }
964
965 /* Recursive subroutine of powi_as_mults. This function takes the
966 array, CACHE, of already calculated exponents and an exponent N and
967 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
968
969 static tree
970 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
971 HOST_WIDE_INT n, tree *cache)
972 {
973 tree op0, op1, ssa_target;
974 unsigned HOST_WIDE_INT digit;
975 gimple mult_stmt;
976
977 if (n < POWI_TABLE_SIZE && cache[n])
978 return cache[n];
979
980 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
981
982 if (n < POWI_TABLE_SIZE)
983 {
984 cache[n] = ssa_target;
985 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
986 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
987 }
988 else if (n & 1)
989 {
990 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
991 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
992 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
993 }
994 else
995 {
996 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
997 op1 = op0;
998 }
999
1000 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1001 gimple_set_location (mult_stmt, loc);
1002 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1003
1004 return ssa_target;
1005 }
1006
1007 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1008 This function needs to be kept in sync with powi_cost above. */
1009
1010 static tree
1011 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1012 tree arg0, HOST_WIDE_INT n)
1013 {
1014 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1015 gimple div_stmt;
1016 tree target;
1017
1018 if (n == 0)
1019 return build_real (type, dconst1);
1020
1021 memset (cache, 0, sizeof (cache));
1022 cache[1] = arg0;
1023
1024 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1025 if (n >= 0)
1026 return result;
1027
1028 /* If the original exponent was negative, reciprocate the result. */
1029 target = make_temp_ssa_name (type, NULL, "powmult");
1030 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1031 build_real (type, dconst1),
1032 result);
1033 gimple_set_location (div_stmt, loc);
1034 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1035
1036 return target;
1037 }
1038
1039 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1040 location info LOC. If the arguments are appropriate, create an
1041 equivalent sequence of statements prior to GSI using an optimal
1042 number of multiplications, and return an expession holding the
1043 result. */
1044
1045 static tree
1046 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1047 tree arg0, HOST_WIDE_INT n)
1048 {
1049 /* Avoid largest negative number. */
1050 if (n != -n
1051 && ((n >= -1 && n <= 2)
1052 || (optimize_function_for_speed_p (cfun)
1053 && powi_cost (n) <= POWI_MAX_MULTS)))
1054 return powi_as_mults (gsi, loc, arg0, n);
1055
1056 return NULL_TREE;
1057 }
1058
1059 /* Build a gimple call statement that calls FN with argument ARG.
1060 Set the lhs of the call statement to a fresh SSA name. Insert the
1061 statement prior to GSI's current position, and return the fresh
1062 SSA name. */
1063
1064 static tree
1065 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1066 tree fn, tree arg)
1067 {
1068 gimple call_stmt;
1069 tree ssa_target;
1070
1071 call_stmt = gimple_build_call (fn, 1, arg);
1072 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1073 gimple_set_lhs (call_stmt, ssa_target);
1074 gimple_set_location (call_stmt, loc);
1075 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1076
1077 return ssa_target;
1078 }
1079
1080 /* Build a gimple binary operation with the given CODE and arguments
1081 ARG0, ARG1, assigning the result to a new SSA name for variable
1082 TARGET. Insert the statement prior to GSI's current position, and
1083 return the fresh SSA name.*/
1084
1085 static tree
1086 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1087 const char *name, enum tree_code code,
1088 tree arg0, tree arg1)
1089 {
1090 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1091 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1092 gimple_set_location (stmt, loc);
1093 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1094 return result;
1095 }
1096
1097 /* Build a gimple reference operation with the given CODE and argument
1098 ARG, assigning the result to a new SSA name of TYPE with NAME.
1099 Insert the statement prior to GSI's current position, and return
1100 the fresh SSA name. */
1101
1102 static inline tree
1103 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1104 const char *name, enum tree_code code, tree arg0)
1105 {
1106 tree result = make_temp_ssa_name (type, NULL, name);
1107 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1108 gimple_set_location (stmt, loc);
1109 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1110 return result;
1111 }
1112
1113 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1114 prior to GSI's current position, and return the fresh SSA name. */
1115
1116 static tree
1117 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1118 tree type, tree val)
1119 {
1120 tree result = make_ssa_name (type, NULL);
1121 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1122 gimple_set_location (stmt, loc);
1123 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1124 return result;
1125 }
1126
1127 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1128 with location info LOC. If possible, create an equivalent and
1129 less expensive sequence of statements prior to GSI, and return an
1130 expession holding the result. */
1131
1132 static tree
1133 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1134 tree arg0, tree arg1)
1135 {
1136 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1137 REAL_VALUE_TYPE c2, dconst3;
1138 HOST_WIDE_INT n;
1139 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1140 enum machine_mode mode;
1141 bool hw_sqrt_exists, c_is_int, c2_is_int;
1142
1143 /* If the exponent isn't a constant, there's nothing of interest
1144 to be done. */
1145 if (TREE_CODE (arg1) != REAL_CST)
1146 return NULL_TREE;
1147
1148 /* If the exponent is equivalent to an integer, expand to an optimal
1149 multiplication sequence when profitable. */
1150 c = TREE_REAL_CST (arg1);
1151 n = real_to_integer (&c);
1152 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1153 c_is_int = real_identical (&c, &cint);
1154
1155 if (c_is_int
1156 && ((n >= -1 && n <= 2)
1157 || (flag_unsafe_math_optimizations
1158 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1159 && powi_cost (n) <= POWI_MAX_MULTS)))
1160 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1161
1162 /* Attempt various optimizations using sqrt and cbrt. */
1163 type = TREE_TYPE (arg0);
1164 mode = TYPE_MODE (type);
1165 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1166
1167 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1168 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1169 sqrt(-0) = -0. */
1170 if (sqrtfn
1171 && REAL_VALUES_EQUAL (c, dconsthalf)
1172 && !HONOR_SIGNED_ZEROS (mode))
1173 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1174
1175 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1176 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1177 so do this optimization even if -Os. Don't do this optimization
1178 if we don't have a hardware sqrt insn. */
1179 dconst1_4 = dconst1;
1180 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1181 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1182
1183 if (flag_unsafe_math_optimizations
1184 && sqrtfn
1185 && REAL_VALUES_EQUAL (c, dconst1_4)
1186 && hw_sqrt_exists)
1187 {
1188 /* sqrt(x) */
1189 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1190
1191 /* sqrt(sqrt(x)) */
1192 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1193 }
1194
1195 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1196 optimizing for space. Don't do this optimization if we don't have
1197 a hardware sqrt insn. */
1198 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1199 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1200
1201 if (flag_unsafe_math_optimizations
1202 && sqrtfn
1203 && optimize_function_for_speed_p (cfun)
1204 && REAL_VALUES_EQUAL (c, dconst3_4)
1205 && hw_sqrt_exists)
1206 {
1207 /* sqrt(x) */
1208 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1209
1210 /* sqrt(sqrt(x)) */
1211 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1212
1213 /* sqrt(x) * sqrt(sqrt(x)) */
1214 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1215 sqrt_arg0, sqrt_sqrt);
1216 }
1217
1218 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1219 optimizations since 1./3. is not exactly representable. If x
1220 is negative and finite, the correct value of pow(x,1./3.) is
1221 a NaN with the "invalid" exception raised, because the value
1222 of 1./3. actually has an even denominator. The correct value
1223 of cbrt(x) is a negative real value. */
1224 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1225 dconst1_3 = real_value_truncate (mode, dconst_third ());
1226
1227 if (flag_unsafe_math_optimizations
1228 && cbrtfn
1229 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1230 && REAL_VALUES_EQUAL (c, dconst1_3))
1231 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1232
1233 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1234 if we don't have a hardware sqrt insn. */
1235 dconst1_6 = dconst1_3;
1236 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1237
1238 if (flag_unsafe_math_optimizations
1239 && sqrtfn
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && optimize_function_for_speed_p (cfun)
1243 && hw_sqrt_exists
1244 && REAL_VALUES_EQUAL (c, dconst1_6))
1245 {
1246 /* sqrt(x) */
1247 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1248
1249 /* cbrt(sqrt(x)) */
1250 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1251 }
1252
1253 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1254 and c not an integer, into
1255
1256 sqrt(x) * powi(x, n/2), n > 0;
1257 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1258
1259 Do not calculate the powi factor when n/2 = 0. */
1260 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1261 n = real_to_integer (&c2);
1262 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1263 c2_is_int = real_identical (&c2, &cint);
1264
1265 if (flag_unsafe_math_optimizations
1266 && sqrtfn
1267 && c2_is_int
1268 && !c_is_int
1269 && optimize_function_for_speed_p (cfun))
1270 {
1271 tree powi_x_ndiv2 = NULL_TREE;
1272
1273 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1274 possible or profitable, give up. Skip the degenerate case when
1275 n is 1 or -1, where the result is always 1. */
1276 if (absu_hwi (n) != 1)
1277 {
1278 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1279 abs_hwi (n / 2));
1280 if (!powi_x_ndiv2)
1281 return NULL_TREE;
1282 }
1283
1284 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1285 result of the optimal multiply sequence just calculated. */
1286 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1287
1288 if (absu_hwi (n) == 1)
1289 result = sqrt_arg0;
1290 else
1291 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1292 sqrt_arg0, powi_x_ndiv2);
1293
1294 /* If n is negative, reciprocate the result. */
1295 if (n < 0)
1296 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1297 build_real (type, dconst1), result);
1298 return result;
1299 }
1300
1301 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1302
1303 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1304 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1305
1306 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1307 different from pow(x, 1./3.) due to rounding and behavior with
1308 negative x, we need to constrain this transformation to unsafe
1309 math and positive x or finite math. */
1310 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1311 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1312 real_round (&c2, mode, &c2);
1313 n = real_to_integer (&c2);
1314 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1315 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1316 real_convert (&c2, mode, &c2);
1317
1318 if (flag_unsafe_math_optimizations
1319 && cbrtfn
1320 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1321 && real_identical (&c2, &c)
1322 && !c2_is_int
1323 && optimize_function_for_speed_p (cfun)
1324 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1325 {
1326 tree powi_x_ndiv3 = NULL_TREE;
1327
1328 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1329 possible or profitable, give up. Skip the degenerate case when
1330 abs(n) < 3, where the result is always 1. */
1331 if (absu_hwi (n) >= 3)
1332 {
1333 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1334 abs_hwi (n / 3));
1335 if (!powi_x_ndiv3)
1336 return NULL_TREE;
1337 }
1338
1339 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1340 as that creates an unnecessary variable. Instead, just produce
1341 either cbrt(x) or cbrt(x) * cbrt(x). */
1342 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1343
1344 if (absu_hwi (n) % 3 == 1)
1345 powi_cbrt_x = cbrt_x;
1346 else
1347 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1348 cbrt_x, cbrt_x);
1349
1350 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1351 if (absu_hwi (n) < 3)
1352 result = powi_cbrt_x;
1353 else
1354 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 powi_x_ndiv3, powi_cbrt_x);
1356
1357 /* If n is negative, reciprocate the result. */
1358 if (n < 0)
1359 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1360 build_real (type, dconst1), result);
1361
1362 return result;
1363 }
1364
1365 /* No optimizations succeeded. */
1366 return NULL_TREE;
1367 }
1368
1369 /* ARG is the argument to a cabs builtin call in GSI with location info
1370 LOC. Create a sequence of statements prior to GSI that calculates
1371 sqrt(R*R + I*I), where R and I are the real and imaginary components
1372 of ARG, respectively. Return an expression holding the result. */
1373
1374 static tree
1375 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1376 {
1377 tree real_part, imag_part, addend1, addend2, sum, result;
1378 tree type = TREE_TYPE (TREE_TYPE (arg));
1379 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1380 enum machine_mode mode = TYPE_MODE (type);
1381
1382 if (!flag_unsafe_math_optimizations
1383 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1384 || !sqrtfn
1385 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1386 return NULL_TREE;
1387
1388 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1389 REALPART_EXPR, arg);
1390 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1391 real_part, real_part);
1392 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1393 IMAGPART_EXPR, arg);
1394 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1395 imag_part, imag_part);
1396 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1397 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1398
1399 return result;
1400 }
1401
1402 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1403 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1404 an optimal number of multiplies, when n is a constant. */
1405
1406 static unsigned int
1407 execute_cse_sincos (void)
1408 {
1409 basic_block bb;
1410 bool cfg_changed = false;
1411
1412 calculate_dominance_info (CDI_DOMINATORS);
1413 memset (&sincos_stats, 0, sizeof (sincos_stats));
1414
1415 FOR_EACH_BB_FN (bb, cfun)
1416 {
1417 gimple_stmt_iterator gsi;
1418 bool cleanup_eh = false;
1419
1420 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1421 {
1422 gimple stmt = gsi_stmt (gsi);
1423 tree fndecl;
1424
1425 /* Only the last stmt in a bb could throw, no need to call
1426 gimple_purge_dead_eh_edges if we change something in the middle
1427 of a basic block. */
1428 cleanup_eh = false;
1429
1430 if (is_gimple_call (stmt)
1431 && gimple_call_lhs (stmt)
1432 && (fndecl = gimple_call_fndecl (stmt))
1433 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1434 {
1435 tree arg, arg0, arg1, result;
1436 HOST_WIDE_INT n;
1437 location_t loc;
1438
1439 switch (DECL_FUNCTION_CODE (fndecl))
1440 {
1441 CASE_FLT_FN (BUILT_IN_COS):
1442 CASE_FLT_FN (BUILT_IN_SIN):
1443 CASE_FLT_FN (BUILT_IN_CEXPI):
1444 /* Make sure we have either sincos or cexp. */
1445 if (!targetm.libc_has_function (function_c99_math_complex)
1446 && !targetm.libc_has_function (function_sincos))
1447 break;
1448
1449 arg = gimple_call_arg (stmt, 0);
1450 if (TREE_CODE (arg) == SSA_NAME)
1451 cfg_changed |= execute_cse_sincos_1 (arg);
1452 break;
1453
1454 CASE_FLT_FN (BUILT_IN_POW):
1455 arg0 = gimple_call_arg (stmt, 0);
1456 arg1 = gimple_call_arg (stmt, 1);
1457
1458 loc = gimple_location (stmt);
1459 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1460
1461 if (result)
1462 {
1463 tree lhs = gimple_get_lhs (stmt);
1464 gimple new_stmt = gimple_build_assign (lhs, result);
1465 gimple_set_location (new_stmt, loc);
1466 unlink_stmt_vdef (stmt);
1467 gsi_replace (&gsi, new_stmt, true);
1468 cleanup_eh = true;
1469 if (gimple_vdef (stmt))
1470 release_ssa_name (gimple_vdef (stmt));
1471 }
1472 break;
1473
1474 CASE_FLT_FN (BUILT_IN_POWI):
1475 arg0 = gimple_call_arg (stmt, 0);
1476 arg1 = gimple_call_arg (stmt, 1);
1477 loc = gimple_location (stmt);
1478
1479 if (real_minus_onep (arg0))
1480 {
1481 tree t0, t1, cond, one, minus_one;
1482 gimple stmt;
1483
1484 t0 = TREE_TYPE (arg0);
1485 t1 = TREE_TYPE (arg1);
1486 one = build_real (t0, dconst1);
1487 minus_one = build_real (t0, dconstm1);
1488
1489 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1490 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1491 arg1,
1492 build_int_cst (t1,
1493 1));
1494 gimple_set_location (stmt, loc);
1495 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1496
1497 result = make_temp_ssa_name (t0, NULL, "powi");
1498 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1499 cond,
1500 minus_one, one);
1501 gimple_set_location (stmt, loc);
1502 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1503 }
1504 else
1505 {
1506 if (!tree_fits_shwi_p (arg1))
1507 break;
1508
1509 n = tree_to_shwi (arg1);
1510 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1511 }
1512
1513 if (result)
1514 {
1515 tree lhs = gimple_get_lhs (stmt);
1516 gimple new_stmt = gimple_build_assign (lhs, result);
1517 gimple_set_location (new_stmt, loc);
1518 unlink_stmt_vdef (stmt);
1519 gsi_replace (&gsi, new_stmt, true);
1520 cleanup_eh = true;
1521 if (gimple_vdef (stmt))
1522 release_ssa_name (gimple_vdef (stmt));
1523 }
1524 break;
1525
1526 CASE_FLT_FN (BUILT_IN_CABS):
1527 arg0 = gimple_call_arg (stmt, 0);
1528 loc = gimple_location (stmt);
1529 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1530
1531 if (result)
1532 {
1533 tree lhs = gimple_get_lhs (stmt);
1534 gimple new_stmt = gimple_build_assign (lhs, result);
1535 gimple_set_location (new_stmt, loc);
1536 unlink_stmt_vdef (stmt);
1537 gsi_replace (&gsi, new_stmt, true);
1538 cleanup_eh = true;
1539 if (gimple_vdef (stmt))
1540 release_ssa_name (gimple_vdef (stmt));
1541 }
1542 break;
1543
1544 default:;
1545 }
1546 }
1547 }
1548 if (cleanup_eh)
1549 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1550 }
1551
1552 statistics_counter_event (cfun, "sincos statements inserted",
1553 sincos_stats.inserted);
1554
1555 free_dominance_info (CDI_DOMINATORS);
1556 return cfg_changed ? TODO_cleanup_cfg : 0;
1557 }
1558
1559 namespace {
1560
1561 const pass_data pass_data_cse_sincos =
1562 {
1563 GIMPLE_PASS, /* type */
1564 "sincos", /* name */
1565 OPTGROUP_NONE, /* optinfo_flags */
1566 true, /* has_execute */
1567 TV_NONE, /* tv_id */
1568 PROP_ssa, /* properties_required */
1569 0, /* properties_provided */
1570 0, /* properties_destroyed */
1571 0, /* todo_flags_start */
1572 ( TODO_update_ssa | TODO_verify_ssa
1573 | TODO_verify_stmts ), /* todo_flags_finish */
1574 };
1575
1576 class pass_cse_sincos : public gimple_opt_pass
1577 {
1578 public:
1579 pass_cse_sincos (gcc::context *ctxt)
1580 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1581 {}
1582
1583 /* opt_pass methods: */
1584 virtual bool gate (function *)
1585 {
1586 /* We no longer require either sincos or cexp, since powi expansion
1587 piggybacks on this pass. */
1588 return optimize;
1589 }
1590
1591 unsigned int execute () { return execute_cse_sincos (); }
1592
1593 }; // class pass_cse_sincos
1594
1595 } // anon namespace
1596
1597 gimple_opt_pass *
1598 make_pass_cse_sincos (gcc::context *ctxt)
1599 {
1600 return new pass_cse_sincos (ctxt);
1601 }
1602
1603 /* A symbolic number is used to detect byte permutation and selection
1604 patterns. Therefore the field N contains an artificial number
1605 consisting of byte size markers:
1606
1607 0 - byte has the value 0
1608 1..size - byte contains the content of the byte
1609 number indexed with that value minus one */
1610
1611 struct symbolic_number {
1612 unsigned HOST_WIDEST_INT n;
1613 int size;
1614 };
1615
1616 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1617 number N. Return false if the requested operation is not permitted
1618 on a symbolic number. */
1619
1620 static inline bool
1621 do_shift_rotate (enum tree_code code,
1622 struct symbolic_number *n,
1623 int count)
1624 {
1625 if (count % 8 != 0)
1626 return false;
1627
1628 /* Zero out the extra bits of N in order to avoid them being shifted
1629 into the significant bits. */
1630 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1631 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1632
1633 switch (code)
1634 {
1635 case LSHIFT_EXPR:
1636 n->n <<= count;
1637 break;
1638 case RSHIFT_EXPR:
1639 n->n >>= count;
1640 break;
1641 case LROTATE_EXPR:
1642 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1643 break;
1644 case RROTATE_EXPR:
1645 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1646 break;
1647 default:
1648 return false;
1649 }
1650 /* Zero unused bits for size. */
1651 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1652 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1653 return true;
1654 }
1655
1656 /* Perform sanity checking for the symbolic number N and the gimple
1657 statement STMT. */
1658
1659 static inline bool
1660 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1661 {
1662 tree lhs_type;
1663
1664 lhs_type = gimple_expr_type (stmt);
1665
1666 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1667 return false;
1668
1669 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1670 return false;
1671
1672 return true;
1673 }
1674
1675 /* find_bswap_1 invokes itself recursively with N and tries to perform
1676 the operation given by the rhs of STMT on the result. If the
1677 operation could successfully be executed the function returns the
1678 tree expression of the source operand and NULL otherwise. */
1679
1680 static tree
1681 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1682 {
1683 enum tree_code code;
1684 tree rhs1, rhs2 = NULL;
1685 gimple rhs1_stmt, rhs2_stmt;
1686 tree source_expr1;
1687 enum gimple_rhs_class rhs_class;
1688
1689 if (!limit || !is_gimple_assign (stmt))
1690 return NULL_TREE;
1691
1692 rhs1 = gimple_assign_rhs1 (stmt);
1693
1694 if (TREE_CODE (rhs1) != SSA_NAME)
1695 return NULL_TREE;
1696
1697 code = gimple_assign_rhs_code (stmt);
1698 rhs_class = gimple_assign_rhs_class (stmt);
1699 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1700
1701 if (rhs_class == GIMPLE_BINARY_RHS)
1702 rhs2 = gimple_assign_rhs2 (stmt);
1703
1704 /* Handle unary rhs and binary rhs with integer constants as second
1705 operand. */
1706
1707 if (rhs_class == GIMPLE_UNARY_RHS
1708 || (rhs_class == GIMPLE_BINARY_RHS
1709 && TREE_CODE (rhs2) == INTEGER_CST))
1710 {
1711 if (code != BIT_AND_EXPR
1712 && code != LSHIFT_EXPR
1713 && code != RSHIFT_EXPR
1714 && code != LROTATE_EXPR
1715 && code != RROTATE_EXPR
1716 && code != NOP_EXPR
1717 && code != CONVERT_EXPR)
1718 return NULL_TREE;
1719
1720 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1721
1722 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1723 to initialize the symbolic number. */
1724 if (!source_expr1)
1725 {
1726 /* Set up the symbolic number N by setting each byte to a
1727 value between 1 and the byte size of rhs1. The highest
1728 order byte is set to n->size and the lowest order
1729 byte to 1. */
1730 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1731 if (n->size % BITS_PER_UNIT != 0)
1732 return NULL_TREE;
1733 n->size /= BITS_PER_UNIT;
1734 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1735 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1736
1737 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1738 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1739 (n->size * BITS_PER_UNIT)) - 1;
1740
1741 source_expr1 = rhs1;
1742 }
1743
1744 switch (code)
1745 {
1746 case BIT_AND_EXPR:
1747 {
1748 int i;
1749 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1750 unsigned HOST_WIDEST_INT tmp = val;
1751
1752 /* Only constants masking full bytes are allowed. */
1753 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1754 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1755 return NULL_TREE;
1756
1757 n->n &= val;
1758 }
1759 break;
1760 case LSHIFT_EXPR:
1761 case RSHIFT_EXPR:
1762 case LROTATE_EXPR:
1763 case RROTATE_EXPR:
1764 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1765 return NULL_TREE;
1766 break;
1767 CASE_CONVERT:
1768 {
1769 int type_size;
1770
1771 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1772 if (type_size % BITS_PER_UNIT != 0)
1773 return NULL_TREE;
1774
1775 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1776 {
1777 /* If STMT casts to a smaller type mask out the bits not
1778 belonging to the target type. */
1779 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1780 }
1781 n->size = type_size / BITS_PER_UNIT;
1782 }
1783 break;
1784 default:
1785 return NULL_TREE;
1786 };
1787 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1788 }
1789
1790 /* Handle binary rhs. */
1791
1792 if (rhs_class == GIMPLE_BINARY_RHS)
1793 {
1794 int i;
1795 struct symbolic_number n1, n2;
1796 unsigned HOST_WIDEST_INT mask;
1797 tree source_expr2;
1798
1799 if (code != BIT_IOR_EXPR)
1800 return NULL_TREE;
1801
1802 if (TREE_CODE (rhs2) != SSA_NAME)
1803 return NULL_TREE;
1804
1805 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1806
1807 switch (code)
1808 {
1809 case BIT_IOR_EXPR:
1810 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1811
1812 if (!source_expr1)
1813 return NULL_TREE;
1814
1815 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1816
1817 if (source_expr1 != source_expr2
1818 || n1.size != n2.size)
1819 return NULL_TREE;
1820
1821 n->size = n1.size;
1822 for (i = 0, mask = 0xff; i < n->size; i++, mask <<= BITS_PER_UNIT)
1823 {
1824 unsigned HOST_WIDEST_INT masked1, masked2;
1825
1826 masked1 = n1.n & mask;
1827 masked2 = n2.n & mask;
1828 if (masked1 && masked2 && masked1 != masked2)
1829 return NULL_TREE;
1830 }
1831 n->n = n1.n | n2.n;
1832
1833 if (!verify_symbolic_number_p (n, stmt))
1834 return NULL_TREE;
1835
1836 break;
1837 default:
1838 return NULL_TREE;
1839 }
1840 return source_expr1;
1841 }
1842 return NULL_TREE;
1843 }
1844
1845 /* Check if STMT completes a bswap implementation consisting of ORs,
1846 SHIFTs and ANDs. Return the source tree expression on which the
1847 byte swap is performed and NULL if no bswap was found. */
1848
1849 static tree
1850 find_bswap (gimple stmt)
1851 {
1852 /* The number which the find_bswap result should match in order to
1853 have a full byte swap. The number is shifted to the left according
1854 to the size of the symbolic number before using it. */
1855 unsigned HOST_WIDEST_INT cmp =
1856 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1857 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1858
1859 struct symbolic_number n;
1860 tree source_expr;
1861 int limit;
1862
1863 /* The last parameter determines the depth search limit. It usually
1864 correlates directly to the number of bytes to be touched. We
1865 increase that number by three here in order to also
1866 cover signed -> unsigned converions of the src operand as can be seen
1867 in libgcc, and for initial shift/and operation of the src operand. */
1868 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1869 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1870 source_expr = find_bswap_1 (stmt, &n, limit);
1871
1872 if (!source_expr)
1873 return NULL_TREE;
1874
1875 /* Zero out the extra bits of N and CMP. */
1876 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1877 {
1878 unsigned HOST_WIDEST_INT mask =
1879 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1880
1881 n.n &= mask;
1882 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1883 }
1884
1885 /* A complete byte swap should make the symbolic number to start
1886 with the largest digit in the highest order byte. */
1887 if (cmp != n.n)
1888 return NULL_TREE;
1889
1890 return source_expr;
1891 }
1892
1893 /* Find manual byte swap implementations and turn them into a bswap
1894 builtin invokation. */
1895
1896 static unsigned int
1897 execute_optimize_bswap (void)
1898 {
1899 basic_block bb;
1900 bool bswap16_p, bswap32_p, bswap64_p;
1901 bool changed = false;
1902 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1903
1904 if (BITS_PER_UNIT != 8)
1905 return 0;
1906
1907 if (sizeof (HOST_WIDEST_INT) < 8)
1908 return 0;
1909
1910 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1911 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1912 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1913 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1914 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1915 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1916 || (bswap32_p && word_mode == SImode)));
1917
1918 if (!bswap16_p && !bswap32_p && !bswap64_p)
1919 return 0;
1920
1921 /* Determine the argument type of the builtins. The code later on
1922 assumes that the return and argument type are the same. */
1923 if (bswap16_p)
1924 {
1925 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1926 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1927 }
1928
1929 if (bswap32_p)
1930 {
1931 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1932 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1933 }
1934
1935 if (bswap64_p)
1936 {
1937 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1938 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1939 }
1940
1941 memset (&bswap_stats, 0, sizeof (bswap_stats));
1942
1943 FOR_EACH_BB_FN (bb, cfun)
1944 {
1945 gimple_stmt_iterator gsi;
1946
1947 /* We do a reverse scan for bswap patterns to make sure we get the
1948 widest match. As bswap pattern matching doesn't handle
1949 previously inserted smaller bswap replacements as sub-
1950 patterns, the wider variant wouldn't be detected. */
1951 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1952 {
1953 gimple stmt = gsi_stmt (gsi);
1954 tree bswap_src, bswap_type;
1955 tree bswap_tmp;
1956 tree fndecl = NULL_TREE;
1957 int type_size;
1958 gimple call;
1959
1960 if (!is_gimple_assign (stmt)
1961 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1962 continue;
1963
1964 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1965
1966 switch (type_size)
1967 {
1968 case 16:
1969 if (bswap16_p)
1970 {
1971 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1972 bswap_type = bswap16_type;
1973 }
1974 break;
1975 case 32:
1976 if (bswap32_p)
1977 {
1978 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1979 bswap_type = bswap32_type;
1980 }
1981 break;
1982 case 64:
1983 if (bswap64_p)
1984 {
1985 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1986 bswap_type = bswap64_type;
1987 }
1988 break;
1989 default:
1990 continue;
1991 }
1992
1993 if (!fndecl)
1994 continue;
1995
1996 bswap_src = find_bswap (stmt);
1997
1998 if (!bswap_src)
1999 continue;
2000
2001 changed = true;
2002 if (type_size == 16)
2003 bswap_stats.found_16bit++;
2004 else if (type_size == 32)
2005 bswap_stats.found_32bit++;
2006 else
2007 bswap_stats.found_64bit++;
2008
2009 bswap_tmp = bswap_src;
2010
2011 /* Convert the src expression if necessary. */
2012 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2013 {
2014 gimple convert_stmt;
2015 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2016 convert_stmt = gimple_build_assign_with_ops
2017 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
2018 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2019 }
2020
2021 call = gimple_build_call (fndecl, 1, bswap_tmp);
2022
2023 bswap_tmp = gimple_assign_lhs (stmt);
2024
2025 /* Convert the result if necessary. */
2026 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2027 {
2028 gimple convert_stmt;
2029 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2030 convert_stmt = gimple_build_assign_with_ops
2031 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
2032 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2033 }
2034
2035 gimple_call_set_lhs (call, bswap_tmp);
2036
2037 if (dump_file)
2038 {
2039 fprintf (dump_file, "%d bit bswap implementation found at: ",
2040 (int)type_size);
2041 print_gimple_stmt (dump_file, stmt, 0, 0);
2042 }
2043
2044 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2045 gsi_remove (&gsi, true);
2046 }
2047 }
2048
2049 statistics_counter_event (cfun, "16-bit bswap implementations found",
2050 bswap_stats.found_16bit);
2051 statistics_counter_event (cfun, "32-bit bswap implementations found",
2052 bswap_stats.found_32bit);
2053 statistics_counter_event (cfun, "64-bit bswap implementations found",
2054 bswap_stats.found_64bit);
2055
2056 return (changed ? TODO_update_ssa | TODO_verify_ssa
2057 | TODO_verify_stmts : 0);
2058 }
2059
2060 namespace {
2061
2062 const pass_data pass_data_optimize_bswap =
2063 {
2064 GIMPLE_PASS, /* type */
2065 "bswap", /* name */
2066 OPTGROUP_NONE, /* optinfo_flags */
2067 true, /* has_execute */
2068 TV_NONE, /* tv_id */
2069 PROP_ssa, /* properties_required */
2070 0, /* properties_provided */
2071 0, /* properties_destroyed */
2072 0, /* todo_flags_start */
2073 0, /* todo_flags_finish */
2074 };
2075
2076 class pass_optimize_bswap : public gimple_opt_pass
2077 {
2078 public:
2079 pass_optimize_bswap (gcc::context *ctxt)
2080 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2081 {}
2082
2083 /* opt_pass methods: */
2084 virtual bool gate (function *)
2085 {
2086 return flag_expensive_optimizations && optimize;
2087 }
2088
2089 unsigned int execute () { return execute_optimize_bswap (); }
2090
2091 }; // class pass_optimize_bswap
2092
2093 } // anon namespace
2094
2095 gimple_opt_pass *
2096 make_pass_optimize_bswap (gcc::context *ctxt)
2097 {
2098 return new pass_optimize_bswap (ctxt);
2099 }
2100
2101 /* Return true if stmt is a type conversion operation that can be stripped
2102 when used in a widening multiply operation. */
2103 static bool
2104 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2105 {
2106 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2107
2108 if (TREE_CODE (result_type) == INTEGER_TYPE)
2109 {
2110 tree op_type;
2111 tree inner_op_type;
2112
2113 if (!CONVERT_EXPR_CODE_P (rhs_code))
2114 return false;
2115
2116 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2117
2118 /* If the type of OP has the same precision as the result, then
2119 we can strip this conversion. The multiply operation will be
2120 selected to create the correct extension as a by-product. */
2121 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2122 return true;
2123
2124 /* We can also strip a conversion if it preserves the signed-ness of
2125 the operation and doesn't narrow the range. */
2126 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2127
2128 /* If the inner-most type is unsigned, then we can strip any
2129 intermediate widening operation. If it's signed, then the
2130 intermediate widening operation must also be signed. */
2131 if ((TYPE_UNSIGNED (inner_op_type)
2132 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2133 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2134 return true;
2135
2136 return false;
2137 }
2138
2139 return rhs_code == FIXED_CONVERT_EXPR;
2140 }
2141
2142 /* Return true if RHS is a suitable operand for a widening multiplication,
2143 assuming a target type of TYPE.
2144 There are two cases:
2145
2146 - RHS makes some value at least twice as wide. Store that value
2147 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2148
2149 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2150 but leave *TYPE_OUT untouched. */
2151
2152 static bool
2153 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2154 tree *new_rhs_out)
2155 {
2156 gimple stmt;
2157 tree type1, rhs1;
2158
2159 if (TREE_CODE (rhs) == SSA_NAME)
2160 {
2161 stmt = SSA_NAME_DEF_STMT (rhs);
2162 if (is_gimple_assign (stmt))
2163 {
2164 if (! widening_mult_conversion_strippable_p (type, stmt))
2165 rhs1 = rhs;
2166 else
2167 {
2168 rhs1 = gimple_assign_rhs1 (stmt);
2169
2170 if (TREE_CODE (rhs1) == INTEGER_CST)
2171 {
2172 *new_rhs_out = rhs1;
2173 *type_out = NULL;
2174 return true;
2175 }
2176 }
2177 }
2178 else
2179 rhs1 = rhs;
2180
2181 type1 = TREE_TYPE (rhs1);
2182
2183 if (TREE_CODE (type1) != TREE_CODE (type)
2184 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2185 return false;
2186
2187 *new_rhs_out = rhs1;
2188 *type_out = type1;
2189 return true;
2190 }
2191
2192 if (TREE_CODE (rhs) == INTEGER_CST)
2193 {
2194 *new_rhs_out = rhs;
2195 *type_out = NULL;
2196 return true;
2197 }
2198
2199 return false;
2200 }
2201
2202 /* Return true if STMT performs a widening multiplication, assuming the
2203 output type is TYPE. If so, store the unwidened types of the operands
2204 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2205 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2206 and *TYPE2_OUT would give the operands of the multiplication. */
2207
2208 static bool
2209 is_widening_mult_p (gimple stmt,
2210 tree *type1_out, tree *rhs1_out,
2211 tree *type2_out, tree *rhs2_out)
2212 {
2213 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2214
2215 if (TREE_CODE (type) != INTEGER_TYPE
2216 && TREE_CODE (type) != FIXED_POINT_TYPE)
2217 return false;
2218
2219 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2220 rhs1_out))
2221 return false;
2222
2223 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2224 rhs2_out))
2225 return false;
2226
2227 if (*type1_out == NULL)
2228 {
2229 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2230 return false;
2231 *type1_out = *type2_out;
2232 }
2233
2234 if (*type2_out == NULL)
2235 {
2236 if (!int_fits_type_p (*rhs2_out, *type1_out))
2237 return false;
2238 *type2_out = *type1_out;
2239 }
2240
2241 /* Ensure that the larger of the two operands comes first. */
2242 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2243 {
2244 tree tmp;
2245 tmp = *type1_out;
2246 *type1_out = *type2_out;
2247 *type2_out = tmp;
2248 tmp = *rhs1_out;
2249 *rhs1_out = *rhs2_out;
2250 *rhs2_out = tmp;
2251 }
2252
2253 return true;
2254 }
2255
2256 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2257 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2258 value is true iff we converted the statement. */
2259
2260 static bool
2261 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2262 {
2263 tree lhs, rhs1, rhs2, type, type1, type2;
2264 enum insn_code handler;
2265 enum machine_mode to_mode, from_mode, actual_mode;
2266 optab op;
2267 int actual_precision;
2268 location_t loc = gimple_location (stmt);
2269 bool from_unsigned1, from_unsigned2;
2270
2271 lhs = gimple_assign_lhs (stmt);
2272 type = TREE_TYPE (lhs);
2273 if (TREE_CODE (type) != INTEGER_TYPE)
2274 return false;
2275
2276 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2277 return false;
2278
2279 to_mode = TYPE_MODE (type);
2280 from_mode = TYPE_MODE (type1);
2281 from_unsigned1 = TYPE_UNSIGNED (type1);
2282 from_unsigned2 = TYPE_UNSIGNED (type2);
2283
2284 if (from_unsigned1 && from_unsigned2)
2285 op = umul_widen_optab;
2286 else if (!from_unsigned1 && !from_unsigned2)
2287 op = smul_widen_optab;
2288 else
2289 op = usmul_widen_optab;
2290
2291 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2292 0, &actual_mode);
2293
2294 if (handler == CODE_FOR_nothing)
2295 {
2296 if (op != smul_widen_optab)
2297 {
2298 /* We can use a signed multiply with unsigned types as long as
2299 there is a wider mode to use, or it is the smaller of the two
2300 types that is unsigned. Note that type1 >= type2, always. */
2301 if ((TYPE_UNSIGNED (type1)
2302 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2303 || (TYPE_UNSIGNED (type2)
2304 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2305 {
2306 from_mode = GET_MODE_WIDER_MODE (from_mode);
2307 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2308 return false;
2309 }
2310
2311 op = smul_widen_optab;
2312 handler = find_widening_optab_handler_and_mode (op, to_mode,
2313 from_mode, 0,
2314 &actual_mode);
2315
2316 if (handler == CODE_FOR_nothing)
2317 return false;
2318
2319 from_unsigned1 = from_unsigned2 = false;
2320 }
2321 else
2322 return false;
2323 }
2324
2325 /* Ensure that the inputs to the handler are in the correct precison
2326 for the opcode. This will be the full mode size. */
2327 actual_precision = GET_MODE_PRECISION (actual_mode);
2328 if (2 * actual_precision > TYPE_PRECISION (type))
2329 return false;
2330 if (actual_precision != TYPE_PRECISION (type1)
2331 || from_unsigned1 != TYPE_UNSIGNED (type1))
2332 rhs1 = build_and_insert_cast (gsi, loc,
2333 build_nonstandard_integer_type
2334 (actual_precision, from_unsigned1), rhs1);
2335 if (actual_precision != TYPE_PRECISION (type2)
2336 || from_unsigned2 != TYPE_UNSIGNED (type2))
2337 rhs2 = build_and_insert_cast (gsi, loc,
2338 build_nonstandard_integer_type
2339 (actual_precision, from_unsigned2), rhs2);
2340
2341 /* Handle constants. */
2342 if (TREE_CODE (rhs1) == INTEGER_CST)
2343 rhs1 = fold_convert (type1, rhs1);
2344 if (TREE_CODE (rhs2) == INTEGER_CST)
2345 rhs2 = fold_convert (type2, rhs2);
2346
2347 gimple_assign_set_rhs1 (stmt, rhs1);
2348 gimple_assign_set_rhs2 (stmt, rhs2);
2349 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2350 update_stmt (stmt);
2351 widen_mul_stats.widen_mults_inserted++;
2352 return true;
2353 }
2354
2355 /* Process a single gimple statement STMT, which is found at the
2356 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2357 rhs (given by CODE), and try to convert it into a
2358 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2359 is true iff we converted the statement. */
2360
2361 static bool
2362 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2363 enum tree_code code)
2364 {
2365 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2366 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2367 tree type, type1, type2, optype;
2368 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2369 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2370 optab this_optab;
2371 enum tree_code wmult_code;
2372 enum insn_code handler;
2373 enum machine_mode to_mode, from_mode, actual_mode;
2374 location_t loc = gimple_location (stmt);
2375 int actual_precision;
2376 bool from_unsigned1, from_unsigned2;
2377
2378 lhs = gimple_assign_lhs (stmt);
2379 type = TREE_TYPE (lhs);
2380 if (TREE_CODE (type) != INTEGER_TYPE
2381 && TREE_CODE (type) != FIXED_POINT_TYPE)
2382 return false;
2383
2384 if (code == MINUS_EXPR)
2385 wmult_code = WIDEN_MULT_MINUS_EXPR;
2386 else
2387 wmult_code = WIDEN_MULT_PLUS_EXPR;
2388
2389 rhs1 = gimple_assign_rhs1 (stmt);
2390 rhs2 = gimple_assign_rhs2 (stmt);
2391
2392 if (TREE_CODE (rhs1) == SSA_NAME)
2393 {
2394 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2395 if (is_gimple_assign (rhs1_stmt))
2396 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2397 }
2398
2399 if (TREE_CODE (rhs2) == SSA_NAME)
2400 {
2401 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2402 if (is_gimple_assign (rhs2_stmt))
2403 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2404 }
2405
2406 /* Allow for one conversion statement between the multiply
2407 and addition/subtraction statement. If there are more than
2408 one conversions then we assume they would invalidate this
2409 transformation. If that's not the case then they should have
2410 been folded before now. */
2411 if (CONVERT_EXPR_CODE_P (rhs1_code))
2412 {
2413 conv1_stmt = rhs1_stmt;
2414 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2415 if (TREE_CODE (rhs1) == SSA_NAME)
2416 {
2417 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2418 if (is_gimple_assign (rhs1_stmt))
2419 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2420 }
2421 else
2422 return false;
2423 }
2424 if (CONVERT_EXPR_CODE_P (rhs2_code))
2425 {
2426 conv2_stmt = rhs2_stmt;
2427 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2428 if (TREE_CODE (rhs2) == SSA_NAME)
2429 {
2430 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2431 if (is_gimple_assign (rhs2_stmt))
2432 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2433 }
2434 else
2435 return false;
2436 }
2437
2438 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2439 is_widening_mult_p, but we still need the rhs returns.
2440
2441 It might also appear that it would be sufficient to use the existing
2442 operands of the widening multiply, but that would limit the choice of
2443 multiply-and-accumulate instructions.
2444
2445 If the widened-multiplication result has more than one uses, it is
2446 probably wiser not to do the conversion. */
2447 if (code == PLUS_EXPR
2448 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2449 {
2450 if (!has_single_use (rhs1)
2451 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2452 &type2, &mult_rhs2))
2453 return false;
2454 add_rhs = rhs2;
2455 conv_stmt = conv1_stmt;
2456 }
2457 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2458 {
2459 if (!has_single_use (rhs2)
2460 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2461 &type2, &mult_rhs2))
2462 return false;
2463 add_rhs = rhs1;
2464 conv_stmt = conv2_stmt;
2465 }
2466 else
2467 return false;
2468
2469 to_mode = TYPE_MODE (type);
2470 from_mode = TYPE_MODE (type1);
2471 from_unsigned1 = TYPE_UNSIGNED (type1);
2472 from_unsigned2 = TYPE_UNSIGNED (type2);
2473 optype = type1;
2474
2475 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2476 if (from_unsigned1 != from_unsigned2)
2477 {
2478 if (!INTEGRAL_TYPE_P (type))
2479 return false;
2480 /* We can use a signed multiply with unsigned types as long as
2481 there is a wider mode to use, or it is the smaller of the two
2482 types that is unsigned. Note that type1 >= type2, always. */
2483 if ((from_unsigned1
2484 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2485 || (from_unsigned2
2486 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2487 {
2488 from_mode = GET_MODE_WIDER_MODE (from_mode);
2489 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2490 return false;
2491 }
2492
2493 from_unsigned1 = from_unsigned2 = false;
2494 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2495 false);
2496 }
2497
2498 /* If there was a conversion between the multiply and addition
2499 then we need to make sure it fits a multiply-and-accumulate.
2500 The should be a single mode change which does not change the
2501 value. */
2502 if (conv_stmt)
2503 {
2504 /* We use the original, unmodified data types for this. */
2505 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2506 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2507 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2508 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2509
2510 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2511 {
2512 /* Conversion is a truncate. */
2513 if (TYPE_PRECISION (to_type) < data_size)
2514 return false;
2515 }
2516 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2517 {
2518 /* Conversion is an extend. Check it's the right sort. */
2519 if (TYPE_UNSIGNED (from_type) != is_unsigned
2520 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2521 return false;
2522 }
2523 /* else convert is a no-op for our purposes. */
2524 }
2525
2526 /* Verify that the machine can perform a widening multiply
2527 accumulate in this mode/signedness combination, otherwise
2528 this transformation is likely to pessimize code. */
2529 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2530 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2531 from_mode, 0, &actual_mode);
2532
2533 if (handler == CODE_FOR_nothing)
2534 return false;
2535
2536 /* Ensure that the inputs to the handler are in the correct precison
2537 for the opcode. This will be the full mode size. */
2538 actual_precision = GET_MODE_PRECISION (actual_mode);
2539 if (actual_precision != TYPE_PRECISION (type1)
2540 || from_unsigned1 != TYPE_UNSIGNED (type1))
2541 mult_rhs1 = build_and_insert_cast (gsi, loc,
2542 build_nonstandard_integer_type
2543 (actual_precision, from_unsigned1),
2544 mult_rhs1);
2545 if (actual_precision != TYPE_PRECISION (type2)
2546 || from_unsigned2 != TYPE_UNSIGNED (type2))
2547 mult_rhs2 = build_and_insert_cast (gsi, loc,
2548 build_nonstandard_integer_type
2549 (actual_precision, from_unsigned2),
2550 mult_rhs2);
2551
2552 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2553 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2554
2555 /* Handle constants. */
2556 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2557 mult_rhs1 = fold_convert (type1, mult_rhs1);
2558 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2559 mult_rhs2 = fold_convert (type2, mult_rhs2);
2560
2561 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2562 add_rhs);
2563 update_stmt (gsi_stmt (*gsi));
2564 widen_mul_stats.maccs_inserted++;
2565 return true;
2566 }
2567
2568 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2569 with uses in additions and subtractions to form fused multiply-add
2570 operations. Returns true if successful and MUL_STMT should be removed. */
2571
2572 static bool
2573 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2574 {
2575 tree mul_result = gimple_get_lhs (mul_stmt);
2576 tree type = TREE_TYPE (mul_result);
2577 gimple use_stmt, neguse_stmt, fma_stmt;
2578 use_operand_p use_p;
2579 imm_use_iterator imm_iter;
2580
2581 if (FLOAT_TYPE_P (type)
2582 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2583 return false;
2584
2585 /* We don't want to do bitfield reduction ops. */
2586 if (INTEGRAL_TYPE_P (type)
2587 && (TYPE_PRECISION (type)
2588 != GET_MODE_PRECISION (TYPE_MODE (type))))
2589 return false;
2590
2591 /* If the target doesn't support it, don't generate it. We assume that
2592 if fma isn't available then fms, fnma or fnms are not either. */
2593 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2594 return false;
2595
2596 /* If the multiplication has zero uses, it is kept around probably because
2597 of -fnon-call-exceptions. Don't optimize it away in that case,
2598 it is DCE job. */
2599 if (has_zero_uses (mul_result))
2600 return false;
2601
2602 /* Make sure that the multiplication statement becomes dead after
2603 the transformation, thus that all uses are transformed to FMAs.
2604 This means we assume that an FMA operation has the same cost
2605 as an addition. */
2606 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2607 {
2608 enum tree_code use_code;
2609 tree result = mul_result;
2610 bool negate_p = false;
2611
2612 use_stmt = USE_STMT (use_p);
2613
2614 if (is_gimple_debug (use_stmt))
2615 continue;
2616
2617 /* For now restrict this operations to single basic blocks. In theory
2618 we would want to support sinking the multiplication in
2619 m = a*b;
2620 if ()
2621 ma = m + c;
2622 else
2623 d = m;
2624 to form a fma in the then block and sink the multiplication to the
2625 else block. */
2626 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2627 return false;
2628
2629 if (!is_gimple_assign (use_stmt))
2630 return false;
2631
2632 use_code = gimple_assign_rhs_code (use_stmt);
2633
2634 /* A negate on the multiplication leads to FNMA. */
2635 if (use_code == NEGATE_EXPR)
2636 {
2637 ssa_op_iter iter;
2638 use_operand_p usep;
2639
2640 result = gimple_assign_lhs (use_stmt);
2641
2642 /* Make sure the negate statement becomes dead with this
2643 single transformation. */
2644 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2645 &use_p, &neguse_stmt))
2646 return false;
2647
2648 /* Make sure the multiplication isn't also used on that stmt. */
2649 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2650 if (USE_FROM_PTR (usep) == mul_result)
2651 return false;
2652
2653 /* Re-validate. */
2654 use_stmt = neguse_stmt;
2655 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2656 return false;
2657 if (!is_gimple_assign (use_stmt))
2658 return false;
2659
2660 use_code = gimple_assign_rhs_code (use_stmt);
2661 negate_p = true;
2662 }
2663
2664 switch (use_code)
2665 {
2666 case MINUS_EXPR:
2667 if (gimple_assign_rhs2 (use_stmt) == result)
2668 negate_p = !negate_p;
2669 break;
2670 case PLUS_EXPR:
2671 break;
2672 default:
2673 /* FMA can only be formed from PLUS and MINUS. */
2674 return false;
2675 }
2676
2677 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2678 by a MULT_EXPR that we'll visit later, we might be able to
2679 get a more profitable match with fnma.
2680 OTOH, if we don't, a negate / fma pair has likely lower latency
2681 that a mult / subtract pair. */
2682 if (use_code == MINUS_EXPR && !negate_p
2683 && gimple_assign_rhs1 (use_stmt) == result
2684 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2685 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2686 {
2687 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2688
2689 if (TREE_CODE (rhs2) == SSA_NAME)
2690 {
2691 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2692 if (has_single_use (rhs2)
2693 && is_gimple_assign (stmt2)
2694 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2695 return false;
2696 }
2697 }
2698
2699 /* We can't handle a * b + a * b. */
2700 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2701 return false;
2702
2703 /* While it is possible to validate whether or not the exact form
2704 that we've recognized is available in the backend, the assumption
2705 is that the transformation is never a loss. For instance, suppose
2706 the target only has the plain FMA pattern available. Consider
2707 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2708 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2709 still have 3 operations, but in the FMA form the two NEGs are
2710 independent and could be run in parallel. */
2711 }
2712
2713 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2714 {
2715 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2716 enum tree_code use_code;
2717 tree addop, mulop1 = op1, result = mul_result;
2718 bool negate_p = false;
2719
2720 if (is_gimple_debug (use_stmt))
2721 continue;
2722
2723 use_code = gimple_assign_rhs_code (use_stmt);
2724 if (use_code == NEGATE_EXPR)
2725 {
2726 result = gimple_assign_lhs (use_stmt);
2727 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2728 gsi_remove (&gsi, true);
2729 release_defs (use_stmt);
2730
2731 use_stmt = neguse_stmt;
2732 gsi = gsi_for_stmt (use_stmt);
2733 use_code = gimple_assign_rhs_code (use_stmt);
2734 negate_p = true;
2735 }
2736
2737 if (gimple_assign_rhs1 (use_stmt) == result)
2738 {
2739 addop = gimple_assign_rhs2 (use_stmt);
2740 /* a * b - c -> a * b + (-c) */
2741 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2742 addop = force_gimple_operand_gsi (&gsi,
2743 build1 (NEGATE_EXPR,
2744 type, addop),
2745 true, NULL_TREE, true,
2746 GSI_SAME_STMT);
2747 }
2748 else
2749 {
2750 addop = gimple_assign_rhs1 (use_stmt);
2751 /* a - b * c -> (-b) * c + a */
2752 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2753 negate_p = !negate_p;
2754 }
2755
2756 if (negate_p)
2757 mulop1 = force_gimple_operand_gsi (&gsi,
2758 build1 (NEGATE_EXPR,
2759 type, mulop1),
2760 true, NULL_TREE, true,
2761 GSI_SAME_STMT);
2762
2763 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2764 gimple_assign_lhs (use_stmt),
2765 mulop1, op2,
2766 addop);
2767 gsi_replace (&gsi, fma_stmt, true);
2768 widen_mul_stats.fmas_inserted++;
2769 }
2770
2771 return true;
2772 }
2773
2774 /* Find integer multiplications where the operands are extended from
2775 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2776 where appropriate. */
2777
2778 static unsigned int
2779 execute_optimize_widening_mul (void)
2780 {
2781 basic_block bb;
2782 bool cfg_changed = false;
2783
2784 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2785
2786 FOR_EACH_BB_FN (bb, cfun)
2787 {
2788 gimple_stmt_iterator gsi;
2789
2790 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2791 {
2792 gimple stmt = gsi_stmt (gsi);
2793 enum tree_code code;
2794
2795 if (is_gimple_assign (stmt))
2796 {
2797 code = gimple_assign_rhs_code (stmt);
2798 switch (code)
2799 {
2800 case MULT_EXPR:
2801 if (!convert_mult_to_widen (stmt, &gsi)
2802 && convert_mult_to_fma (stmt,
2803 gimple_assign_rhs1 (stmt),
2804 gimple_assign_rhs2 (stmt)))
2805 {
2806 gsi_remove (&gsi, true);
2807 release_defs (stmt);
2808 continue;
2809 }
2810 break;
2811
2812 case PLUS_EXPR:
2813 case MINUS_EXPR:
2814 convert_plusminus_to_widen (&gsi, stmt, code);
2815 break;
2816
2817 default:;
2818 }
2819 }
2820 else if (is_gimple_call (stmt)
2821 && gimple_call_lhs (stmt))
2822 {
2823 tree fndecl = gimple_call_fndecl (stmt);
2824 if (fndecl
2825 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2826 {
2827 switch (DECL_FUNCTION_CODE (fndecl))
2828 {
2829 case BUILT_IN_POWF:
2830 case BUILT_IN_POW:
2831 case BUILT_IN_POWL:
2832 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2833 && REAL_VALUES_EQUAL
2834 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2835 dconst2)
2836 && convert_mult_to_fma (stmt,
2837 gimple_call_arg (stmt, 0),
2838 gimple_call_arg (stmt, 0)))
2839 {
2840 unlink_stmt_vdef (stmt);
2841 if (gsi_remove (&gsi, true)
2842 && gimple_purge_dead_eh_edges (bb))
2843 cfg_changed = true;
2844 release_defs (stmt);
2845 continue;
2846 }
2847 break;
2848
2849 default:;
2850 }
2851 }
2852 }
2853 gsi_next (&gsi);
2854 }
2855 }
2856
2857 statistics_counter_event (cfun, "widening multiplications inserted",
2858 widen_mul_stats.widen_mults_inserted);
2859 statistics_counter_event (cfun, "widening maccs inserted",
2860 widen_mul_stats.maccs_inserted);
2861 statistics_counter_event (cfun, "fused multiply-adds inserted",
2862 widen_mul_stats.fmas_inserted);
2863
2864 return cfg_changed ? TODO_cleanup_cfg : 0;
2865 }
2866
2867 namespace {
2868
2869 const pass_data pass_data_optimize_widening_mul =
2870 {
2871 GIMPLE_PASS, /* type */
2872 "widening_mul", /* name */
2873 OPTGROUP_NONE, /* optinfo_flags */
2874 true, /* has_execute */
2875 TV_NONE, /* tv_id */
2876 PROP_ssa, /* properties_required */
2877 0, /* properties_provided */
2878 0, /* properties_destroyed */
2879 0, /* todo_flags_start */
2880 ( TODO_verify_ssa | TODO_verify_stmts
2881 | TODO_update_ssa ), /* todo_flags_finish */
2882 };
2883
2884 class pass_optimize_widening_mul : public gimple_opt_pass
2885 {
2886 public:
2887 pass_optimize_widening_mul (gcc::context *ctxt)
2888 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
2889 {}
2890
2891 /* opt_pass methods: */
2892 virtual bool gate (function *)
2893 {
2894 return flag_expensive_optimizations && optimize;
2895 }
2896
2897 unsigned int execute () { return execute_optimize_widening_mul (); }
2898
2899 }; // class pass_optimize_widening_mul
2900
2901 } // anon namespace
2902
2903 gimple_opt_pass *
2904 make_pass_optimize_widening_mul (gcc::context *ctxt)
2905 {
2906 return new pass_optimize_widening_mul (ctxt);
2907 }