Change use to type-based pool allocator in
[gcc.git] / gcc / tree-ssa-math-opts.c
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
86
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "hash-set.h"
93 #include "machmode.h"
94 #include "vec.h"
95 #include "double-int.h"
96 #include "input.h"
97 #include "alias.h"
98 #include "symtab.h"
99 #include "wide-int.h"
100 #include "inchash.h"
101 #include "tree.h"
102 #include "fold-const.h"
103 #include "predict.h"
104 #include "hard-reg-set.h"
105 #include "function.h"
106 #include "dominance.h"
107 #include "cfg.h"
108 #include "basic-block.h"
109 #include "tree-ssa-alias.h"
110 #include "internal-fn.h"
111 #include "gimple-fold.h"
112 #include "gimple-expr.h"
113 #include "is-a.h"
114 #include "gimple.h"
115 #include "gimple-iterator.h"
116 #include "gimplify.h"
117 #include "gimplify-me.h"
118 #include "stor-layout.h"
119 #include "gimple-ssa.h"
120 #include "tree-cfg.h"
121 #include "tree-phinodes.h"
122 #include "ssa-iterators.h"
123 #include "stringpool.h"
124 #include "tree-ssanames.h"
125 #include "hashtab.h"
126 #include "rtl.h"
127 #include "statistics.h"
128 #include "real.h"
129 #include "fixed-value.h"
130 #include "insn-config.h"
131 #include "expmed.h"
132 #include "dojump.h"
133 #include "explow.h"
134 #include "calls.h"
135 #include "emit-rtl.h"
136 #include "varasm.h"
137 #include "stmt.h"
138 #include "expr.h"
139 #include "tree-dfa.h"
140 #include "tree-ssa.h"
141 #include "tree-pass.h"
142 #include "alloc-pool.h"
143 #include "target.h"
144 #include "gimple-pretty-print.h"
145 #include "builtins.h"
146 #include "params.h"
147
148 /* FIXME: RTL headers have to be included here for optabs. */
149 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
150 #include "expr.h" /* Because optabs.h wants sepops. */
151 #include "insn-codes.h"
152 #include "optabs.h"
153
154 /* This structure represents one basic block that either computes a
155 division, or is a common dominator for basic block that compute a
156 division. */
157 struct occurrence {
158 /* The basic block represented by this structure. */
159 basic_block bb;
160
161 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
162 inserted in BB. */
163 tree recip_def;
164
165 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
166 was inserted in BB. */
167 gimple recip_def_stmt;
168
169 /* Pointer to a list of "struct occurrence"s for blocks dominated
170 by BB. */
171 struct occurrence *children;
172
173 /* Pointer to the next "struct occurrence"s in the list of blocks
174 sharing a common dominator. */
175 struct occurrence *next;
176
177 /* The number of divisions that are in BB before compute_merit. The
178 number of divisions that are in BB or post-dominate it after
179 compute_merit. */
180 int num_divisions;
181
182 /* True if the basic block has a division, false if it is a common
183 dominator for basic blocks that do. If it is false and trapping
184 math is active, BB is not a candidate for inserting a reciprocal. */
185 bool bb_has_division;
186 };
187
188 static struct
189 {
190 /* Number of 1.0/X ops inserted. */
191 int rdivs_inserted;
192
193 /* Number of 1.0/FUNC ops inserted. */
194 int rfuncs_inserted;
195 } reciprocal_stats;
196
197 static struct
198 {
199 /* Number of cexpi calls inserted. */
200 int inserted;
201 } sincos_stats;
202
203 static struct
204 {
205 /* Number of hand-written 16-bit nop / bswaps found. */
206 int found_16bit;
207
208 /* Number of hand-written 32-bit nop / bswaps found. */
209 int found_32bit;
210
211 /* Number of hand-written 64-bit nop / bswaps found. */
212 int found_64bit;
213 } nop_stats, bswap_stats;
214
215 static struct
216 {
217 /* Number of widening multiplication ops inserted. */
218 int widen_mults_inserted;
219
220 /* Number of integer multiply-and-accumulate ops inserted. */
221 int maccs_inserted;
222
223 /* Number of fp fused multiply-add ops inserted. */
224 int fmas_inserted;
225 } widen_mul_stats;
226
227 /* The instance of "struct occurrence" representing the highest
228 interesting block in the dominator tree. */
229 static struct occurrence *occ_head;
230
231 /* Allocation pool for getting instances of "struct occurrence". */
232 static pool_allocator<occurrence> *occ_pool;
233
234
235
236 /* Allocate and return a new struct occurrence for basic block BB, and
237 whose children list is headed by CHILDREN. */
238 static struct occurrence *
239 occ_new (basic_block bb, struct occurrence *children)
240 {
241 struct occurrence *occ;
242
243 bb->aux = occ = occ_pool->allocate ();
244 memset (occ, 0, sizeof (struct occurrence));
245
246 occ->bb = bb;
247 occ->children = children;
248 return occ;
249 }
250
251
252 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
253 list of "struct occurrence"s, one per basic block, having IDOM as
254 their common dominator.
255
256 We try to insert NEW_OCC as deep as possible in the tree, and we also
257 insert any other block that is a common dominator for BB and one
258 block already in the tree. */
259
260 static void
261 insert_bb (struct occurrence *new_occ, basic_block idom,
262 struct occurrence **p_head)
263 {
264 struct occurrence *occ, **p_occ;
265
266 for (p_occ = p_head; (occ = *p_occ) != NULL; )
267 {
268 basic_block bb = new_occ->bb, occ_bb = occ->bb;
269 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
270 if (dom == bb)
271 {
272 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
273 from its list. */
274 *p_occ = occ->next;
275 occ->next = new_occ->children;
276 new_occ->children = occ;
277
278 /* Try the next block (it may as well be dominated by BB). */
279 }
280
281 else if (dom == occ_bb)
282 {
283 /* OCC_BB dominates BB. Tail recurse to look deeper. */
284 insert_bb (new_occ, dom, &occ->children);
285 return;
286 }
287
288 else if (dom != idom)
289 {
290 gcc_assert (!dom->aux);
291
292 /* There is a dominator between IDOM and BB, add it and make
293 two children out of NEW_OCC and OCC. First, remove OCC from
294 its list. */
295 *p_occ = occ->next;
296 new_occ->next = occ;
297 occ->next = NULL;
298
299 /* None of the previous blocks has DOM as a dominator: if we tail
300 recursed, we would reexamine them uselessly. Just switch BB with
301 DOM, and go on looking for blocks dominated by DOM. */
302 new_occ = occ_new (dom, new_occ);
303 }
304
305 else
306 {
307 /* Nothing special, go on with the next element. */
308 p_occ = &occ->next;
309 }
310 }
311
312 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
313 new_occ->next = *p_head;
314 *p_head = new_occ;
315 }
316
317 /* Register that we found a division in BB. */
318
319 static inline void
320 register_division_in (basic_block bb)
321 {
322 struct occurrence *occ;
323
324 occ = (struct occurrence *) bb->aux;
325 if (!occ)
326 {
327 occ = occ_new (bb, NULL);
328 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
329 }
330
331 occ->bb_has_division = true;
332 occ->num_divisions++;
333 }
334
335
336 /* Compute the number of divisions that postdominate each block in OCC and
337 its children. */
338
339 static void
340 compute_merit (struct occurrence *occ)
341 {
342 struct occurrence *occ_child;
343 basic_block dom = occ->bb;
344
345 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
346 {
347 basic_block bb;
348 if (occ_child->children)
349 compute_merit (occ_child);
350
351 if (flag_exceptions)
352 bb = single_noncomplex_succ (dom);
353 else
354 bb = dom;
355
356 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
357 occ->num_divisions += occ_child->num_divisions;
358 }
359 }
360
361
362 /* Return whether USE_STMT is a floating-point division by DEF. */
363 static inline bool
364 is_division_by (gimple use_stmt, tree def)
365 {
366 return is_gimple_assign (use_stmt)
367 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
368 && gimple_assign_rhs2 (use_stmt) == def
369 /* Do not recognize x / x as valid division, as we are getting
370 confused later by replacing all immediate uses x in such
371 a stmt. */
372 && gimple_assign_rhs1 (use_stmt) != def;
373 }
374
375 /* Walk the subset of the dominator tree rooted at OCC, setting the
376 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
377 the given basic block. The field may be left NULL, of course,
378 if it is not possible or profitable to do the optimization.
379
380 DEF_BSI is an iterator pointing at the statement defining DEF.
381 If RECIP_DEF is set, a dominator already has a computation that can
382 be used. */
383
384 static void
385 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
386 tree def, tree recip_def, int threshold)
387 {
388 tree type;
389 gassign *new_stmt;
390 gimple_stmt_iterator gsi;
391 struct occurrence *occ_child;
392
393 if (!recip_def
394 && (occ->bb_has_division || !flag_trapping_math)
395 && occ->num_divisions >= threshold)
396 {
397 /* Make a variable with the replacement and substitute it. */
398 type = TREE_TYPE (def);
399 recip_def = create_tmp_reg (type, "reciptmp");
400 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
401 build_one_cst (type), def);
402
403 if (occ->bb_has_division)
404 {
405 /* Case 1: insert before an existing division. */
406 gsi = gsi_after_labels (occ->bb);
407 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
408 gsi_next (&gsi);
409
410 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
411 }
412 else if (def_gsi && occ->bb == def_gsi->bb)
413 {
414 /* Case 2: insert right after the definition. Note that this will
415 never happen if the definition statement can throw, because in
416 that case the sole successor of the statement's basic block will
417 dominate all the uses as well. */
418 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
419 }
420 else
421 {
422 /* Case 3: insert in a basic block not containing defs/uses. */
423 gsi = gsi_after_labels (occ->bb);
424 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
425 }
426
427 reciprocal_stats.rdivs_inserted++;
428
429 occ->recip_def_stmt = new_stmt;
430 }
431
432 occ->recip_def = recip_def;
433 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
434 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
435 }
436
437
438 /* Replace the division at USE_P with a multiplication by the reciprocal, if
439 possible. */
440
441 static inline void
442 replace_reciprocal (use_operand_p use_p)
443 {
444 gimple use_stmt = USE_STMT (use_p);
445 basic_block bb = gimple_bb (use_stmt);
446 struct occurrence *occ = (struct occurrence *) bb->aux;
447
448 if (optimize_bb_for_speed_p (bb)
449 && occ->recip_def && use_stmt != occ->recip_def_stmt)
450 {
451 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
452 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
453 SET_USE (use_p, occ->recip_def);
454 fold_stmt_inplace (&gsi);
455 update_stmt (use_stmt);
456 }
457 }
458
459
460 /* Free OCC and return one more "struct occurrence" to be freed. */
461
462 static struct occurrence *
463 free_bb (struct occurrence *occ)
464 {
465 struct occurrence *child, *next;
466
467 /* First get the two pointers hanging off OCC. */
468 next = occ->next;
469 child = occ->children;
470 occ->bb->aux = NULL;
471 occ_pool->remove (occ);
472
473 /* Now ensure that we don't recurse unless it is necessary. */
474 if (!child)
475 return next;
476 else
477 {
478 while (next)
479 next = free_bb (next);
480
481 return child;
482 }
483 }
484
485
486 /* Look for floating-point divisions among DEF's uses, and try to
487 replace them by multiplications with the reciprocal. Add
488 as many statements computing the reciprocal as needed.
489
490 DEF must be a GIMPLE register of a floating-point type. */
491
492 static void
493 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
494 {
495 use_operand_p use_p;
496 imm_use_iterator use_iter;
497 struct occurrence *occ;
498 int count = 0, threshold;
499
500 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
501
502 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
503 {
504 gimple use_stmt = USE_STMT (use_p);
505 if (is_division_by (use_stmt, def))
506 {
507 register_division_in (gimple_bb (use_stmt));
508 count++;
509 }
510 }
511
512 /* Do the expensive part only if we can hope to optimize something. */
513 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
514 if (count >= threshold)
515 {
516 gimple use_stmt;
517 for (occ = occ_head; occ; occ = occ->next)
518 {
519 compute_merit (occ);
520 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
521 }
522
523 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
524 {
525 if (is_division_by (use_stmt, def))
526 {
527 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
528 replace_reciprocal (use_p);
529 }
530 }
531 }
532
533 for (occ = occ_head; occ; )
534 occ = free_bb (occ);
535
536 occ_head = NULL;
537 }
538
539 /* Go through all the floating-point SSA_NAMEs, and call
540 execute_cse_reciprocals_1 on each of them. */
541 namespace {
542
543 const pass_data pass_data_cse_reciprocals =
544 {
545 GIMPLE_PASS, /* type */
546 "recip", /* name */
547 OPTGROUP_NONE, /* optinfo_flags */
548 TV_NONE, /* tv_id */
549 PROP_ssa, /* properties_required */
550 0, /* properties_provided */
551 0, /* properties_destroyed */
552 0, /* todo_flags_start */
553 TODO_update_ssa, /* todo_flags_finish */
554 };
555
556 class pass_cse_reciprocals : public gimple_opt_pass
557 {
558 public:
559 pass_cse_reciprocals (gcc::context *ctxt)
560 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
561 {}
562
563 /* opt_pass methods: */
564 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
565 virtual unsigned int execute (function *);
566
567 }; // class pass_cse_reciprocals
568
569 unsigned int
570 pass_cse_reciprocals::execute (function *fun)
571 {
572 basic_block bb;
573 tree arg;
574
575 occ_pool = new pool_allocator<occurrence>
576 ("dominators for recip", n_basic_blocks_for_fn (fun) / 3 + 1);
577
578 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
579 calculate_dominance_info (CDI_DOMINATORS);
580 calculate_dominance_info (CDI_POST_DOMINATORS);
581
582 #ifdef ENABLE_CHECKING
583 FOR_EACH_BB_FN (bb, fun)
584 gcc_assert (!bb->aux);
585 #endif
586
587 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
588 if (FLOAT_TYPE_P (TREE_TYPE (arg))
589 && is_gimple_reg (arg))
590 {
591 tree name = ssa_default_def (fun, arg);
592 if (name)
593 execute_cse_reciprocals_1 (NULL, name);
594 }
595
596 FOR_EACH_BB_FN (bb, fun)
597 {
598 tree def;
599
600 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
601 gsi_next (&gsi))
602 {
603 gphi *phi = gsi.phi ();
604 def = PHI_RESULT (phi);
605 if (! virtual_operand_p (def)
606 && FLOAT_TYPE_P (TREE_TYPE (def)))
607 execute_cse_reciprocals_1 (NULL, def);
608 }
609
610 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
611 gsi_next (&gsi))
612 {
613 gimple stmt = gsi_stmt (gsi);
614
615 if (gimple_has_lhs (stmt)
616 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
617 && FLOAT_TYPE_P (TREE_TYPE (def))
618 && TREE_CODE (def) == SSA_NAME)
619 execute_cse_reciprocals_1 (&gsi, def);
620 }
621
622 if (optimize_bb_for_size_p (bb))
623 continue;
624
625 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
626 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
627 gsi_next (&gsi))
628 {
629 gimple stmt = gsi_stmt (gsi);
630 tree fndecl;
631
632 if (is_gimple_assign (stmt)
633 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
634 {
635 tree arg1 = gimple_assign_rhs2 (stmt);
636 gimple stmt1;
637
638 if (TREE_CODE (arg1) != SSA_NAME)
639 continue;
640
641 stmt1 = SSA_NAME_DEF_STMT (arg1);
642
643 if (is_gimple_call (stmt1)
644 && gimple_call_lhs (stmt1)
645 && (fndecl = gimple_call_fndecl (stmt1))
646 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
647 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
648 {
649 enum built_in_function code;
650 bool md_code, fail;
651 imm_use_iterator ui;
652 use_operand_p use_p;
653
654 code = DECL_FUNCTION_CODE (fndecl);
655 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
656
657 fndecl = targetm.builtin_reciprocal (code, md_code, false);
658 if (!fndecl)
659 continue;
660
661 /* Check that all uses of the SSA name are divisions,
662 otherwise replacing the defining statement will do
663 the wrong thing. */
664 fail = false;
665 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
666 {
667 gimple stmt2 = USE_STMT (use_p);
668 if (is_gimple_debug (stmt2))
669 continue;
670 if (!is_gimple_assign (stmt2)
671 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
672 || gimple_assign_rhs1 (stmt2) == arg1
673 || gimple_assign_rhs2 (stmt2) != arg1)
674 {
675 fail = true;
676 break;
677 }
678 }
679 if (fail)
680 continue;
681
682 gimple_replace_ssa_lhs (stmt1, arg1);
683 gimple_call_set_fndecl (stmt1, fndecl);
684 update_stmt (stmt1);
685 reciprocal_stats.rfuncs_inserted++;
686
687 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
688 {
689 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
690 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
691 fold_stmt_inplace (&gsi);
692 update_stmt (stmt);
693 }
694 }
695 }
696 }
697 }
698
699 statistics_counter_event (fun, "reciprocal divs inserted",
700 reciprocal_stats.rdivs_inserted);
701 statistics_counter_event (fun, "reciprocal functions inserted",
702 reciprocal_stats.rfuncs_inserted);
703
704 free_dominance_info (CDI_DOMINATORS);
705 free_dominance_info (CDI_POST_DOMINATORS);
706 delete occ_pool;
707 return 0;
708 }
709
710 } // anon namespace
711
712 gimple_opt_pass *
713 make_pass_cse_reciprocals (gcc::context *ctxt)
714 {
715 return new pass_cse_reciprocals (ctxt);
716 }
717
718 /* Records an occurrence at statement USE_STMT in the vector of trees
719 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
720 is not yet initialized. Returns true if the occurrence was pushed on
721 the vector. Adjusts *TOP_BB to be the basic block dominating all
722 statements in the vector. */
723
724 static bool
725 maybe_record_sincos (vec<gimple> *stmts,
726 basic_block *top_bb, gimple use_stmt)
727 {
728 basic_block use_bb = gimple_bb (use_stmt);
729 if (*top_bb
730 && (*top_bb == use_bb
731 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
732 stmts->safe_push (use_stmt);
733 else if (!*top_bb
734 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
735 {
736 stmts->safe_push (use_stmt);
737 *top_bb = use_bb;
738 }
739 else
740 return false;
741
742 return true;
743 }
744
745 /* Look for sin, cos and cexpi calls with the same argument NAME and
746 create a single call to cexpi CSEing the result in this case.
747 We first walk over all immediate uses of the argument collecting
748 statements that we can CSE in a vector and in a second pass replace
749 the statement rhs with a REALPART or IMAGPART expression on the
750 result of the cexpi call we insert before the use statement that
751 dominates all other candidates. */
752
753 static bool
754 execute_cse_sincos_1 (tree name)
755 {
756 gimple_stmt_iterator gsi;
757 imm_use_iterator use_iter;
758 tree fndecl, res, type;
759 gimple def_stmt, use_stmt, stmt;
760 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
761 auto_vec<gimple> stmts;
762 basic_block top_bb = NULL;
763 int i;
764 bool cfg_changed = false;
765
766 type = TREE_TYPE (name);
767 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
768 {
769 if (gimple_code (use_stmt) != GIMPLE_CALL
770 || !gimple_call_lhs (use_stmt)
771 || !(fndecl = gimple_call_fndecl (use_stmt))
772 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
773 continue;
774
775 switch (DECL_FUNCTION_CODE (fndecl))
776 {
777 CASE_FLT_FN (BUILT_IN_COS):
778 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
779 break;
780
781 CASE_FLT_FN (BUILT_IN_SIN):
782 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
783 break;
784
785 CASE_FLT_FN (BUILT_IN_CEXPI):
786 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
787 break;
788
789 default:;
790 }
791 }
792
793 if (seen_cos + seen_sin + seen_cexpi <= 1)
794 return false;
795
796 /* Simply insert cexpi at the beginning of top_bb but not earlier than
797 the name def statement. */
798 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
799 if (!fndecl)
800 return false;
801 stmt = gimple_build_call (fndecl, 1, name);
802 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
803 gimple_call_set_lhs (stmt, res);
804
805 def_stmt = SSA_NAME_DEF_STMT (name);
806 if (!SSA_NAME_IS_DEFAULT_DEF (name)
807 && gimple_code (def_stmt) != GIMPLE_PHI
808 && gimple_bb (def_stmt) == top_bb)
809 {
810 gsi = gsi_for_stmt (def_stmt);
811 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
812 }
813 else
814 {
815 gsi = gsi_after_labels (top_bb);
816 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
817 }
818 sincos_stats.inserted++;
819
820 /* And adjust the recorded old call sites. */
821 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
822 {
823 tree rhs = NULL;
824 fndecl = gimple_call_fndecl (use_stmt);
825
826 switch (DECL_FUNCTION_CODE (fndecl))
827 {
828 CASE_FLT_FN (BUILT_IN_COS):
829 rhs = fold_build1 (REALPART_EXPR, type, res);
830 break;
831
832 CASE_FLT_FN (BUILT_IN_SIN):
833 rhs = fold_build1 (IMAGPART_EXPR, type, res);
834 break;
835
836 CASE_FLT_FN (BUILT_IN_CEXPI):
837 rhs = res;
838 break;
839
840 default:;
841 gcc_unreachable ();
842 }
843
844 /* Replace call with a copy. */
845 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
846
847 gsi = gsi_for_stmt (use_stmt);
848 gsi_replace (&gsi, stmt, true);
849 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
850 cfg_changed = true;
851 }
852
853 return cfg_changed;
854 }
855
856 /* To evaluate powi(x,n), the floating point value x raised to the
857 constant integer exponent n, we use a hybrid algorithm that
858 combines the "window method" with look-up tables. For an
859 introduction to exponentiation algorithms and "addition chains",
860 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
861 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
862 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
863 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
864
865 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
866 multiplications to inline before calling the system library's pow
867 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
868 so this default never requires calling pow, powf or powl. */
869
870 #ifndef POWI_MAX_MULTS
871 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
872 #endif
873
874 /* The size of the "optimal power tree" lookup table. All
875 exponents less than this value are simply looked up in the
876 powi_table below. This threshold is also used to size the
877 cache of pseudo registers that hold intermediate results. */
878 #define POWI_TABLE_SIZE 256
879
880 /* The size, in bits of the window, used in the "window method"
881 exponentiation algorithm. This is equivalent to a radix of
882 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
883 #define POWI_WINDOW_SIZE 3
884
885 /* The following table is an efficient representation of an
886 "optimal power tree". For each value, i, the corresponding
887 value, j, in the table states than an optimal evaluation
888 sequence for calculating pow(x,i) can be found by evaluating
889 pow(x,j)*pow(x,i-j). An optimal power tree for the first
890 100 integers is given in Knuth's "Seminumerical algorithms". */
891
892 static const unsigned char powi_table[POWI_TABLE_SIZE] =
893 {
894 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
895 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
896 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
897 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
898 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
899 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
900 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
901 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
902 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
903 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
904 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
905 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
906 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
907 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
908 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
909 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
910 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
911 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
912 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
913 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
914 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
915 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
916 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
917 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
918 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
919 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
920 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
921 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
922 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
923 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
924 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
925 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
926 };
927
928
929 /* Return the number of multiplications required to calculate
930 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
931 subroutine of powi_cost. CACHE is an array indicating
932 which exponents have already been calculated. */
933
934 static int
935 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
936 {
937 /* If we've already calculated this exponent, then this evaluation
938 doesn't require any additional multiplications. */
939 if (cache[n])
940 return 0;
941
942 cache[n] = true;
943 return powi_lookup_cost (n - powi_table[n], cache)
944 + powi_lookup_cost (powi_table[n], cache) + 1;
945 }
946
947 /* Return the number of multiplications required to calculate
948 powi(x,n) for an arbitrary x, given the exponent N. This
949 function needs to be kept in sync with powi_as_mults below. */
950
951 static int
952 powi_cost (HOST_WIDE_INT n)
953 {
954 bool cache[POWI_TABLE_SIZE];
955 unsigned HOST_WIDE_INT digit;
956 unsigned HOST_WIDE_INT val;
957 int result;
958
959 if (n == 0)
960 return 0;
961
962 /* Ignore the reciprocal when calculating the cost. */
963 val = (n < 0) ? -n : n;
964
965 /* Initialize the exponent cache. */
966 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
967 cache[1] = true;
968
969 result = 0;
970
971 while (val >= POWI_TABLE_SIZE)
972 {
973 if (val & 1)
974 {
975 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
976 result += powi_lookup_cost (digit, cache)
977 + POWI_WINDOW_SIZE + 1;
978 val >>= POWI_WINDOW_SIZE;
979 }
980 else
981 {
982 val >>= 1;
983 result++;
984 }
985 }
986
987 return result + powi_lookup_cost (val, cache);
988 }
989
990 /* Recursive subroutine of powi_as_mults. This function takes the
991 array, CACHE, of already calculated exponents and an exponent N and
992 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
993
994 static tree
995 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
996 HOST_WIDE_INT n, tree *cache)
997 {
998 tree op0, op1, ssa_target;
999 unsigned HOST_WIDE_INT digit;
1000 gassign *mult_stmt;
1001
1002 if (n < POWI_TABLE_SIZE && cache[n])
1003 return cache[n];
1004
1005 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
1006
1007 if (n < POWI_TABLE_SIZE)
1008 {
1009 cache[n] = ssa_target;
1010 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1011 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1012 }
1013 else if (n & 1)
1014 {
1015 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1016 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1017 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1018 }
1019 else
1020 {
1021 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1022 op1 = op0;
1023 }
1024
1025 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1026 gimple_set_location (mult_stmt, loc);
1027 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1028
1029 return ssa_target;
1030 }
1031
1032 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1033 This function needs to be kept in sync with powi_cost above. */
1034
1035 static tree
1036 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1037 tree arg0, HOST_WIDE_INT n)
1038 {
1039 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1040 gassign *div_stmt;
1041 tree target;
1042
1043 if (n == 0)
1044 return build_real (type, dconst1);
1045
1046 memset (cache, 0, sizeof (cache));
1047 cache[1] = arg0;
1048
1049 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1050 if (n >= 0)
1051 return result;
1052
1053 /* If the original exponent was negative, reciprocate the result. */
1054 target = make_temp_ssa_name (type, NULL, "powmult");
1055 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1056 build_real (type, dconst1), result);
1057 gimple_set_location (div_stmt, loc);
1058 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1059
1060 return target;
1061 }
1062
1063 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1064 location info LOC. If the arguments are appropriate, create an
1065 equivalent sequence of statements prior to GSI using an optimal
1066 number of multiplications, and return an expession holding the
1067 result. */
1068
1069 static tree
1070 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1071 tree arg0, HOST_WIDE_INT n)
1072 {
1073 /* Avoid largest negative number. */
1074 if (n != -n
1075 && ((n >= -1 && n <= 2)
1076 || (optimize_function_for_speed_p (cfun)
1077 && powi_cost (n) <= POWI_MAX_MULTS)))
1078 return powi_as_mults (gsi, loc, arg0, n);
1079
1080 return NULL_TREE;
1081 }
1082
1083 /* Build a gimple call statement that calls FN with argument ARG.
1084 Set the lhs of the call statement to a fresh SSA name. Insert the
1085 statement prior to GSI's current position, and return the fresh
1086 SSA name. */
1087
1088 static tree
1089 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1090 tree fn, tree arg)
1091 {
1092 gcall *call_stmt;
1093 tree ssa_target;
1094
1095 call_stmt = gimple_build_call (fn, 1, arg);
1096 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1097 gimple_set_lhs (call_stmt, ssa_target);
1098 gimple_set_location (call_stmt, loc);
1099 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1100
1101 return ssa_target;
1102 }
1103
1104 /* Build a gimple binary operation with the given CODE and arguments
1105 ARG0, ARG1, assigning the result to a new SSA name for variable
1106 TARGET. Insert the statement prior to GSI's current position, and
1107 return the fresh SSA name.*/
1108
1109 static tree
1110 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1111 const char *name, enum tree_code code,
1112 tree arg0, tree arg1)
1113 {
1114 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1115 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1116 gimple_set_location (stmt, loc);
1117 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1118 return result;
1119 }
1120
1121 /* Build a gimple reference operation with the given CODE and argument
1122 ARG, assigning the result to a new SSA name of TYPE with NAME.
1123 Insert the statement prior to GSI's current position, and return
1124 the fresh SSA name. */
1125
1126 static inline tree
1127 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1128 const char *name, enum tree_code code, tree arg0)
1129 {
1130 tree result = make_temp_ssa_name (type, NULL, name);
1131 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1132 gimple_set_location (stmt, loc);
1133 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 return result;
1135 }
1136
1137 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1138 prior to GSI's current position, and return the fresh SSA name. */
1139
1140 static tree
1141 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1142 tree type, tree val)
1143 {
1144 tree result = make_ssa_name (type);
1145 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1146 gimple_set_location (stmt, loc);
1147 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1148 return result;
1149 }
1150
1151 struct pow_synth_sqrt_info
1152 {
1153 bool *factors;
1154 unsigned int deepest;
1155 unsigned int num_mults;
1156 };
1157
1158 /* Return true iff the real value C can be represented as a
1159 sum of powers of 0.5 up to N. That is:
1160 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1161 Record in INFO the various parameters of the synthesis algorithm such
1162 as the factors a[i], the maximum 0.5 power and the number of
1163 multiplications that will be required. */
1164
1165 bool
1166 representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1167 struct pow_synth_sqrt_info *info)
1168 {
1169 REAL_VALUE_TYPE factor = dconsthalf;
1170 REAL_VALUE_TYPE remainder = c;
1171
1172 info->deepest = 0;
1173 info->num_mults = 0;
1174 memset (info->factors, 0, n * sizeof (bool));
1175
1176 for (unsigned i = 0; i < n; i++)
1177 {
1178 REAL_VALUE_TYPE res;
1179
1180 /* If something inexact happened bail out now. */
1181 if (REAL_ARITHMETIC (res, MINUS_EXPR, remainder, factor))
1182 return false;
1183
1184 /* We have hit zero. The number is representable as a sum
1185 of powers of 0.5. */
1186 if (REAL_VALUES_EQUAL (res, dconst0))
1187 {
1188 info->factors[i] = true;
1189 info->deepest = i + 1;
1190 return true;
1191 }
1192 else if (!REAL_VALUE_NEGATIVE (res))
1193 {
1194 remainder = res;
1195 info->factors[i] = true;
1196 info->num_mults++;
1197 }
1198 else
1199 info->factors[i] = false;
1200
1201 REAL_ARITHMETIC (factor, MULT_EXPR, factor, dconsthalf);
1202 }
1203 return false;
1204 }
1205
1206 /* Return the tree corresponding to FN being applied
1207 to ARG N times at GSI and LOC.
1208 Look up previous results from CACHE if need be.
1209 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1210
1211 static tree
1212 get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1213 tree fn, location_t loc, tree *cache)
1214 {
1215 tree res = cache[n];
1216 if (!res)
1217 {
1218 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1219 res = build_and_insert_call (gsi, loc, fn, prev);
1220 cache[n] = res;
1221 }
1222
1223 return res;
1224 }
1225
1226 /* Print to STREAM the repeated application of function FNAME to ARG
1227 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1228 "foo (foo (x))". */
1229
1230 static void
1231 print_nested_fn (FILE* stream, const char *fname, const char* arg,
1232 unsigned int n)
1233 {
1234 if (n == 0)
1235 fprintf (stream, "%s", arg);
1236 else
1237 {
1238 fprintf (stream, "%s (", fname);
1239 print_nested_fn (stream, fname, arg, n - 1);
1240 fprintf (stream, ")");
1241 }
1242 }
1243
1244 /* Print to STREAM the fractional sequence of sqrt chains
1245 applied to ARG, described by INFO. Used for the dump file. */
1246
1247 static void
1248 dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1249 struct pow_synth_sqrt_info *info)
1250 {
1251 for (unsigned int i = 0; i < info->deepest; i++)
1252 {
1253 bool is_set = info->factors[i];
1254 if (is_set)
1255 {
1256 print_nested_fn (stream, "sqrt", arg, i + 1);
1257 if (i != info->deepest - 1)
1258 fprintf (stream, " * ");
1259 }
1260 }
1261 }
1262
1263 /* Print to STREAM a representation of raising ARG to an integer
1264 power N. Used for the dump file. */
1265
1266 static void
1267 dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1268 {
1269 if (n > 1)
1270 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1271 else if (n == 1)
1272 fprintf (stream, "%s", arg);
1273 }
1274
1275 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1276 square roots. Place at GSI and LOC. Limit the maximum depth
1277 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1278 result of the expanded sequence or NULL_TREE if the expansion failed.
1279
1280 This routine assumes that ARG1 is a real number with a fractional part
1281 (the integer exponent case will have been handled earlier in
1282 gimple_expand_builtin_pow).
1283
1284 For ARG1 > 0.0:
1285 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1286 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1287 FRAC_PART == ARG1 - WHOLE_PART:
1288 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1289 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1290 if it can be expressed as such, that is if FRAC_PART satisfies:
1291 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1292 where integer a[i] is either 0 or 1.
1293
1294 Example:
1295 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1296 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1297
1298 For ARG1 < 0.0 there are two approaches:
1299 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1300 is calculated as above.
1301
1302 Example:
1303 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1304 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1305
1306 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1307 FRAC_PART := ARG1 - WHOLE_PART
1308 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1309 Example:
1310 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1311 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1312
1313 For ARG1 < 0.0 we choose between (A) and (B) depending on
1314 how many multiplications we'd have to do.
1315 So, for the example in (B): POW (x, -5.875), if we were to
1316 follow algorithm (A) we would produce:
1317 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1318 which contains more multiplications than approach (B).
1319
1320 Hopefully, this approach will eliminate potentially expensive POW library
1321 calls when unsafe floating point math is enabled and allow the compiler to
1322 further optimise the multiplies, square roots and divides produced by this
1323 function. */
1324
1325 static tree
1326 expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1327 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1328 {
1329 tree type = TREE_TYPE (arg0);
1330 machine_mode mode = TYPE_MODE (type);
1331 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1332 bool one_over = true;
1333
1334 if (!sqrtfn)
1335 return NULL_TREE;
1336
1337 if (TREE_CODE (arg1) != REAL_CST)
1338 return NULL_TREE;
1339
1340 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1341
1342 gcc_assert (max_depth > 0);
1343 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1344
1345 struct pow_synth_sqrt_info synth_info;
1346 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1347 synth_info.deepest = 0;
1348 synth_info.num_mults = 0;
1349
1350 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1351 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1352
1353 /* The whole and fractional parts of exp. */
1354 REAL_VALUE_TYPE whole_part;
1355 REAL_VALUE_TYPE frac_part;
1356
1357 real_floor (&whole_part, mode, &exp);
1358 REAL_ARITHMETIC (frac_part, MINUS_EXPR, exp, whole_part);
1359
1360
1361 REAL_VALUE_TYPE ceil_whole = dconst0;
1362 REAL_VALUE_TYPE ceil_fract = dconst0;
1363
1364 if (neg_exp)
1365 {
1366 real_ceil (&ceil_whole, mode, &exp);
1367 REAL_ARITHMETIC (ceil_fract, MINUS_EXPR, ceil_whole, exp);
1368 }
1369
1370 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1371 return NULL_TREE;
1372
1373 /* Check whether it's more profitable to not use 1.0 / ... */
1374 if (neg_exp)
1375 {
1376 struct pow_synth_sqrt_info alt_synth_info;
1377 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1378 alt_synth_info.deepest = 0;
1379 alt_synth_info.num_mults = 0;
1380
1381 if (representable_as_half_series_p (ceil_fract, max_depth,
1382 &alt_synth_info)
1383 && alt_synth_info.deepest <= synth_info.deepest
1384 && alt_synth_info.num_mults < synth_info.num_mults)
1385 {
1386 whole_part = ceil_whole;
1387 frac_part = ceil_fract;
1388 synth_info.deepest = alt_synth_info.deepest;
1389 synth_info.num_mults = alt_synth_info.num_mults;
1390 memcpy (synth_info.factors, alt_synth_info.factors,
1391 (max_depth + 1) * sizeof (bool));
1392 one_over = false;
1393 }
1394 }
1395
1396 HOST_WIDE_INT n = real_to_integer (&whole_part);
1397 REAL_VALUE_TYPE cint;
1398 real_from_integer (&cint, VOIDmode, n, SIGNED);
1399
1400 if (!real_identical (&whole_part, &cint))
1401 return NULL_TREE;
1402
1403 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1404 return NULL_TREE;
1405
1406 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1407
1408 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1409
1410 /* Calculate the integer part of the exponent. */
1411 if (n > 1)
1412 {
1413 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1414 if (!integer_res)
1415 return NULL_TREE;
1416 }
1417
1418 if (dump_file)
1419 {
1420 char string[64];
1421
1422 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1423 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1424
1425 if (neg_exp)
1426 {
1427 if (one_over)
1428 {
1429 fprintf (dump_file, "1.0 / (");
1430 dump_integer_part (dump_file, "x", n);
1431 if (n > 0)
1432 fprintf (dump_file, " * ");
1433 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1434 fprintf (dump_file, ")");
1435 }
1436 else
1437 {
1438 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1439 fprintf (dump_file, " / (");
1440 dump_integer_part (dump_file, "x", n);
1441 fprintf (dump_file, ")");
1442 }
1443 }
1444 else
1445 {
1446 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1447 if (n > 0)
1448 fprintf (dump_file, " * ");
1449 dump_integer_part (dump_file, "x", n);
1450 }
1451
1452 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1453 }
1454
1455
1456 tree fract_res = NULL_TREE;
1457 cache[0] = arg0;
1458
1459 /* Calculate the fractional part of the exponent. */
1460 for (unsigned i = 0; i < synth_info.deepest; i++)
1461 {
1462 if (synth_info.factors[i])
1463 {
1464 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1465
1466 if (!fract_res)
1467 fract_res = sqrt_chain;
1468
1469 else
1470 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1471 fract_res, sqrt_chain);
1472 }
1473 }
1474
1475 tree res = NULL_TREE;
1476
1477 if (neg_exp)
1478 {
1479 if (one_over)
1480 {
1481 if (n > 0)
1482 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1483 fract_res, integer_res);
1484 else
1485 res = fract_res;
1486
1487 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1488 build_real (type, dconst1), res);
1489 }
1490 else
1491 {
1492 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1493 fract_res, integer_res);
1494 }
1495 }
1496 else
1497 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1498 fract_res, integer_res);
1499 return res;
1500 }
1501
1502 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1503 with location info LOC. If possible, create an equivalent and
1504 less expensive sequence of statements prior to GSI, and return an
1505 expession holding the result. */
1506
1507 static tree
1508 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1509 tree arg0, tree arg1)
1510 {
1511 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
1512 REAL_VALUE_TYPE c2, dconst3;
1513 HOST_WIDE_INT n;
1514 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
1515 machine_mode mode;
1516 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
1517 bool hw_sqrt_exists, c_is_int, c2_is_int;
1518
1519 dconst1_4 = dconst1;
1520 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1521
1522 /* If the exponent isn't a constant, there's nothing of interest
1523 to be done. */
1524 if (TREE_CODE (arg1) != REAL_CST)
1525 return NULL_TREE;
1526
1527 /* If the exponent is equivalent to an integer, expand to an optimal
1528 multiplication sequence when profitable. */
1529 c = TREE_REAL_CST (arg1);
1530 n = real_to_integer (&c);
1531 real_from_integer (&cint, VOIDmode, n, SIGNED);
1532 c_is_int = real_identical (&c, &cint);
1533
1534 if (c_is_int
1535 && ((n >= -1 && n <= 2)
1536 || (flag_unsafe_math_optimizations
1537 && speed_p
1538 && powi_cost (n) <= POWI_MAX_MULTS)))
1539 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1540
1541 /* Attempt various optimizations using sqrt and cbrt. */
1542 type = TREE_TYPE (arg0);
1543 mode = TYPE_MODE (type);
1544 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1545
1546 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1547 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1548 sqrt(-0) = -0. */
1549 if (sqrtfn
1550 && REAL_VALUES_EQUAL (c, dconsthalf)
1551 && !HONOR_SIGNED_ZEROS (mode))
1552 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1553
1554 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1555
1556 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1557 optimizations since 1./3. is not exactly representable. If x
1558 is negative and finite, the correct value of pow(x,1./3.) is
1559 a NaN with the "invalid" exception raised, because the value
1560 of 1./3. actually has an even denominator. The correct value
1561 of cbrt(x) is a negative real value. */
1562 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1563 dconst1_3 = real_value_truncate (mode, dconst_third ());
1564
1565 if (flag_unsafe_math_optimizations
1566 && cbrtfn
1567 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1568 && REAL_VALUES_EQUAL (c, dconst1_3))
1569 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1570
1571 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1572 if we don't have a hardware sqrt insn. */
1573 dconst1_6 = dconst1_3;
1574 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1575
1576 if (flag_unsafe_math_optimizations
1577 && sqrtfn
1578 && cbrtfn
1579 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1580 && speed_p
1581 && hw_sqrt_exists
1582 && REAL_VALUES_EQUAL (c, dconst1_6))
1583 {
1584 /* sqrt(x) */
1585 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1586
1587 /* cbrt(sqrt(x)) */
1588 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1589 }
1590
1591
1592 /* Attempt to expand the POW as a product of square root chains.
1593 Expand the 0.25 case even when otpimising for size. */
1594 if (flag_unsafe_math_optimizations
1595 && sqrtfn
1596 && hw_sqrt_exists
1597 && (speed_p || REAL_VALUES_EQUAL (c, dconst1_4))
1598 && !HONOR_SIGNED_ZEROS (mode))
1599 {
1600 unsigned int max_depth = speed_p
1601 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1602 : 2;
1603
1604 tree expand_with_sqrts
1605 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
1606
1607 if (expand_with_sqrts)
1608 return expand_with_sqrts;
1609 }
1610
1611 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1612 n = real_to_integer (&c2);
1613 real_from_integer (&cint, VOIDmode, n, SIGNED);
1614 c2_is_int = real_identical (&c2, &cint);
1615
1616 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1617
1618 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1619 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1620
1621 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1622 different from pow(x, 1./3.) due to rounding and behavior with
1623 negative x, we need to constrain this transformation to unsafe
1624 math and positive x or finite math. */
1625 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1626 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1627 real_round (&c2, mode, &c2);
1628 n = real_to_integer (&c2);
1629 real_from_integer (&cint, VOIDmode, n, SIGNED);
1630 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1631 real_convert (&c2, mode, &c2);
1632
1633 if (flag_unsafe_math_optimizations
1634 && cbrtfn
1635 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1636 && real_identical (&c2, &c)
1637 && !c2_is_int
1638 && optimize_function_for_speed_p (cfun)
1639 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1640 {
1641 tree powi_x_ndiv3 = NULL_TREE;
1642
1643 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1644 possible or profitable, give up. Skip the degenerate case when
1645 abs(n) < 3, where the result is always 1. */
1646 if (absu_hwi (n) >= 3)
1647 {
1648 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1649 abs_hwi (n / 3));
1650 if (!powi_x_ndiv3)
1651 return NULL_TREE;
1652 }
1653
1654 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1655 as that creates an unnecessary variable. Instead, just produce
1656 either cbrt(x) or cbrt(x) * cbrt(x). */
1657 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1658
1659 if (absu_hwi (n) % 3 == 1)
1660 powi_cbrt_x = cbrt_x;
1661 else
1662 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1663 cbrt_x, cbrt_x);
1664
1665 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1666 if (absu_hwi (n) < 3)
1667 result = powi_cbrt_x;
1668 else
1669 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1670 powi_x_ndiv3, powi_cbrt_x);
1671
1672 /* If n is negative, reciprocate the result. */
1673 if (n < 0)
1674 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1675 build_real (type, dconst1), result);
1676
1677 return result;
1678 }
1679
1680 /* No optimizations succeeded. */
1681 return NULL_TREE;
1682 }
1683
1684 /* ARG is the argument to a cabs builtin call in GSI with location info
1685 LOC. Create a sequence of statements prior to GSI that calculates
1686 sqrt(R*R + I*I), where R and I are the real and imaginary components
1687 of ARG, respectively. Return an expression holding the result. */
1688
1689 static tree
1690 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1691 {
1692 tree real_part, imag_part, addend1, addend2, sum, result;
1693 tree type = TREE_TYPE (TREE_TYPE (arg));
1694 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1695 machine_mode mode = TYPE_MODE (type);
1696
1697 if (!flag_unsafe_math_optimizations
1698 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1699 || !sqrtfn
1700 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1701 return NULL_TREE;
1702
1703 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1704 REALPART_EXPR, arg);
1705 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1706 real_part, real_part);
1707 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1708 IMAGPART_EXPR, arg);
1709 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1710 imag_part, imag_part);
1711 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1712 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1713
1714 return result;
1715 }
1716
1717 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1718 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1719 an optimal number of multiplies, when n is a constant. */
1720
1721 namespace {
1722
1723 const pass_data pass_data_cse_sincos =
1724 {
1725 GIMPLE_PASS, /* type */
1726 "sincos", /* name */
1727 OPTGROUP_NONE, /* optinfo_flags */
1728 TV_NONE, /* tv_id */
1729 PROP_ssa, /* properties_required */
1730 0, /* properties_provided */
1731 0, /* properties_destroyed */
1732 0, /* todo_flags_start */
1733 TODO_update_ssa, /* todo_flags_finish */
1734 };
1735
1736 class pass_cse_sincos : public gimple_opt_pass
1737 {
1738 public:
1739 pass_cse_sincos (gcc::context *ctxt)
1740 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1741 {}
1742
1743 /* opt_pass methods: */
1744 virtual bool gate (function *)
1745 {
1746 /* We no longer require either sincos or cexp, since powi expansion
1747 piggybacks on this pass. */
1748 return optimize;
1749 }
1750
1751 virtual unsigned int execute (function *);
1752
1753 }; // class pass_cse_sincos
1754
1755 unsigned int
1756 pass_cse_sincos::execute (function *fun)
1757 {
1758 basic_block bb;
1759 bool cfg_changed = false;
1760
1761 calculate_dominance_info (CDI_DOMINATORS);
1762 memset (&sincos_stats, 0, sizeof (sincos_stats));
1763
1764 FOR_EACH_BB_FN (bb, fun)
1765 {
1766 gimple_stmt_iterator gsi;
1767 bool cleanup_eh = false;
1768
1769 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1770 {
1771 gimple stmt = gsi_stmt (gsi);
1772 tree fndecl;
1773
1774 /* Only the last stmt in a bb could throw, no need to call
1775 gimple_purge_dead_eh_edges if we change something in the middle
1776 of a basic block. */
1777 cleanup_eh = false;
1778
1779 if (is_gimple_call (stmt)
1780 && gimple_call_lhs (stmt)
1781 && (fndecl = gimple_call_fndecl (stmt))
1782 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1783 {
1784 tree arg, arg0, arg1, result;
1785 HOST_WIDE_INT n;
1786 location_t loc;
1787
1788 switch (DECL_FUNCTION_CODE (fndecl))
1789 {
1790 CASE_FLT_FN (BUILT_IN_COS):
1791 CASE_FLT_FN (BUILT_IN_SIN):
1792 CASE_FLT_FN (BUILT_IN_CEXPI):
1793 /* Make sure we have either sincos or cexp. */
1794 if (!targetm.libc_has_function (function_c99_math_complex)
1795 && !targetm.libc_has_function (function_sincos))
1796 break;
1797
1798 arg = gimple_call_arg (stmt, 0);
1799 if (TREE_CODE (arg) == SSA_NAME)
1800 cfg_changed |= execute_cse_sincos_1 (arg);
1801 break;
1802
1803 CASE_FLT_FN (BUILT_IN_POW):
1804 arg0 = gimple_call_arg (stmt, 0);
1805 arg1 = gimple_call_arg (stmt, 1);
1806
1807 loc = gimple_location (stmt);
1808 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1809
1810 if (result)
1811 {
1812 tree lhs = gimple_get_lhs (stmt);
1813 gassign *new_stmt = gimple_build_assign (lhs, result);
1814 gimple_set_location (new_stmt, loc);
1815 unlink_stmt_vdef (stmt);
1816 gsi_replace (&gsi, new_stmt, true);
1817 cleanup_eh = true;
1818 if (gimple_vdef (stmt))
1819 release_ssa_name (gimple_vdef (stmt));
1820 }
1821 break;
1822
1823 CASE_FLT_FN (BUILT_IN_POWI):
1824 arg0 = gimple_call_arg (stmt, 0);
1825 arg1 = gimple_call_arg (stmt, 1);
1826 loc = gimple_location (stmt);
1827
1828 if (real_minus_onep (arg0))
1829 {
1830 tree t0, t1, cond, one, minus_one;
1831 gassign *stmt;
1832
1833 t0 = TREE_TYPE (arg0);
1834 t1 = TREE_TYPE (arg1);
1835 one = build_real (t0, dconst1);
1836 minus_one = build_real (t0, dconstm1);
1837
1838 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1839 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1840 arg1, build_int_cst (t1, 1));
1841 gimple_set_location (stmt, loc);
1842 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1843
1844 result = make_temp_ssa_name (t0, NULL, "powi");
1845 stmt = gimple_build_assign (result, COND_EXPR, cond,
1846 minus_one, one);
1847 gimple_set_location (stmt, loc);
1848 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1849 }
1850 else
1851 {
1852 if (!tree_fits_shwi_p (arg1))
1853 break;
1854
1855 n = tree_to_shwi (arg1);
1856 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1857 }
1858
1859 if (result)
1860 {
1861 tree lhs = gimple_get_lhs (stmt);
1862 gassign *new_stmt = gimple_build_assign (lhs, result);
1863 gimple_set_location (new_stmt, loc);
1864 unlink_stmt_vdef (stmt);
1865 gsi_replace (&gsi, new_stmt, true);
1866 cleanup_eh = true;
1867 if (gimple_vdef (stmt))
1868 release_ssa_name (gimple_vdef (stmt));
1869 }
1870 break;
1871
1872 CASE_FLT_FN (BUILT_IN_CABS):
1873 arg0 = gimple_call_arg (stmt, 0);
1874 loc = gimple_location (stmt);
1875 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1876
1877 if (result)
1878 {
1879 tree lhs = gimple_get_lhs (stmt);
1880 gassign *new_stmt = gimple_build_assign (lhs, result);
1881 gimple_set_location (new_stmt, loc);
1882 unlink_stmt_vdef (stmt);
1883 gsi_replace (&gsi, new_stmt, true);
1884 cleanup_eh = true;
1885 if (gimple_vdef (stmt))
1886 release_ssa_name (gimple_vdef (stmt));
1887 }
1888 break;
1889
1890 default:;
1891 }
1892 }
1893 }
1894 if (cleanup_eh)
1895 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1896 }
1897
1898 statistics_counter_event (fun, "sincos statements inserted",
1899 sincos_stats.inserted);
1900
1901 free_dominance_info (CDI_DOMINATORS);
1902 return cfg_changed ? TODO_cleanup_cfg : 0;
1903 }
1904
1905 } // anon namespace
1906
1907 gimple_opt_pass *
1908 make_pass_cse_sincos (gcc::context *ctxt)
1909 {
1910 return new pass_cse_sincos (ctxt);
1911 }
1912
1913 /* A symbolic number is used to detect byte permutation and selection
1914 patterns. Therefore the field N contains an artificial number
1915 consisting of octet sized markers:
1916
1917 0 - target byte has the value 0
1918 FF - target byte has an unknown value (eg. due to sign extension)
1919 1..size - marker value is the target byte index minus one.
1920
1921 To detect permutations on memory sources (arrays and structures), a symbolic
1922 number is also associated a base address (the array or structure the load is
1923 made from), an offset from the base address and a range which gives the
1924 difference between the highest and lowest accessed memory location to make
1925 such a symbolic number. The range is thus different from size which reflects
1926 the size of the type of current expression. Note that for non memory source,
1927 range holds the same value as size.
1928
1929 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1930 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1931 still have a size of 2 but this time a range of 1. */
1932
1933 struct symbolic_number {
1934 uint64_t n;
1935 tree type;
1936 tree base_addr;
1937 tree offset;
1938 HOST_WIDE_INT bytepos;
1939 tree alias_set;
1940 tree vuse;
1941 unsigned HOST_WIDE_INT range;
1942 };
1943
1944 #define BITS_PER_MARKER 8
1945 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1946 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1947 #define HEAD_MARKER(n, size) \
1948 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1949
1950 /* The number which the find_bswap_or_nop_1 result should match in
1951 order to have a nop. The number is masked according to the size of
1952 the symbolic number before using it. */
1953 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1954 (uint64_t)0x08070605 << 32 | 0x04030201)
1955
1956 /* The number which the find_bswap_or_nop_1 result should match in
1957 order to have a byte swap. The number is masked according to the
1958 size of the symbolic number before using it. */
1959 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1960 (uint64_t)0x01020304 << 32 | 0x05060708)
1961
1962 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1963 number N. Return false if the requested operation is not permitted
1964 on a symbolic number. */
1965
1966 static inline bool
1967 do_shift_rotate (enum tree_code code,
1968 struct symbolic_number *n,
1969 int count)
1970 {
1971 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1972 unsigned head_marker;
1973
1974 if (count % BITS_PER_UNIT != 0)
1975 return false;
1976 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1977
1978 /* Zero out the extra bits of N in order to avoid them being shifted
1979 into the significant bits. */
1980 if (size < 64 / BITS_PER_MARKER)
1981 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1982
1983 switch (code)
1984 {
1985 case LSHIFT_EXPR:
1986 n->n <<= count;
1987 break;
1988 case RSHIFT_EXPR:
1989 head_marker = HEAD_MARKER (n->n, size);
1990 n->n >>= count;
1991 /* Arithmetic shift of signed type: result is dependent on the value. */
1992 if (!TYPE_UNSIGNED (n->type) && head_marker)
1993 for (i = 0; i < count / BITS_PER_MARKER; i++)
1994 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1995 << ((size - 1 - i) * BITS_PER_MARKER);
1996 break;
1997 case LROTATE_EXPR:
1998 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1999 break;
2000 case RROTATE_EXPR:
2001 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
2002 break;
2003 default:
2004 return false;
2005 }
2006 /* Zero unused bits for size. */
2007 if (size < 64 / BITS_PER_MARKER)
2008 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2009 return true;
2010 }
2011
2012 /* Perform sanity checking for the symbolic number N and the gimple
2013 statement STMT. */
2014
2015 static inline bool
2016 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
2017 {
2018 tree lhs_type;
2019
2020 lhs_type = gimple_expr_type (stmt);
2021
2022 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
2023 return false;
2024
2025 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
2026 return false;
2027
2028 return true;
2029 }
2030
2031 /* Initialize the symbolic number N for the bswap pass from the base element
2032 SRC manipulated by the bitwise OR expression. */
2033
2034 static bool
2035 init_symbolic_number (struct symbolic_number *n, tree src)
2036 {
2037 int size;
2038
2039 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
2040
2041 /* Set up the symbolic number N by setting each byte to a value between 1 and
2042 the byte size of rhs1. The highest order byte is set to n->size and the
2043 lowest order byte to 1. */
2044 n->type = TREE_TYPE (src);
2045 size = TYPE_PRECISION (n->type);
2046 if (size % BITS_PER_UNIT != 0)
2047 return false;
2048 size /= BITS_PER_UNIT;
2049 if (size > 64 / BITS_PER_MARKER)
2050 return false;
2051 n->range = size;
2052 n->n = CMPNOP;
2053
2054 if (size < 64 / BITS_PER_MARKER)
2055 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
2056
2057 return true;
2058 }
2059
2060 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2061 the answer. If so, REF is that memory source and the base of the memory area
2062 accessed and the offset of the access from that base are recorded in N. */
2063
2064 bool
2065 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
2066 {
2067 /* Leaf node is an array or component ref. Memorize its base and
2068 offset from base to compare to other such leaf node. */
2069 HOST_WIDE_INT bitsize, bitpos;
2070 machine_mode mode;
2071 int unsignedp, volatilep;
2072 tree offset, base_addr;
2073
2074 /* Not prepared to handle PDP endian. */
2075 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2076 return false;
2077
2078 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2079 return false;
2080
2081 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
2082 &unsignedp, &volatilep, false);
2083
2084 if (TREE_CODE (base_addr) == MEM_REF)
2085 {
2086 offset_int bit_offset = 0;
2087 tree off = TREE_OPERAND (base_addr, 1);
2088
2089 if (!integer_zerop (off))
2090 {
2091 offset_int boff, coff = mem_ref_offset (base_addr);
2092 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2093 bit_offset += boff;
2094 }
2095
2096 base_addr = TREE_OPERAND (base_addr, 0);
2097
2098 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2099 if (wi::neg_p (bit_offset))
2100 {
2101 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2102 offset_int tem = bit_offset.and_not (mask);
2103 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2104 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2105 bit_offset -= tem;
2106 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
2107 if (offset)
2108 offset = size_binop (PLUS_EXPR, offset,
2109 wide_int_to_tree (sizetype, tem));
2110 else
2111 offset = wide_int_to_tree (sizetype, tem);
2112 }
2113
2114 bitpos += bit_offset.to_shwi ();
2115 }
2116
2117 if (bitpos % BITS_PER_UNIT)
2118 return false;
2119 if (bitsize % BITS_PER_UNIT)
2120 return false;
2121
2122 if (!init_symbolic_number (n, ref))
2123 return false;
2124 n->base_addr = base_addr;
2125 n->offset = offset;
2126 n->bytepos = bitpos / BITS_PER_UNIT;
2127 n->alias_set = reference_alias_ptr_type (ref);
2128 n->vuse = gimple_vuse (stmt);
2129 return true;
2130 }
2131
2132 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2133 symbolic number N1 and N2 whose source statements are respectively
2134 SOURCE_STMT1 and SOURCE_STMT2. */
2135
2136 static gimple
2137 perform_symbolic_merge (gimple source_stmt1, struct symbolic_number *n1,
2138 gimple source_stmt2, struct symbolic_number *n2,
2139 struct symbolic_number *n)
2140 {
2141 int i, size;
2142 uint64_t mask;
2143 gimple source_stmt;
2144 struct symbolic_number *n_start;
2145
2146 /* Sources are different, cancel bswap if they are not memory location with
2147 the same base (array, structure, ...). */
2148 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2149 {
2150 int64_t inc;
2151 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2152 struct symbolic_number *toinc_n_ptr, *n_end;
2153
2154 if (!n1->base_addr || !n2->base_addr
2155 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2156 return NULL;
2157
2158 if (!n1->offset != !n2->offset
2159 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
2160 return NULL;
2161
2162 if (n1->bytepos < n2->bytepos)
2163 {
2164 n_start = n1;
2165 start_sub = n2->bytepos - n1->bytepos;
2166 source_stmt = source_stmt1;
2167 }
2168 else
2169 {
2170 n_start = n2;
2171 start_sub = n1->bytepos - n2->bytepos;
2172 source_stmt = source_stmt2;
2173 }
2174
2175 /* Find the highest address at which a load is performed and
2176 compute related info. */
2177 end1 = n1->bytepos + (n1->range - 1);
2178 end2 = n2->bytepos + (n2->range - 1);
2179 if (end1 < end2)
2180 {
2181 end = end2;
2182 end_sub = end2 - end1;
2183 }
2184 else
2185 {
2186 end = end1;
2187 end_sub = end1 - end2;
2188 }
2189 n_end = (end2 > end1) ? n2 : n1;
2190
2191 /* Find symbolic number whose lsb is the most significant. */
2192 if (BYTES_BIG_ENDIAN)
2193 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2194 else
2195 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2196
2197 n->range = end - n_start->bytepos + 1;
2198
2199 /* Check that the range of memory covered can be represented by
2200 a symbolic number. */
2201 if (n->range > 64 / BITS_PER_MARKER)
2202 return NULL;
2203
2204 /* Reinterpret byte marks in symbolic number holding the value of
2205 bigger weight according to target endianness. */
2206 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2207 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2208 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2209 {
2210 unsigned marker
2211 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2212 if (marker && marker != MARKER_BYTE_UNKNOWN)
2213 toinc_n_ptr->n += inc;
2214 }
2215 }
2216 else
2217 {
2218 n->range = n1->range;
2219 n_start = n1;
2220 source_stmt = source_stmt1;
2221 }
2222
2223 if (!n1->alias_set
2224 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2225 n->alias_set = n1->alias_set;
2226 else
2227 n->alias_set = ptr_type_node;
2228 n->vuse = n_start->vuse;
2229 n->base_addr = n_start->base_addr;
2230 n->offset = n_start->offset;
2231 n->bytepos = n_start->bytepos;
2232 n->type = n_start->type;
2233 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2234
2235 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2236 {
2237 uint64_t masked1, masked2;
2238
2239 masked1 = n1->n & mask;
2240 masked2 = n2->n & mask;
2241 if (masked1 && masked2 && masked1 != masked2)
2242 return NULL;
2243 }
2244 n->n = n1->n | n2->n;
2245
2246 return source_stmt;
2247 }
2248
2249 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2250 the operation given by the rhs of STMT on the result. If the operation
2251 could successfully be executed the function returns a gimple stmt whose
2252 rhs's first tree is the expression of the source operand and NULL
2253 otherwise. */
2254
2255 static gimple
2256 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
2257 {
2258 enum tree_code code;
2259 tree rhs1, rhs2 = NULL;
2260 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
2261 enum gimple_rhs_class rhs_class;
2262
2263 if (!limit || !is_gimple_assign (stmt))
2264 return NULL;
2265
2266 rhs1 = gimple_assign_rhs1 (stmt);
2267
2268 if (find_bswap_or_nop_load (stmt, rhs1, n))
2269 return stmt;
2270
2271 if (TREE_CODE (rhs1) != SSA_NAME)
2272 return NULL;
2273
2274 code = gimple_assign_rhs_code (stmt);
2275 rhs_class = gimple_assign_rhs_class (stmt);
2276 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2277
2278 if (rhs_class == GIMPLE_BINARY_RHS)
2279 rhs2 = gimple_assign_rhs2 (stmt);
2280
2281 /* Handle unary rhs and binary rhs with integer constants as second
2282 operand. */
2283
2284 if (rhs_class == GIMPLE_UNARY_RHS
2285 || (rhs_class == GIMPLE_BINARY_RHS
2286 && TREE_CODE (rhs2) == INTEGER_CST))
2287 {
2288 if (code != BIT_AND_EXPR
2289 && code != LSHIFT_EXPR
2290 && code != RSHIFT_EXPR
2291 && code != LROTATE_EXPR
2292 && code != RROTATE_EXPR
2293 && !CONVERT_EXPR_CODE_P (code))
2294 return NULL;
2295
2296 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
2297
2298 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2299 we have to initialize the symbolic number. */
2300 if (!source_stmt1)
2301 {
2302 if (gimple_assign_load_p (stmt)
2303 || !init_symbolic_number (n, rhs1))
2304 return NULL;
2305 source_stmt1 = stmt;
2306 }
2307
2308 switch (code)
2309 {
2310 case BIT_AND_EXPR:
2311 {
2312 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2313 uint64_t val = int_cst_value (rhs2), mask = 0;
2314 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2315
2316 /* Only constants masking full bytes are allowed. */
2317 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2318 if ((val & tmp) != 0 && (val & tmp) != tmp)
2319 return NULL;
2320 else if (val & tmp)
2321 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2322
2323 n->n &= mask;
2324 }
2325 break;
2326 case LSHIFT_EXPR:
2327 case RSHIFT_EXPR:
2328 case LROTATE_EXPR:
2329 case RROTATE_EXPR:
2330 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
2331 return NULL;
2332 break;
2333 CASE_CONVERT:
2334 {
2335 int i, type_size, old_type_size;
2336 tree type;
2337
2338 type = gimple_expr_type (stmt);
2339 type_size = TYPE_PRECISION (type);
2340 if (type_size % BITS_PER_UNIT != 0)
2341 return NULL;
2342 type_size /= BITS_PER_UNIT;
2343 if (type_size > 64 / BITS_PER_MARKER)
2344 return NULL;
2345
2346 /* Sign extension: result is dependent on the value. */
2347 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2348 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2349 && HEAD_MARKER (n->n, old_type_size))
2350 for (i = 0; i < type_size - old_type_size; i++)
2351 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2352 << ((type_size - 1 - i) * BITS_PER_MARKER);
2353
2354 if (type_size < 64 / BITS_PER_MARKER)
2355 {
2356 /* If STMT casts to a smaller type mask out the bits not
2357 belonging to the target type. */
2358 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2359 }
2360 n->type = type;
2361 if (!n->base_addr)
2362 n->range = type_size;
2363 }
2364 break;
2365 default:
2366 return NULL;
2367 };
2368 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2369 }
2370
2371 /* Handle binary rhs. */
2372
2373 if (rhs_class == GIMPLE_BINARY_RHS)
2374 {
2375 struct symbolic_number n1, n2;
2376 gimple source_stmt, source_stmt2;
2377
2378 if (code != BIT_IOR_EXPR)
2379 return NULL;
2380
2381 if (TREE_CODE (rhs2) != SSA_NAME)
2382 return NULL;
2383
2384 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2385
2386 switch (code)
2387 {
2388 case BIT_IOR_EXPR:
2389 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2390
2391 if (!source_stmt1)
2392 return NULL;
2393
2394 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2395
2396 if (!source_stmt2)
2397 return NULL;
2398
2399 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2400 return NULL;
2401
2402 if (!n1.vuse != !n2.vuse
2403 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2404 return NULL;
2405
2406 source_stmt
2407 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2408
2409 if (!source_stmt)
2410 return NULL;
2411
2412 if (!verify_symbolic_number_p (n, stmt))
2413 return NULL;
2414
2415 break;
2416 default:
2417 return NULL;
2418 }
2419 return source_stmt;
2420 }
2421 return NULL;
2422 }
2423
2424 /* Check if STMT completes a bswap implementation or a read in a given
2425 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2426 accordingly. It also sets N to represent the kind of operations
2427 performed: size of the resulting expression and whether it works on
2428 a memory source, and if so alias-set and vuse. At last, the
2429 function returns a stmt whose rhs's first tree is the source
2430 expression. */
2431
2432 static gimple
2433 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2434 {
2435 /* The number which the find_bswap_or_nop_1 result should match in order
2436 to have a full byte swap. The number is shifted to the right
2437 according to the size of the symbolic number before using it. */
2438 uint64_t cmpxchg = CMPXCHG;
2439 uint64_t cmpnop = CMPNOP;
2440
2441 gimple source_stmt;
2442 int limit;
2443
2444 /* The last parameter determines the depth search limit. It usually
2445 correlates directly to the number n of bytes to be touched. We
2446 increase that number by log2(n) + 1 here in order to also
2447 cover signed -> unsigned conversions of the src operand as can be seen
2448 in libgcc, and for initial shift/and operation of the src operand. */
2449 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2450 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2451 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2452
2453 if (!source_stmt)
2454 return NULL;
2455
2456 /* Find real size of result (highest non-zero byte). */
2457 if (n->base_addr)
2458 {
2459 int rsize;
2460 uint64_t tmpn;
2461
2462 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2463 n->range = rsize;
2464 }
2465
2466 /* Zero out the extra bits of N and CMP*. */
2467 if (n->range < (int) sizeof (int64_t))
2468 {
2469 uint64_t mask;
2470
2471 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2472 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2473 cmpnop &= mask;
2474 }
2475
2476 /* A complete byte swap should make the symbolic number to start with
2477 the largest digit in the highest order byte. Unchanged symbolic
2478 number indicates a read with same endianness as target architecture. */
2479 if (n->n == cmpnop)
2480 *bswap = false;
2481 else if (n->n == cmpxchg)
2482 *bswap = true;
2483 else
2484 return NULL;
2485
2486 /* Useless bit manipulation performed by code. */
2487 if (!n->base_addr && n->n == cmpnop)
2488 return NULL;
2489
2490 n->range *= BITS_PER_UNIT;
2491 return source_stmt;
2492 }
2493
2494 namespace {
2495
2496 const pass_data pass_data_optimize_bswap =
2497 {
2498 GIMPLE_PASS, /* type */
2499 "bswap", /* name */
2500 OPTGROUP_NONE, /* optinfo_flags */
2501 TV_NONE, /* tv_id */
2502 PROP_ssa, /* properties_required */
2503 0, /* properties_provided */
2504 0, /* properties_destroyed */
2505 0, /* todo_flags_start */
2506 0, /* todo_flags_finish */
2507 };
2508
2509 class pass_optimize_bswap : public gimple_opt_pass
2510 {
2511 public:
2512 pass_optimize_bswap (gcc::context *ctxt)
2513 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2514 {}
2515
2516 /* opt_pass methods: */
2517 virtual bool gate (function *)
2518 {
2519 return flag_expensive_optimizations && optimize;
2520 }
2521
2522 virtual unsigned int execute (function *);
2523
2524 }; // class pass_optimize_bswap
2525
2526 /* Perform the bswap optimization: replace the expression computed in the rhs
2527 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2528 Which of these alternatives replace the rhs is given by N->base_addr (non
2529 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2530 load to perform are also given in N while the builtin bswap invoke is given
2531 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2532 load statements involved to construct the rhs in CUR_STMT and N->range gives
2533 the size of the rhs expression for maintaining some statistics.
2534
2535 Note that if the replacement involve a load, CUR_STMT is moved just after
2536 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2537 changing of basic block. */
2538
2539 static bool
2540 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2541 tree load_type, struct symbolic_number *n, bool bswap)
2542 {
2543 gimple_stmt_iterator gsi;
2544 tree src, tmp, tgt;
2545 gimple bswap_stmt;
2546
2547 gsi = gsi_for_stmt (cur_stmt);
2548 src = gimple_assign_rhs1 (src_stmt);
2549 tgt = gimple_assign_lhs (cur_stmt);
2550
2551 /* Need to load the value from memory first. */
2552 if (n->base_addr)
2553 {
2554 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2555 tree addr_expr, addr_tmp, val_expr, val_tmp;
2556 tree load_offset_ptr, aligned_load_type;
2557 gimple addr_stmt, load_stmt;
2558 unsigned align;
2559 HOST_WIDE_INT load_offset = 0;
2560
2561 align = get_object_alignment (src);
2562 /* If the new access is smaller than the original one, we need
2563 to perform big endian adjustment. */
2564 if (BYTES_BIG_ENDIAN)
2565 {
2566 HOST_WIDE_INT bitsize, bitpos;
2567 machine_mode mode;
2568 int unsignedp, volatilep;
2569 tree offset;
2570
2571 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
2572 &unsignedp, &volatilep, false);
2573 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2574 {
2575 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2576 unsigned HOST_WIDE_INT l
2577 = (load_offset * BITS_PER_UNIT) & (align - 1);
2578 if (l)
2579 align = l & -l;
2580 }
2581 }
2582
2583 if (bswap
2584 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2585 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2586 return false;
2587
2588 /* Move cur_stmt just before one of the load of the original
2589 to ensure it has the same VUSE. See PR61517 for what could
2590 go wrong. */
2591 gsi_move_before (&gsi, &gsi_ins);
2592 gsi = gsi_for_stmt (cur_stmt);
2593
2594 /* Compute address to load from and cast according to the size
2595 of the load. */
2596 addr_expr = build_fold_addr_expr (unshare_expr (src));
2597 if (is_gimple_mem_ref_addr (addr_expr))
2598 addr_tmp = addr_expr;
2599 else
2600 {
2601 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2602 "load_src");
2603 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2604 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2605 }
2606
2607 /* Perform the load. */
2608 aligned_load_type = load_type;
2609 if (align < TYPE_ALIGN (load_type))
2610 aligned_load_type = build_aligned_type (load_type, align);
2611 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
2612 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2613 load_offset_ptr);
2614
2615 if (!bswap)
2616 {
2617 if (n->range == 16)
2618 nop_stats.found_16bit++;
2619 else if (n->range == 32)
2620 nop_stats.found_32bit++;
2621 else
2622 {
2623 gcc_assert (n->range == 64);
2624 nop_stats.found_64bit++;
2625 }
2626
2627 /* Convert the result of load if necessary. */
2628 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2629 {
2630 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2631 "load_dst");
2632 load_stmt = gimple_build_assign (val_tmp, val_expr);
2633 gimple_set_vuse (load_stmt, n->vuse);
2634 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2635 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2636 }
2637 else
2638 {
2639 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2640 gimple_set_vuse (cur_stmt, n->vuse);
2641 }
2642 update_stmt (cur_stmt);
2643
2644 if (dump_file)
2645 {
2646 fprintf (dump_file,
2647 "%d bit load in target endianness found at: ",
2648 (int) n->range);
2649 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2650 }
2651 return true;
2652 }
2653 else
2654 {
2655 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2656 load_stmt = gimple_build_assign (val_tmp, val_expr);
2657 gimple_set_vuse (load_stmt, n->vuse);
2658 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2659 }
2660 src = val_tmp;
2661 }
2662
2663 if (n->range == 16)
2664 bswap_stats.found_16bit++;
2665 else if (n->range == 32)
2666 bswap_stats.found_32bit++;
2667 else
2668 {
2669 gcc_assert (n->range == 64);
2670 bswap_stats.found_64bit++;
2671 }
2672
2673 tmp = src;
2674
2675 /* Convert the src expression if necessary. */
2676 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2677 {
2678 gimple convert_stmt;
2679
2680 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2681 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2682 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2683 }
2684
2685 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2686 are considered as rotation of 2N bit values by N bits is generally not
2687 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2688 gives 0x03040102 while a bswap for that value is 0x04030201. */
2689 if (bswap && n->range == 16)
2690 {
2691 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2692 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
2693 bswap_stmt = gimple_build_assign (NULL, src);
2694 }
2695 else
2696 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2697
2698 tmp = tgt;
2699
2700 /* Convert the result if necessary. */
2701 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2702 {
2703 gimple convert_stmt;
2704
2705 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2706 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2707 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2708 }
2709
2710 gimple_set_lhs (bswap_stmt, tmp);
2711
2712 if (dump_file)
2713 {
2714 fprintf (dump_file, "%d bit bswap implementation found at: ",
2715 (int) n->range);
2716 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2717 }
2718
2719 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2720 gsi_remove (&gsi, true);
2721 return true;
2722 }
2723
2724 /* Find manual byte swap implementations as well as load in a given
2725 endianness. Byte swaps are turned into a bswap builtin invokation
2726 while endian loads are converted to bswap builtin invokation or
2727 simple load according to the target endianness. */
2728
2729 unsigned int
2730 pass_optimize_bswap::execute (function *fun)
2731 {
2732 basic_block bb;
2733 bool bswap32_p, bswap64_p;
2734 bool changed = false;
2735 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2736
2737 if (BITS_PER_UNIT != 8)
2738 return 0;
2739
2740 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2741 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2742 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2743 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2744 || (bswap32_p && word_mode == SImode)));
2745
2746 /* Determine the argument type of the builtins. The code later on
2747 assumes that the return and argument type are the same. */
2748 if (bswap32_p)
2749 {
2750 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2751 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2752 }
2753
2754 if (bswap64_p)
2755 {
2756 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2757 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2758 }
2759
2760 memset (&nop_stats, 0, sizeof (nop_stats));
2761 memset (&bswap_stats, 0, sizeof (bswap_stats));
2762
2763 FOR_EACH_BB_FN (bb, fun)
2764 {
2765 gimple_stmt_iterator gsi;
2766
2767 /* We do a reverse scan for bswap patterns to make sure we get the
2768 widest match. As bswap pattern matching doesn't handle previously
2769 inserted smaller bswap replacements as sub-patterns, the wider
2770 variant wouldn't be detected. */
2771 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2772 {
2773 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2774 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2775 enum tree_code code;
2776 struct symbolic_number n;
2777 bool bswap;
2778
2779 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2780 might be moved to a different basic block by bswap_replace and gsi
2781 must not points to it if that's the case. Moving the gsi_prev
2782 there make sure that gsi points to the statement previous to
2783 cur_stmt while still making sure that all statements are
2784 considered in this basic block. */
2785 gsi_prev (&gsi);
2786
2787 if (!is_gimple_assign (cur_stmt))
2788 continue;
2789
2790 code = gimple_assign_rhs_code (cur_stmt);
2791 switch (code)
2792 {
2793 case LROTATE_EXPR:
2794 case RROTATE_EXPR:
2795 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2796 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2797 % BITS_PER_UNIT)
2798 continue;
2799 /* Fall through. */
2800 case BIT_IOR_EXPR:
2801 break;
2802 default:
2803 continue;
2804 }
2805
2806 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2807
2808 if (!src_stmt)
2809 continue;
2810
2811 switch (n.range)
2812 {
2813 case 16:
2814 /* Already in canonical form, nothing to do. */
2815 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2816 continue;
2817 load_type = bswap_type = uint16_type_node;
2818 break;
2819 case 32:
2820 load_type = uint32_type_node;
2821 if (bswap32_p)
2822 {
2823 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2824 bswap_type = bswap32_type;
2825 }
2826 break;
2827 case 64:
2828 load_type = uint64_type_node;
2829 if (bswap64_p)
2830 {
2831 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2832 bswap_type = bswap64_type;
2833 }
2834 break;
2835 default:
2836 continue;
2837 }
2838
2839 if (bswap && !fndecl && n.range != 16)
2840 continue;
2841
2842 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2843 &n, bswap))
2844 changed = true;
2845 }
2846 }
2847
2848 statistics_counter_event (fun, "16-bit nop implementations found",
2849 nop_stats.found_16bit);
2850 statistics_counter_event (fun, "32-bit nop implementations found",
2851 nop_stats.found_32bit);
2852 statistics_counter_event (fun, "64-bit nop implementations found",
2853 nop_stats.found_64bit);
2854 statistics_counter_event (fun, "16-bit bswap implementations found",
2855 bswap_stats.found_16bit);
2856 statistics_counter_event (fun, "32-bit bswap implementations found",
2857 bswap_stats.found_32bit);
2858 statistics_counter_event (fun, "64-bit bswap implementations found",
2859 bswap_stats.found_64bit);
2860
2861 return (changed ? TODO_update_ssa : 0);
2862 }
2863
2864 } // anon namespace
2865
2866 gimple_opt_pass *
2867 make_pass_optimize_bswap (gcc::context *ctxt)
2868 {
2869 return new pass_optimize_bswap (ctxt);
2870 }
2871
2872 /* Return true if stmt is a type conversion operation that can be stripped
2873 when used in a widening multiply operation. */
2874 static bool
2875 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2876 {
2877 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2878
2879 if (TREE_CODE (result_type) == INTEGER_TYPE)
2880 {
2881 tree op_type;
2882 tree inner_op_type;
2883
2884 if (!CONVERT_EXPR_CODE_P (rhs_code))
2885 return false;
2886
2887 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2888
2889 /* If the type of OP has the same precision as the result, then
2890 we can strip this conversion. The multiply operation will be
2891 selected to create the correct extension as a by-product. */
2892 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2893 return true;
2894
2895 /* We can also strip a conversion if it preserves the signed-ness of
2896 the operation and doesn't narrow the range. */
2897 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2898
2899 /* If the inner-most type is unsigned, then we can strip any
2900 intermediate widening operation. If it's signed, then the
2901 intermediate widening operation must also be signed. */
2902 if ((TYPE_UNSIGNED (inner_op_type)
2903 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2904 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2905 return true;
2906
2907 return false;
2908 }
2909
2910 return rhs_code == FIXED_CONVERT_EXPR;
2911 }
2912
2913 /* Return true if RHS is a suitable operand for a widening multiplication,
2914 assuming a target type of TYPE.
2915 There are two cases:
2916
2917 - RHS makes some value at least twice as wide. Store that value
2918 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2919
2920 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2921 but leave *TYPE_OUT untouched. */
2922
2923 static bool
2924 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2925 tree *new_rhs_out)
2926 {
2927 gimple stmt;
2928 tree type1, rhs1;
2929
2930 if (TREE_CODE (rhs) == SSA_NAME)
2931 {
2932 stmt = SSA_NAME_DEF_STMT (rhs);
2933 if (is_gimple_assign (stmt))
2934 {
2935 if (! widening_mult_conversion_strippable_p (type, stmt))
2936 rhs1 = rhs;
2937 else
2938 {
2939 rhs1 = gimple_assign_rhs1 (stmt);
2940
2941 if (TREE_CODE (rhs1) == INTEGER_CST)
2942 {
2943 *new_rhs_out = rhs1;
2944 *type_out = NULL;
2945 return true;
2946 }
2947 }
2948 }
2949 else
2950 rhs1 = rhs;
2951
2952 type1 = TREE_TYPE (rhs1);
2953
2954 if (TREE_CODE (type1) != TREE_CODE (type)
2955 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2956 return false;
2957
2958 *new_rhs_out = rhs1;
2959 *type_out = type1;
2960 return true;
2961 }
2962
2963 if (TREE_CODE (rhs) == INTEGER_CST)
2964 {
2965 *new_rhs_out = rhs;
2966 *type_out = NULL;
2967 return true;
2968 }
2969
2970 return false;
2971 }
2972
2973 /* Return true if STMT performs a widening multiplication, assuming the
2974 output type is TYPE. If so, store the unwidened types of the operands
2975 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2976 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2977 and *TYPE2_OUT would give the operands of the multiplication. */
2978
2979 static bool
2980 is_widening_mult_p (gimple stmt,
2981 tree *type1_out, tree *rhs1_out,
2982 tree *type2_out, tree *rhs2_out)
2983 {
2984 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2985
2986 if (TREE_CODE (type) != INTEGER_TYPE
2987 && TREE_CODE (type) != FIXED_POINT_TYPE)
2988 return false;
2989
2990 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2991 rhs1_out))
2992 return false;
2993
2994 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2995 rhs2_out))
2996 return false;
2997
2998 if (*type1_out == NULL)
2999 {
3000 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
3001 return false;
3002 *type1_out = *type2_out;
3003 }
3004
3005 if (*type2_out == NULL)
3006 {
3007 if (!int_fits_type_p (*rhs2_out, *type1_out))
3008 return false;
3009 *type2_out = *type1_out;
3010 }
3011
3012 /* Ensure that the larger of the two operands comes first. */
3013 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
3014 {
3015 std::swap (*type1_out, *type2_out);
3016 std::swap (*rhs1_out, *rhs2_out);
3017 }
3018
3019 return true;
3020 }
3021
3022 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3023 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3024 value is true iff we converted the statement. */
3025
3026 static bool
3027 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
3028 {
3029 tree lhs, rhs1, rhs2, type, type1, type2;
3030 enum insn_code handler;
3031 machine_mode to_mode, from_mode, actual_mode;
3032 optab op;
3033 int actual_precision;
3034 location_t loc = gimple_location (stmt);
3035 bool from_unsigned1, from_unsigned2;
3036
3037 lhs = gimple_assign_lhs (stmt);
3038 type = TREE_TYPE (lhs);
3039 if (TREE_CODE (type) != INTEGER_TYPE)
3040 return false;
3041
3042 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
3043 return false;
3044
3045 to_mode = TYPE_MODE (type);
3046 from_mode = TYPE_MODE (type1);
3047 from_unsigned1 = TYPE_UNSIGNED (type1);
3048 from_unsigned2 = TYPE_UNSIGNED (type2);
3049
3050 if (from_unsigned1 && from_unsigned2)
3051 op = umul_widen_optab;
3052 else if (!from_unsigned1 && !from_unsigned2)
3053 op = smul_widen_optab;
3054 else
3055 op = usmul_widen_optab;
3056
3057 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3058 0, &actual_mode);
3059
3060 if (handler == CODE_FOR_nothing)
3061 {
3062 if (op != smul_widen_optab)
3063 {
3064 /* We can use a signed multiply with unsigned types as long as
3065 there is a wider mode to use, or it is the smaller of the two
3066 types that is unsigned. Note that type1 >= type2, always. */
3067 if ((TYPE_UNSIGNED (type1)
3068 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3069 || (TYPE_UNSIGNED (type2)
3070 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3071 {
3072 from_mode = GET_MODE_WIDER_MODE (from_mode);
3073 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3074 return false;
3075 }
3076
3077 op = smul_widen_optab;
3078 handler = find_widening_optab_handler_and_mode (op, to_mode,
3079 from_mode, 0,
3080 &actual_mode);
3081
3082 if (handler == CODE_FOR_nothing)
3083 return false;
3084
3085 from_unsigned1 = from_unsigned2 = false;
3086 }
3087 else
3088 return false;
3089 }
3090
3091 /* Ensure that the inputs to the handler are in the correct precison
3092 for the opcode. This will be the full mode size. */
3093 actual_precision = GET_MODE_PRECISION (actual_mode);
3094 if (2 * actual_precision > TYPE_PRECISION (type))
3095 return false;
3096 if (actual_precision != TYPE_PRECISION (type1)
3097 || from_unsigned1 != TYPE_UNSIGNED (type1))
3098 rhs1 = build_and_insert_cast (gsi, loc,
3099 build_nonstandard_integer_type
3100 (actual_precision, from_unsigned1), rhs1);
3101 if (actual_precision != TYPE_PRECISION (type2)
3102 || from_unsigned2 != TYPE_UNSIGNED (type2))
3103 rhs2 = build_and_insert_cast (gsi, loc,
3104 build_nonstandard_integer_type
3105 (actual_precision, from_unsigned2), rhs2);
3106
3107 /* Handle constants. */
3108 if (TREE_CODE (rhs1) == INTEGER_CST)
3109 rhs1 = fold_convert (type1, rhs1);
3110 if (TREE_CODE (rhs2) == INTEGER_CST)
3111 rhs2 = fold_convert (type2, rhs2);
3112
3113 gimple_assign_set_rhs1 (stmt, rhs1);
3114 gimple_assign_set_rhs2 (stmt, rhs2);
3115 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3116 update_stmt (stmt);
3117 widen_mul_stats.widen_mults_inserted++;
3118 return true;
3119 }
3120
3121 /* Process a single gimple statement STMT, which is found at the
3122 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3123 rhs (given by CODE), and try to convert it into a
3124 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3125 is true iff we converted the statement. */
3126
3127 static bool
3128 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
3129 enum tree_code code)
3130 {
3131 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
3132 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
3133 tree type, type1, type2, optype;
3134 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3135 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3136 optab this_optab;
3137 enum tree_code wmult_code;
3138 enum insn_code handler;
3139 machine_mode to_mode, from_mode, actual_mode;
3140 location_t loc = gimple_location (stmt);
3141 int actual_precision;
3142 bool from_unsigned1, from_unsigned2;
3143
3144 lhs = gimple_assign_lhs (stmt);
3145 type = TREE_TYPE (lhs);
3146 if (TREE_CODE (type) != INTEGER_TYPE
3147 && TREE_CODE (type) != FIXED_POINT_TYPE)
3148 return false;
3149
3150 if (code == MINUS_EXPR)
3151 wmult_code = WIDEN_MULT_MINUS_EXPR;
3152 else
3153 wmult_code = WIDEN_MULT_PLUS_EXPR;
3154
3155 rhs1 = gimple_assign_rhs1 (stmt);
3156 rhs2 = gimple_assign_rhs2 (stmt);
3157
3158 if (TREE_CODE (rhs1) == SSA_NAME)
3159 {
3160 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3161 if (is_gimple_assign (rhs1_stmt))
3162 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3163 }
3164
3165 if (TREE_CODE (rhs2) == SSA_NAME)
3166 {
3167 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3168 if (is_gimple_assign (rhs2_stmt))
3169 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3170 }
3171
3172 /* Allow for one conversion statement between the multiply
3173 and addition/subtraction statement. If there are more than
3174 one conversions then we assume they would invalidate this
3175 transformation. If that's not the case then they should have
3176 been folded before now. */
3177 if (CONVERT_EXPR_CODE_P (rhs1_code))
3178 {
3179 conv1_stmt = rhs1_stmt;
3180 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3181 if (TREE_CODE (rhs1) == SSA_NAME)
3182 {
3183 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3184 if (is_gimple_assign (rhs1_stmt))
3185 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3186 }
3187 else
3188 return false;
3189 }
3190 if (CONVERT_EXPR_CODE_P (rhs2_code))
3191 {
3192 conv2_stmt = rhs2_stmt;
3193 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3194 if (TREE_CODE (rhs2) == SSA_NAME)
3195 {
3196 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3197 if (is_gimple_assign (rhs2_stmt))
3198 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3199 }
3200 else
3201 return false;
3202 }
3203
3204 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3205 is_widening_mult_p, but we still need the rhs returns.
3206
3207 It might also appear that it would be sufficient to use the existing
3208 operands of the widening multiply, but that would limit the choice of
3209 multiply-and-accumulate instructions.
3210
3211 If the widened-multiplication result has more than one uses, it is
3212 probably wiser not to do the conversion. */
3213 if (code == PLUS_EXPR
3214 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
3215 {
3216 if (!has_single_use (rhs1)
3217 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3218 &type2, &mult_rhs2))
3219 return false;
3220 add_rhs = rhs2;
3221 conv_stmt = conv1_stmt;
3222 }
3223 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
3224 {
3225 if (!has_single_use (rhs2)
3226 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3227 &type2, &mult_rhs2))
3228 return false;
3229 add_rhs = rhs1;
3230 conv_stmt = conv2_stmt;
3231 }
3232 else
3233 return false;
3234
3235 to_mode = TYPE_MODE (type);
3236 from_mode = TYPE_MODE (type1);
3237 from_unsigned1 = TYPE_UNSIGNED (type1);
3238 from_unsigned2 = TYPE_UNSIGNED (type2);
3239 optype = type1;
3240
3241 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3242 if (from_unsigned1 != from_unsigned2)
3243 {
3244 if (!INTEGRAL_TYPE_P (type))
3245 return false;
3246 /* We can use a signed multiply with unsigned types as long as
3247 there is a wider mode to use, or it is the smaller of the two
3248 types that is unsigned. Note that type1 >= type2, always. */
3249 if ((from_unsigned1
3250 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3251 || (from_unsigned2
3252 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3253 {
3254 from_mode = GET_MODE_WIDER_MODE (from_mode);
3255 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3256 return false;
3257 }
3258
3259 from_unsigned1 = from_unsigned2 = false;
3260 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3261 false);
3262 }
3263
3264 /* If there was a conversion between the multiply and addition
3265 then we need to make sure it fits a multiply-and-accumulate.
3266 The should be a single mode change which does not change the
3267 value. */
3268 if (conv_stmt)
3269 {
3270 /* We use the original, unmodified data types for this. */
3271 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3272 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3273 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3274 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3275
3276 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3277 {
3278 /* Conversion is a truncate. */
3279 if (TYPE_PRECISION (to_type) < data_size)
3280 return false;
3281 }
3282 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3283 {
3284 /* Conversion is an extend. Check it's the right sort. */
3285 if (TYPE_UNSIGNED (from_type) != is_unsigned
3286 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3287 return false;
3288 }
3289 /* else convert is a no-op for our purposes. */
3290 }
3291
3292 /* Verify that the machine can perform a widening multiply
3293 accumulate in this mode/signedness combination, otherwise
3294 this transformation is likely to pessimize code. */
3295 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
3296 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3297 from_mode, 0, &actual_mode);
3298
3299 if (handler == CODE_FOR_nothing)
3300 return false;
3301
3302 /* Ensure that the inputs to the handler are in the correct precison
3303 for the opcode. This will be the full mode size. */
3304 actual_precision = GET_MODE_PRECISION (actual_mode);
3305 if (actual_precision != TYPE_PRECISION (type1)
3306 || from_unsigned1 != TYPE_UNSIGNED (type1))
3307 mult_rhs1 = build_and_insert_cast (gsi, loc,
3308 build_nonstandard_integer_type
3309 (actual_precision, from_unsigned1),
3310 mult_rhs1);
3311 if (actual_precision != TYPE_PRECISION (type2)
3312 || from_unsigned2 != TYPE_UNSIGNED (type2))
3313 mult_rhs2 = build_and_insert_cast (gsi, loc,
3314 build_nonstandard_integer_type
3315 (actual_precision, from_unsigned2),
3316 mult_rhs2);
3317
3318 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
3319 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
3320
3321 /* Handle constants. */
3322 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3323 mult_rhs1 = fold_convert (type1, mult_rhs1);
3324 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3325 mult_rhs2 = fold_convert (type2, mult_rhs2);
3326
3327 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3328 add_rhs);
3329 update_stmt (gsi_stmt (*gsi));
3330 widen_mul_stats.maccs_inserted++;
3331 return true;
3332 }
3333
3334 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3335 with uses in additions and subtractions to form fused multiply-add
3336 operations. Returns true if successful and MUL_STMT should be removed. */
3337
3338 static bool
3339 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
3340 {
3341 tree mul_result = gimple_get_lhs (mul_stmt);
3342 tree type = TREE_TYPE (mul_result);
3343 gimple use_stmt, neguse_stmt;
3344 gassign *fma_stmt;
3345 use_operand_p use_p;
3346 imm_use_iterator imm_iter;
3347
3348 if (FLOAT_TYPE_P (type)
3349 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3350 return false;
3351
3352 /* We don't want to do bitfield reduction ops. */
3353 if (INTEGRAL_TYPE_P (type)
3354 && (TYPE_PRECISION (type)
3355 != GET_MODE_PRECISION (TYPE_MODE (type))))
3356 return false;
3357
3358 /* If the target doesn't support it, don't generate it. We assume that
3359 if fma isn't available then fms, fnma or fnms are not either. */
3360 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3361 return false;
3362
3363 /* If the multiplication has zero uses, it is kept around probably because
3364 of -fnon-call-exceptions. Don't optimize it away in that case,
3365 it is DCE job. */
3366 if (has_zero_uses (mul_result))
3367 return false;
3368
3369 /* Make sure that the multiplication statement becomes dead after
3370 the transformation, thus that all uses are transformed to FMAs.
3371 This means we assume that an FMA operation has the same cost
3372 as an addition. */
3373 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3374 {
3375 enum tree_code use_code;
3376 tree result = mul_result;
3377 bool negate_p = false;
3378
3379 use_stmt = USE_STMT (use_p);
3380
3381 if (is_gimple_debug (use_stmt))
3382 continue;
3383
3384 /* For now restrict this operations to single basic blocks. In theory
3385 we would want to support sinking the multiplication in
3386 m = a*b;
3387 if ()
3388 ma = m + c;
3389 else
3390 d = m;
3391 to form a fma in the then block and sink the multiplication to the
3392 else block. */
3393 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3394 return false;
3395
3396 if (!is_gimple_assign (use_stmt))
3397 return false;
3398
3399 use_code = gimple_assign_rhs_code (use_stmt);
3400
3401 /* A negate on the multiplication leads to FNMA. */
3402 if (use_code == NEGATE_EXPR)
3403 {
3404 ssa_op_iter iter;
3405 use_operand_p usep;
3406
3407 result = gimple_assign_lhs (use_stmt);
3408
3409 /* Make sure the negate statement becomes dead with this
3410 single transformation. */
3411 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3412 &use_p, &neguse_stmt))
3413 return false;
3414
3415 /* Make sure the multiplication isn't also used on that stmt. */
3416 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3417 if (USE_FROM_PTR (usep) == mul_result)
3418 return false;
3419
3420 /* Re-validate. */
3421 use_stmt = neguse_stmt;
3422 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3423 return false;
3424 if (!is_gimple_assign (use_stmt))
3425 return false;
3426
3427 use_code = gimple_assign_rhs_code (use_stmt);
3428 negate_p = true;
3429 }
3430
3431 switch (use_code)
3432 {
3433 case MINUS_EXPR:
3434 if (gimple_assign_rhs2 (use_stmt) == result)
3435 negate_p = !negate_p;
3436 break;
3437 case PLUS_EXPR:
3438 break;
3439 default:
3440 /* FMA can only be formed from PLUS and MINUS. */
3441 return false;
3442 }
3443
3444 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3445 by a MULT_EXPR that we'll visit later, we might be able to
3446 get a more profitable match with fnma.
3447 OTOH, if we don't, a negate / fma pair has likely lower latency
3448 that a mult / subtract pair. */
3449 if (use_code == MINUS_EXPR && !negate_p
3450 && gimple_assign_rhs1 (use_stmt) == result
3451 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3452 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3453 {
3454 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3455
3456 if (TREE_CODE (rhs2) == SSA_NAME)
3457 {
3458 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3459 if (has_single_use (rhs2)
3460 && is_gimple_assign (stmt2)
3461 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3462 return false;
3463 }
3464 }
3465
3466 /* We can't handle a * b + a * b. */
3467 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3468 return false;
3469
3470 /* While it is possible to validate whether or not the exact form
3471 that we've recognized is available in the backend, the assumption
3472 is that the transformation is never a loss. For instance, suppose
3473 the target only has the plain FMA pattern available. Consider
3474 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3475 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3476 still have 3 operations, but in the FMA form the two NEGs are
3477 independent and could be run in parallel. */
3478 }
3479
3480 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3481 {
3482 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3483 enum tree_code use_code;
3484 tree addop, mulop1 = op1, result = mul_result;
3485 bool negate_p = false;
3486
3487 if (is_gimple_debug (use_stmt))
3488 continue;
3489
3490 use_code = gimple_assign_rhs_code (use_stmt);
3491 if (use_code == NEGATE_EXPR)
3492 {
3493 result = gimple_assign_lhs (use_stmt);
3494 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3495 gsi_remove (&gsi, true);
3496 release_defs (use_stmt);
3497
3498 use_stmt = neguse_stmt;
3499 gsi = gsi_for_stmt (use_stmt);
3500 use_code = gimple_assign_rhs_code (use_stmt);
3501 negate_p = true;
3502 }
3503
3504 if (gimple_assign_rhs1 (use_stmt) == result)
3505 {
3506 addop = gimple_assign_rhs2 (use_stmt);
3507 /* a * b - c -> a * b + (-c) */
3508 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3509 addop = force_gimple_operand_gsi (&gsi,
3510 build1 (NEGATE_EXPR,
3511 type, addop),
3512 true, NULL_TREE, true,
3513 GSI_SAME_STMT);
3514 }
3515 else
3516 {
3517 addop = gimple_assign_rhs1 (use_stmt);
3518 /* a - b * c -> (-b) * c + a */
3519 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3520 negate_p = !negate_p;
3521 }
3522
3523 if (negate_p)
3524 mulop1 = force_gimple_operand_gsi (&gsi,
3525 build1 (NEGATE_EXPR,
3526 type, mulop1),
3527 true, NULL_TREE, true,
3528 GSI_SAME_STMT);
3529
3530 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3531 FMA_EXPR, mulop1, op2, addop);
3532 gsi_replace (&gsi, fma_stmt, true);
3533 widen_mul_stats.fmas_inserted++;
3534 }
3535
3536 return true;
3537 }
3538
3539 /* Find integer multiplications where the operands are extended from
3540 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3541 where appropriate. */
3542
3543 namespace {
3544
3545 const pass_data pass_data_optimize_widening_mul =
3546 {
3547 GIMPLE_PASS, /* type */
3548 "widening_mul", /* name */
3549 OPTGROUP_NONE, /* optinfo_flags */
3550 TV_NONE, /* tv_id */
3551 PROP_ssa, /* properties_required */
3552 0, /* properties_provided */
3553 0, /* properties_destroyed */
3554 0, /* todo_flags_start */
3555 TODO_update_ssa, /* todo_flags_finish */
3556 };
3557
3558 class pass_optimize_widening_mul : public gimple_opt_pass
3559 {
3560 public:
3561 pass_optimize_widening_mul (gcc::context *ctxt)
3562 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3563 {}
3564
3565 /* opt_pass methods: */
3566 virtual bool gate (function *)
3567 {
3568 return flag_expensive_optimizations && optimize;
3569 }
3570
3571 virtual unsigned int execute (function *);
3572
3573 }; // class pass_optimize_widening_mul
3574
3575 unsigned int
3576 pass_optimize_widening_mul::execute (function *fun)
3577 {
3578 basic_block bb;
3579 bool cfg_changed = false;
3580
3581 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3582
3583 FOR_EACH_BB_FN (bb, fun)
3584 {
3585 gimple_stmt_iterator gsi;
3586
3587 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3588 {
3589 gimple stmt = gsi_stmt (gsi);
3590 enum tree_code code;
3591
3592 if (is_gimple_assign (stmt))
3593 {
3594 code = gimple_assign_rhs_code (stmt);
3595 switch (code)
3596 {
3597 case MULT_EXPR:
3598 if (!convert_mult_to_widen (stmt, &gsi)
3599 && convert_mult_to_fma (stmt,
3600 gimple_assign_rhs1 (stmt),
3601 gimple_assign_rhs2 (stmt)))
3602 {
3603 gsi_remove (&gsi, true);
3604 release_defs (stmt);
3605 continue;
3606 }
3607 break;
3608
3609 case PLUS_EXPR:
3610 case MINUS_EXPR:
3611 convert_plusminus_to_widen (&gsi, stmt, code);
3612 break;
3613
3614 default:;
3615 }
3616 }
3617 else if (is_gimple_call (stmt)
3618 && gimple_call_lhs (stmt))
3619 {
3620 tree fndecl = gimple_call_fndecl (stmt);
3621 if (fndecl
3622 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3623 {
3624 switch (DECL_FUNCTION_CODE (fndecl))
3625 {
3626 case BUILT_IN_POWF:
3627 case BUILT_IN_POW:
3628 case BUILT_IN_POWL:
3629 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3630 && REAL_VALUES_EQUAL
3631 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3632 dconst2)
3633 && convert_mult_to_fma (stmt,
3634 gimple_call_arg (stmt, 0),
3635 gimple_call_arg (stmt, 0)))
3636 {
3637 unlink_stmt_vdef (stmt);
3638 if (gsi_remove (&gsi, true)
3639 && gimple_purge_dead_eh_edges (bb))
3640 cfg_changed = true;
3641 release_defs (stmt);
3642 continue;
3643 }
3644 break;
3645
3646 default:;
3647 }
3648 }
3649 }
3650 gsi_next (&gsi);
3651 }
3652 }
3653
3654 statistics_counter_event (fun, "widening multiplications inserted",
3655 widen_mul_stats.widen_mults_inserted);
3656 statistics_counter_event (fun, "widening maccs inserted",
3657 widen_mul_stats.maccs_inserted);
3658 statistics_counter_event (fun, "fused multiply-adds inserted",
3659 widen_mul_stats.fmas_inserted);
3660
3661 return cfg_changed ? TODO_cleanup_cfg : 0;
3662 }
3663
3664 } // anon namespace
3665
3666 gimple_opt_pass *
3667 make_pass_optimize_widening_mul (gcc::context *ctxt)
3668 {
3669 return new pass_optimize_widening_mul (ctxt);
3670 }