invoke.texi: Update -fopt-info documentation.
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "flags.h"
93 #include "tree.h"
94 #include "tree-flow.h"
95 #include "tree-pass.h"
96 #include "alloc-pool.h"
97 #include "basic-block.h"
98 #include "target.h"
99 #include "gimple-pretty-print.h"
100
101 /* FIXME: RTL headers have to be included here for optabs. */
102 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
103 #include "expr.h" /* Because optabs.h wants sepops. */
104 #include "optabs.h"
105
106 /* This structure represents one basic block that either computes a
107 division, or is a common dominator for basic block that compute a
108 division. */
109 struct occurrence {
110 /* The basic block represented by this structure. */
111 basic_block bb;
112
113 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
114 inserted in BB. */
115 tree recip_def;
116
117 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
118 was inserted in BB. */
119 gimple recip_def_stmt;
120
121 /* Pointer to a list of "struct occurrence"s for blocks dominated
122 by BB. */
123 struct occurrence *children;
124
125 /* Pointer to the next "struct occurrence"s in the list of blocks
126 sharing a common dominator. */
127 struct occurrence *next;
128
129 /* The number of divisions that are in BB before compute_merit. The
130 number of divisions that are in BB or post-dominate it after
131 compute_merit. */
132 int num_divisions;
133
134 /* True if the basic block has a division, false if it is a common
135 dominator for basic blocks that do. If it is false and trapping
136 math is active, BB is not a candidate for inserting a reciprocal. */
137 bool bb_has_division;
138 };
139
140 static struct
141 {
142 /* Number of 1.0/X ops inserted. */
143 int rdivs_inserted;
144
145 /* Number of 1.0/FUNC ops inserted. */
146 int rfuncs_inserted;
147 } reciprocal_stats;
148
149 static struct
150 {
151 /* Number of cexpi calls inserted. */
152 int inserted;
153 } sincos_stats;
154
155 static struct
156 {
157 /* Number of hand-written 16-bit bswaps found. */
158 int found_16bit;
159
160 /* Number of hand-written 32-bit bswaps found. */
161 int found_32bit;
162
163 /* Number of hand-written 64-bit bswaps found. */
164 int found_64bit;
165 } bswap_stats;
166
167 static struct
168 {
169 /* Number of widening multiplication ops inserted. */
170 int widen_mults_inserted;
171
172 /* Number of integer multiply-and-accumulate ops inserted. */
173 int maccs_inserted;
174
175 /* Number of fp fused multiply-add ops inserted. */
176 int fmas_inserted;
177 } widen_mul_stats;
178
179 /* The instance of "struct occurrence" representing the highest
180 interesting block in the dominator tree. */
181 static struct occurrence *occ_head;
182
183 /* Allocation pool for getting instances of "struct occurrence". */
184 static alloc_pool occ_pool;
185
186
187
188 /* Allocate and return a new struct occurrence for basic block BB, and
189 whose children list is headed by CHILDREN. */
190 static struct occurrence *
191 occ_new (basic_block bb, struct occurrence *children)
192 {
193 struct occurrence *occ;
194
195 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
196 memset (occ, 0, sizeof (struct occurrence));
197
198 occ->bb = bb;
199 occ->children = children;
200 return occ;
201 }
202
203
204 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
205 list of "struct occurrence"s, one per basic block, having IDOM as
206 their common dominator.
207
208 We try to insert NEW_OCC as deep as possible in the tree, and we also
209 insert any other block that is a common dominator for BB and one
210 block already in the tree. */
211
212 static void
213 insert_bb (struct occurrence *new_occ, basic_block idom,
214 struct occurrence **p_head)
215 {
216 struct occurrence *occ, **p_occ;
217
218 for (p_occ = p_head; (occ = *p_occ) != NULL; )
219 {
220 basic_block bb = new_occ->bb, occ_bb = occ->bb;
221 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
222 if (dom == bb)
223 {
224 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
225 from its list. */
226 *p_occ = occ->next;
227 occ->next = new_occ->children;
228 new_occ->children = occ;
229
230 /* Try the next block (it may as well be dominated by BB). */
231 }
232
233 else if (dom == occ_bb)
234 {
235 /* OCC_BB dominates BB. Tail recurse to look deeper. */
236 insert_bb (new_occ, dom, &occ->children);
237 return;
238 }
239
240 else if (dom != idom)
241 {
242 gcc_assert (!dom->aux);
243
244 /* There is a dominator between IDOM and BB, add it and make
245 two children out of NEW_OCC and OCC. First, remove OCC from
246 its list. */
247 *p_occ = occ->next;
248 new_occ->next = occ;
249 occ->next = NULL;
250
251 /* None of the previous blocks has DOM as a dominator: if we tail
252 recursed, we would reexamine them uselessly. Just switch BB with
253 DOM, and go on looking for blocks dominated by DOM. */
254 new_occ = occ_new (dom, new_occ);
255 }
256
257 else
258 {
259 /* Nothing special, go on with the next element. */
260 p_occ = &occ->next;
261 }
262 }
263
264 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
265 new_occ->next = *p_head;
266 *p_head = new_occ;
267 }
268
269 /* Register that we found a division in BB. */
270
271 static inline void
272 register_division_in (basic_block bb)
273 {
274 struct occurrence *occ;
275
276 occ = (struct occurrence *) bb->aux;
277 if (!occ)
278 {
279 occ = occ_new (bb, NULL);
280 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
281 }
282
283 occ->bb_has_division = true;
284 occ->num_divisions++;
285 }
286
287
288 /* Compute the number of divisions that postdominate each block in OCC and
289 its children. */
290
291 static void
292 compute_merit (struct occurrence *occ)
293 {
294 struct occurrence *occ_child;
295 basic_block dom = occ->bb;
296
297 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
298 {
299 basic_block bb;
300 if (occ_child->children)
301 compute_merit (occ_child);
302
303 if (flag_exceptions)
304 bb = single_noncomplex_succ (dom);
305 else
306 bb = dom;
307
308 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
309 occ->num_divisions += occ_child->num_divisions;
310 }
311 }
312
313
314 /* Return whether USE_STMT is a floating-point division by DEF. */
315 static inline bool
316 is_division_by (gimple use_stmt, tree def)
317 {
318 return is_gimple_assign (use_stmt)
319 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
320 && gimple_assign_rhs2 (use_stmt) == def
321 /* Do not recognize x / x as valid division, as we are getting
322 confused later by replacing all immediate uses x in such
323 a stmt. */
324 && gimple_assign_rhs1 (use_stmt) != def;
325 }
326
327 /* Walk the subset of the dominator tree rooted at OCC, setting the
328 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
329 the given basic block. The field may be left NULL, of course,
330 if it is not possible or profitable to do the optimization.
331
332 DEF_BSI is an iterator pointing at the statement defining DEF.
333 If RECIP_DEF is set, a dominator already has a computation that can
334 be used. */
335
336 static void
337 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
338 tree def, tree recip_def, int threshold)
339 {
340 tree type;
341 gimple new_stmt;
342 gimple_stmt_iterator gsi;
343 struct occurrence *occ_child;
344
345 if (!recip_def
346 && (occ->bb_has_division || !flag_trapping_math)
347 && occ->num_divisions >= threshold)
348 {
349 /* Make a variable with the replacement and substitute it. */
350 type = TREE_TYPE (def);
351 recip_def = create_tmp_reg (type, "reciptmp");
352 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
353 build_one_cst (type), def);
354
355 if (occ->bb_has_division)
356 {
357 /* Case 1: insert before an existing division. */
358 gsi = gsi_after_labels (occ->bb);
359 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
360 gsi_next (&gsi);
361
362 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
363 }
364 else if (def_gsi && occ->bb == def_gsi->bb)
365 {
366 /* Case 2: insert right after the definition. Note that this will
367 never happen if the definition statement can throw, because in
368 that case the sole successor of the statement's basic block will
369 dominate all the uses as well. */
370 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
371 }
372 else
373 {
374 /* Case 3: insert in a basic block not containing defs/uses. */
375 gsi = gsi_after_labels (occ->bb);
376 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
377 }
378
379 reciprocal_stats.rdivs_inserted++;
380
381 occ->recip_def_stmt = new_stmt;
382 }
383
384 occ->recip_def = recip_def;
385 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
386 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
387 }
388
389
390 /* Replace the division at USE_P with a multiplication by the reciprocal, if
391 possible. */
392
393 static inline void
394 replace_reciprocal (use_operand_p use_p)
395 {
396 gimple use_stmt = USE_STMT (use_p);
397 basic_block bb = gimple_bb (use_stmt);
398 struct occurrence *occ = (struct occurrence *) bb->aux;
399
400 if (optimize_bb_for_speed_p (bb)
401 && occ->recip_def && use_stmt != occ->recip_def_stmt)
402 {
403 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
404 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
405 SET_USE (use_p, occ->recip_def);
406 fold_stmt_inplace (&gsi);
407 update_stmt (use_stmt);
408 }
409 }
410
411
412 /* Free OCC and return one more "struct occurrence" to be freed. */
413
414 static struct occurrence *
415 free_bb (struct occurrence *occ)
416 {
417 struct occurrence *child, *next;
418
419 /* First get the two pointers hanging off OCC. */
420 next = occ->next;
421 child = occ->children;
422 occ->bb->aux = NULL;
423 pool_free (occ_pool, occ);
424
425 /* Now ensure that we don't recurse unless it is necessary. */
426 if (!child)
427 return next;
428 else
429 {
430 while (next)
431 next = free_bb (next);
432
433 return child;
434 }
435 }
436
437
438 /* Look for floating-point divisions among DEF's uses, and try to
439 replace them by multiplications with the reciprocal. Add
440 as many statements computing the reciprocal as needed.
441
442 DEF must be a GIMPLE register of a floating-point type. */
443
444 static void
445 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
446 {
447 use_operand_p use_p;
448 imm_use_iterator use_iter;
449 struct occurrence *occ;
450 int count = 0, threshold;
451
452 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
453
454 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
455 {
456 gimple use_stmt = USE_STMT (use_p);
457 if (is_division_by (use_stmt, def))
458 {
459 register_division_in (gimple_bb (use_stmt));
460 count++;
461 }
462 }
463
464 /* Do the expensive part only if we can hope to optimize something. */
465 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
466 if (count >= threshold)
467 {
468 gimple use_stmt;
469 for (occ = occ_head; occ; occ = occ->next)
470 {
471 compute_merit (occ);
472 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
473 }
474
475 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
476 {
477 if (is_division_by (use_stmt, def))
478 {
479 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
480 replace_reciprocal (use_p);
481 }
482 }
483 }
484
485 for (occ = occ_head; occ; )
486 occ = free_bb (occ);
487
488 occ_head = NULL;
489 }
490
491 static bool
492 gate_cse_reciprocals (void)
493 {
494 return optimize && flag_reciprocal_math;
495 }
496
497 /* Go through all the floating-point SSA_NAMEs, and call
498 execute_cse_reciprocals_1 on each of them. */
499 static unsigned int
500 execute_cse_reciprocals (void)
501 {
502 basic_block bb;
503 tree arg;
504
505 occ_pool = create_alloc_pool ("dominators for recip",
506 sizeof (struct occurrence),
507 n_basic_blocks / 3 + 1);
508
509 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
510 calculate_dominance_info (CDI_DOMINATORS);
511 calculate_dominance_info (CDI_POST_DOMINATORS);
512
513 #ifdef ENABLE_CHECKING
514 FOR_EACH_BB (bb)
515 gcc_assert (!bb->aux);
516 #endif
517
518 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
519 if (FLOAT_TYPE_P (TREE_TYPE (arg))
520 && is_gimple_reg (arg))
521 {
522 tree name = ssa_default_def (cfun, arg);
523 if (name)
524 execute_cse_reciprocals_1 (NULL, name);
525 }
526
527 FOR_EACH_BB (bb)
528 {
529 gimple_stmt_iterator gsi;
530 gimple phi;
531 tree def;
532
533 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
534 {
535 phi = gsi_stmt (gsi);
536 def = PHI_RESULT (phi);
537 if (! virtual_operand_p (def)
538 && FLOAT_TYPE_P (TREE_TYPE (def)))
539 execute_cse_reciprocals_1 (NULL, def);
540 }
541
542 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
543 {
544 gimple stmt = gsi_stmt (gsi);
545
546 if (gimple_has_lhs (stmt)
547 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
548 && FLOAT_TYPE_P (TREE_TYPE (def))
549 && TREE_CODE (def) == SSA_NAME)
550 execute_cse_reciprocals_1 (&gsi, def);
551 }
552
553 if (optimize_bb_for_size_p (bb))
554 continue;
555
556 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
557 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
558 {
559 gimple stmt = gsi_stmt (gsi);
560 tree fndecl;
561
562 if (is_gimple_assign (stmt)
563 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
564 {
565 tree arg1 = gimple_assign_rhs2 (stmt);
566 gimple stmt1;
567
568 if (TREE_CODE (arg1) != SSA_NAME)
569 continue;
570
571 stmt1 = SSA_NAME_DEF_STMT (arg1);
572
573 if (is_gimple_call (stmt1)
574 && gimple_call_lhs (stmt1)
575 && (fndecl = gimple_call_fndecl (stmt1))
576 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
577 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
578 {
579 enum built_in_function code;
580 bool md_code, fail;
581 imm_use_iterator ui;
582 use_operand_p use_p;
583
584 code = DECL_FUNCTION_CODE (fndecl);
585 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
586
587 fndecl = targetm.builtin_reciprocal (code, md_code, false);
588 if (!fndecl)
589 continue;
590
591 /* Check that all uses of the SSA name are divisions,
592 otherwise replacing the defining statement will do
593 the wrong thing. */
594 fail = false;
595 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
596 {
597 gimple stmt2 = USE_STMT (use_p);
598 if (is_gimple_debug (stmt2))
599 continue;
600 if (!is_gimple_assign (stmt2)
601 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
602 || gimple_assign_rhs1 (stmt2) == arg1
603 || gimple_assign_rhs2 (stmt2) != arg1)
604 {
605 fail = true;
606 break;
607 }
608 }
609 if (fail)
610 continue;
611
612 gimple_replace_lhs (stmt1, arg1);
613 gimple_call_set_fndecl (stmt1, fndecl);
614 update_stmt (stmt1);
615 reciprocal_stats.rfuncs_inserted++;
616
617 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
618 {
619 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
620 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
621 fold_stmt_inplace (&gsi);
622 update_stmt (stmt);
623 }
624 }
625 }
626 }
627 }
628
629 statistics_counter_event (cfun, "reciprocal divs inserted",
630 reciprocal_stats.rdivs_inserted);
631 statistics_counter_event (cfun, "reciprocal functions inserted",
632 reciprocal_stats.rfuncs_inserted);
633
634 free_dominance_info (CDI_DOMINATORS);
635 free_dominance_info (CDI_POST_DOMINATORS);
636 free_alloc_pool (occ_pool);
637 return 0;
638 }
639
640 struct gimple_opt_pass pass_cse_reciprocals =
641 {
642 {
643 GIMPLE_PASS,
644 "recip", /* name */
645 OPTGROUP_NONE, /* optinfo_flags */
646 gate_cse_reciprocals, /* gate */
647 execute_cse_reciprocals, /* execute */
648 NULL, /* sub */
649 NULL, /* next */
650 0, /* static_pass_number */
651 TV_NONE, /* tv_id */
652 PROP_ssa, /* properties_required */
653 0, /* properties_provided */
654 0, /* properties_destroyed */
655 0, /* todo_flags_start */
656 TODO_update_ssa | TODO_verify_ssa
657 | TODO_verify_stmts /* todo_flags_finish */
658 }
659 };
660
661 /* Records an occurrence at statement USE_STMT in the vector of trees
662 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
663 is not yet initialized. Returns true if the occurrence was pushed on
664 the vector. Adjusts *TOP_BB to be the basic block dominating all
665 statements in the vector. */
666
667 static bool
668 maybe_record_sincos (VEC(gimple, heap) **stmts,
669 basic_block *top_bb, gimple use_stmt)
670 {
671 basic_block use_bb = gimple_bb (use_stmt);
672 if (*top_bb
673 && (*top_bb == use_bb
674 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
675 VEC_safe_push (gimple, heap, *stmts, use_stmt);
676 else if (!*top_bb
677 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
678 {
679 VEC_safe_push (gimple, heap, *stmts, use_stmt);
680 *top_bb = use_bb;
681 }
682 else
683 return false;
684
685 return true;
686 }
687
688 /* Look for sin, cos and cexpi calls with the same argument NAME and
689 create a single call to cexpi CSEing the result in this case.
690 We first walk over all immediate uses of the argument collecting
691 statements that we can CSE in a vector and in a second pass replace
692 the statement rhs with a REALPART or IMAGPART expression on the
693 result of the cexpi call we insert before the use statement that
694 dominates all other candidates. */
695
696 static bool
697 execute_cse_sincos_1 (tree name)
698 {
699 gimple_stmt_iterator gsi;
700 imm_use_iterator use_iter;
701 tree fndecl, res, type;
702 gimple def_stmt, use_stmt, stmt;
703 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
704 VEC(gimple, heap) *stmts = NULL;
705 basic_block top_bb = NULL;
706 int i;
707 bool cfg_changed = false;
708
709 type = TREE_TYPE (name);
710 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
711 {
712 if (gimple_code (use_stmt) != GIMPLE_CALL
713 || !gimple_call_lhs (use_stmt)
714 || !(fndecl = gimple_call_fndecl (use_stmt))
715 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
716 continue;
717
718 switch (DECL_FUNCTION_CODE (fndecl))
719 {
720 CASE_FLT_FN (BUILT_IN_COS):
721 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
722 break;
723
724 CASE_FLT_FN (BUILT_IN_SIN):
725 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
726 break;
727
728 CASE_FLT_FN (BUILT_IN_CEXPI):
729 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
730 break;
731
732 default:;
733 }
734 }
735
736 if (seen_cos + seen_sin + seen_cexpi <= 1)
737 {
738 VEC_free(gimple, heap, stmts);
739 return false;
740 }
741
742 /* Simply insert cexpi at the beginning of top_bb but not earlier than
743 the name def statement. */
744 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
745 if (!fndecl)
746 return false;
747 stmt = gimple_build_call (fndecl, 1, name);
748 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
749 gimple_call_set_lhs (stmt, res);
750
751 def_stmt = SSA_NAME_DEF_STMT (name);
752 if (!SSA_NAME_IS_DEFAULT_DEF (name)
753 && gimple_code (def_stmt) != GIMPLE_PHI
754 && gimple_bb (def_stmt) == top_bb)
755 {
756 gsi = gsi_for_stmt (def_stmt);
757 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
758 }
759 else
760 {
761 gsi = gsi_after_labels (top_bb);
762 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
763 }
764 sincos_stats.inserted++;
765
766 /* And adjust the recorded old call sites. */
767 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
768 {
769 tree rhs = NULL;
770 fndecl = gimple_call_fndecl (use_stmt);
771
772 switch (DECL_FUNCTION_CODE (fndecl))
773 {
774 CASE_FLT_FN (BUILT_IN_COS):
775 rhs = fold_build1 (REALPART_EXPR, type, res);
776 break;
777
778 CASE_FLT_FN (BUILT_IN_SIN):
779 rhs = fold_build1 (IMAGPART_EXPR, type, res);
780 break;
781
782 CASE_FLT_FN (BUILT_IN_CEXPI):
783 rhs = res;
784 break;
785
786 default:;
787 gcc_unreachable ();
788 }
789
790 /* Replace call with a copy. */
791 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
792
793 gsi = gsi_for_stmt (use_stmt);
794 gsi_replace (&gsi, stmt, true);
795 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
796 cfg_changed = true;
797 }
798
799 VEC_free(gimple, heap, stmts);
800
801 return cfg_changed;
802 }
803
804 /* To evaluate powi(x,n), the floating point value x raised to the
805 constant integer exponent n, we use a hybrid algorithm that
806 combines the "window method" with look-up tables. For an
807 introduction to exponentiation algorithms and "addition chains",
808 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
809 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
810 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
811 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
812
813 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
814 multiplications to inline before calling the system library's pow
815 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
816 so this default never requires calling pow, powf or powl. */
817
818 #ifndef POWI_MAX_MULTS
819 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
820 #endif
821
822 /* The size of the "optimal power tree" lookup table. All
823 exponents less than this value are simply looked up in the
824 powi_table below. This threshold is also used to size the
825 cache of pseudo registers that hold intermediate results. */
826 #define POWI_TABLE_SIZE 256
827
828 /* The size, in bits of the window, used in the "window method"
829 exponentiation algorithm. This is equivalent to a radix of
830 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
831 #define POWI_WINDOW_SIZE 3
832
833 /* The following table is an efficient representation of an
834 "optimal power tree". For each value, i, the corresponding
835 value, j, in the table states than an optimal evaluation
836 sequence for calculating pow(x,i) can be found by evaluating
837 pow(x,j)*pow(x,i-j). An optimal power tree for the first
838 100 integers is given in Knuth's "Seminumerical algorithms". */
839
840 static const unsigned char powi_table[POWI_TABLE_SIZE] =
841 {
842 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
843 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
844 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
845 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
846 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
847 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
848 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
849 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
850 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
851 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
852 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
853 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
854 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
855 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
856 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
857 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
858 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
859 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
860 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
861 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
862 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
863 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
864 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
865 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
866 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
867 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
868 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
869 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
870 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
871 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
872 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
873 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
874 };
875
876
877 /* Return the number of multiplications required to calculate
878 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
879 subroutine of powi_cost. CACHE is an array indicating
880 which exponents have already been calculated. */
881
882 static int
883 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
884 {
885 /* If we've already calculated this exponent, then this evaluation
886 doesn't require any additional multiplications. */
887 if (cache[n])
888 return 0;
889
890 cache[n] = true;
891 return powi_lookup_cost (n - powi_table[n], cache)
892 + powi_lookup_cost (powi_table[n], cache) + 1;
893 }
894
895 /* Return the number of multiplications required to calculate
896 powi(x,n) for an arbitrary x, given the exponent N. This
897 function needs to be kept in sync with powi_as_mults below. */
898
899 static int
900 powi_cost (HOST_WIDE_INT n)
901 {
902 bool cache[POWI_TABLE_SIZE];
903 unsigned HOST_WIDE_INT digit;
904 unsigned HOST_WIDE_INT val;
905 int result;
906
907 if (n == 0)
908 return 0;
909
910 /* Ignore the reciprocal when calculating the cost. */
911 val = (n < 0) ? -n : n;
912
913 /* Initialize the exponent cache. */
914 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
915 cache[1] = true;
916
917 result = 0;
918
919 while (val >= POWI_TABLE_SIZE)
920 {
921 if (val & 1)
922 {
923 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
924 result += powi_lookup_cost (digit, cache)
925 + POWI_WINDOW_SIZE + 1;
926 val >>= POWI_WINDOW_SIZE;
927 }
928 else
929 {
930 val >>= 1;
931 result++;
932 }
933 }
934
935 return result + powi_lookup_cost (val, cache);
936 }
937
938 /* Recursive subroutine of powi_as_mults. This function takes the
939 array, CACHE, of already calculated exponents and an exponent N and
940 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
941
942 static tree
943 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
944 HOST_WIDE_INT n, tree *cache)
945 {
946 tree op0, op1, ssa_target;
947 unsigned HOST_WIDE_INT digit;
948 gimple mult_stmt;
949
950 if (n < POWI_TABLE_SIZE && cache[n])
951 return cache[n];
952
953 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
954
955 if (n < POWI_TABLE_SIZE)
956 {
957 cache[n] = ssa_target;
958 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
959 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
960 }
961 else if (n & 1)
962 {
963 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
964 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
965 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
966 }
967 else
968 {
969 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
970 op1 = op0;
971 }
972
973 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
974 gimple_set_location (mult_stmt, loc);
975 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
976
977 return ssa_target;
978 }
979
980 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
981 This function needs to be kept in sync with powi_cost above. */
982
983 static tree
984 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
985 tree arg0, HOST_WIDE_INT n)
986 {
987 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
988 gimple div_stmt;
989 tree target;
990
991 if (n == 0)
992 return build_real (type, dconst1);
993
994 memset (cache, 0, sizeof (cache));
995 cache[1] = arg0;
996
997 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
998 if (n >= 0)
999 return result;
1000
1001 /* If the original exponent was negative, reciprocate the result. */
1002 target = make_temp_ssa_name (type, NULL, "powmult");
1003 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1004 build_real (type, dconst1),
1005 result);
1006 gimple_set_location (div_stmt, loc);
1007 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1008
1009 return target;
1010 }
1011
1012 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1013 location info LOC. If the arguments are appropriate, create an
1014 equivalent sequence of statements prior to GSI using an optimal
1015 number of multiplications, and return an expession holding the
1016 result. */
1017
1018 static tree
1019 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1020 tree arg0, HOST_WIDE_INT n)
1021 {
1022 /* Avoid largest negative number. */
1023 if (n != -n
1024 && ((n >= -1 && n <= 2)
1025 || (optimize_function_for_speed_p (cfun)
1026 && powi_cost (n) <= POWI_MAX_MULTS)))
1027 return powi_as_mults (gsi, loc, arg0, n);
1028
1029 return NULL_TREE;
1030 }
1031
1032 /* Build a gimple call statement that calls FN with argument ARG.
1033 Set the lhs of the call statement to a fresh SSA name. Insert the
1034 statement prior to GSI's current position, and return the fresh
1035 SSA name. */
1036
1037 static tree
1038 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1039 tree fn, tree arg)
1040 {
1041 gimple call_stmt;
1042 tree ssa_target;
1043
1044 call_stmt = gimple_build_call (fn, 1, arg);
1045 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1046 gimple_set_lhs (call_stmt, ssa_target);
1047 gimple_set_location (call_stmt, loc);
1048 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1049
1050 return ssa_target;
1051 }
1052
1053 /* Build a gimple binary operation with the given CODE and arguments
1054 ARG0, ARG1, assigning the result to a new SSA name for variable
1055 TARGET. Insert the statement prior to GSI's current position, and
1056 return the fresh SSA name.*/
1057
1058 static tree
1059 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1060 const char *name, enum tree_code code,
1061 tree arg0, tree arg1)
1062 {
1063 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1064 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1065 gimple_set_location (stmt, loc);
1066 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1067 return result;
1068 }
1069
1070 /* Build a gimple reference operation with the given CODE and argument
1071 ARG, assigning the result to a new SSA name of TYPE with NAME.
1072 Insert the statement prior to GSI's current position, and return
1073 the fresh SSA name. */
1074
1075 static inline tree
1076 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1077 const char *name, enum tree_code code, tree arg0)
1078 {
1079 tree result = make_temp_ssa_name (type, NULL, name);
1080 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1081 gimple_set_location (stmt, loc);
1082 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1083 return result;
1084 }
1085
1086 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1087 prior to GSI's current position, and return the fresh SSA name. */
1088
1089 static tree
1090 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1091 tree type, tree val)
1092 {
1093 tree result = make_ssa_name (type, NULL);
1094 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1095 gimple_set_location (stmt, loc);
1096 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1097 return result;
1098 }
1099
1100 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1101 with location info LOC. If possible, create an equivalent and
1102 less expensive sequence of statements prior to GSI, and return an
1103 expession holding the result. */
1104
1105 static tree
1106 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1107 tree arg0, tree arg1)
1108 {
1109 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1110 REAL_VALUE_TYPE c2, dconst3;
1111 HOST_WIDE_INT n;
1112 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1113 enum machine_mode mode;
1114 bool hw_sqrt_exists;
1115
1116 /* If the exponent isn't a constant, there's nothing of interest
1117 to be done. */
1118 if (TREE_CODE (arg1) != REAL_CST)
1119 return NULL_TREE;
1120
1121 /* If the exponent is equivalent to an integer, expand to an optimal
1122 multiplication sequence when profitable. */
1123 c = TREE_REAL_CST (arg1);
1124 n = real_to_integer (&c);
1125 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1126
1127 if (real_identical (&c, &cint)
1128 && ((n >= -1 && n <= 2)
1129 || (flag_unsafe_math_optimizations
1130 && optimize_insn_for_speed_p ()
1131 && powi_cost (n) <= POWI_MAX_MULTS)))
1132 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1133
1134 /* Attempt various optimizations using sqrt and cbrt. */
1135 type = TREE_TYPE (arg0);
1136 mode = TYPE_MODE (type);
1137 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1138
1139 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1140 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1141 sqrt(-0) = -0. */
1142 if (sqrtfn
1143 && REAL_VALUES_EQUAL (c, dconsthalf)
1144 && !HONOR_SIGNED_ZEROS (mode))
1145 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1146
1147 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1148 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1149 so do this optimization even if -Os. Don't do this optimization
1150 if we don't have a hardware sqrt insn. */
1151 dconst1_4 = dconst1;
1152 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1153 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1154
1155 if (flag_unsafe_math_optimizations
1156 && sqrtfn
1157 && REAL_VALUES_EQUAL (c, dconst1_4)
1158 && hw_sqrt_exists)
1159 {
1160 /* sqrt(x) */
1161 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1162
1163 /* sqrt(sqrt(x)) */
1164 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1165 }
1166
1167 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1168 optimizing for space. Don't do this optimization if we don't have
1169 a hardware sqrt insn. */
1170 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1171 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1172
1173 if (flag_unsafe_math_optimizations
1174 && sqrtfn
1175 && optimize_function_for_speed_p (cfun)
1176 && REAL_VALUES_EQUAL (c, dconst3_4)
1177 && hw_sqrt_exists)
1178 {
1179 /* sqrt(x) */
1180 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1181
1182 /* sqrt(sqrt(x)) */
1183 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1184
1185 /* sqrt(x) * sqrt(sqrt(x)) */
1186 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1187 sqrt_arg0, sqrt_sqrt);
1188 }
1189
1190 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1191 optimizations since 1./3. is not exactly representable. If x
1192 is negative and finite, the correct value of pow(x,1./3.) is
1193 a NaN with the "invalid" exception raised, because the value
1194 of 1./3. actually has an even denominator. The correct value
1195 of cbrt(x) is a negative real value. */
1196 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1197 dconst1_3 = real_value_truncate (mode, dconst_third ());
1198
1199 if (flag_unsafe_math_optimizations
1200 && cbrtfn
1201 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1202 && REAL_VALUES_EQUAL (c, dconst1_3))
1203 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1204
1205 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1206 if we don't have a hardware sqrt insn. */
1207 dconst1_6 = dconst1_3;
1208 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1209
1210 if (flag_unsafe_math_optimizations
1211 && sqrtfn
1212 && cbrtfn
1213 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1214 && optimize_function_for_speed_p (cfun)
1215 && hw_sqrt_exists
1216 && REAL_VALUES_EQUAL (c, dconst1_6))
1217 {
1218 /* sqrt(x) */
1219 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1220
1221 /* cbrt(sqrt(x)) */
1222 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1223 }
1224
1225 /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1226
1227 sqrt(x) * powi(x, n/2), n > 0;
1228 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1229
1230 Do not calculate the powi factor when n/2 = 0. */
1231 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1232 n = real_to_integer (&c2);
1233 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1234
1235 if (flag_unsafe_math_optimizations
1236 && sqrtfn
1237 && real_identical (&c2, &cint))
1238 {
1239 tree powi_x_ndiv2 = NULL_TREE;
1240
1241 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1242 possible or profitable, give up. Skip the degenerate case when
1243 n is 1 or -1, where the result is always 1. */
1244 if (absu_hwi (n) != 1)
1245 {
1246 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1247 abs_hwi (n / 2));
1248 if (!powi_x_ndiv2)
1249 return NULL_TREE;
1250 }
1251
1252 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1253 result of the optimal multiply sequence just calculated. */
1254 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1255
1256 if (absu_hwi (n) == 1)
1257 result = sqrt_arg0;
1258 else
1259 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1260 sqrt_arg0, powi_x_ndiv2);
1261
1262 /* If n is negative, reciprocate the result. */
1263 if (n < 0)
1264 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1265 build_real (type, dconst1), result);
1266 return result;
1267 }
1268
1269 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1270
1271 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1272 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1273
1274 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1275 different from pow(x, 1./3.) due to rounding and behavior with
1276 negative x, we need to constrain this transformation to unsafe
1277 math and positive x or finite math. */
1278 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1279 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1280 real_round (&c2, mode, &c2);
1281 n = real_to_integer (&c2);
1282 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1283 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1284 real_convert (&c2, mode, &c2);
1285
1286 if (flag_unsafe_math_optimizations
1287 && cbrtfn
1288 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1289 && real_identical (&c2, &c)
1290 && optimize_function_for_speed_p (cfun)
1291 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1292 {
1293 tree powi_x_ndiv3 = NULL_TREE;
1294
1295 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1296 possible or profitable, give up. Skip the degenerate case when
1297 abs(n) < 3, where the result is always 1. */
1298 if (absu_hwi (n) >= 3)
1299 {
1300 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1301 abs_hwi (n / 3));
1302 if (!powi_x_ndiv3)
1303 return NULL_TREE;
1304 }
1305
1306 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1307 as that creates an unnecessary variable. Instead, just produce
1308 either cbrt(x) or cbrt(x) * cbrt(x). */
1309 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1310
1311 if (absu_hwi (n) % 3 == 1)
1312 powi_cbrt_x = cbrt_x;
1313 else
1314 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1315 cbrt_x, cbrt_x);
1316
1317 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1318 if (absu_hwi (n) < 3)
1319 result = powi_cbrt_x;
1320 else
1321 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1322 powi_x_ndiv3, powi_cbrt_x);
1323
1324 /* If n is negative, reciprocate the result. */
1325 if (n < 0)
1326 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1327 build_real (type, dconst1), result);
1328
1329 return result;
1330 }
1331
1332 /* No optimizations succeeded. */
1333 return NULL_TREE;
1334 }
1335
1336 /* ARG is the argument to a cabs builtin call in GSI with location info
1337 LOC. Create a sequence of statements prior to GSI that calculates
1338 sqrt(R*R + I*I), where R and I are the real and imaginary components
1339 of ARG, respectively. Return an expression holding the result. */
1340
1341 static tree
1342 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1343 {
1344 tree real_part, imag_part, addend1, addend2, sum, result;
1345 tree type = TREE_TYPE (TREE_TYPE (arg));
1346 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1347 enum machine_mode mode = TYPE_MODE (type);
1348
1349 if (!flag_unsafe_math_optimizations
1350 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1351 || !sqrtfn
1352 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1353 return NULL_TREE;
1354
1355 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1356 REALPART_EXPR, arg);
1357 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1358 real_part, real_part);
1359 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1360 IMAGPART_EXPR, arg);
1361 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1362 imag_part, imag_part);
1363 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1364 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1365
1366 return result;
1367 }
1368
1369 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1370 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1371 an optimal number of multiplies, when n is a constant. */
1372
1373 static unsigned int
1374 execute_cse_sincos (void)
1375 {
1376 basic_block bb;
1377 bool cfg_changed = false;
1378
1379 calculate_dominance_info (CDI_DOMINATORS);
1380 memset (&sincos_stats, 0, sizeof (sincos_stats));
1381
1382 FOR_EACH_BB (bb)
1383 {
1384 gimple_stmt_iterator gsi;
1385 bool cleanup_eh = false;
1386
1387 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1388 {
1389 gimple stmt = gsi_stmt (gsi);
1390 tree fndecl;
1391
1392 /* Only the last stmt in a bb could throw, no need to call
1393 gimple_purge_dead_eh_edges if we change something in the middle
1394 of a basic block. */
1395 cleanup_eh = false;
1396
1397 if (is_gimple_call (stmt)
1398 && gimple_call_lhs (stmt)
1399 && (fndecl = gimple_call_fndecl (stmt))
1400 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1401 {
1402 tree arg, arg0, arg1, result;
1403 HOST_WIDE_INT n;
1404 location_t loc;
1405
1406 switch (DECL_FUNCTION_CODE (fndecl))
1407 {
1408 CASE_FLT_FN (BUILT_IN_COS):
1409 CASE_FLT_FN (BUILT_IN_SIN):
1410 CASE_FLT_FN (BUILT_IN_CEXPI):
1411 /* Make sure we have either sincos or cexp. */
1412 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1413 break;
1414
1415 arg = gimple_call_arg (stmt, 0);
1416 if (TREE_CODE (arg) == SSA_NAME)
1417 cfg_changed |= execute_cse_sincos_1 (arg);
1418 break;
1419
1420 CASE_FLT_FN (BUILT_IN_POW):
1421 arg0 = gimple_call_arg (stmt, 0);
1422 arg1 = gimple_call_arg (stmt, 1);
1423
1424 loc = gimple_location (stmt);
1425 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1426
1427 if (result)
1428 {
1429 tree lhs = gimple_get_lhs (stmt);
1430 gimple new_stmt = gimple_build_assign (lhs, result);
1431 gimple_set_location (new_stmt, loc);
1432 unlink_stmt_vdef (stmt);
1433 gsi_replace (&gsi, new_stmt, true);
1434 cleanup_eh = true;
1435 if (gimple_vdef (stmt))
1436 release_ssa_name (gimple_vdef (stmt));
1437 }
1438 break;
1439
1440 CASE_FLT_FN (BUILT_IN_POWI):
1441 arg0 = gimple_call_arg (stmt, 0);
1442 arg1 = gimple_call_arg (stmt, 1);
1443 if (!host_integerp (arg1, 0))
1444 break;
1445
1446 n = TREE_INT_CST_LOW (arg1);
1447 loc = gimple_location (stmt);
1448 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1449
1450 if (result)
1451 {
1452 tree lhs = gimple_get_lhs (stmt);
1453 gimple new_stmt = gimple_build_assign (lhs, result);
1454 gimple_set_location (new_stmt, loc);
1455 unlink_stmt_vdef (stmt);
1456 gsi_replace (&gsi, new_stmt, true);
1457 cleanup_eh = true;
1458 if (gimple_vdef (stmt))
1459 release_ssa_name (gimple_vdef (stmt));
1460 }
1461 break;
1462
1463 CASE_FLT_FN (BUILT_IN_CABS):
1464 arg0 = gimple_call_arg (stmt, 0);
1465 loc = gimple_location (stmt);
1466 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1467
1468 if (result)
1469 {
1470 tree lhs = gimple_get_lhs (stmt);
1471 gimple new_stmt = gimple_build_assign (lhs, result);
1472 gimple_set_location (new_stmt, loc);
1473 unlink_stmt_vdef (stmt);
1474 gsi_replace (&gsi, new_stmt, true);
1475 cleanup_eh = true;
1476 if (gimple_vdef (stmt))
1477 release_ssa_name (gimple_vdef (stmt));
1478 }
1479 break;
1480
1481 default:;
1482 }
1483 }
1484 }
1485 if (cleanup_eh)
1486 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1487 }
1488
1489 statistics_counter_event (cfun, "sincos statements inserted",
1490 sincos_stats.inserted);
1491
1492 free_dominance_info (CDI_DOMINATORS);
1493 return cfg_changed ? TODO_cleanup_cfg : 0;
1494 }
1495
1496 static bool
1497 gate_cse_sincos (void)
1498 {
1499 /* We no longer require either sincos or cexp, since powi expansion
1500 piggybacks on this pass. */
1501 return optimize;
1502 }
1503
1504 struct gimple_opt_pass pass_cse_sincos =
1505 {
1506 {
1507 GIMPLE_PASS,
1508 "sincos", /* name */
1509 OPTGROUP_NONE, /* optinfo_flags */
1510 gate_cse_sincos, /* gate */
1511 execute_cse_sincos, /* execute */
1512 NULL, /* sub */
1513 NULL, /* next */
1514 0, /* static_pass_number */
1515 TV_NONE, /* tv_id */
1516 PROP_ssa, /* properties_required */
1517 0, /* properties_provided */
1518 0, /* properties_destroyed */
1519 0, /* todo_flags_start */
1520 TODO_update_ssa | TODO_verify_ssa
1521 | TODO_verify_stmts /* todo_flags_finish */
1522 }
1523 };
1524
1525 /* A symbolic number is used to detect byte permutation and selection
1526 patterns. Therefore the field N contains an artificial number
1527 consisting of byte size markers:
1528
1529 0 - byte has the value 0
1530 1..size - byte contains the content of the byte
1531 number indexed with that value minus one */
1532
1533 struct symbolic_number {
1534 unsigned HOST_WIDEST_INT n;
1535 int size;
1536 };
1537
1538 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1539 number N. Return false if the requested operation is not permitted
1540 on a symbolic number. */
1541
1542 static inline bool
1543 do_shift_rotate (enum tree_code code,
1544 struct symbolic_number *n,
1545 int count)
1546 {
1547 if (count % 8 != 0)
1548 return false;
1549
1550 /* Zero out the extra bits of N in order to avoid them being shifted
1551 into the significant bits. */
1552 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1553 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1554
1555 switch (code)
1556 {
1557 case LSHIFT_EXPR:
1558 n->n <<= count;
1559 break;
1560 case RSHIFT_EXPR:
1561 n->n >>= count;
1562 break;
1563 case LROTATE_EXPR:
1564 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1565 break;
1566 case RROTATE_EXPR:
1567 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1568 break;
1569 default:
1570 return false;
1571 }
1572 /* Zero unused bits for size. */
1573 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1574 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1575 return true;
1576 }
1577
1578 /* Perform sanity checking for the symbolic number N and the gimple
1579 statement STMT. */
1580
1581 static inline bool
1582 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1583 {
1584 tree lhs_type;
1585
1586 lhs_type = gimple_expr_type (stmt);
1587
1588 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1589 return false;
1590
1591 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1592 return false;
1593
1594 return true;
1595 }
1596
1597 /* find_bswap_1 invokes itself recursively with N and tries to perform
1598 the operation given by the rhs of STMT on the result. If the
1599 operation could successfully be executed the function returns the
1600 tree expression of the source operand and NULL otherwise. */
1601
1602 static tree
1603 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1604 {
1605 enum tree_code code;
1606 tree rhs1, rhs2 = NULL;
1607 gimple rhs1_stmt, rhs2_stmt;
1608 tree source_expr1;
1609 enum gimple_rhs_class rhs_class;
1610
1611 if (!limit || !is_gimple_assign (stmt))
1612 return NULL_TREE;
1613
1614 rhs1 = gimple_assign_rhs1 (stmt);
1615
1616 if (TREE_CODE (rhs1) != SSA_NAME)
1617 return NULL_TREE;
1618
1619 code = gimple_assign_rhs_code (stmt);
1620 rhs_class = gimple_assign_rhs_class (stmt);
1621 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1622
1623 if (rhs_class == GIMPLE_BINARY_RHS)
1624 rhs2 = gimple_assign_rhs2 (stmt);
1625
1626 /* Handle unary rhs and binary rhs with integer constants as second
1627 operand. */
1628
1629 if (rhs_class == GIMPLE_UNARY_RHS
1630 || (rhs_class == GIMPLE_BINARY_RHS
1631 && TREE_CODE (rhs2) == INTEGER_CST))
1632 {
1633 if (code != BIT_AND_EXPR
1634 && code != LSHIFT_EXPR
1635 && code != RSHIFT_EXPR
1636 && code != LROTATE_EXPR
1637 && code != RROTATE_EXPR
1638 && code != NOP_EXPR
1639 && code != CONVERT_EXPR)
1640 return NULL_TREE;
1641
1642 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1643
1644 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1645 to initialize the symbolic number. */
1646 if (!source_expr1)
1647 {
1648 /* Set up the symbolic number N by setting each byte to a
1649 value between 1 and the byte size of rhs1. The highest
1650 order byte is set to n->size and the lowest order
1651 byte to 1. */
1652 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1653 if (n->size % BITS_PER_UNIT != 0)
1654 return NULL_TREE;
1655 n->size /= BITS_PER_UNIT;
1656 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1657 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1658
1659 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1660 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1661 (n->size * BITS_PER_UNIT)) - 1;
1662
1663 source_expr1 = rhs1;
1664 }
1665
1666 switch (code)
1667 {
1668 case BIT_AND_EXPR:
1669 {
1670 int i;
1671 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1672 unsigned HOST_WIDEST_INT tmp = val;
1673
1674 /* Only constants masking full bytes are allowed. */
1675 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1676 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1677 return NULL_TREE;
1678
1679 n->n &= val;
1680 }
1681 break;
1682 case LSHIFT_EXPR:
1683 case RSHIFT_EXPR:
1684 case LROTATE_EXPR:
1685 case RROTATE_EXPR:
1686 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1687 return NULL_TREE;
1688 break;
1689 CASE_CONVERT:
1690 {
1691 int type_size;
1692
1693 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1694 if (type_size % BITS_PER_UNIT != 0)
1695 return NULL_TREE;
1696
1697 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1698 {
1699 /* If STMT casts to a smaller type mask out the bits not
1700 belonging to the target type. */
1701 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1702 }
1703 n->size = type_size / BITS_PER_UNIT;
1704 }
1705 break;
1706 default:
1707 return NULL_TREE;
1708 };
1709 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1710 }
1711
1712 /* Handle binary rhs. */
1713
1714 if (rhs_class == GIMPLE_BINARY_RHS)
1715 {
1716 struct symbolic_number n1, n2;
1717 tree source_expr2;
1718
1719 if (code != BIT_IOR_EXPR)
1720 return NULL_TREE;
1721
1722 if (TREE_CODE (rhs2) != SSA_NAME)
1723 return NULL_TREE;
1724
1725 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1726
1727 switch (code)
1728 {
1729 case BIT_IOR_EXPR:
1730 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1731
1732 if (!source_expr1)
1733 return NULL_TREE;
1734
1735 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1736
1737 if (source_expr1 != source_expr2
1738 || n1.size != n2.size)
1739 return NULL_TREE;
1740
1741 n->size = n1.size;
1742 n->n = n1.n | n2.n;
1743
1744 if (!verify_symbolic_number_p (n, stmt))
1745 return NULL_TREE;
1746
1747 break;
1748 default:
1749 return NULL_TREE;
1750 }
1751 return source_expr1;
1752 }
1753 return NULL_TREE;
1754 }
1755
1756 /* Check if STMT completes a bswap implementation consisting of ORs,
1757 SHIFTs and ANDs. Return the source tree expression on which the
1758 byte swap is performed and NULL if no bswap was found. */
1759
1760 static tree
1761 find_bswap (gimple stmt)
1762 {
1763 /* The number which the find_bswap result should match in order to
1764 have a full byte swap. The number is shifted to the left according
1765 to the size of the symbolic number before using it. */
1766 unsigned HOST_WIDEST_INT cmp =
1767 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1768 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1769
1770 struct symbolic_number n;
1771 tree source_expr;
1772 int limit;
1773
1774 /* The last parameter determines the depth search limit. It usually
1775 correlates directly to the number of bytes to be touched. We
1776 increase that number by three here in order to also
1777 cover signed -> unsigned converions of the src operand as can be seen
1778 in libgcc, and for initial shift/and operation of the src operand. */
1779 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1780 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1781 source_expr = find_bswap_1 (stmt, &n, limit);
1782
1783 if (!source_expr)
1784 return NULL_TREE;
1785
1786 /* Zero out the extra bits of N and CMP. */
1787 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1788 {
1789 unsigned HOST_WIDEST_INT mask =
1790 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1791
1792 n.n &= mask;
1793 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
1794 }
1795
1796 /* A complete byte swap should make the symbolic number to start
1797 with the largest digit in the highest order byte. */
1798 if (cmp != n.n)
1799 return NULL_TREE;
1800
1801 return source_expr;
1802 }
1803
1804 /* Find manual byte swap implementations and turn them into a bswap
1805 builtin invokation. */
1806
1807 static unsigned int
1808 execute_optimize_bswap (void)
1809 {
1810 basic_block bb;
1811 bool bswap16_p, bswap32_p, bswap64_p;
1812 bool changed = false;
1813 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1814
1815 if (BITS_PER_UNIT != 8)
1816 return 0;
1817
1818 if (sizeof (HOST_WIDEST_INT) < 8)
1819 return 0;
1820
1821 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1822 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1823 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1824 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1825 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1826 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1827 || (bswap32_p && word_mode == SImode)));
1828
1829 if (!bswap16_p && !bswap32_p && !bswap64_p)
1830 return 0;
1831
1832 /* Determine the argument type of the builtins. The code later on
1833 assumes that the return and argument type are the same. */
1834 if (bswap16_p)
1835 {
1836 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1837 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1838 }
1839
1840 if (bswap32_p)
1841 {
1842 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1843 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1844 }
1845
1846 if (bswap64_p)
1847 {
1848 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1849 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1850 }
1851
1852 memset (&bswap_stats, 0, sizeof (bswap_stats));
1853
1854 FOR_EACH_BB (bb)
1855 {
1856 gimple_stmt_iterator gsi;
1857
1858 /* We do a reverse scan for bswap patterns to make sure we get the
1859 widest match. As bswap pattern matching doesn't handle
1860 previously inserted smaller bswap replacements as sub-
1861 patterns, the wider variant wouldn't be detected. */
1862 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1863 {
1864 gimple stmt = gsi_stmt (gsi);
1865 tree bswap_src, bswap_type;
1866 tree bswap_tmp;
1867 tree fndecl = NULL_TREE;
1868 int type_size;
1869 gimple call;
1870
1871 if (!is_gimple_assign (stmt)
1872 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1873 continue;
1874
1875 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1876
1877 switch (type_size)
1878 {
1879 case 16:
1880 if (bswap16_p)
1881 {
1882 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1883 bswap_type = bswap16_type;
1884 }
1885 break;
1886 case 32:
1887 if (bswap32_p)
1888 {
1889 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1890 bswap_type = bswap32_type;
1891 }
1892 break;
1893 case 64:
1894 if (bswap64_p)
1895 {
1896 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1897 bswap_type = bswap64_type;
1898 }
1899 break;
1900 default:
1901 continue;
1902 }
1903
1904 if (!fndecl)
1905 continue;
1906
1907 bswap_src = find_bswap (stmt);
1908
1909 if (!bswap_src)
1910 continue;
1911
1912 changed = true;
1913 if (type_size == 16)
1914 bswap_stats.found_16bit++;
1915 else if (type_size == 32)
1916 bswap_stats.found_32bit++;
1917 else
1918 bswap_stats.found_64bit++;
1919
1920 bswap_tmp = bswap_src;
1921
1922 /* Convert the src expression if necessary. */
1923 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1924 {
1925 gimple convert_stmt;
1926 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
1927 convert_stmt = gimple_build_assign_with_ops
1928 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
1929 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1930 }
1931
1932 call = gimple_build_call (fndecl, 1, bswap_tmp);
1933
1934 bswap_tmp = gimple_assign_lhs (stmt);
1935
1936 /* Convert the result if necessary. */
1937 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1938 {
1939 gimple convert_stmt;
1940 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
1941 convert_stmt = gimple_build_assign_with_ops
1942 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1943 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1944 }
1945
1946 gimple_call_set_lhs (call, bswap_tmp);
1947
1948 if (dump_file)
1949 {
1950 fprintf (dump_file, "%d bit bswap implementation found at: ",
1951 (int)type_size);
1952 print_gimple_stmt (dump_file, stmt, 0, 0);
1953 }
1954
1955 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1956 gsi_remove (&gsi, true);
1957 }
1958 }
1959
1960 statistics_counter_event (cfun, "16-bit bswap implementations found",
1961 bswap_stats.found_16bit);
1962 statistics_counter_event (cfun, "32-bit bswap implementations found",
1963 bswap_stats.found_32bit);
1964 statistics_counter_event (cfun, "64-bit bswap implementations found",
1965 bswap_stats.found_64bit);
1966
1967 return (changed ? TODO_update_ssa | TODO_verify_ssa
1968 | TODO_verify_stmts : 0);
1969 }
1970
1971 static bool
1972 gate_optimize_bswap (void)
1973 {
1974 return flag_expensive_optimizations && optimize;
1975 }
1976
1977 struct gimple_opt_pass pass_optimize_bswap =
1978 {
1979 {
1980 GIMPLE_PASS,
1981 "bswap", /* name */
1982 OPTGROUP_NONE, /* optinfo_flags */
1983 gate_optimize_bswap, /* gate */
1984 execute_optimize_bswap, /* execute */
1985 NULL, /* sub */
1986 NULL, /* next */
1987 0, /* static_pass_number */
1988 TV_NONE, /* tv_id */
1989 PROP_ssa, /* properties_required */
1990 0, /* properties_provided */
1991 0, /* properties_destroyed */
1992 0, /* todo_flags_start */
1993 0 /* todo_flags_finish */
1994 }
1995 };
1996
1997 /* Return true if stmt is a type conversion operation that can be stripped
1998 when used in a widening multiply operation. */
1999 static bool
2000 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2001 {
2002 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2003
2004 if (TREE_CODE (result_type) == INTEGER_TYPE)
2005 {
2006 tree op_type;
2007 tree inner_op_type;
2008
2009 if (!CONVERT_EXPR_CODE_P (rhs_code))
2010 return false;
2011
2012 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2013
2014 /* If the type of OP has the same precision as the result, then
2015 we can strip this conversion. The multiply operation will be
2016 selected to create the correct extension as a by-product. */
2017 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2018 return true;
2019
2020 /* We can also strip a conversion if it preserves the signed-ness of
2021 the operation and doesn't narrow the range. */
2022 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2023
2024 /* If the inner-most type is unsigned, then we can strip any
2025 intermediate widening operation. If it's signed, then the
2026 intermediate widening operation must also be signed. */
2027 if ((TYPE_UNSIGNED (inner_op_type)
2028 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2029 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2030 return true;
2031
2032 return false;
2033 }
2034
2035 return rhs_code == FIXED_CONVERT_EXPR;
2036 }
2037
2038 /* Return true if RHS is a suitable operand for a widening multiplication,
2039 assuming a target type of TYPE.
2040 There are two cases:
2041
2042 - RHS makes some value at least twice as wide. Store that value
2043 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2044
2045 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2046 but leave *TYPE_OUT untouched. */
2047
2048 static bool
2049 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2050 tree *new_rhs_out)
2051 {
2052 gimple stmt;
2053 tree type1, rhs1;
2054
2055 if (TREE_CODE (rhs) == SSA_NAME)
2056 {
2057 stmt = SSA_NAME_DEF_STMT (rhs);
2058 if (is_gimple_assign (stmt))
2059 {
2060 if (! widening_mult_conversion_strippable_p (type, stmt))
2061 rhs1 = rhs;
2062 else
2063 {
2064 rhs1 = gimple_assign_rhs1 (stmt);
2065
2066 if (TREE_CODE (rhs1) == INTEGER_CST)
2067 {
2068 *new_rhs_out = rhs1;
2069 *type_out = NULL;
2070 return true;
2071 }
2072 }
2073 }
2074 else
2075 rhs1 = rhs;
2076
2077 type1 = TREE_TYPE (rhs1);
2078
2079 if (TREE_CODE (type1) != TREE_CODE (type)
2080 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2081 return false;
2082
2083 *new_rhs_out = rhs1;
2084 *type_out = type1;
2085 return true;
2086 }
2087
2088 if (TREE_CODE (rhs) == INTEGER_CST)
2089 {
2090 *new_rhs_out = rhs;
2091 *type_out = NULL;
2092 return true;
2093 }
2094
2095 return false;
2096 }
2097
2098 /* Return true if STMT performs a widening multiplication, assuming the
2099 output type is TYPE. If so, store the unwidened types of the operands
2100 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2101 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2102 and *TYPE2_OUT would give the operands of the multiplication. */
2103
2104 static bool
2105 is_widening_mult_p (gimple stmt,
2106 tree *type1_out, tree *rhs1_out,
2107 tree *type2_out, tree *rhs2_out)
2108 {
2109 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2110
2111 if (TREE_CODE (type) != INTEGER_TYPE
2112 && TREE_CODE (type) != FIXED_POINT_TYPE)
2113 return false;
2114
2115 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2116 rhs1_out))
2117 return false;
2118
2119 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2120 rhs2_out))
2121 return false;
2122
2123 if (*type1_out == NULL)
2124 {
2125 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2126 return false;
2127 *type1_out = *type2_out;
2128 }
2129
2130 if (*type2_out == NULL)
2131 {
2132 if (!int_fits_type_p (*rhs2_out, *type1_out))
2133 return false;
2134 *type2_out = *type1_out;
2135 }
2136
2137 /* Ensure that the larger of the two operands comes first. */
2138 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2139 {
2140 tree tmp;
2141 tmp = *type1_out;
2142 *type1_out = *type2_out;
2143 *type2_out = tmp;
2144 tmp = *rhs1_out;
2145 *rhs1_out = *rhs2_out;
2146 *rhs2_out = tmp;
2147 }
2148
2149 return true;
2150 }
2151
2152 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2153 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2154 value is true iff we converted the statement. */
2155
2156 static bool
2157 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2158 {
2159 tree lhs, rhs1, rhs2, type, type1, type2;
2160 enum insn_code handler;
2161 enum machine_mode to_mode, from_mode, actual_mode;
2162 optab op;
2163 int actual_precision;
2164 location_t loc = gimple_location (stmt);
2165 bool from_unsigned1, from_unsigned2;
2166
2167 lhs = gimple_assign_lhs (stmt);
2168 type = TREE_TYPE (lhs);
2169 if (TREE_CODE (type) != INTEGER_TYPE)
2170 return false;
2171
2172 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2173 return false;
2174
2175 to_mode = TYPE_MODE (type);
2176 from_mode = TYPE_MODE (type1);
2177 from_unsigned1 = TYPE_UNSIGNED (type1);
2178 from_unsigned2 = TYPE_UNSIGNED (type2);
2179
2180 if (from_unsigned1 && from_unsigned2)
2181 op = umul_widen_optab;
2182 else if (!from_unsigned1 && !from_unsigned2)
2183 op = smul_widen_optab;
2184 else
2185 op = usmul_widen_optab;
2186
2187 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2188 0, &actual_mode);
2189
2190 if (handler == CODE_FOR_nothing)
2191 {
2192 if (op != smul_widen_optab)
2193 {
2194 /* We can use a signed multiply with unsigned types as long as
2195 there is a wider mode to use, or it is the smaller of the two
2196 types that is unsigned. Note that type1 >= type2, always. */
2197 if ((TYPE_UNSIGNED (type1)
2198 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2199 || (TYPE_UNSIGNED (type2)
2200 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2201 {
2202 from_mode = GET_MODE_WIDER_MODE (from_mode);
2203 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2204 return false;
2205 }
2206
2207 op = smul_widen_optab;
2208 handler = find_widening_optab_handler_and_mode (op, to_mode,
2209 from_mode, 0,
2210 &actual_mode);
2211
2212 if (handler == CODE_FOR_nothing)
2213 return false;
2214
2215 from_unsigned1 = from_unsigned2 = false;
2216 }
2217 else
2218 return false;
2219 }
2220
2221 /* Ensure that the inputs to the handler are in the correct precison
2222 for the opcode. This will be the full mode size. */
2223 actual_precision = GET_MODE_PRECISION (actual_mode);
2224 if (2 * actual_precision > TYPE_PRECISION (type))
2225 return false;
2226 if (actual_precision != TYPE_PRECISION (type1)
2227 || from_unsigned1 != TYPE_UNSIGNED (type1))
2228 rhs1 = build_and_insert_cast (gsi, loc,
2229 build_nonstandard_integer_type
2230 (actual_precision, from_unsigned1), rhs1);
2231 if (actual_precision != TYPE_PRECISION (type2)
2232 || from_unsigned2 != TYPE_UNSIGNED (type2))
2233 rhs2 = build_and_insert_cast (gsi, loc,
2234 build_nonstandard_integer_type
2235 (actual_precision, from_unsigned2), rhs2);
2236
2237 /* Handle constants. */
2238 if (TREE_CODE (rhs1) == INTEGER_CST)
2239 rhs1 = fold_convert (type1, rhs1);
2240 if (TREE_CODE (rhs2) == INTEGER_CST)
2241 rhs2 = fold_convert (type2, rhs2);
2242
2243 gimple_assign_set_rhs1 (stmt, rhs1);
2244 gimple_assign_set_rhs2 (stmt, rhs2);
2245 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2246 update_stmt (stmt);
2247 widen_mul_stats.widen_mults_inserted++;
2248 return true;
2249 }
2250
2251 /* Process a single gimple statement STMT, which is found at the
2252 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2253 rhs (given by CODE), and try to convert it into a
2254 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2255 is true iff we converted the statement. */
2256
2257 static bool
2258 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2259 enum tree_code code)
2260 {
2261 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2262 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2263 tree type, type1, type2, optype;
2264 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2265 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2266 optab this_optab;
2267 enum tree_code wmult_code;
2268 enum insn_code handler;
2269 enum machine_mode to_mode, from_mode, actual_mode;
2270 location_t loc = gimple_location (stmt);
2271 int actual_precision;
2272 bool from_unsigned1, from_unsigned2;
2273
2274 lhs = gimple_assign_lhs (stmt);
2275 type = TREE_TYPE (lhs);
2276 if (TREE_CODE (type) != INTEGER_TYPE
2277 && TREE_CODE (type) != FIXED_POINT_TYPE)
2278 return false;
2279
2280 if (code == MINUS_EXPR)
2281 wmult_code = WIDEN_MULT_MINUS_EXPR;
2282 else
2283 wmult_code = WIDEN_MULT_PLUS_EXPR;
2284
2285 rhs1 = gimple_assign_rhs1 (stmt);
2286 rhs2 = gimple_assign_rhs2 (stmt);
2287
2288 if (TREE_CODE (rhs1) == SSA_NAME)
2289 {
2290 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2291 if (is_gimple_assign (rhs1_stmt))
2292 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2293 }
2294
2295 if (TREE_CODE (rhs2) == SSA_NAME)
2296 {
2297 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2298 if (is_gimple_assign (rhs2_stmt))
2299 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2300 }
2301
2302 /* Allow for one conversion statement between the multiply
2303 and addition/subtraction statement. If there are more than
2304 one conversions then we assume they would invalidate this
2305 transformation. If that's not the case then they should have
2306 been folded before now. */
2307 if (CONVERT_EXPR_CODE_P (rhs1_code))
2308 {
2309 conv1_stmt = rhs1_stmt;
2310 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2311 if (TREE_CODE (rhs1) == SSA_NAME)
2312 {
2313 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2314 if (is_gimple_assign (rhs1_stmt))
2315 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2316 }
2317 else
2318 return false;
2319 }
2320 if (CONVERT_EXPR_CODE_P (rhs2_code))
2321 {
2322 conv2_stmt = rhs2_stmt;
2323 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2324 if (TREE_CODE (rhs2) == SSA_NAME)
2325 {
2326 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2327 if (is_gimple_assign (rhs2_stmt))
2328 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2329 }
2330 else
2331 return false;
2332 }
2333
2334 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2335 is_widening_mult_p, but we still need the rhs returns.
2336
2337 It might also appear that it would be sufficient to use the existing
2338 operands of the widening multiply, but that would limit the choice of
2339 multiply-and-accumulate instructions. */
2340 if (code == PLUS_EXPR
2341 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2342 {
2343 if (!is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2344 &type2, &mult_rhs2))
2345 return false;
2346 add_rhs = rhs2;
2347 conv_stmt = conv1_stmt;
2348 }
2349 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2350 {
2351 if (!is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2352 &type2, &mult_rhs2))
2353 return false;
2354 add_rhs = rhs1;
2355 conv_stmt = conv2_stmt;
2356 }
2357 else
2358 return false;
2359
2360 to_mode = TYPE_MODE (type);
2361 from_mode = TYPE_MODE (type1);
2362 from_unsigned1 = TYPE_UNSIGNED (type1);
2363 from_unsigned2 = TYPE_UNSIGNED (type2);
2364 optype = type1;
2365
2366 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2367 if (from_unsigned1 != from_unsigned2)
2368 {
2369 if (!INTEGRAL_TYPE_P (type))
2370 return false;
2371 /* We can use a signed multiply with unsigned types as long as
2372 there is a wider mode to use, or it is the smaller of the two
2373 types that is unsigned. Note that type1 >= type2, always. */
2374 if ((from_unsigned1
2375 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2376 || (from_unsigned2
2377 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2378 {
2379 from_mode = GET_MODE_WIDER_MODE (from_mode);
2380 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2381 return false;
2382 }
2383
2384 from_unsigned1 = from_unsigned2 = false;
2385 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2386 false);
2387 }
2388
2389 /* If there was a conversion between the multiply and addition
2390 then we need to make sure it fits a multiply-and-accumulate.
2391 The should be a single mode change which does not change the
2392 value. */
2393 if (conv_stmt)
2394 {
2395 /* We use the original, unmodified data types for this. */
2396 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2397 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2398 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2399 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2400
2401 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2402 {
2403 /* Conversion is a truncate. */
2404 if (TYPE_PRECISION (to_type) < data_size)
2405 return false;
2406 }
2407 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2408 {
2409 /* Conversion is an extend. Check it's the right sort. */
2410 if (TYPE_UNSIGNED (from_type) != is_unsigned
2411 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2412 return false;
2413 }
2414 /* else convert is a no-op for our purposes. */
2415 }
2416
2417 /* Verify that the machine can perform a widening multiply
2418 accumulate in this mode/signedness combination, otherwise
2419 this transformation is likely to pessimize code. */
2420 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2421 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2422 from_mode, 0, &actual_mode);
2423
2424 if (handler == CODE_FOR_nothing)
2425 return false;
2426
2427 /* Ensure that the inputs to the handler are in the correct precison
2428 for the opcode. This will be the full mode size. */
2429 actual_precision = GET_MODE_PRECISION (actual_mode);
2430 if (actual_precision != TYPE_PRECISION (type1)
2431 || from_unsigned1 != TYPE_UNSIGNED (type1))
2432 mult_rhs1 = build_and_insert_cast (gsi, loc,
2433 build_nonstandard_integer_type
2434 (actual_precision, from_unsigned1),
2435 mult_rhs1);
2436 if (actual_precision != TYPE_PRECISION (type2)
2437 || from_unsigned2 != TYPE_UNSIGNED (type2))
2438 mult_rhs2 = build_and_insert_cast (gsi, loc,
2439 build_nonstandard_integer_type
2440 (actual_precision, from_unsigned2),
2441 mult_rhs2);
2442
2443 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2444 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2445
2446 /* Handle constants. */
2447 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2448 mult_rhs1 = fold_convert (type1, mult_rhs1);
2449 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2450 mult_rhs2 = fold_convert (type2, mult_rhs2);
2451
2452 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2453 add_rhs);
2454 update_stmt (gsi_stmt (*gsi));
2455 widen_mul_stats.maccs_inserted++;
2456 return true;
2457 }
2458
2459 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2460 with uses in additions and subtractions to form fused multiply-add
2461 operations. Returns true if successful and MUL_STMT should be removed. */
2462
2463 static bool
2464 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2465 {
2466 tree mul_result = gimple_get_lhs (mul_stmt);
2467 tree type = TREE_TYPE (mul_result);
2468 gimple use_stmt, neguse_stmt, fma_stmt;
2469 use_operand_p use_p;
2470 imm_use_iterator imm_iter;
2471
2472 if (FLOAT_TYPE_P (type)
2473 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2474 return false;
2475
2476 /* We don't want to do bitfield reduction ops. */
2477 if (INTEGRAL_TYPE_P (type)
2478 && (TYPE_PRECISION (type)
2479 != GET_MODE_PRECISION (TYPE_MODE (type))))
2480 return false;
2481
2482 /* If the target doesn't support it, don't generate it. We assume that
2483 if fma isn't available then fms, fnma or fnms are not either. */
2484 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2485 return false;
2486
2487 /* If the multiplication has zero uses, it is kept around probably because
2488 of -fnon-call-exceptions. Don't optimize it away in that case,
2489 it is DCE job. */
2490 if (has_zero_uses (mul_result))
2491 return false;
2492
2493 /* Make sure that the multiplication statement becomes dead after
2494 the transformation, thus that all uses are transformed to FMAs.
2495 This means we assume that an FMA operation has the same cost
2496 as an addition. */
2497 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2498 {
2499 enum tree_code use_code;
2500 tree result = mul_result;
2501 bool negate_p = false;
2502
2503 use_stmt = USE_STMT (use_p);
2504
2505 if (is_gimple_debug (use_stmt))
2506 continue;
2507
2508 /* For now restrict this operations to single basic blocks. In theory
2509 we would want to support sinking the multiplication in
2510 m = a*b;
2511 if ()
2512 ma = m + c;
2513 else
2514 d = m;
2515 to form a fma in the then block and sink the multiplication to the
2516 else block. */
2517 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2518 return false;
2519
2520 if (!is_gimple_assign (use_stmt))
2521 return false;
2522
2523 use_code = gimple_assign_rhs_code (use_stmt);
2524
2525 /* A negate on the multiplication leads to FNMA. */
2526 if (use_code == NEGATE_EXPR)
2527 {
2528 ssa_op_iter iter;
2529 use_operand_p usep;
2530
2531 result = gimple_assign_lhs (use_stmt);
2532
2533 /* Make sure the negate statement becomes dead with this
2534 single transformation. */
2535 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2536 &use_p, &neguse_stmt))
2537 return false;
2538
2539 /* Make sure the multiplication isn't also used on that stmt. */
2540 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2541 if (USE_FROM_PTR (usep) == mul_result)
2542 return false;
2543
2544 /* Re-validate. */
2545 use_stmt = neguse_stmt;
2546 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2547 return false;
2548 if (!is_gimple_assign (use_stmt))
2549 return false;
2550
2551 use_code = gimple_assign_rhs_code (use_stmt);
2552 negate_p = true;
2553 }
2554
2555 switch (use_code)
2556 {
2557 case MINUS_EXPR:
2558 if (gimple_assign_rhs2 (use_stmt) == result)
2559 negate_p = !negate_p;
2560 break;
2561 case PLUS_EXPR:
2562 break;
2563 default:
2564 /* FMA can only be formed from PLUS and MINUS. */
2565 return false;
2566 }
2567
2568 /* We can't handle a * b + a * b. */
2569 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2570 return false;
2571
2572 /* While it is possible to validate whether or not the exact form
2573 that we've recognized is available in the backend, the assumption
2574 is that the transformation is never a loss. For instance, suppose
2575 the target only has the plain FMA pattern available. Consider
2576 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2577 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2578 still have 3 operations, but in the FMA form the two NEGs are
2579 independent and could be run in parallel. */
2580 }
2581
2582 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2583 {
2584 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2585 enum tree_code use_code;
2586 tree addop, mulop1 = op1, result = mul_result;
2587 bool negate_p = false;
2588
2589 if (is_gimple_debug (use_stmt))
2590 continue;
2591
2592 use_code = gimple_assign_rhs_code (use_stmt);
2593 if (use_code == NEGATE_EXPR)
2594 {
2595 result = gimple_assign_lhs (use_stmt);
2596 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2597 gsi_remove (&gsi, true);
2598 release_defs (use_stmt);
2599
2600 use_stmt = neguse_stmt;
2601 gsi = gsi_for_stmt (use_stmt);
2602 use_code = gimple_assign_rhs_code (use_stmt);
2603 negate_p = true;
2604 }
2605
2606 if (gimple_assign_rhs1 (use_stmt) == result)
2607 {
2608 addop = gimple_assign_rhs2 (use_stmt);
2609 /* a * b - c -> a * b + (-c) */
2610 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2611 addop = force_gimple_operand_gsi (&gsi,
2612 build1 (NEGATE_EXPR,
2613 type, addop),
2614 true, NULL_TREE, true,
2615 GSI_SAME_STMT);
2616 }
2617 else
2618 {
2619 addop = gimple_assign_rhs1 (use_stmt);
2620 /* a - b * c -> (-b) * c + a */
2621 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2622 negate_p = !negate_p;
2623 }
2624
2625 if (negate_p)
2626 mulop1 = force_gimple_operand_gsi (&gsi,
2627 build1 (NEGATE_EXPR,
2628 type, mulop1),
2629 true, NULL_TREE, true,
2630 GSI_SAME_STMT);
2631
2632 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2633 gimple_assign_lhs (use_stmt),
2634 mulop1, op2,
2635 addop);
2636 gsi_replace (&gsi, fma_stmt, true);
2637 widen_mul_stats.fmas_inserted++;
2638 }
2639
2640 return true;
2641 }
2642
2643 /* Find integer multiplications where the operands are extended from
2644 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2645 where appropriate. */
2646
2647 static unsigned int
2648 execute_optimize_widening_mul (void)
2649 {
2650 basic_block bb;
2651 bool cfg_changed = false;
2652
2653 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2654
2655 FOR_EACH_BB (bb)
2656 {
2657 gimple_stmt_iterator gsi;
2658
2659 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2660 {
2661 gimple stmt = gsi_stmt (gsi);
2662 enum tree_code code;
2663
2664 if (is_gimple_assign (stmt))
2665 {
2666 code = gimple_assign_rhs_code (stmt);
2667 switch (code)
2668 {
2669 case MULT_EXPR:
2670 if (!convert_mult_to_widen (stmt, &gsi)
2671 && convert_mult_to_fma (stmt,
2672 gimple_assign_rhs1 (stmt),
2673 gimple_assign_rhs2 (stmt)))
2674 {
2675 gsi_remove (&gsi, true);
2676 release_defs (stmt);
2677 continue;
2678 }
2679 break;
2680
2681 case PLUS_EXPR:
2682 case MINUS_EXPR:
2683 convert_plusminus_to_widen (&gsi, stmt, code);
2684 break;
2685
2686 default:;
2687 }
2688 }
2689 else if (is_gimple_call (stmt)
2690 && gimple_call_lhs (stmt))
2691 {
2692 tree fndecl = gimple_call_fndecl (stmt);
2693 if (fndecl
2694 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2695 {
2696 switch (DECL_FUNCTION_CODE (fndecl))
2697 {
2698 case BUILT_IN_POWF:
2699 case BUILT_IN_POW:
2700 case BUILT_IN_POWL:
2701 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2702 && REAL_VALUES_EQUAL
2703 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2704 dconst2)
2705 && convert_mult_to_fma (stmt,
2706 gimple_call_arg (stmt, 0),
2707 gimple_call_arg (stmt, 0)))
2708 {
2709 unlink_stmt_vdef (stmt);
2710 if (gsi_remove (&gsi, true)
2711 && gimple_purge_dead_eh_edges (bb))
2712 cfg_changed = true;
2713 release_defs (stmt);
2714 continue;
2715 }
2716 break;
2717
2718 default:;
2719 }
2720 }
2721 }
2722 gsi_next (&gsi);
2723 }
2724 }
2725
2726 statistics_counter_event (cfun, "widening multiplications inserted",
2727 widen_mul_stats.widen_mults_inserted);
2728 statistics_counter_event (cfun, "widening maccs inserted",
2729 widen_mul_stats.maccs_inserted);
2730 statistics_counter_event (cfun, "fused multiply-adds inserted",
2731 widen_mul_stats.fmas_inserted);
2732
2733 return cfg_changed ? TODO_cleanup_cfg : 0;
2734 }
2735
2736 static bool
2737 gate_optimize_widening_mul (void)
2738 {
2739 return flag_expensive_optimizations && optimize;
2740 }
2741
2742 struct gimple_opt_pass pass_optimize_widening_mul =
2743 {
2744 {
2745 GIMPLE_PASS,
2746 "widening_mul", /* name */
2747 OPTGROUP_NONE, /* optinfo_flags */
2748 gate_optimize_widening_mul, /* gate */
2749 execute_optimize_widening_mul, /* execute */
2750 NULL, /* sub */
2751 NULL, /* next */
2752 0, /* static_pass_number */
2753 TV_NONE, /* tv_id */
2754 PROP_ssa, /* properties_required */
2755 0, /* properties_provided */
2756 0, /* properties_destroyed */
2757 0, /* todo_flags_start */
2758 TODO_verify_ssa
2759 | TODO_verify_stmts
2760 | TODO_update_ssa /* todo_flags_finish */
2761 }
2762 };